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Abstract—Low sample size and the absence of labels on
certain data limits the performances of predictive algorithms.
To overcome this problem, it is sometimes possible to learn a
model on a large labeled auxiliary dataset. Yet, this assumes that
the two datasets exhibit similar statistical properties which is
rarely the case in practice: there is a discrepancy between the
large dataset, called the source, and the dataset of interest, called
the target. Improving the prediction performance on the target
domain by reducing the distribution discrepancy, between the
source and the target domains, is known as Domain Adaptation
(DA). Presently, Optimal transport DA (OTDA) methods yield
state-of-the-art performances on several DA problems. In this
paper, we consider the problem of sleep stage classification, and
use OTDA to improve the performances of a convolutional neural
network. We use features learnt from the electroencephalogram
(EEG) and the electrooculogram (EOG) signals. Our results
demonstrate that the method significantly improves the network
predictions on the target data.

Index Terms—EEG, sleep stage classification, domain adapta-
tion, neural network, optimal transport

I. INTRODUCTION

Training a supervised machine learning algorithm requires
labeled data which might be limited or even absent in some
cases. Using an auxiliary dataset, largely labeled, a.k.a source
domain, enables to cope with this issue by training a predic-
tive model that can then be used on a target domain. Yet,
seldom are the source and target domains exactly identical
in a statistical way: there is a domain discrepancy. Domain
Adaptation (DA) methods [1] have been proposed to cope with
this problem. The rationale behind DA is to find/adapt a feature
representation that minimizes this discrepancy [2].

DA methods can be divided into two categories. Unsuper-
vised DA methods perform adaptation without using labels
in the target domain, whereas semi-supervised DA methods
use labels from source domain as well as from a few labeled
target samples. Furthermore, DA methods can be separated
into two types: deep DA methods which aim at relearning the
feature representation [3], [4] while shallow DA methods aim
at reducing the domain discrepancy by applying an operation,
typically linear, on a fixed feature representation [S]-[9].

Among shallow DA methods, optimal transport methods
have exhibited promising performances on a wide range of
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problem [10], [11], in particular on some EEG signals [12].
The principle underlying these OTDA methods is finding a
mapping that maps source samples into the convex hull of
target samples such that the probability distribution of the
mapped samples is similar to the target probability distribution.
These proposed OTDA methods build on recent progress on
computational optimal transport, such as entropic regulariza-
tion which leads to a fast Sinkhorn-Knopp’s algorithm [13].

Sleep stage classification, a.k.a. sleep scoring, is of great
interest for understanding sleep and its disorders. Indeed,
the sequence of sleep stages over a night is often used in
the diagnosis of sleep disorders such as narcolepsy [14].
Traditionally, this exam is performed as follows. First a subject
sleeps with a medical device which performs a polysomnog-
raphy (PSG). It consists of electroencephalography (EEG)
signals at different locations over the head, electrooculog-
raphy (EOG) signals, electromyography (EMG) signals, and
eventually more. Second, a human sleep expert looks at the
different time series recorded over the night, and assigns to
each 30s time segment a sleep stage following a reference
nomenclature such as American Academy of Sleep Medicine
(AASM) rules [15]. The AASM rules identify 5 stages: Wake
(W), Rapid Eye Movements (REM), Non REM1 (N1), Non
REM?2 (N2) and Non REM3 (N3) also known as deep sleep.
They are characterized by distinct time and frequency patterns.
They also differ in proportions over a night. Sleep scoring
is a tedious and time consuming task which is furthermore
subject to the scorer subjectivity and variability [14], yet it
gives access to clinically relevant information about a patient.

From a machine learning perspective, the problem of au-
tomatic sleep scoring is an imbalanced multi-class classifi-
cation problem. Several deep learning approaches have been
proposed to learn an appropriate feature representation and
classify sleep stages based on raw PSG signals or a time-
frequency representation of these signals [14], [16], [17].
Despite leading to state-of-the-art performances on various
datasets, training a deep architecture requires a large quantity
of data [16] which might not be available, typically for
particular clinical populations.

In this context, training a deep network on a large labeled
source domain seems to be a good compromise. Yet, applying
this method directly to records from a target domain is likely to
give lower performances than expected. Indeed cross-dataset



generalization is a difficult problem and is referred to as the
dataset bias problem [18]. Domain adaptation is therefore a
crucial step to improve the generalization performance of the
model on a target domain.

Our contribution is a benchmark of OTDA approaches
versus standard DA methods to enhance generalization perfor-
mances of ’source domain trained” deep sleep stage classifier
on a target domain. In this paper, (i) we recall the OTDA
principles, (ii) we present the general approach to adapt sleep
stage classifier with OTDA, (iii) we perform a benchmark of
DA methods on the sleep stage classification task between a
large source domain and a target domain. All data are publicly
available.

II. METHOD

Notation: With n € N an integer, 1,, (resp. 0,,) stands
for the vector of R™ composed of 1 (resp. 0). Let A, B be
two matrices of same dimensions, (A, B) = tr(ATB). Let
C € N be the number of possible classes to predict and ) =
{1,---,C}. X = R% stands for the feature space in dimension
d. X is equipped with the Euclidean norm | - ||2. For z € X,
0, stands for the Dirac measure at position x. Let ng,n; € N
be the number of source training samples and target samples.
(Xs,Ys) (resp. (X¢,Y;)) stand for the ng source (resp. m
target) samples. They are assumed to be uniformly drawn from
a source (resp. target) probability distribution g (resp. pit).
Let P € R}**™ be a matrix such that P1,, = 1, and
P71, = 1,,. The entropy of P € R™*™ is defined as:
H(P) = =325 Pij(log P;j — 1). I, stands for the set of
source samples with label y: I, = {1 <i<n,:Y! =y}
Finally, || - ||} stands for the /; norm of a vector to the power
of peR,.

A. Domain adaptation with optimal transport

We first recall the principles of OTDA methods as intro-
duced in [10], [11], [13]. It consists in (i) solving a linear
program (LP) to obtain a coupling matrix linking the source
and target samples, (ii) expressing the transported source
samples as a linear combination of the target samples, where
the linear combination is given by the coupling matrix.

Consider n, source samples and n; target samples, with
Xs, Xt € X drawn i.i.d. from two probability distributions pi
and p;. Both X and X, are associated with two uniform
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empirical distributions of probability j, =

and j; =

1/ns1l,, and 1/n;1,,. OTDA methods involve a pairwise
distance matrix M € R™=*"* also called cost matrix or ground
metric. It is common to define it as M;; = || X! — X7||3.
Furthermore OTDA methods involve a polytope of possible
couplings between the empirical distributions fis and [i;:
(fis, fir) & {P € R%¥" : P1,,, = fis, PT1,,, = i }.

The first step consists in finding an optimal coupling P*
which minimizes the transported mass P +— (P, M) [10], [11]

P* € argmin (P, M) . (1)
Pen(ﬂsvﬂt)

1 . .
— > " dy:. We identify them to the vectors
ny i=1"X}

The second step consists in computing a fransportation
mapping T that transports each source sample into the convex
hull of the target samples [10], [11]:

o s PhX]
T(X;) = ST
j=1+ij

where P stands for the i-th row of P*.
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B. Entropic regularization

In this paragraph, we recall how the LP part can be solved
efficiently using an entropic regularization term. Solving the
LP (1) involved in OTDA methods is computationally expen-
sive. To cope with this problem [13] introduced an entropic
regularization term to the initial problem. The new optimiza-
tion problem reads:

P* = argmin (P,M)—eH(P),e>0 . 3)
Pen(ﬂmﬂt)

The benefits of such a regularization are threefold: the
problem is now strictly convex with a unique solution, the
entropic regularization stabilizes the solution and smooths the
transportation plan P*, and finally the solution of (3) can
be obtained by iterative diagonal scaling of the Gibbs kernel
K = exp(—M/e) associated to M. This step is often referred
to as Sinkhorn-Knopp’s algorithm [13].

C. Regularization on source labels

The authors of [10], [11] introduced an additional regular-
ization to the OT problem (3) to structure the coupling based
on the labels of source samples. It is a regularization defined
as Qc(P) = Y200, 30 ey I1P(Ly, 9)|I7 with p < 1 (0.5 in
practice). It enforces sparsity in the coupling P so that source
samples of the same label are transported onto the same target
samples, and additionally source samples of opposite labels
are transported onto different target samples. With € > 0 and
1 > 0, the optimization problem now reads:

P* = argmin (P,M)— eH(P) + nQ.(P) 4)
PeTl(fis,fit)

We will refer in this manuscript to this approach as LpL1.
As the regularization is non-convex, it is solved iteratively by
majorization-minimization [10], [11]

D. General method

To demonstrate the benefits of the OTDA method for a deep
learning model we propose the following approach: (i) select
samples from the source domains and a record from the target
domain (ii) extract the features from the penultimate layer
(before the classification layer) for the source data and target
data (iii) apply the OTDA method on extracted features to
adapt the source features. (iv) retrain the network classification
layer on the adapted features (v) predict on the target features.



III. EXPERIMENTS

a) Data: We used MESA [19] as a source domain which
contains EEG records with 3 EEG derivations (Fz-Cz, Cz-
Oz, C4) et 2 EOG derivations (EOG left - Fpz, EOG right -
Fpz). The target domain was MASS-session 3 [20]. We used
61 records and consider the derivations similar to the source
domain derivations: Fz-Cz, Cz-Oz, C4 and EOG left - Fpl,
EOG right - Fpl (since Fpz is not available).

b) Features extraction: We followed the methodology
described in [16] for preprocessing. Here, 1200 (resp. 200)
randomly chosen source records are used for training (resp.
validation i.e. monitoring the progress of training). The deep
learning model was the model introduced in [16] with 5 EEG
like channels. It was trained by minimizing a cross-entropy
loss weighted by the inverse of the stage proportions in order
to mimic the balanced sampling used in [16]. The source
(resp. target) EEG/EOG 30s signals were propagated through
the network and the activations of the penultimate layer were
considered as source (resp. target) features. This leads to a
feature space of dimension d = 600.

c) Baselines: We compared our approach to various
strategies. S stands for not using any adaptation method.
CORAL (Correlation Alignment) [5] consists of whitening
the source data and coloring them with the target covariance
matrix. SA (Subspace Alignment) [6] consists of projecting
the source and target data onto two subspaces of dimension
dsa < d, and aligning the source subspace axes onto the
target subspace axes. The hyperparameter dg 4 was optimized
in {25,50,100} via a grid search. OT (resp. LpL1) has
1 hyperparameter e (resp 2 hyperparameters €,7) that was
also optimized by grid search over {10’1,~-~103} (resp.
{1071, 10%} x {100,---103}).

d) Classifier: We used the classification layer of [16]’s
model as a classifier, a fully connected layer with a softmax
activation. The input dimension is equal to the feature repre-
sentation dimension (either d or ds4 for SA) and the output
dimension is equal to the number of classes C' = 5. For
each DA method, the network is trained on adapted source
samples by minimizing the categorical cross entropy with
stochastic gradient descent and balanced sampling [16]. The
training progress is monitored on the validation source data.
An early stopping procedure is used to stop the training when
no improvement is observed on the validation set after 5
consecutive pass on the data. Once trained, the model predicts
the sleep stages on the (adapted) features of a target record.

e) Cross-validation: The classifier is trained on 2500
(adapted) source training samples (500 per class). 2500 addi-
tional (adapted) source validation samples are used to monitor
training progress and perform early stopping. The classifier
then predicts on an unseen target record. The DA methods are
fitted on the source training samples and the considered target
record. The process is repeated over the 61 target records.

The hyperparameters of SA, OT and LpL1 are optimized
using target validation data. This set is composed of 1000
(adapted) target samples from 10 records. For each set of
hyperparameters, (1) the DA method is applied to adapt source
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Fig. 1. General benchmark of DA methods: OTDA methods address well the
DA problem and recover half of the lost performance. A: averaged balanced
accuracy. B: balanced accuracy per record (1 dot is 1 record). Dashed-line:
optimal performance of the classifier, should we have labels for 40 records
of the target domain.

training / validation samples, (2) the classifier is trained,
(3) it is evaluated on (adapted) target validation data. The
set of hyperparameters obtaining the highest performance on
validation target data is selected.

f) Metrics: The balanced accuracy is used as a general
metric. Per-class metrics such as normalized (per row) confu-
sion matrix, F1 score, precision, sensitivity and specificity are
furthermore used to characterize the effects of DA methods.
Each metric is computed per target record. The presented
performances are averaged over the target records.

g) Code: We used POT library (https://pot.readthedocs.
io/en/latest) for OT algorithms, PyTorch library [21] for the
deep learning part and scikit-learn [22] for general purposes.

h) Benchmark: Besides results with the DA methods,
we present the optimal performance that a classifier could
reach, should we had access to the labels for 40 records
in the target domain. The averaged and per-record balanced
accuracies are reported in Figure 1. We observe that OTDA
methods outperform SA and CORAL by delivering a gain
of performance larger than 5% on the averaged balanced
accuracy. Performance per record indicates that most records
exhibit higher performances with OTDA methods.

The confusion matrices and the per-class metrics associated
to each DA method are reported in Figure 2. They indicate
that OTDA methods improve the detection of all stages: the
matrices for OT and LpL1 are more diagonal. They also show
that OTDA methods offer a good compromise of sensitivity,
specificity and precision for each stage. On the other hand, the
other DA methods do not exhibit general good performance
as they under perform on some particular stages. Indeed SA
exhibits low precision and sensitivity on N1 and low precision
on REM. CORAL exhibits low sensitivity on N1 and N2 and
low precision on N3.

i) Influence of hyperparameters: We focus here on eval-
uating the influence of the hyperparameters e,n for LpLl1.
We report the performances in Figure 3-A when varying € in
{107*,--- ,10%} and n € {0,107, - -+ ,10%}. We also report
the performances obtained by setting €, to the maximum
value taken by any feature in either source or target domains.
We refer to this as the maximum heuristic.

Both € and 1 have influence on the performances of LpL1
but for each 7 value, there is a large range of e leading to
similar and good performances, see Fig 3-A. The maximum
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Fig. 2. Per-class metrics of DA methods: OTDA methods improve the detection of all sleep stages regarding the per-class metrics. The darker the better.
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Fig. 3. A: Influence of hyperparameters €, on LpL1. Dashed-blue-line: €, n
fixed with the maximum heuristic. For n = 0, LpL1 = OT. B: Performance
improvement per record (each dot is 1 record) with the maximum heuristic

heuristic for €, 7 leads to high performances: the blue dashed-
line is always above the n-curves. This also leads to classi-
fication improvements on most of the records, see Fig 3-B.
Importantly, the maximum heuristic avoids the need to run a
grid search, and does not require labeled target samples at all.

CONCLUSION

In this paper, we focused on improving the performances
of an automatic sleep stage classifier when applied to a
different target domain. The proposed approach based on a
convolutional network, and built on optimal transport, clearly
showed improvements on cross-domain generalization, a prob-
lem which is relevant for any predictive model applied to new
datasets exhibiting distribution shifts.
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