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Abstract
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1 Overview

1.1 Support theorems for stochastic differential equa-
tions

A stochastic process may be viewed as a random variable taking values in
a space of paths; the (topological) support of this random variable then
describes the (closure of) the set of possible sample paths and provides insight
into the structure of sample paths of the process. The nature of the support
has been investigated for various classes of stochastic processes, with a focus
on stochastic differential equations, under different function space topologies.

For diffusion processes, the support under the uniform norm was first
described by Stroock and Varadhan [20,21], a result known as the ‘Stroock-
Varadhan support theorem’. An extension to unbounded coefficients was
given by Gyöngy [14]. The support of more general Wiener functionals and
extensions to SDEs in Hilbert space are discussed in Aida et al [2] and [1].
These results were extended to the Hölder topology by Ben Arous et al. [5]
and, using different techniques, by Millet and Sanz-Solé [16] ; Bally et al
[4] use similar methods to derive a support theorem in Hölder norms for
parabolic SPDEs. Support theorems in p-variation topology are discussed
by Ledoux et al [15] using rough path techniques. Support theorems in
Hölder and p-variation topologies are discussed in [13]. Pakkanen [18] gives
conditions for a stochastic integral ito have full support.

In this work, we extend some of these results to stochastic differential
equations with path-dependent coefficients. Let (Ω,F , (Ft)t∈[0,T ], P ) be a fil-
tered probability space on which there is a standard d-dimensional (Ft)t∈[0,T ]-
Brownian motion W . Consider the following stochastic differential equation

dXt = b(t,X t) dt+ σ(t,X t) dWt for t ∈ [r, T ], (1.1)

whose coefficients b : [r, T ] × S → Rm and σ : [r, T ] × S → Rm×d are non-
anticipative i.e. b(t,X), σ(t,X) depend on the path X t = X(t ∧ .) of the
solution up to t. Under Lipschitz conditions on the coefficients b, σ, this
SDE has a unique solution X [17,19] whose sample paths lie in some Hölder
space Cα([0, T ],Rm). Our main result is a description of the support of the
solution in the Hölder topology: we show that the support of the law of the
solution is given by the image of the Cameron-Martin space H1 under the
flow associated with a system of functional differential equations.
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1.2 Statement of main result
Let T > r ≥ 0 and d,m ∈ N. To keep notations simple, we denote by | · | the
absolute value function, the Euclidean norm in Rd and Rm and the Frobenius
norm in Rm×d. Denote by

S := C([0, T ],Rm) (1.2)

the space of continuous Rm-valued maps on [0, T ] equipped with the supre-
mum norm ‖ · ‖ and by Cα

r ([0, T ],Rm) the space of x ∈ S that are α-Hölder-
continuous on [r, T ] for α ∈ (0, 1], endowed with the ‘delayed Hölder norm’

‖x‖α,r := ‖x‖+ sup
s,t∈[r,T ]: s 6=t

|x(s)− x(t)|
|s− t|α

. (1.3)

We set Cr
0([0, T ],Rm) := S and ‖ · ‖0,r := ‖ · ‖ by convention. Then, under

the assumptions stated below, (1.1) admits a unique strong solution whose
sample paths lie in Hölder space Cα

r ([0, T ],Rm) for all α ∈ [0, 1/2).
We denote H1

r ([0, T ],Rm) the space of absolutely continuous functions on
[r, T ] whose derivative ḣ is square-integrable with respect to the Lebesgue
measure. We equip this space with the norm

‖x‖H,r := ‖x‖+
(∫ T

r
|ẋ(s)|2 ds

)1/2

. (1.4)

Then H1
r ([0, T ],Rm) ( C1/2

r ([0, T ],Rm) and every x ∈ H1
r ([0, T ],Rm) satisfies

‖x‖1/2,r ≤ ‖x‖H,r.
Using the concepts of horizontal and vertical differentiability for non-

anticipative functionals [7, 12], we introduce in Section 2.1 regularity as-
sumptions on the coefficient σ ∈ C1,2([r, T )×S,Rm×d) and consider the map
ρ : [r, T )× S → Rm given coordinatewise by

ρk(t, x) :=
d∑
l=1

∂xσk,l(t, x)σ(t, x)el, (1.5)

where {e1, . . . , ed} is the canonical basis of Rd and ∂xσk,l : [r, T )×S → R1×m

denotes the vertical derivative [6,12] of the (k, l)-coordinate function of σ for
any k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Note that ρ = ∂xσ · σ for m = d = 1.

In this context, the support of the unique strong solution to (1.1) may be
characterized by studying the following path-dependent ordinary differential
equation driven by an element h ∈ H1

r ([0, T ],Rd):

ẋh(t) = (b− (1/2)ρ)(t, xth) + σ(t, xth) ḣ(t) for t ∈ [r, T ]. (1.6)

Our main result may be stated as follows:
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Theorem 1 (Support theorem for path-dependent SDEs).
Let x̂ ∈ C([0, T ],Rm) and σ ∈ C1,2([r, T ) × S,Rm×d) with horizontal (resp.
vertical) derivative denoted by ∂tσ (resp. ∂xσ). Assume σ and ∂xσ are
bounded and there are constants c, η, λ ≥ 0 and κ ∈ [0, 1) such that

|b(t, x)| ≤ c(1 + ‖x‖κ), |b(t, x)− b(t, y)| ≤ λ‖x− y‖,
|∂tσk,l(t, x)|+ |∂xxσk,l(t, x)| ≤ c(1 + ‖x‖η),

|σ(s, y)− σ(t, x)|+ |∂xσk,l(s, y)− ∂xσk,l(t, x)| ≤ λ(|s− t|1/2 + ‖ys − xt‖)

for all s, t ∈ [r, T ), x, y ∈ S, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Then:

(i) There is a unique strong solution X to (1.1) satisfying Xs = x̂(s) for all
s ∈ [0, r] a.s. Further, E[‖X‖2p

α,r] <∞ for all p ≥ 1 and α ∈ [0, 1/2).

(ii) For any h ∈ H1
r ([0, T ],Rd) there is a unique mild solution xh to (1.6) so

that xh(s) = x̂(s) for all s ∈ [0, r] and we have xh ∈ H1
r ([0, T ],Rm). In

addition, the map H1
r ([0, T ],Rd)→ H1

r ([0, T ],Rm), h 7→ xh is Lipschitz
continuous on bounded sets.

(iii) For each α ∈ [0, 1/2), the support of the image measure P ◦X−1 in the
delayed Hölder space Cα

r ([0, T ],Rm) is the closure of the set of all mild
solutions xh to (1.6), where h ∈ H1

r ([0, T ],Rd). That is,

supp(P ◦X−1) = {xh |h ∈ H1
r ([0, T ],Rd)} in Cα

r ([0, T ],Rm). (1.7)

This result extends previous results [2,5,16,20] on the support of diffusion
processes to the case of path-dependent coefficients. In the diffusion case, we
retrieve the results of [5, 16] under weaker assumptions on σ.

Our proof adapts the approach used by Millet and Sanz-Solé [16] to the
path-dependent case, using the tools of Functional Ito calculus [6, 12]. We
construct Hölder-continuous approximations of the solution using an adapted
linear interpolation of Brownian motion and show that this approximation
converges in probability to the solution in Hölder norm. A key ingredient
is the use of functional estimates derived in [3] using the Functional Ito
calculus, combined with interpolation error estimates in Hölder norm for
stochastic processes.

Outline. The remainder of the paper is devoted to the proof of Theorem
Support Theorem. Section 2 discusses the various building blocks of the
proof. Section 2.1 recalls some functional calculus concepts from [6] and
establishes several results useful in our setting. Section 2.2 gives conditions
for existence and uniqueness of a (mild) solution to the path-dependent ODE
(1.6); Section 2.3 gives conditions for the existence of a unique strong solution
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to (1.1); Section 2.4 dicusses the interpolation method used to characterize
the support in Hölder topologies.

Section 3 discusses Hölder spaces for stochastic processes and the notion
of convergence in probability in Hölder norm in more depth. Section 3.2
derives a variation on the Kolmogorov-Chentsov theorem with an estimate
for the Hölder norm (Lemma 12) and an improved version of a statement
from [16] (Proposition 14). Section 3.4 discusses adapted linear interpolation
of Brownian motion, improving some results from [16]. Section 4 uses these
ingredients to prove the existence and uniqueness of mild solutions to path-
dependent ODEs (Sec. 4.1) and SDEs (Sec. 4.2). Finally, Section 5 combines
these ingredients to give a proof of the main result.

2 Preliminaries
We shall denote Id the d × d identity matrix; for a matrix A we denote by
A′ its transpose.

2.1 Non-anticipative functional calculus
Let D([0, T ],Rm) denote the Banach space of all Rm-valued càdlàg maps on
[0, T ] equipped with the supremum norm ‖·‖ and recall the following notions
from [6,8]. A functional F : [r, T ]×D([0, T ],Rm)→ R is non-anticipative if

F (t, x) = F (t, xt)

for all t ∈ [r, T ] and x ∈ D([0, T ],Rm), where xt is path x stopped at time t:
xt(s) = x(s ∧ t) for each s ∈ [0, T ]. F is called boundedness-preserving if for
each n ∈ N there is cn ≥ 0 such that

|F (t, x)| ≤ cn

for every t ∈ [r, T ] and x ∈ D([0, T ],Rm) satisfying ‖x‖ ≤ n. In other words,
F is ought to be bounded on bounded sets. We notice that the following
pseudometric on [r, T ]×D([0, T ],Rm) given by

d∞((t, x), (s, y)) := |t− s|1/2 + ‖xt − ys‖ (2.1)

is complete and if F is d∞-continuous, then it is non-anticipative. As observed
in [10], Lipschitz continuity with respect to d∞ allows for a Hölder smoothness
of degree 1/2 in the time variable.
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Let us recall the definitions of the horizontal and vertical derivative. A
functional F : [r, T )×D([0, T ],Rm)→ R is called horizontally differentiable
if for each t ∈ [r, T ) and x ∈ D([0, T ],Rm), the function

[0, T − t)→ R, h 7→ F (t+ h, xt)

is differentiable at 0. In this case, its derivative there, will be denoted by
∂tF (t, x). We say that F is vertically differentiable if for all t ∈ [r, T ) and
x ∈ D([0, T ],Rm), the function

Rm → R, h 7→ F (t, x+ h1[t,T ])

is differentiable at 0. In this case, its derivative there will be represented by
∂xF (t, x). We call F partially vertically differentiable if for all k ∈ {1, . . . ,m},
t ∈ [r, T ) and x ∈ D([0, T ],Rm), the function

R→ R, h 7→ F (t, x+ hêk1[t,T ])

is differentiable at 0, where {ê1, . . . , êm} is the canonical basis of Rm. In
this case, its derivative there will be denoted by ∂xiF (t, x). By calculus, if
F is vertically differentiable, then it is partially vertically differentiable and
∂xF = (∂x1F, . . . , ∂xmF ).

F is twice vertically differentiable if it is vertically differentiable and the
same holds for ∂xF . In this case, we set ∂xxF := ∂x(∂xF ) and

∂xkxlF := ∂xk(∂xlF ) for all k, l ∈ {1, . . . ,m}.

It follows from Schwarz’s Lemma that if F is twice vertically differentiable
and ∂xxF is d∞-continuous, then ∂xxF is symmetric: ∂xkxlF = ∂xlxkF for
each k, l ∈ {1, . . . ,m}.

A functional G : [r, T ) ×D([0, T ],Rm) → R is said to be of class C1,2 if
it is once horizontally and twice vertically differentiable such that G itself
and the derivatives ∂tG, ∂xG and ∂xxG are boundedness-preserving and d∞-
continuous. By

C1,2([r, T )× S) (2.2)
we denote the space of functionals F : [r, T ) × S → Rm×d that admit an
extension G : [r, T ) × D([0, T ],Rm) → R of class C1,2, where S is given
by (1.2). Then it follows from [6, Theorem 5.4.1] that

∂tF := ∂tG, ∂xF := ∂xG and ∂xxF := ∂xxG on [r, T )× S

are independent of the choice of the extension G. Note that (2.2) allows us
to use the functional Itô formula [9] in the proof of Proposition 34, which
gives one of the main arguments to establish (1.7). To conclude, we write
C([r, T ) × S,Rm×d) for the linear space of all maps F : [r, T ) × S → Rm×d

satisfying Fk,l ∈ C([r, T )× S) for each k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}.
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2.2 Mild solutions to path-dependent ODEs
We show in this section a unique mild solution to the ODE (1.6), which
belongs to the delayed Cameron-Martin space H1

r ([0, T ],Rm). To this end,
let us consider the general path-dependent ordinary differential equation

ẋ(t) = F (t, xt) for t ∈ [r, T ], (2.3)

where F : [r, T ] × S → Rm denotes a non-anticipative product measurable
map. Then for each h ∈ H1

r ([0, T ],Rd) the choice F = b− (1/2)ρ+σḣ, where
ρ is given by (1.5), yields the support characterizing ODE (1.6).

As for x ∈ S the map [r, T ]→ Rm, t 7→ F (t, xt) may fail to be continuous,
one may in general not expect to derive classical solutions. So, we recall the
concept of a mild solution to (2.3), which is a path x ∈ S satisfying∫ T

r
|F (s, xs)| ds <∞ and x(t) = x(r) +

∫ t

r
F (s, xs) ds

for all t ∈ [r, T ]. By definition, a mild solution x is absolutely continuous on
[r, T ] and it becomes a classical solution if and only if the Borel measurable
map [r, T ]→ Rm, s 7→ F (s, xs) is continuous.

Let us introduce the following regularity conditions, which are satisfied
under the assumptions of Theorem 1 for the choice of F mentioned before.

(O.i) There exists a measurable function cF : [r, T ] → [0,∞) satisfying∫ T
r cF (s)2 ds <∞ and

|F (t, x)| ≤ cF (t)
(

1 + ‖x‖+
∫ T

r
|ẋ(s)| ds

)

for all t ∈ [r, T ) and x ∈ S that is absolutely continuous on [r, T ].

(O.ii) For each n ∈ N there is a measurable function λF,n : [r, T ] → [0,∞)
such that

∫ T
r λF,n(s)2 ds <∞ and

|F (t, x)− F (t, y)| ≤ λF,n(t)‖x− y‖H,r

for all t ∈ [r, T ) and x, y ∈ H1
r ([0, T ],Rm) so that ‖x‖H,r ∨‖y‖H,r ≤ n.

Under the above growth condition and Lipschitz smoothness on bounded
sets, we obtain a unique mild solution that can be approximated by a Picard
iteration in the delayed Cameron-Martin norm ‖ · ‖H,r given by (1.4).
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Proposition 2. Let (O.i) and (O.ii) hold and x̂ ∈ C([0, T ],Rm), then the
ODE (2.3) admits a unique mild solution yF satisfying

yF (s) = x̂(s) for all s ∈ [0, r]

and it holds that yF ∈ H1
r ([0, T ],Rm). Moreover, the sequence (xn)n∈N0 in

H1
r ([0, T ],Rm), recursively defined via x0(t) := x̂(r ∧ t) and

xn+1(t) := x0(t) +
∫ r∨t

r
F (s, xsn) ds (2.4)

for all n ∈ N0, converges in the delayed Cameron-Martin norm ‖ · ‖H,r to yF .

2.3 Strong solutions for path-dependent SDEs
We turn to the derivation of a unique strong solution to (1.1), for which
a.e. path lies in Cα

r ([0, T ],Rm) for any α ∈ [0, 1/2). We consider the stochas-
tic differential equation with path-dependent coefficients

dXt = B(t,X t) dt+ Σ(t,X t) dWt for t ∈ [r, T ], (2.5)

where B : [r, T ]×S → Rm and Σ : [r, T ]×S → Rm×d are two non-anticipative
product measurable maps.

A strong solution to (2.5) is an (Ft)t∈[0,T ]-adapted right-continuous pro-
cess X : [0, T ]× Ω→ Rm with a.s. continuous paths satisfying∫ T

r
|B(s,Xs)| ds+

∫ T

r
|Σ(s,Xs)|2 ds <∞ a.s. and

Xt = Xr +
∫ t

r
B(s,Xs) ds+

∫ t

r
Σ(s,Xs) dWs for all t ∈ [r, T ] a.s.

Remark 3. The fact that we do not have to assume the usual conditions is
clarified in Section 3.1 and irrespective how B(s, y) and Σ(s, y) are extended
for s ∈ [r, T ] and any right-continuous map y : [0, T ] → Rm that is not
continuous, the above integrals remain unchanged up to indistinguishability.

We now state the assumptions on the coefficients, valid in the setting of
Theorem 1 for the choice B = b and Σ = σ.

(S.i) There are a measurable function cB : [r, T ] → [0,∞) and a constant
cΣ ≥ 0 such that

∫ T
r cB(s)2 ds <∞ and for all (t, x) ∈ [r, T )× S,

|B(t, x)| ≤ cB(t)(1 + ‖x‖) and |Σ(t, x)| ≤ cΣ(1 + ‖x‖).
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(S.ii) There are α0 ∈ [0, 1/2), a measurable function λB : [r, T ]→ [0,∞) and
a constant λΣ ≥ 0 such that

∫ T
r λB(s)2 ds <∞ and

|B(t, x)−B(t, y)| ≤ λB(t)‖x− y‖α0,r,

|Σ(t, x)− Σ(t, y)| ≤ λΣ‖x− y‖α0,r

for all t ∈ [r, T ) and x, y ∈ Cα0
r ([0, T ],Rm), where ‖ · ‖α0,r equals ‖ · ‖

if α0 = 0 and otherwise is given by (1.3) when α is replaced by α0.

Remark 4. If condition (S.ii) holds, then it is also true if α0 is replaced by
any α ∈ (α0, 1/2). Thus, it is strongest in the case that α0 = 0.

For p ≥ 1 and α ∈ [0, 1] we let C α
r,p([0, T ],Rm) denote the space of all

(Ft)t∈[0,T ]-adapted right-continuous processes X : [0, T ]×Ω→ Rm satisfying
E[‖X‖pα,r] <∞, equipped with the intrinsic seminorm

C α
r,p([0, T ],Rm)→ [0,∞), X 7→

(
E
[
‖X‖pα,r

])1/p
, (2.6)

which is complete, by Proposition 11. Moreover, if a sequence (nX)n∈N in
this linear space converges with respect to the above seminorm, then it also
converges in the delayed Hölder norm ‖ · ‖α,r in probability. Finally, we set
C∞([0, T ],Rm) := ∩p≥1C 0

r,p([0, T ],Rm) and let

C 1/2−
r,∞ ([0, T ],Rm)

denote the intersection of the spaces C α
r,p([0, T ],Rm) over all p ≥ 1 and α ∈

[0, 1/2), which yields a completely pseudometrizable topological space.

Proposition 5. Assume (S.i)-(S.ii) and let X̂ ∈ C∞([0, T ],Rm). Then up to
indistinguishability there is a unique strong solution X to (2.5) such that

Xs = X̂s for all s ∈ [0, r] a.s.

we have that X ∈ C 1/2−
r,∞ ([0, T ],Rm). Furthermore, the sequence (nX)n∈N0 in

C 1/2−
r,∞ ([0, T ],Rm), recursively given by 0Xt := X̂r∧t and

n+1Xt = 0Xt +
∫ r∨t

r
B(s, nXs) ds+

∫ r∨t

r
Σ(s, nXs) dWs (2.7)

for all n ∈ N0, converges in the seminorm (2.6) to X for each p ≥ 2 and
α ∈ [0, 1/2). In particular, limn↑∞ P (‖nX −X‖α,r ≥ ε) = 0 for all ε > 0.

Remark 6. Pathwise uniqueness is shown in Lemma 30, requiring only the
following Lipschitz condition on bounded sets, which follows from (S.ii) in
the strongest case α0 = 0:
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(S.iii) For each n ∈ N there is a measurable function λn : [r, T ] → [0,∞)
satisfying

∫ T
r λn(s)2 ds <∞ and

|B(t, x)−B(t, y)|+ |Σ(t, x)− Σ(t, y)| ≤ λn(t)‖x− y‖

for all t ∈ [r, T ] and x, y ∈ S with ‖x‖ ∨ ‖y‖ ≤ n.

2.4 Characterization of the support in Hölder topol-
ogy

Sections 2.2 and 2.3 provide the main arguments to prove the first two as-
sertions of Theorem 1. Let us now describe how we shall characterize the
support (1.7). For n ∈ N let Tn be a partition of [r, T ] that we write in the
form

Tn = {t0,n, . . . , tkn,n}
for some kn ∈ N and t0,n, . . . , tkn,n ∈ [r, T ] so that r = t0,n < · · · < tkn,n = T
and we denote its mesh by |Tn| = maxi∈{0,...,kn−1}(ti+1,n − ti,n). We assume
that limn↑∞ |Tn| = 0 and that the sequence of partitions is well-balanced in
the sense of [11], that is, there is cT ≥ 1 such that

|Tn| ≤ cT inf
i∈{0,...,kn−1}

(ti+1,n − ti,n) for all n ∈ N. (2.8)

Moreover, for n ∈ N we define an (Ft)t∈[0,T ]-adapted right-continuous process
nW : [0, T ]× Ω→ Rd by setting nWt := Wr∧t for t ∈ [0, t1,n),

nWt := Wti−1,n + (t− ti,n)
Wti,n −Wti−1,n

ti+1,n − ti,n
(2.9)

for t ∈ [ti,n, ti+1,n) with i ∈ {1, . . . , kn − 1} and nWT := Wtkn−1,n
. Then

nW can be regarded as adapted linear interpolation of the d-dimensional
(Ft)t∈[0,T ]-Brownian motion W on [r, T ] and almost each of its paths belongs
to H1

r ([0, T ],Rd).
Thus, let us suppose that the assumptions and the first two claims of

Theorem 1 hold. To establish supp(P ◦ X−1) ⊆ {xh |h ∈ H1
r ([0, T ],Rd)} in

Cα
r ([0, T ],Rm) for α ∈ [0, 1/2), we will justify in Section 5.4 that it suffices

to check that

lim
n↑∞

P (‖xnW −X‖α,r ≥ ε) = 0 for all ε > 0. (2.10)

By definition of a mild solution to (2.3), we see for each n ∈ N that xnW is
a strong solution to the degenerate path-dependent SDE

dnYt =
(
(b− (1/2)ρ)(t, nY t) + σ(t, nY t)nẆt

)
dt for t ∈ [r, T ]
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with initial condition nY
r = x̂r a.s. For each h ∈ H1

r ([0, T ],Rd) and n ∈ N,
we introduce an a.s. continuous local martingale h,nZ : [0, T ] × Ω → (0,∞)
by requiring that h,nZ

r = 1 a.s. and

h,nZt = exp
(∫ t

r
ḣ(s)− nẆs dWs −

1
2

∫ t

r
|ḣ(s)− nẆs|2 ds

)
(2.11)

for all t ∈ [r, T ] a.s. In fact, h,nZ is a martingale, as clarified in Lemma 39.
Hence, Ph,n : F → [0, 1] given by Ph,n(A) := E[h,nZT1A] is a probability
measure equivalent to P . By using this fact, we will show that the converse
inclusion in (1.7) follows once we have proven that

lim
n↑∞

Ph,n(‖X − xh‖α,r ≥ ε) = 0 for all ε > 0. (2.12)

By Girsanov’s theorem, the process h,nW : [0, T ] × Ω → Rd defined via
h,nWt := Wt −

∫ r∨t
r ḣ(s) − nẆs ds is a d-dimensional (Ft)t∈[0,T ]-Brownian

motion under Ph,n and X is a strong solution to the path-dependent SDE

dnYt =
(
b(t, nY t) + σ(t, nY t)(ḣ(t)− nẆt)

)
dt+ σ(t, nY t) dh,nWt (2.13)

for t ∈ [r, T ] under Ph,n with initial condition nY
r = x̂r a.s. Hence, to

prove (2.10) and (2.12) at the same time, we consider the following general
framework.

Namely, we let B : [r, T ]× S → Rm and BH : [r, T ]× S → Rm×d be two
non-anticipative product measurable maps and B ∈ C1,2([r, T ) × S,Rm×d).
Then for each n ∈ N we introduce the path-dependent SDE

dnYt =
(
B(t, nY t) +BH(t, nY t)ḣ(t) +B(t, nY t)nẆt

)
dt

+ Σ(t, nY t) dWt for t ∈ [r, T ],
(2.14)

where Σ : [r, T ]× S → Rm×d is a non-anticipative product measurable map,
as considered in Section 2.3. In addition, we introduce the path-dependent
SDE

dZt =
(
(B +R)(t, Zt) +BH(t, Zt)ḣ(t)

)
dt+ (B + Σ)(t, Zt) dWt (2.15)

for t ∈ [r, T ], where we require the non-anticipative product measurable map
R : [r, T )× S → Rm given coordinatewise by

Rk(s, y) :=
d∑
l=1

∂xBk,l(s, y)((1/2)B + Σ)(s, y)el. (2.16)
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In Theorem 8 below, we in particular show that whenever nY and Z are
strong solutions to (2.14) and (2.15), respectively, such that nY

r = Zr = x̂r

a.s. for each n ∈ N, then

lim
n↑∞

P (‖nY − Z‖α,r ≥ ε) = 0 for all ε > 0. (2.17)

Then the choice B = b − (1/2)ρ, BH = 0, B = σ and Σ = 0 yields (2.10),
since R = (1/2)ρ in this case. Moreover, by choosing B = b, BH = σ,
B = −σ and Σ = σ instead, (2.12) follows. Since these are the two desired
results, we consider the following regularity conditions:

(C.i) B ∈ C1,2([r, T ) × S,Rm×d) and there are c, η ≥ 0 and κ ∈ [0, 1) such
that for all (t, x) ∈ [r, T )× S, |B(t, x)|+ |BH(t, x)| ≤ c(1 + ‖x‖κ),

|∂tB(t, x)|+
(

m∑
k=1

d∑
l=1
|∂xxBk,l(t, x)|2

)1/2

≤ c(1 + ‖x‖η),

|B(t, x)|+
(

m∑
k=1

d∑
l=1
|∂xBk,l(t, x)|2

)1/2

+ |Σ(t, x)| ≤ c.

(C.ii) B is Lipschitz continuous in x ∈ S, uniformly in t ∈ [r, T ), and BH , B,
∂xB and Σ are Lipschitz continuous with respect to d∞ given by (2.1).

(C.iii) There is a measurable function b : [r, T ]→ R so that
∫ T
r |b(s)|2 ds <∞

and B(s, y) = Σ(s, y)b(s) for all (s, y) ∈ [r, T )× S.

Remark 7. Condition (C.iii) allows us to perform a change of measures to
get a unique strong solution to (2.14). However, when deriving (2.17) in
Sections 5.1, 5.2 and 5.3 we merely assume that (C.i) and (C.ii) hold.

Theorem 8. Let (C.i)-(C.iii) hold and h ∈ H1
r ([0, T ],Rd). Assume that

X̂ ∈ C∞([0, T ],Rm) and (nX̂)n∈N is a sequence in C∞([0, T ],Rm) satisfying

sup
n∈N

E
[
‖nX̂r‖2p

]
<∞ for each p ≥ 1.

Then the following three assertions hold:

(i) For any n ∈ N there is a unique strong solution nY to (2.14) satisfying
nY

r = nX̂
r a.s. Moreover, supn∈NE[‖nY ‖2p

α,r] < ∞ for all p ≥ 1 and
α ∈ [0, 1/2).

(ii) There is a unique strong solution Z to (2.15) such that Zr = X̂r a.s. and
we have E[‖Z‖2p

α,r] <∞ for all p ≥ 1 and α ∈ [0, 1/2).
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(iii) Let α ∈ [0, 1/2) and limn↑∞E[‖nX̂r− X̂r‖2]/|Tn|2α = 0, then it follows
that

lim
n↑∞

E
[

max
j∈{0,...,kn}

|nYtj,n − Ztj,n |2
]
/|Tn|2α = 0. (2.18)

In particular, (2.17) holds, that is, (nY )n∈N converges in the delayed
Hölder norm ‖ · ‖α,r in probability to Z.

3 Convergence in probability in Hölder norm

3.1 Hölder spaces for stochastic processes
For α ∈ [0, 1] let C α

r ([0, T ],Rm) denote the linear space of all Rm-valued
adapted right-continuous processes X satisfying X ∈ Cα

r ([0, T ],Rm) a.s.,
endowed with the pseudometric

C α
r ([0, T ],Rm)× C α

r ([0, T ],Rm)→ [0,∞),
(X, Y ) 7→ E[‖X − Y ‖α,r ∧ 1].

(3.1)

We notice that a sequence (nX)n∈N in this pseudometric space converges to
some X ∈ C α

r ([0, T ],Rm) if and only if it converges to this process in the
delayed Hölder norm ‖ ·‖α,r in probability. Put differently, (‖nX−X‖α,r)n∈N
converges to zero in probability. Further, (nX)n∈N is Cauchy if and only if it
is Cauchy in the norm ‖ · ‖α,r in probability in the sense that

lim
k↑∞

sup
n∈N:n≥k

P (‖nX − kX‖α,r ≥ ε) = 0 for all ε > 0.

Next, we set C ([0, T ],Rm) := C 0
r ([0, T ],Rm), which is the linear space of all

Rm-valued adapted right-continuous a.s. continuous processes. Despite the
fact that we do not assume the usual conditions, C ([0, T ],Rm) is complete,
which yields the following result.

Lemma 9. C α
r ([0, T ],Rm) endowed with the metric (3.1) is complete.

Proof. Let (nX)n∈N be a Cauchy sequence in C α
r ([0, T ],Rm). By 4.3.3 Lemma

in [21], there is X ∈ C ([0, T ],Rm) to which (nX)n∈N converges uniformly in
probability. For given ε, η > 0 there is n0 ∈ N such that

P

(
sup

s,t∈[r,T ]: s6=t

|(nXs − kXs)− (nXt − kXt)|
|s− t|α

≥ ε

2

)
<
η

2

for all k, n ∈ N with k ∧ n ≥ n0. We fix l ∈ N and set δl := (T − r)/l, then
there exists kl ∈ N such that kl ≥ n0 and P (‖klX − X‖ ≥ (ε/4)δαl ) < η/2.
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Hence,

P

(
sup

s,t∈[r,T ]: |s−t|≥δl

|(nXs −Xs)− (nXt −Xt)|
|s− t|α

> ε

)
< η

for all n ∈ N with n ≥ n0. By the continuity of measures, (‖nX −X‖α,r)n∈N
converges in probability to zero. In particular, ‖X‖α,r <∞ a.s.

For p ≥ 1 we recall that C α
r,p([0, T ],Rm) denotes the space of all pro-

cesses X ∈ C α
r ([0, T ],Rm) satisfying E[‖X‖pα,r] < ∞, endowed with the

seminorm (2.6). A sequence (nX)n∈N in this space is called p-fold uniformly
integrable if (‖nX‖α,r)n∈N satisfies this property in the usual sense.

Lemma 10. Any sequence (nX)n∈N in C α
r,p([0, T ],Rm) that is Cauchy with

respect to the seminorm (2.6) is p-fold uniformly integrable.

Proof. Let ε > 0, then there is n0 ∈ N so that E[‖kX−nX‖pα,r] < ε/2p for all
k, n ∈ N with k∧n ≥ n0. As the random variable Y := maxn∈{1,...,n0} ‖nX‖α,r
is p-fold integrable, we obtain that

sup
n∈N

(
E
[
‖nX‖pα,r1A

])1/p
≤ (E[Y p

1A])1/p + ε1/p/2

for all A ∈ F . First, by choosing A = Ω, this gives supn∈NE[‖nX‖pα,r] <∞.
Secondly, by setting δ := ε/2p, it follows that supn∈NE[‖nX‖pα,r1A] < ε for
all A ∈ F with E[Y p

1A] < δ.

We conclude with the following convergence characterization.

Proposition 11. A sequence (nX)n∈N in C α
r,p([0, T ],Rm) converges in the

seminorm (2.6) if and only if it is p-fold uniformly integrable and there is
X ∈ C α

r ([0, T ],Rm) such that

lim
n↑∞

P (‖nX −X‖α,r ≥ ε) = 0 for all ε > 0.

In the latter case, we have E[‖X‖pα,r] <∞ and limn↑∞E[‖nX −X‖pα,r] = 0.
Moreover, C α

r,p([0, T ],Rm) equipped with (2.6) is complete.

Proof. By Lemmas 9 and 10, it suffices to show the if-direction of the first
claim. To this end, let (νn)n∈N be a strictly increasing sequence in N such
that (‖νnX −X‖α,r)n∈N converges to zero a.s., then

E
[
‖X‖pα,r

]
≤ lim inf

n↑∞
E
[
‖νnX‖pα,r

]
≤ sup

n∈N
E
[
‖nX‖pα,r

]
<∞,
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by Fatou’s Lemma. Now let ε > 0, then there exist δ > 0 and n0 ∈ N such
that supn∈NE[‖nX‖pα,r1A] < (ε/3)p for each A ∈ F with P (A) < δ and
P (‖nX −X‖α,r ≥ ε/3) < δ for all n ∈ N with n ≥ n0. Thus,(

E
[
‖nX −X‖pα,r

])1/p
≤
(
E
[
‖nX −X‖pα,r1{‖nX−X‖α,r≥ε/3}

])1/p
+ ε/3 < ε

for every such n ∈ N, since similar reasoning as above gives E[‖X‖pα,r1A]
≤ supn∈NE[‖nX‖pα,r1A] for all A ∈ F . This completes the proof.

3.2 A general Kolmogorov-Chentsov estimate
In this section we revisit the proof of the Kolmogorov-Chentsov Theorem to
allow for processes that are merely right-continuous and to obtain a quanti-
tative estimate of the Hölder norm. Let

kα,q,p := 2q+2p(2q/(2p)−α − 1)−2p (3.2)

for p ≥ 1/2, q > 0 and α ∈ (0, q/(2p)) and note that limα↑q/(2p) kα,q,p = ∞.
Then we have the following result.

Proposition 12. Let H be a set of Rm-valued right-continuous processes
and s, t ∈ [r, T ] be such that s < t. Asume that there are c0 ≥ 0, p ≥ 1/2
and q > 0 such that

sup
U∈H

E
[
|Uu − Uv|2p

]
≤ c0|u− v|1+q (3.3)

for all u, v ∈ [s, t]. Then for each α ∈ (0, q/(2p)) it holds that

sup
U∈H

E

[(
sup

u,v∈[s,t]:u6=v

|Uu − Uv|
|u− v|α

)2p]
≤ kα,q,pc0(t− s)1+q−2αp.

Proof. For given n ∈ N0 let Dn be the n-th dyadic partition of [s, t], whose
points are di,n := s+ i2−n(t− s), where i ∈ {0, . . . , 2n}. We define

∆n := {(u, v) ∈ Dn × Dn | |u− v| ≤ 2−n(t− s)},

then it is readily seen that there are 2n tuples (u, v) ∈ ∆n satisfying u < v.
For fixed U ∈H we set Vn := sup(u,v)∈∆n

|Uu − Uv|, then (3.3) gives

E
[
V 2p
n

]
≤

∑
(u,v)∈∆n:u<v

E
[
|Uu − Uv|2p

]
≤ 2−nqc0(t− s)1+q. (3.4)
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We now set D := ⋃
n∈N0 Dn and let u, v ∈ D satisfy 0 < v−u < 2−n(t− s)

for some n ∈ N0. Then for each k ∈ N0 there are unique ik, jk ∈ {1, . . . , 2k}
such that dik−1,k ≤ u < dik,k, and

djk−1,k ≤ v < djk,k for v < t and djk,k = t for v = t,

respectively. Since (dik,k)k∈N0 and (djk,k)k∈N0 are two decreasing sequences
converging to u and v, respectively, two telescoping sums yield that

Uu − Uv = Udin,n − Udjn,n +
∞∑
k=n

Udik+1,k+1 − Udik,k +
∞∑
k=n

Udjk+1,k+1 − Udjk,k .

We note that either in = jn or instead n ≥ 1, jn ≥ 2 and in = jn − 1,
as 0 < v − u < 2−n(t − s). In both cases, (din,n, djn,n) ∈ ∆n. Moreover,
(dik,k, dik+1,k+1), (djk,k, djk+1,k+1) ∈ ∆k+1 for all k ∈ N0, by construction. So,

|Uu − Uv| ≤ Vn + 2
∞∑
k=n

Vk+1 ≤ 2
∞∑
k=n

Vk. (3.5)

Next, pick u, v ∈ D such that 0 < v − u < t − s, then there is a unique
n ∈ N0 such that 2−n−1(t− s) ≤ v − u < 2−n(t− s). By (3.5),

(v − u)−α|Uu − Uv| ≤ 21+α(t− s)−α
∞∑
k=n

2αkVk

because 2αn ≤ 2αk for all k ∈ N0 with k ≥ n. Clearly, u, v ∈ D satisfy
v − u = t− s if and only if u = s and v = t. In this case, |Us − Ut|/(t− s)α
≤ (t− s)−αZ0. Thus, we have shown that

sup
u,v∈[s,t]:u6=v

|Uu − Uv|
|u− v|α

≤ 21+α(t− s)−α
∞∑
k=0

2αkVk, (3.6)

as D is a countable dense set in [s, t] containing t and U is right-continuous.
Hence, (3.6), the triangle inequality, monotone convergence and (3.4) yield
that(

E

[(
sup

u,v∈[s,t]:u6=v

|Uu − Uv|
|u− v|α

)2p]) 1
2p

≤ 21+α(t− s)−α
∞∑
k=0

2αk
(
E
[
V 2p
k

]) 1
2p

≤ 21+αc
1
2p
0 (t− s)

1+q
2p −α

∞∑
k=0

2(α− q
2p )k.

The power series on the right-hand side converges absolutely to the inverse of
1− 2α−q/(2p), since α < q/(2p). For this reason, the proposition follows.
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3.3 Convergence along a sequence of partitions
In this section, we state a sufficient criterion for a sequence of processes to
converge in probability in the delayed Hölder norm ‖ · ‖α,r where α ∈ [0, 1].
For this purpose, we require the following estimate.

Lemma 13. Let T be a partition of [r, T ] of the form T = {t0, . . . , tk} for
some k ∈ N and t0, . . . , tk ∈ [r, T ] such that r = t0 < · · · < tk = T . Then

sup
s,t∈[r,T ]: s6=t

|x(s)− x(t)|
|s− t|α

≤ 2 max
j∈{0,...,k−1}

sup
u,v∈[tj ,tj+1]:u6=v

|x(u)− x(v)|
|u− v|α

+ max
i,j∈{0,...,k}: i 6=j

|x(ti)− x(tj)|
|ti − tj|α

for each map x : [r, T ]→ Rm.

Proof. First, assume that i, j ∈ {0, . . . , k − 1} are such that i < j − 1 and
s ∈ (ti, ti+1), then

|x(s)− x(tj)|
|s− t|α

≤ |x(s)− x(ti+1)|
|s− ti+1|α

+ |x(ti+1)− x(tj)|
|ti+1 − tj|α

,

because |s− t| > |s− ti+1|∨ |ti+1− tj|. Now suppose that i, j ∈ {0, . . . , k−1}
satisfy i < j, s ∈ (ti, ti+1) and t ∈ (tj, tj+1). In this case,

|x(s)− x(t)|
|s− t|α

≤ |x(s)− x(ti+1)|
|s− ti+1|α

+ |x(ti+1)− x(tj)|
|ti+1 − tj|α

+ |x(tj)− x(t)|
|tj − t|α

,

since |s− t| > |s− ti+1| ∨ |ti+1 − tj| ∨ |tj − t|. Now the assertion follows.

This yields the before mentioned criterion.

Proposition 14. Let (nU)n∈N be a sequence of Rm-valued right-continuous
processes and assume there are p, q > 0 so that for each β ∈ (0, q/(2p)) there
is cβ ≥ 0 satisfying

P

(
max

j∈{0,...,kn−1}
sup

u,v∈[tj,n,tj+1,n]

|nUu − nUv|
|u− v|β

≥ λ

)
≤ cβλ

−2p (3.7)

for all n ∈ N and λ > 0. If (‖nU r‖)n∈N and (maxj∈{0...,kn} |nUtj,n |/|Tn|α)n∈N
converge in probability to zero, then so does the sequence (‖nU‖α,r)n∈N for all
α ∈ [0, q/(2p)).
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Proof. Let n ∈ N and fix β ∈ (α, q/(2p)), then it follows that

‖nU‖ ≤ max
j∈{0,...,kn−1}

sup
t∈(tj,n,tj+1,n)

|nUt − nUtj,n |
|t− tj,n|β

|Tn|β + max
j∈{0,...,kn−1}

|nUtj,n |,

since |nUt| ≤ (|nUt−nUtj,n |/|t−tj,n|β)|Tn|β+ |nUtj,n | for all j ∈ {0, . . . , kn−1}
and t ∈ (tj,n, tj+1,n). Consequently, from (3.7) we obtain that

P
(
‖nU‖ ≥ ε

)
≤ cβ(2/ε)2p|Tn|2βp + P

(
max

j∈{0,...,kn}
|nUtj,n | ≥ ε/2

)
for all ε > 0, which directly entails that (‖nU‖)n∈N converges in probability
to zero. Next, for fixed n ∈ N Lemma 13 gives us that

sup
s,t∈[r,T ]: s 6=t

|nUs − nUt|
|s− t|α

≤ 2 max
j∈{0,...,kn−1}

sup
u,v∈[tj,n,tj+1,n]:u6=v

|nUu − nUv|
|u− v|α

+ max
i,j∈{0,...,kn}: i 6=j

|nUti,n − nUtj,n |
|ti,n − tj,n|α

.

By using the facts that |u− v|β−α ≤ |Tn|β−α and |ti,n− tj,n| ≥ |Tn|/cT for all
i, j ∈ {0, . . . , kn} with i 6= j and u, v ∈ [tj,n, tj+1,n], we see that

P

(
sup

s,t∈[r,T ]: s 6=t

|nUs − nUt|
|s− t|α

≥ ε

)
≤ cβ(4/ε)2p|Tn|(β−α)2p

+ P

(
2cαT max

j∈{0,...,kn}
|nUtj,n |/|Tn|α ≥ ε/2

)

for any ε > 0. As the terms on the right-hand side converge to zero as n ↑ ∞,
the assertion is shown.

Remark 15. If p ≥ 1/2 and there is c0 ≥ 0 such that E[|nUu − nUv|2p]
≤ c0|u − v|1+q for all n ∈ N and u, v ∈ [r, T ], then Proposition 12 and
Chebyshev’s inequality assure that condition (3.7) is satisfied.

3.4 Adapted linear interpolation of Brownian motion
We study the sequence (nW )n∈N of adapted linear interpolations of W given
by (2.9) and for which a.e. path lies in H1

r ([0, T ],Rd). To this end, we
introduce the following notation. For given n ∈ N and t ∈ [r, T ), let
i ∈ {0, . . . , kn − 1} be such that t ∈ [ti,n, ti+1,n), then we set

tn := t(i−1)∨0,n, tn := ti,n and tn := ti+1,n. (3.8)
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That is, tn is the predecessor of tn with respect to Tn, unless i = 0, and tn
is the successor of tn. We also set T n := tkn−1,n , Tn := T and T n := T . In
addition, we use the following abbreviations:

∆ti,n := (ti,n − ti−1,n) and ∆Wti,n := Wti,n −Wti−1,n (3.9)

for each i ∈ {1, . . . , kn − 1}. After these preparations, let us begin with a
general integral representation.

Lemma 16. Let n ∈ N and s, t ∈ [r, T ] be such that s < t. Then each
Rm×d-valued progressively measurable square-integrable process Y satisfies∫ t

s
Yun dnWu = t− s

∆ti+1,n

∫ ti,n

ti−1,n
Yun dWu a.s.,

whenever i ∈ {1, . . . , kn − 1} is such that s, t ∈ [ti,n, ti+1,n], and∫ t

s
Yun dnWu = ti+1,n − s

∆ti+1,n

∫ ti,n

ti−1,n
Yun dWu

+
∫ tj−1,n

ti,n
Yun dWu + t− tj,n

∆tj+1,n

∫ tj,n

tj−1,n
Yun dWu a.s.,

if i, j ∈ {1, . . . , kn − 1} satisfy i < j, s ∈ [ti,n, ti+1,n] and t ∈ [tj,n, tj+1,n]. In
particular, for all j ∈ {1, . . . , kn} we have∫ tj,n

r
Yun dnWu =

∫ tj−1,n

r
Yun dWu a.s.

Proof. As nWu = 0 for each u ∈ [r, t1,n], the second claim follows from the
first, by choosing s = t1,n and t = tj,n for j ∈ {1, . . . , kn}.

To check the first claim, suppose initially that s, t ∈ [ti,n, ti+1,n] for some
i ∈ {1, . . . , kn − 1}, then∫ t

s
Yun dnWu = t− s

∆ti+1,n
Yti−1,n∆Wti,n = t− s

∆ti+1,n

∫ ti,n

ti−1,n
Yun dWu a.s.

Now assume instead that there are i, j ∈ {1, . . . , kn − 1} such that i < j,
s ∈ [ti,n, ti+1,n] and t ∈ [tj,n, tj+1,n]. Then the a.s. decomposition

∫ t

s
Yun dnWu =

∫ ti+1,n

s
Yun dnWu +

j−1∑
h=i+1

∫ th+1,n

th,n

Yun dnWu +
∫ t

tj,n
Yun dnWu

and the case considered above imply the asserted representation.
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Let us recall that for each p ≥ 1 there is a constant wp > 0 depending
only on p such that for every Rm×d-valued progressively measurable process
Y it holds that

E

[
sup
v∈[s,t]

∣∣∣∣∣
∫ v

s
Yu dWu

∣∣∣∣∣
2p]
≤ wpE

[( ∫ t

s
|Yu|2 du

)p]
(M)

for all s, t ∈ [r, T ] with s ≤ t. In fact, wp = 2pp3p/(p − 1/2)p and the
dimensions m and d do not alter wp. We derive a corresponding result for
the sequence (nW )n∈N of adapted linear interpolations of W .
Proposition 17. For each p ≥ 1 there is a constant ŵp > 0 such that every
Rm×d-valued progressively measurable process Y satisfies

E

[
sup
v∈[s,t]

∣∣∣∣∣
∫ v

s
YundnWu

∣∣∣∣∣
2p]
≤ ŵp max

j∈{0,...,kn}: tj,n∈[sn,tn]
E
[
|Ytj,n |2p

]
(t− s)p (3.10)

for each n ∈ N and s, t ∈ [r, T ] with s ≤ t.
Proof. First, if t ≤ t1,n, then

∫ v
s Yun dnWu = 0 for each v ∈ [s, t] a.s. For

s < t1,n and t ≥ t1,n we have∫ v

s
Yun dnWu =

∫ v

t1,n
Yun dnWu for all v ∈ [t1,n, t] a.s.

Thus, let us use Lemma 16 and assume that s, t ∈ [ti,n, ti+1,n] for some
i ∈ {1, . . . , kn − 1}, then (M) yields that

E

[
sup
v∈[s,t]

∣∣∣∣∣
∫ v

s
Yun dnWu

∣∣∣∣∣
2p]

= (t− s)2p

(∆ti+1,n)2pE

[∣∣∣∣∣
∫ ti,n

ti−1,n
Yun dWu

∣∣∣∣∣
2p]

≤ wpc
p
TE
[
|Yti−1,n|2p

]
(t− s)p,

where cT is the constant appearing in (2.8). Next, suppose that there are
i, j ∈ {1, . . . , kn − 1} such that i < j, s ∈ [ti,n, ti+1,n] and t ∈ [tj,n, tj+1,n].
Then

max
v∈[s,t]

∣∣∣∣∣
∫ v

s
Yun dnWu

∣∣∣∣∣ ≤ ti+1,n − s
∆ti+1,n

∣∣∣∣∣
∫ ti,n

ti−1,n
Yun dWu

∣∣∣∣∣
+ max

h∈{i+1,...,j−1}

∣∣∣∣∣
∫ th,n

ti,n
Yun dWu

∣∣∣∣∣+ t− tj,n
∆tj+1,n

∣∣∣∣∣
∫ tj,n

tj−1,n
Yun dWu

∣∣∣∣∣ a.s.

This is due to Lemma 16, which asserts that the process [s, t] × Ω → Rm,
(v, ω) 7→

∫ v
s Yun(ω) dnWu(ω) is piecewise linear. Hence, we obtain that

E

[
sup
v∈[s,t]

∣∣∣∣∣
∫ v

s
Yun dnWu

∣∣∣∣∣
2p]
≤ ŵp max

h∈{i−1,...,j−1}
E
[
|Yth,n |2p

]
(t− s)p

for ŵp := 32p−1wpc
p
T, which yields the claim.
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Lemma 18. For each p, q ≥ 1 there exists a constant ŵp,q > 0 satisfying

E

[( ∫ t

s
|nẆu|q du

)p]
≤ ŵp,q|Tn|−qp/2(t− s)p (3.11)

for all s, t ∈ [r, T ] with s ≤ t and n ∈ N.

Proof. Clearly, if t ≤ t1,n, then
∫ t
s |nẆu|q du = 0. For s < t1,n and t ≥ t1,n we

have ∫ t

s
|nẆu|q du =

∫ t

t1,n
|nẆu|q du.

So, let now s, t ∈ [ti,n, ti+1,n] for some i ∈ {1, . . . , kn − 1} and Z be an
Rd-valued random vector such that Z ∼ N (0, Id), then

E

[( ∫ t

s
|nẆu|q du

)p]
= E

[
|Z|qp

] (∆ti,n)qp/2
(∆ti+1,n)qp (t− s)p ≤ c|Tn|−qp/2(t− s)p,

where ŵp,q := E[|Z|qp]cqpT and cT is the constant in (2.8). Next, let instead
i, j ∈ {1, . . . , kn − 1} be such that i < j, s ∈ [ti,n, ti+1,n] and t ∈ [tj,n, tj+1,n].
Then(

E

[( ∫ t

s
|nẆu|q du

)p])1/p

≤
j∑
h=i

(
E

[( ∫ t∧th+1,n

s∨th,n
|nẆu|q du

)p])1/p

≤ ŵ1/p
p,q |Tn|−q/2(t− s),

by what we have just shown. Therefore, the claim holds.

3.5 Auxiliary convergence results
Lemma 19. Let (nU)n∈N be a sequence of non-negative measurable processes
for which there are p > 1 and cp > 0 such that E[nU2p

s ] ≤ cp|Tn|2p for each
s ∈ [r, T ) and n ∈ N. Then there is c1 > 0 satisfying

E

[( ∫ T

r
nUs|nẆs| ds

)2]
≤ c1|Tn| for all n ∈ N.

Proof. Let q > 1 be such that 1/p+1/q = 1, then Lemma 18 gives a constant
ŵq,2 > 0 that is independent of n such that

E

[( ∫ T

r
|nẆs|2 ds

)q]
≤ ŵq,2|Tn|−q(T − r)q.
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Thus, we define c1,1 := ŵ
1/q
q,2 (T − r) and c1 := c1/p

p (T − r)c1,1, then it follows
from Cauchy-Schwarz’s and Hölder’s inequalities that

E

[( ∫ T

r
nUs|nẆs| ds

)2]
≤
(
E

[( ∫ T

r
nU

2
s ds

)p])1/p

c1,1|Tn|−1 ≤ c1|Tn|.

Lemma 20. Let n ∈ N and for every right-continuous map x : [0, T ]→ Rm

set Ln(x)(t) := x(r ∧ t) for all t ∈ [0, t1,n),

Ln(x)(t) := x(ti−1,n) + (t− ti,n)x(ti,n)− x(ti−1,n)
∆ti+1,n

for t ∈ [ti,n, ti+1,n) with i ∈ {1, . . . , kn− 1} and Ln(x)(T ) := x(tkn−1,n). Then
it holds that ‖Ln(x)t‖ ≤ ‖xr‖ ∨maxj∈{1,...,kn−1}: tj,n≤t |x(tj,n)| and

‖Ln(x)t − xt‖ ≤ 2 max
j∈{0,...,kn−1}: tj,n≤t

sup
s∈[tj,n,tj+1,n]

|xt(s)− x(t(j−1)∨0,n)|

for each t ∈ [t1,n, T ].

Proof. Fix s ∈ [t1,n, t] and let i ∈ {1, . . . , kn − 1} be so that s ∈ [ti,n, ti+1,n],
then |Ln(x)(s)| ≤ |x(ti−1,n)| ∨ |x(ti,n)|, since Ln is linear on [ti,n, ti+1,n]. In
addition, we immediately obtain that

|Ln(x)(s)− x(s)| ≤ |x(s)− x(ti−1,n)|+ |x(ti,n)− x(ti−1,n)|
≤ 2 sup

v∈[ti,n,ti+1,n]
|xt(v)− x(ti−1,n)|

and the assertions follow.

Lemma 21. Let (nU)n∈N denote a sequence of Rm-valued right-continuous
processes for which there are c0 ≥ 0, p ≥ 1/2 and q > 0 such that

E
[
|nUs − nUt|2p

]
≤ c0|s− t|1+q

for all n ∈ N and s, t ∈ [r, T ]. Then for every α ∈ [0, q/(2p)),

lim
n↑∞

E
[
‖nU − Ln(nU)‖2p

]
/|Tn|2αp = 0.

Proof. Fix β ∈ (α, q/(2p)). From Lemma 20 we obtain that

‖nU − Ln(nU)‖ ≤ 21+β|Tn|β sup
s,t∈[r,T ]: s6=t

|nUs − nUt|
|s− t|β
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for every n ∈ N. Consequently, Proposition 12 implies that the constant
cβ := 22(1+β)pkβ,q,pc0(T − r)1+q−2βp satisfies

E
[
‖nU − Ln(nU)‖2p

]
≤ cβ|Tn|2βp for all n ∈ N,

where kβ,q,p is given by (3.2) when α is replaced by β. Now the claim follows,
since α < β.
Lemma 22. Let G : [r, T ] × S → Rm be d∞-Lipschitz continuous, (nU)n∈N
be a sequence in C ([0, T ],Rm) and c0 ≥ 0 be such that |G(t, x)| ≤ c0(1+‖x‖)
and

E
[
‖nU‖2

]
+ E

[
‖nU s − nU

t‖2
]
/|s− t| ≤ c0

(
1 + E

[
‖nU r‖2

])
for all n ∈ N, s, t ∈ [r, T ] with s 6= t and x ∈ S. Then there is c1 > 0
satisfying for each n ∈ N,

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
G(sn, nU sn)

(
∆sn
∆sn

− 1
)
ds

∣∣∣∣∣
2]

≤ c1|Tn|
(
1 + E

[
‖nU r‖2

])
.

Proof. We assume that E[‖nU r‖2] < ∞, as otherwise there is nothing to
show. By decomposing the integral, we can rewrite that∫ tj,n

r
G(sn, nU sn)∆sn

∆sn
ds =

∫ tj−1,n

r
G(sn, nU sn) ds

for each j ∈ {1, . . . , kn}. Thus, let λ ≥ 0 be a Lipschitz constant for G, then

E

[
max

j∈{1,...,kn}

∣∣∣∣∣
∫ tj−1,n

r
G(sn, nU sn)−G(sn, nU sn) ds

∣∣∣∣∣
2]

≤ c1,1|Tn|
(
1 + E

[
‖nU r‖2

])
with c1,1 := 2λ2(T − r)2(1 + c0). In addition, we estimate that

E

[
max

j∈{1,...,kn}

∣∣∣∣∣
∫ tj,n

tj−1,n
G(sn, nU sn) ds

∣∣∣∣∣
2]
≤ c2,2|Tn|2

(
1 + E

[
‖nU r‖2

])
,

where c2,2 := 2c2
0(1 + c0). So, the constant c1 := 2(c1,1 + c1,2(T − r)) yields

the claim.
Proposition 23. Let G : [r, T ]×S → Rm×d be d∞-Lipschitz continuous and
(nU)n∈N be a sequence in C ([0, T ],Rm). Suppose there are c0 ≥ 0 and p > 1
such that |G(t, x)| ≤ c0(1 + ‖x‖) and

E
[
‖nU‖2p

]
+
E
[
‖nU s − nU

t‖2p
]

|s− t|p
≤ c0
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for each n ∈ N, s, t ∈ [r, T ] such that s 6= t and x ∈ S. Then for every
α ∈ [0, 1/2− 1/(2p)),

lim
n↑∞
|Tn|−2αE

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
G(sn, nU sn) d(nWs −Ws)

∣∣∣∣∣
2]

= 0.

Proof. We fix n ∈ N and once again decompose the integral to get that∫ tj,n

r
G(sn, nU sn) dnWs =

∫ tj−1,n

r
G(sn, nU sn) dWs a.s.

for all j ∈ {1, . . . , kn}. Let λ ≥ 0 denote a Lipschitz constant for G, then

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj−1,n

r
G(sn, nU sn)−G(sn, nU sn) dWs

∣∣∣∣∣
2]

≤ 2w1λ
2
∫ T

r
(sn − sn) + E

[
‖nU sn − nU

sn‖2
]
ds ≤ c1|Tn|

with c1 := 2w1λ
2(T −r)(1+c

1/p
0 ), where w1 is the constant satisfying (M) for

p = 1. Next, we let nM ∈ C ([0, T ],Rm) be a square-integrable martingale
satisfying

nMt =
∫ t

r
G(sn, nU sn) dWs

for all t ∈ [r, T ] a.s., then nMtj,n − nMtj−1,n =
∫ tj,n
tj−1,n G(sn, nU sn) dWs a.s. for

each j ∈ {1, . . . , kn}. Furthermore,

E
[
|nMs − nMt|2p

]
≤ 22p−1wpc

2p
0 (t− s)p

(
1 + E

[
‖nU‖2p

])
≤ c2(t− s)p

for all s, t ∈ [r, T ] with s ≤ t, where c2 := 22p−1wpc
2p
0 (1 + c0). Thus, let

β ∈ (α, 1/2− 1/(2p)), then it follows from Proposition 12 that

E

[(
sup

s,t∈[r,T ]: s 6=t

|nMs − nMt|
|s− t|β

)2p]
≤ kβ,p−1,pc2(T − r)(1−2β)p,

since p > 1, by assumption. Finally, we set cβ := (kβ,p−1,pc2)1/p(T − r)1−2β,
then

E

[
max

j∈{1,...,kn}

∣∣∣∣∣
∫ tj,n

tj−1,n
G(sn, nU sn) dWs

∣∣∣∣∣
2]
≤ cβ|Tn|2β,

by Hölder’s inequality, and the assertion follows.
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4 Path-dependent ODEs and SDEs: proofs
In this section, we give the proof for

• the existence and uniqueness of mild solutions to path-dependent ODEs
in Section 2.2 and

• the existence and uniqueness of strong solutions to path-dependent
SDEs in Section 2.3.

4.1 Proof of Proposition 2
We first derive a global estimate for any mild solution. This allows us to
use (O.ii), the Lipschitz condition on bounded sets, to derive existence and
uniqueness results.

Lemma 24. Under (O.i), there is cH > 0 depending only on T − r such that
any mild solution x to the ODE (2.3) satisfies for all t ∈ [r, T ],

‖xt‖2
H,r ≤ cHe

cH
∫ t
r
cF (s)2 ds

(
‖xr‖2 +

∫ t

r
cF (s)2 ds

)
. (4.1)

Proof. By estimating ‖xt‖+
∫ t
r |ẋ(s)| ds for given t ∈ [r, T ], it follows readily

from Gronwall’s inequality that

‖xt‖+
∫ t

r
|ẋ(s)| ds ≤ e2

∫ t
r
cF (s) ds

(
‖xr‖+ 2

∫ t

r
cF (s) ds

)
.

Moreover, for c1 := 22(T − r + 1) we have

‖xt‖2
H,r ≤ 2‖xr‖2 + c1

∫ t

r
cF (s)2

(
1 + ‖xs‖+

∫ s

r
|ẋ(u)| du

)2

ds. (4.2)

Thus, we set cH := 2e2c1, then from 2
∫ t
r cF (s) ds ≤ 1 + (T − r)

∫ t
r cF (s)2 ds

we infer that(
‖xt‖+

∫ t

r
|ẋ(s)| ds

)2

≤ cHe
cH
∫ t
r
cF (s)2 ds

(
‖xr‖2 +

∫ t

r
cF (s)2 ds

)
.

The claim follows from (4.2), the fundamental theorem of calculus for Riemann-
Stieltjes integrals and the transitivity of absolutely continuous measures.

We now show uniqueness of mild solutions, which implies uniqueness for
classical solutions.
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Lemma 25. Assume that (O.i) and (O.ii) hold, then any two mild solutions
x and y to the ODE (2.3) that satisfy xr = yr must coincide.

Proof. By Lemma 24, there is n ∈ N such that ‖x‖H,r ∨ ‖y‖H,r ≤ n. Thus,

‖xt − yt‖2
H,r ≤ 2(T − r + 1)

∫ t

r
λ2
F,n(s)‖xs − ys‖2

H,r ds

for all t ∈ [r, T ]. Gronwall’s inequality implies that x = y.

Proof of Proposition 2. As the uniqueness claim follows from Lemma 25, we
directly turn to the existence assertion. To this end, let H be the set of
all x ∈ H1

r ([0, T ],Rm) satisfying x(s) = x̂(s) for every s ∈ [0, r] and the
estimate (4.1), where cH is chosen largely enough so that

cH ≥ 24(T − r + 1)2. (4.3)

By Lemma 24, a map x ∈ S is a mild solution to the ODE (2.3) such that
x(s) = x̂(s) for all s ∈ [0, r] if and only if x ∈ H and it is a fixed-point of
the operator Ψ : H → H1

r ([0, T ],Rm) given by

Ψ(y)(t) := x0(t) +
∫ r∨t

r
F (s, ys) ds.

We remark that condition (4.3) assures that Ψ maps H into itself. Indeed,
this follows by inserting (4.1) into the inequality

‖Ψ(x)t‖2
H,r ≤ cH‖x0‖2 + cH

∫ t

r
cF (s)2(1 + ‖xs‖2

H,r) ds,

valid for all x ∈ H and t ∈ [r, T ]. As x0 ∈ H and xn = Ψ(xn−1) for each
n ∈ N, by definition (2.4), we now know that (xn)n∈N0 is a sequence in H .

Next, let us choose l ∈ N satisfying ‖x‖H,r ≤ l for all x ∈ H and set
c1 := 2(T − r + 1). Then we obtain that

‖Ψ(x)t −Ψ(y)t‖2
H,r ≤ c1

∫ t

r
λF,l(s)2‖xs − ys‖2

H,r ds

for each x, y ∈ H and t ∈ [r, T ], which in particular shows that Ψ must be
‖ · ‖H,r-Lipschitz continuous. Moreover, it follows inductively that

‖xtn+1 − xtn‖2
H,r ≤

δ2

n!

(
c1

∫ t

r
λF,l(s)2 ds

)n
for every n ∈ N0, where we have set δ := ‖Ψ(x0)−x0‖H,r. Hence, the triangle
inequality gives us that

‖xn − xk‖H,r ≤ δ
n−1∑
i=k

(
1
i!

)1/2(
c1

∫ T

r
λF,l(s)2 ds

)i/2
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for all k, n ∈ N0 with k < n. Now the ratio test yields that the series∑∞
i=0(1/i!)1/2xi/2 converges absolutely for all x ≥ 0. Hence, we have shown

that limk↑∞ supn∈N:n≥k ‖xn − xk‖H,r = 0.
As H is closed with respect to the complete norm ‖ · ‖H,r, there exists a

unique map yF ∈H such that limn↑∞ ‖xn−yF‖H,r = 0. Lipschitz continuity
of Ψ implies limn↑∞ ‖xn+1−Ψ(yF )‖H,r = 0. For this reason, yF = Ψ(yF ) and
the proposition is proven.

4.2 Proof of Proposition 5
Lemma 26. Let X be an Rm-valued adapted right-continuous process and
B ⊂ Rm be closed, then

τ := inf{t ∈ [0, T ] | {Xs | s ∈ [0, t]} ∩B 6= ∅}

is a stopping time satisfying τ = inf{t ∈ [0, T ] |Xt ∈ B} on {X ∈ S}.

Proof. First, we check that {τ ≤ t} = {{Xs | s ∈ [0, t]} ∩ B 6= ∅} for fixed
t ∈ [0, T ]. To this end, it suffices to show that if t < T and ω ∈ Ω satisfies
τ(ω) = t, then {Xs(ω) | s ∈ [0, t]} ∩B 6= ∅.

In this case, for each n ∈ N there are sn ∈ [0, t + (T − t)/n) and yn ∈ B
satisfying |yn −Xsn(ω)| < 1/n. So, we choose a strictly increasing sequence
(νn)n∈N in N such that (sνn)n∈N converges to some s ∈ [0, t], then it follows
that Xs(ω) = limn↑∞Xsνn (ω) ∈ B, which yields the intermediate claim.

Next, we set Bn := {x ∈ B | |x| ≤ n} for all n ∈ N and use the notation
dist(x,C) = infy∈C |x− y| for all x ∈ Rm and C ⊂ Rm. Let t ∈ [0, T ] and D
be a countable dense set in [0, t] containing t, then

{τ ≤ t} =
⋃
n∈N
{ inf
s∈D

dist(Xs, Bn) = 0} =
⋃
n∈N

⋂
k∈N

⋃
s∈D
{dist(Xs, Bn) < 1/k} ∈ Ft,

by the above representation of {τ ≤ t}. Finally, if ω ∈ Ω satisfies X(ω) ∈ S,
then {Xs(ω) | s ∈ [0, t]} is compact and in particular closed. For this reason,
τ(ω) < inf{t ∈ [0, T ] |Xt(ω) ∈ B} would violate the definition of τ(ω).

Example 27. Let X ∈ C ([0, T ],Rm) and n ∈ N, then the above lemma
gives a stopping time τn ≥ r such that τn = inf{t ∈ [0, T ] | |Xt| ≥ n} ∨ r a.s.
This ensures that

‖X t∧τn‖ ≤ ‖Xr‖ ∨ n a.s.

for all t ∈ [r, T ], since we have that ‖X t∧τn‖ ≤ n a.s. on {‖Xr‖ ≤ n} and
τn = r a.s. on {‖Xr‖ > n}.
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In this section, whenever p ≥ 1 and condition (S.i) is satisfied, we set

mp :=
(∫ T

r
cB(s)2 ds

)p
+ c2p

Σ wp,

where wp is the constant appearing in (M).
Lemma 28. Under (S.i), for each p > 2 and α ∈ (0, 1/2 − 1/p) there is
cα,p > 0 depending only on α, p and T − r such that any strong solution X
to (2.5) satisfies

E
[
‖X t‖2p

α,r

]
≤ cα,pe

cα,pmp(t−r)
(
E
[
‖Xr‖2p

]
+mp(t− r)

)
(4.4)

for all t ∈ [r, T ].
Proof. Assume that E[‖Xr‖2p] <∞ and let n ∈ N. Then Example 27 yields
a stopping time τn ≥ r such that ‖Xτn‖ ≤ ‖Xr‖ ∨ n a.s. First,

‖X t∧τn‖ ≤ ‖Xr‖+
∫ t∧τn

r
|B(s,Xs)| ds+ sup

v∈[r,t]

∣∣∣∣∣
∫ v∧τn

r
Σ(u,Xu) dWu

∣∣∣∣∣ a.s.

for fixed t ∈ [r, T ]. Thus, from Jensen’s and Cauchy-Schwarz’s inequality we
obtain that

E
[
‖X t∧τn‖2p

]
≤ 32p−1E

[
‖Xr‖2p

]
+ 62p−1mp(t− r)p−1

∫ t

r
1 +E

[
‖Xs∧τn‖2p

]
ds.

Moreover, a similar computation shows that

E[|Xτn
u −Xτn

v |2p] ≤ 42p−1mp(v − u)p−1
∫ t

r
1 + E

[
‖Xs∧τn‖2p

]
ds

for all u, v ∈ [r, t] with u < v. Therefore, Proposition 12 yields that

E

[(
sup

u,v∈[r,t]:u6=v

|Xτn
u −Xτn

v |
|u− v|α

)2p]

≤ kα,p−2,p42p−1mp(t− r)p−1−2αp
∫ t

r
1 + E

[
‖Xs∧τn‖2p

]
ds,

where the constant kα,p−2,p is given by (3.2) for q = p− 2. Thus,

E
[
‖X t∧τn‖2

α,r

]
/cα,p ≤ E

[
‖Xr‖2p

]
+mp

∫ t

r
1 + E

[
‖Xs∧τn‖2p

]
ds

for cα,p := 122p−1(1 + kα,p−2,p)(T − r + 1)p−1. By Gronwall’s inequality and
Fatou’s lemma,

E
[
‖X t‖2p

α,r

]
≤ lim inf

n↑∞
E
[
‖X t∧τn‖2p

α,r

]
≤ cα,pe

cα,pmp(t−r)
(
E
[
‖Xr‖2p

]
+mp(t−r)

)
,

which is the claim.
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Remark 29. If p ≥ 1 and α ∈ (0, 1/2) are such that α < 1/2 − 1/p fails,
then, under (S.i), we still have that E[‖X t‖2p

α,r] ≤ (E[‖X t‖2q
α,r])p/q < ∞ for

any q > p such that α < 1/2− 1/q, by Hölder’s inequality.
Lemma 30. Under (S.iii), pathwise uniqueness holds for (2.5).
Proof. Let X and X̃ be two weak solutions to (2.5) defined on a common
filtered probability space (Ω̃, F̃ , (F̃t)t∈[0,T ], P̃ ) on which there is a standard
d-dimensional (F̃t)t∈[0,T ]-Brownian motion W̃ such that Xr = X̃r a.s.

We fix n ∈ N, then it follows from Example 27 that there is a stopping
time τn ≥ r such that τn = inf{t ∈ [0, T ] | |Xt| ≥ n or |X̃t| ≥ n} ∨ r a.s.
Clearly,

‖X t∧τn − X̃ t∧τn‖ ≤
∫ t∧τn

r
|B(s,Xs)−B(s, X̃s)| ds

+ sup
v∈[r,t]

∣∣∣∣∣
∫ v∧τn

r
Σ(u,Xu)− Σ(u, X̃u) dW̃u

∣∣∣∣∣ a.s.

for given t ∈ [r, T ]. We set c1 := ((T − r) + w1), where w1 is the constant
in (M) for p = 1, then

Ẽ
[
‖X t∧τn − X̃ t∧τn‖2

]
≤ c1

∫ t

r
λn(s)2Ẽ

[
‖Xs∧τn − X̃s∧τn‖2

]
ds.

So, Xτn = X̃τn a.s., by Gronwall’s inequality. As τn ≤ τn+1 a.s. for all n ∈ N
and supn∈N τn = ∞ a.s., we get that Xt = limn↑∞X

τn
t = limn↑∞ X̃

τn
t = X̃t

a.s. for all t ∈ [r, T ]. Right-continuity implies that X = X̃ a.s.

Proof of Proposition 5. We define H be the set of all X ∈ Cr([0, T ],Rm)
satisfying Xs = X̂s for all s ∈ [0, r] a.s. and the estimate (4.4) for any p > 2
and α ∈ (0, 1/2 − 1/p), where the constant cα,p is chosen largely enough so
that

cα,p ≥ 122p−1(1 + kα,p−2,p)(T − r + 1)p−1. (4.5)
By Lemma 28 and Remark 29, we have that H ⊂ C 1/2−

r,∞ ([0, T ],Rm) and a
process X ∈ C ([0, T ],Rm) is a solution to (2.5) satisfying Xs = X̂s for all
s ∈ [0, r] a.s. if and only if X ∈ H and it is a fixed point of the operator
Ψ : H → C ([0, T ],Rm) specified by requiring that

Ψ(Y )t = 0Xt +
∫ r∨t

r
B(s, Y s) ds+

∫ r∨t

r
Σ(s, Y s) dWs.

for all t ∈ [0, T ] a.s. We stress the fact that, due to Proposition 12 and
condition (4.5), for every X ∈ H , p > 2 and α ∈ (0, 1/2 − 1/p) it follows
that

E
[
‖Ψ(X)t‖2p

α,r

]
≤ cα,pE

[
‖0X‖2p

]
+ cα,pmp

∫ t

r
1 + E

[
‖Xs‖2p

]
ds
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for all t ∈ [r, T ]. Thus, Ψ(H ) ⊂ H follows from plugging (4.4) into the
above inequality. Since 0X ∈ H and nX = Ψ(n−1X) a.s. for all n ∈ N,
by (2.7), we have shown that (nX)n∈N0 is a sequence in H .

Next, choose p > 2 and α ∈ (0, 1/2) such that α0 ≤ α < 1/2 − 1/p,
where α0 is the constant in the Lipschitz condition (S.ii). Further, we set
lp := (

∫ T
r λB(s)2 ds)p + λ2p

Σ wp, then

E
[
‖Ψ(X)t −Ψ(Y )t‖2p

]
≤ 22p−1lp(t− r)p−1

∫ t

r
E
[
‖Xs − Y s‖2p

α0,r

]
ds

for all given X, Y ∈ H and t ∈ [r, T ]. After applying Proposition 12 and
using ‖x‖α0,r ≤ (T − r + 1)α−α0‖x‖α,r for all x ∈ Cα

r ([0, T ],Rm), we get

E
[
‖Ψ(X)t −Ψ(Y )t‖2p

α,r

]
≤ cα,plp

∫ t

r
E
[
‖Xs − Y s‖2p

α,r

]
ds

with cα,p := 42p−1(1 + kα,p−2,p)(T − r + 1)2p−1. Hence, Gronwall’s inequality
entails that there is at most a unique solution X to (2.5) satisfying Xs = X̂s

for all s ∈ [0, r] a.s.
We also infer from the above inequality that Ψ is Lipschitz continuous

with respect to the seminorm (2.6), where p is replaced by 2p. In addition,

E
[
‖n+1X

t − nX
t‖2p
α,r

]
≤ δ2p

n! (cα,plp)n(t− r)n

for each n ∈ N0, by induction with δ := (E[‖Ψ(0X)− 0X‖2p
α,r])1/(2p). Hence,

the triangle inequality gives

(
E
[
‖nX − kX‖2p

α,r

]) 1
2p ≤ δ

n−1∑
i=k

(
1
i!

) 1
2p

(cα,plp)
i

2p (T − r)
i

2p

for each k, n ∈ N0 with k < n. The ratio test implies that the series∑∞
i=0(1/i!)1/(2p)xi/(2p) converges absolutely for each x ≥ 0. So,

lim
k↑∞

sup
n∈N:n≥k

E
[
‖nX − kX‖2p

α,r

]
= 0.

Due to Proposition 11, because H is closed with respect to the complete
seminorm (2.6), where p is replaced by 2p, there exists a process X ∈ H
that is unique up to indistinguishability such that

lim
n↑∞

E
[
‖nX −X‖2p

α,r

]
= 0. (4.6)
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Lipschitz continuity of Ψ implies that limn↑∞E[‖n+1X −Ψ(X)‖2p
α,r] = 0. For

this reason, X = Ψ(X) a.s. Finally, assume p ≥ 1 and α ∈ (0, 1/2) are such
that α0 ≤ α < 1/2− 1/p fails. If α < α0, then

E
[
‖nX −X‖2p

α,r

]
≤ (T − r + 1)(α0−α)2pE

[
‖nX −X‖2p

α0,r

]
for all n ∈ N, which implies (4.6). For α ≥ 1/2− 1/p we take q > p so that
α < 1/2 − 1/q and use that E[‖nX − X‖2p

α,r] ≤ (E[‖nX − X‖2q
α,r])p/q for all

n ∈ N. As this also gives (4.6), the proof is complete.

5 Proof of main result

5.1 Decomposition into remainder terms
Proposition 31. Let (C.i) hold, h ∈ H1

r ([0, T ],Rd) and B be d∞-Lipschitz
continuous. Then for each p ≥ 1 there is cp > 0 such that any n ∈ N and
any strong solution nY to (2.14) satisfy

E
[
‖nY ‖2p

]
+ E

[
‖nY s − nY

t‖2p
]
/|s− t|p ≤ cp

(
1 + E

[
‖nY r‖2p

])
(5.1)

for all s, t ∈ [r, T ] with s 6= t.

Proof. We let l ∈ N and use Example 27 to define a stopping time τl,n ≥ r
such that ‖nY τl,n‖ ≤ ‖nY r‖ ∨ l a.s. Further, we estimate that

‖nY s∧τl,n − nY
t∧τl,n‖ ≤

∫ t∧τl,n

s
|B(u, nY u)|+ |BH(u, nY u)ḣ(u)| du

+ sup
v∈[s,t]

∣∣∣∣∣
∫ v∧τl,n

s
B(u, nY u)nẆu du

∣∣∣∣∣
+ sup

v∈[s,t]

∣∣∣∣∣
∫ v∧τl,n

s
Σ(u, nY u) dWu

∣∣∣∣∣ a.s.

for fixed s, t ∈ [r, T ] with s ≤ t. Thus, the triangle inequality and the
inequalities of Cauchy-Schwarz and Jensen yield that

(
E
[
‖nY s∧τl,n − nY

t∧τl,n‖2p
]) 1

2p

≤
(
cp,1(t− s)p−1

∫ t

s
1 + E

[
‖nY u∧τl,n‖2κp

]
du

) 1
2p

+
(
E

[
sup
v∈[s,t]

∣∣∣∣∣
∫ v∧τl,n

s
B(u, nY u)nẆu du

∣∣∣∣∣
2p]) 1

2p

,

(5.2)
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where we have set cp,1 := (6c)2p((T − r)p + (
∫ T
r |ḣ(u)|2 du)p + wp) and wp is

the constant appearing in (M).
Since κ < 1, we can pick γ ∈ (1, κ−1), then Lemma 18 provides a constant

cp,2 > 0 such that (3.11) holds when q and p are replaced by 2 and p/(1−γκ),
respectively. This yields that

E

[( ∫ t∧τl,n

s

∣∣∣(B(u, nY u)−B(un, nY un)
)
nẆu

∣∣∣ du)2p]

≤ (2λ)2p/2(t− s)p−1
(∫ t

s
(u− un)p du

)
c1−γκ
p,2 |Tn|−p(t− s)p

+ (2λ)2p/2(t− s)p−1
∫ t

s
E

[
‖nY u∧τl,n − nY

un∧τl,n‖2p
(∫ t

s
|nẆv|2 dv

)p]
du

≤ cp,3(t− s)p−1
∫ t

s
1 + |Tn|−p

(
E
[
‖nY u∧τl,n − nY

un∧τl,n‖
2p
γκ

])γκ
du,

by the inequalities of Cauchy-Schwarz, Jensen and Hölder , where λ ≥ 0
denotes a Lipschitz constant for B and cp,3 := 23pλ2p(T −r)pc1−γκ

p,2 . Note here
that the choice of cp,2 entails that

(
E

[ ∫ t

s
|nẆv|2 dv

) p
1−γκ

])1−γκ

≤ c1−γκ
p,2 |Tn|−p(t− s)p.

Next, let cp,4 > 0 be a constant satisfying (3.11) when q and p are replaced
by 2 and p/((γ − 1)κ), respectively. Then Cauchy-Schwarz’s, Jensen’s and
Hölder’s inequality imply that

E

[( ∫ u∧τl,n

un

|B(v, nY v)nẆv| dv
) 2p
γκ
]

≤ (2c)
2p
γκ2−1(u− un)

p
γκ
−1
(∫ u

un

1 dv
)
c
γ−1
γ

p,4 |Tn|
− p
γκ (u− un)

p
γκ

+ (2c)
2p
γκ2−1(u− un)

p
γκ
−1
∫ u

un

E

[
‖nY v∧τl,n‖

2p
γ

(∫ u

un

|nẆw|2 dw
) p
γκ
]
dv

≤ cp,5|Tn|
p
γκ

(
1 +

(
E
[
‖nY u∧τl,n‖2p

]) 1
γ
)

for any given u ∈ [s, T ], where we have set cp,5 := (4c)(2p)/(γκ)c
(γ−1)/γ
p,4 , since

by the choice of cp,4 we can utilize that
(
E

[( ∫ u

un

|nẆv|2 dv
) p

(γ−1)κ
]) γ−1

γ

≤ c
γ−1
γ

p,4 |Tn|
− p
γκ (u− un)

p
γκ .
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Thus, by the virtue of (5.2), we may set cp,6 := (6c)(2p)/(γκ)((T − r)p/(γκ)

+ (
∫ T
r |ḣ(u)|2 du)p/(γκ) + cp/(γκ),M), then(
E
[
‖nY u∧τl,n − nY

un∧τl,n‖
2p
γκ

])γκ
≤ cp,7|Tn|p

(
1 + E

[
‖nY u∧τl,n‖2p

])
with cp,7 := 22p(2pcp,6 + cγκp,5), since xβ ≤ (1 + x)β ≤ 1 + x for all x ≥ 0 and
β ∈ [0, 1]. Thus, we have established that

E

[( ∫ t∧τl,n

s

∣∣∣(B(u, nY u)−B(un, nY un)
)
nẆu

∣∣∣ du)2p]

≤ cp,8(t− s)p−1
∫ t

s
1 + E

[
‖nY u∧τl,n‖2p

]
du,

where cp,8 := cp,3(1 + cp,7). Next, Proposition 17 gives a constant ŵp > 0
satisfying (3.10), which directly yields that

E

[∣∣∣∣∣
∫ t∧τl,n

s
B(un, nY un)nẆu du

∣∣∣∣∣
2p]
≤ ŵpc

2p(t− s)p.

Hence, from (5.2) we in total obtain that

E
[
‖nY s∧τl,n − nY

t∧τl,n‖2p
]
≤ cp,9(t− s)p−1

∫ t

s
1 + E

[
‖nY u∧τl,n‖2p

]
du

with cp,9 := 42p−1(cp,1 +cp,8 +ŵpc2p). Thus, Gronwall’s inequality and Fatou’s
lemma entail that

E
[
‖nY t‖2p

]
≤ lim inf

m↑∞
E
[
‖nY t∧τl,n‖2p

]
≤ c14

(
1 + E

[
‖nY r‖2p

])
with cp,10 := e22p(1+cp,9(T−r)p). Thus, by setting cp := (1 + cp,9)(1 + cp,10), the
claim follows from an application of Fatou’s lemma.

Corollary 32. Let (C.i) hold and h ∈ H1
r ([0, T ],Rd). Then for each p ≥ 1

there is cp > 0 such that any strong solution Z to (2.15) satisfies

E
[
‖Z‖2p

]
+ E

[
‖Zs − Zt‖2p

]
/|s− t|p ≤ cp

(
1 + E

[
‖Zr‖2p

])
(5.3)

for all s, t ∈ [r, T ] with s 6= t.

Proof. Because the map R defined via (2.16) is bounded, we may apply
Proposition 31 in the case that B is replaced by B + R, B is replaced by 0
and Σ is replaced by B + Σ. From this the claim follows immediately.
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Proposition 33. Let (C.i) and (C.ii) be valid and h ∈ H1
r ([0, T ],Rd). Then

there is c1 > 0 such that for any n ∈ N and any strong solutions nY and Z
to (2.14) and (2.15), respectively,

E
[

max
j∈{0,...,kn}

|nYtj,n − Ztj,n |2
]
/c1 ≤ |Tn|

(
1 + E

[
‖nY r‖2 + ‖Zr‖2

])
+ E

[
‖nY r − Zr‖2

]
+ E

[
‖nY − Ln(nY )‖2

]
+ E

[
‖Z − Ln(Z)‖2

]
+ E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
B(sn, nY sn) d(nWs −Ws)

∣∣∣∣∣
2]

+ E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r

(
B(s, nY s)−B(sn, nY sn)

)
nẆs −R(sn, nY sn) ds

∣∣∣∣∣
2]
.

Proof. We define an increasing function ϕn : [r, T ]→ R+ by

ϕn(t) := E
[

max
j∈{0,...,kn}: tj,n≤t

|nYtj,n − Ztj,n |2
]

and seek to apply Gronwall’s inequality. For this purpose, we write the
difference of nY and Z in the form

nYt − Zt =
∫ t

r
B(s, nY s)−B(s, Zs) +

(
BH(s, nY s)−BH(s, Zs)

)
ḣ(s) ds

+ nYr − Zr + nΓt +
∫ t

r
Σ(s, nY s)− Σ(s, Zs) dWs

for all t ∈ [r, T ] a.s., where the process nΓ ∈ C ([0, T ],Rm) is chosen such
that

nΓt =
∫ t

r
B(s, nY s)nẆs −R(s, Zs) ds−

∫ t

r
B(s, Zs) dWs

for each t ∈ [r, T ] a.s. Hence, let λ ≥ 0 denote a Lipschitz constant for
B(s, ·), BH , B, Σ and R for every s ∈ [r, T ], then we obtain that

ϕn(t)1/2 ≤
(
c1,1

∫ tn

r
βn + ζn(s) + ηn(s) + ϕn(s) ds

)1/2

+ β1/2
n + γn(t)1/2

(5.4)

for all t ∈ [r, T ], where we have set c1,1 := 15λ2(T−r+
∫ T
r |ḣ(s)|2 ds+w1) and

βn := E[‖nY r−Zr‖2] and the functions γn, ζn, ηn : [r, T ]→ [0,∞), which are
readily seen to be measurable, are defined via

γn(t) := E
[

max
j∈{0,...,kn}: tj,n≤t

|nΓtj,n |2
]
,

ζn(s) := E
[
‖Y s − Y sn‖2 + ‖Zs − Zsn‖2

]
and
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ηn(s) := E
[
‖Y sn − Ln(nY )sn‖2 + ‖Zsn − Ln(Z)sn‖2

]
.

In deriving (5.4), we have used that E[‖Ln(nY )sn −Ln(Z)sn‖2] ≤ βn ∨ϕn(s)
for all s ∈ [r, T ], which follows from Lemma 20, since Ln is linear.

The next step of the proof is to estimate the function γn. For this purpose,
let us choose two processes n∆, nΘ ∈ C ([0, T ],Rm) such that

n∆t =
∫ t

r

(
B(s, nY s)−B(sn, nY sn)

)
nẆs −R(sn, nY sn) ds

and nΘt =
∫ t
r B(sn, nY sn) d(nWs −Ws) for each t ∈ [r, T ] a.s. Then nΓ can

be rewritten in the following way:

nΓt = n∆t + nΘt +
∫ t

r
B(sn, nY sn)−B(s, Zs) dWs

+
∫ t

r
R(sn, nY sn)−R(s, Zs) ds

for all t ∈ [r, T ] a.s. Thus, we set c1,2 := 10λ2(T − r + w1), then it follows
readily that

γn(t)1/2 ≤ δn(t)1/2 + θn(t)1/2

+
(
c1,2

∫ tn

r
βn + (s− sn) + ζn(s) + ηn(s) + ϕn(s) ds

)1/2 (5.5)

for all t ∈ [r, T ], where the increasing functions δn, θn : [r, T ] → [0,∞) are
given by

δn(t) := E
[

max
j∈{0,...,kn}: tj,n≤t

|n∆tj,n |2
]
, θn(t) := E

[
max

j∈{0,...,kn}: tj,n≤t
|nΘtj,n |2

]
.

Proposition 31 and Lemma 32 give constants l1,m1 > 0 satisfying (5.1)
and (5.3) for p = 1 when cp is replaced by l1 and m1, respectively. Thus,
putting (5.4) and (5.5) together, we find that

ϕn(t) ≤ c1,4|Tn|
(
1 + E

[
‖nY r‖2 + ‖Zr‖2

])
+ 4

(
βn + δn(t) + θn(t)

)
+ c1,3

∫ tn

r
βn + ηn(s) + ϕn(s) ds

for given t ∈ [r, T ], where we have first set c1,3 := 8(c1,1 + c1,2) and then
c1,4 := 2c1,3(T − r)(1 + l1 +m1). Consequently,

ϕn(t) ≤ c1
(
|Tn|

(
1 + E

[
‖nY r‖2 + ‖Zr‖2

])
+ βn + δn(t) + θn(t) + ηn(t)

)
for c1 := ec1,3(T−r)(c1,4+4), by Gronwall’s inequality. This gives the claim.
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A look at Lemma 21 and Proposition 23 shows us that only the last
remainder in the estimation of Proposition 33 requires further analysis, before
we can prove (2.18). So, for each h ∈ H1

r ([0, T ],Rd) and n ∈ N, we define a
map Φh,n : [r, T ]× S × C([0, T ],Rd)→ Rm by

Φh,n(s, y, w) := BH(sn, y)(h(s)− h(sn)) + Σ(sn, y)(w(s)− w(sn))
+B(sn, y)(s− sn)

(
L̃n(w)(s)− L̃n(w)(sn)

)
,

where, just as in Lemma 20, for each right-continuous map w : [0, T ] → Rd

we have set L̃n(w)(t) := w(r ∧ t) for t ∈ [0, t1,n),

L̃n(w)(t) := w(ti−1,n) + (t− ti,n)w(ti,n)− w(ti−1,n)
∆ti+1,n

for t ∈ [ti,n, ti+1,n) with i ∈ {1, . . . , kn − 1} and L̃n(w)(T ) := w(tkn−1,n). If
now nY and Z are strong solutions to (2.14) and (2.15), respectively, then
the following decomposition can be used to deal with the remainder:(

B(s, nY s)−B(sn, nY sn)
)
nẆs −R(sn, nY sn)

=
(
B(s, nY s)−B(sn, nY sn)− ∂xB(sn, nY sn)(nYs − nYsn)

)
nẆs

+ ∂xB(sn, nY sn)(nYs − nYsn − Φh,n(s, nY s,W s))nẆs

+ ∂xB(sn, nY sn)Φh,n(s, nY s,W s)nẆs −R(sn, nY sn)

(5.6)

for any s ∈ [r, T ). In fact, in the next two sections, we will deal with the
three terms on the right-hand side to ensure that (2.18) follows.

5.2 Convergence of the first two remainders
To deal with the first remainder term in (5.6), we will use the following
estimation in combination with Lemma 19.

Proposition 34. Assume (C.i) and let G ∈ C1,2([r, T )× S). Further, let B
and ∂xG be d∞-Lipschitz continuous and suppose there are c0, η ≥ 0 so that

|∂tG(t, x)|+ |∂xxG(t, x)| ≤ c0(1 + ‖x‖η)

for all (t, x) ∈ [r, T ) × S. Then for each p ≥ 1 there is cp > 0 such that for
any n ∈ N and any strong solution nY to (2.14) it holds that

sup
s∈[r,T )

E
[∣∣∣G(s, nY s)−G(sn, nY sn)− ∂xG(sn, nY sn)(nYs − nYsn)

∣∣∣2p]
≤ cp|Tn|2p

(
1 + E

[
‖nY r‖2(η∨2)p

])
.
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Proof. Let s ∈ [r, T ) and n∆ ∈ C ([0, T ],Rm) be given by n∆u := 0 for
u ∈ [0, T ]\[sn, s] and n∆u := ∂xG

′(u, nY u) − ∂xG′(sn, nY sn) for u ∈ [sn, s].
Then the functional Itô formula [9] yields that

G(s, nY s)−G(sn, nY sn)− ∂xG(sn, nY sn)(nYs − nYsn)

=
∫ s

sn

∂uG(u, nY u) du+
∫ s

sn
n∆′uΣ(u, nY u) dWu

+
∫ s

sn
n∆′u

(
B(u, nY u) +BH(u, nY u)ḣ(u) +B(u, nY u)nẆu

)
du

+ 1
2

∫ s

sn

tr(∂xxG(u, nY u)Σ(u, nY u)Σ(u, nY u)′) du a.s.

(5.7)

We set η := η∨2, then Proposition 31 gives a constant lηp > 0 such that (5.1)
holds when cp and p are replaced by lηp and ηp, respectively. So,

E

[∣∣∣∣∣
∫ s

sn

∂uG(u, nY u) du
∣∣∣∣∣
2p]
≤ cp,1|Tn|2p

(
1 + E

[
‖nY r‖2ηp

])
for cp,1 := (4c0)2p(1 + lηp)η/η, by Hölder’s inequality. Next, let λ0 ≥ 0 denote
a Lipschitz constant for ∂xG, then we obtain that(

E
[
|n∆u|4p

]) 1
2 ≤ mp|Tn|p

(
1 + E

[
‖nY r‖2ηp

])1/η (5.8)

for all u ∈ [sn, s] with mp := 23pλ2p
0 (1 + lηp)1/η. Thus, for the second term

in (5.7) Cauchy-Schwarz’s inequality gives

E

[∣∣∣∣∣
∫ s

sn
n∆′uB(u, nY u) du

∣∣∣∣∣
2p]

≤ (2c)2p(s− sn)2p−1
∫ s

sn

(
E
[
|n∆u|4p

])1/2(
1 +

(
E
[
‖nY u‖4p

])1/2)
du

≤ cp,2|Tn|2p
(
1 + E

[
‖nY r‖2ηp

])
with cp,2 := 23pc2p(T − r)pmp(1 + l

1/η
ηp ). Similarly, it follows from (5.8) that

E

[∣∣∣∣∣
∫ s

sn
n∆′uBH(u, nY u)ḣ(u) du

∣∣∣∣∣
2p]
≤ cp,3|Tn|2p

(
1 + E

[
‖nY r‖2ηp

])
for cp,3 := 23pc2p(

∫ T
r |ḣ(u)|2 du)pmp(1 + l

1/η
ηp ). Lemma 18 yields ŵ2p,2 > 0

satisfying (3.11) when p and q are replaced by 2p and 2, respectively. Then

E

[∣∣∣∣∣
∫ s

sn
n∆′uB(u, nY u)nẆu du

∣∣∣∣∣
2p]
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≤ c2p(s− sn)p−1
∫ s

sn

(
E
[
|n∆u|4p

])1/2
(
E

[( ∫ s

sn

|nẆv|2 dv
)2p])1/2

du

≤ cp,4|Tn|2p
(
1 + E

[
‖nY r‖2ηp

])
,

by Cauchy-Schwarz’s inequality, where we have set cp,4 := (2c)2pmpŵ
1/2
2p,2.

Another estimation shows us that

E

[∣∣∣∣∣
∫ s

sn
n∆′uΣ(u, nY u) dWu

∣∣∣∣∣
2p]
≤ cp,5|Tn|2p

(
1 + E

[
‖nY r‖2ηp

])
for cp,5 := 2pc2pwpmp, where wp is the constant satisfying (M). We move on
to the last term arising in (5.7). Here, we readily compute that

E

[∣∣∣∣∣12
∫ s

sn

tr(∂xxG(u, nY u)Σ(u, nY u)Σ(u, nY u)′) du
∣∣∣∣∣
2p]

≤ cp,6|Tn|2p
(
1 + E

[
‖nY r‖2ηp

])
with cp,6 := (2c0)2pc4p(1+lηp)η/η. Thus, by setting cp := 62p−1(cp,1+· · ·+cp,6),
we obtain the asserted estimate.

We come to the second remainder term arising in (5.6). As before, we
will derive an estimation that is necessary to apply Lemma 19.

Lemma 35. Let (C.i) and (C.ii) hold and h ∈ H1
r ([0, T ],Rd). Then for each

p ≥ 1 there is cp > 0 such that for any n ∈ N and any strong solution nY
to (2.14) we have

sup
s∈[r,T ]

[
|nYs − nYsn − Φh,n(s, nY s,W s)|2p

]
≤ cp|Tn|2p

(
1 + E

[
‖nY r‖4p

])1/2
.

Proof. We apply Proposition 31 to get a constant l2p > 0 such that (5.1) is
satisfied when cp and p are replaced by l2p and 2p, respectively. Let us pick
s ∈ [r, T ], then

E

[∣∣∣∣∣
∫ s

sn

B(u, nY u) du
∣∣∣∣∣
2p]
≤ cp,1|Tn|2p

(
1 + E

[
‖nY r‖4p

])1/2

for cp,1 := (4c)2p(1 + l
1/2
2p ). Let λ ≥ 0 denote a Lipschitz constant for BH , B

and Σ, then Cauchy-Schwarz’s inequality allows us to estimate that

E

[∣∣∣∣∣
∫ s

sn

(
BH(u, nY u)−BH(sn, nY sn)

)
ḣ(u) du

∣∣∣∣∣
2p]
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≤ 23p−1λ2p
(∫ T

r
|ḣ(u)|2 du

)p
|Tn|p

(
(s− sn)p + E

[
‖nY s − nY

sn‖2p
])

≤ cp,2|Tn|2p
(
1 + E

[
‖nY r‖4p

])1/2

with cp,2 := (4λ)2p(
∫ T
r |ḣ(u)|2 du)p(1 + l2p)1/2. We recall the constant ŵ2p,2

constructed in Lemma 18 such that (3.11) is valid when p and q are replaced
by 2p and 2, respectively. Then

E

[∣∣∣∣∣
∫ s

sn

(
B(u, nY u)−B(sn, nY sn)

)
nẆu du

∣∣∣∣∣
2p]

≤ λ2p(s− sn)pE
[(

(s− sn)1/2 + ‖nY s − nY
sn‖
)2p
(∫ s

sn

|nẆv|2 dv
)p]

≤ cp,3|Tn|2p
(
1 + E

[
‖nY r‖4p

])1/2
,

by Cauchy-Schwarz’s inequality, where cp,3 := 25pλ2p(1+ l2p)1/2ŵ
1/2
2p,2. Finally,

let also recall the constant wp appearing in (M), then

E

[∣∣∣∣∣
∫ s

sn

Σ(u, nY u)− Σ(sn, nY sn) dWu

∣∣∣∣∣
2p]
≤ cp,4|Tn|2p

(
1 + E

[
‖nY r‖4p

])1/2

for cp,4 := (4λ)2pwp(1 + l2p)1/2. So, the definition cp := 42p−1(cp,1 + · · ·+ cp,4)
concludes the proof.

5.3 Convergence of the third remainder
As preparation, we require the following application of Doob’s L2-martingale
inequality.
Lemma 36. For each l ∈ {1, . . . , d} and n ∈ N, let (l,nUi)i∈{1,...,kn} be
an (Fti,n)i∈{1,...,kn}-predictable sequence of R1×d-valued random vectors and
(l,nVi)i∈{1,...,kn} be an (Fti,n)i∈{1,...,kn}-adapted sequence of Rd-valued random
vectors such that

E[|l,nUi|4] + E[|l,nVi|4] <∞ and E[l,nVi|Fti−1,n ] = 0 a.s.

for all i ∈ {1, . . . , kn}. Then

E

[
max

j∈{i0,...,kn}

∣∣∣∣∣
j−i0∑
i=1

d∑
l=1

l,nUi l,nVi

∣∣∣∣∣
2]

≤ 4
kn−i0∑
i=1

d∑
l1,l2=1

E[l1,nUiE[l1,nVi l2,nV ′i |Fti−,1n ] l2,nU ′i ]

for all i0 ∈ {0, . . . , kn − 1} and n ∈ N.

40



Proof. Let us set nYi := ∑d
l=1 l,nUi l,nVi for each i ∈ {1, . . . , kn− i0}, then nYi

is Fti,n-measurable, E[|nYi|2] < ∞ and E[nYi|Fti−1,n ] = 0 a.s. Hence, the
discrete-time process nS : {i0, . . . , kn} × Ω→ R defined via

nSj :=
j−i0∑
i=1

nYi

is a square-integrable martingale with respect to (Ftj−i0,n
)j∈{i0,...,kn}. For this

reason, Doob’s L 2-martingale inequality implies that

E

[
max

j∈{i0,...,kn}

∣∣∣∣∣
j−i0∑
i=1

d∑
l=1

l,nUi l,nVi

∣∣∣∣∣
2]

= E
[

max
j∈{i0,...,kn}

nS
2
j

]
≤ 4E[nS2

kn ].

Moreover, let i, j ∈ {1, . . . , kn− i0} be such that i ≤ j, then we observe that
E[l1,nVi l2,nV ′j |Ftj−1,n ] = 1{i}(j)E[l1,nVi l2,nV ′i |Fti−1,n ] a.s. and

E[nYi nYj] =
d∑

l1,l2=1
E[l1,nUiE[l1,nVi l2,nV ′j |Ftj−1,n ] l2,nU ′j].

In particular, nYi and nYj are uncorrelated for i < j. By Bienaymé’s identity,
E[nS2

kn ] = ∑kn−i0
i=1 E[nY 2

i ], which yields the claim.

Proposition 37. Let (C.i) and (C.ii) hold and h ∈ H1
r ([0, T ],Rd). Then

there is c1 > 0 such that for any n ∈ N and any strong solution nY to (2.14)
it follows that

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
∂xB(sn, nY sn)Φh,n(s, nY s,W s)nẆs −R(sn, nY sn) ds

∣∣∣∣∣
2]

≤ c1|Tn|
(
1 + E

[
‖nY r‖2

])
.

Proof. Due to Proposition 31, we may apply Lemma 22, which provides a
constant c1,0 > 0 that is independent of n such that

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
R(sn, nY sn)(δn(s)− 1) ds

∣∣∣∣∣
2]
≤ c1,0|Tn|

(
1 + E

[
‖nY r‖2

])
,

where δn(s) := ∆sn/∆sn for all s ∈ [r, T ]. We recall the definition of R
in (2.16) to write the k-th coordinate of ∂xB(sn, nY sn)Φh,n(s, nY s,W s) nẆs

−R(sn, nY sn)δn(s) in the form

d∑
l=1

∂xBk,l(sn, nY sn)
(
Φh,n(s, nY s,W s)nẆ (l)

s − ((1/2)B + Σ)(sn, nY sn)δn(s)el
)
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for all k ∈ {1, . . . ,m} and s ∈ [r, T ). Moreover, we decompose that

Φh,n(s, nY s,W s)nẆ (l)
s − ((1/2)B + Σ)(sn, nY sn)δn(s)el

= BH(sn, nY sn)(h(sn)− h(sn))nẆ (l)
s

+B(sn, nY sn)(nWsn − nWsn
)nẆ (l)

s

+ Σ(sn, nY sn)
(
∆WsnnẆ

(l)
s − δn(s)el

)
+BH(sn, nY sn)(h(s)− h(sn))nẆ (l)

s

+B(sn, nY sn)
(
(nWs − nWsn)nẆ (l)

s − (1/2)δn(s)el
)

+ Σ(sn, nY sn)(Ws −Wsn)nẆ (l)
s ,

(5.9)

where l ∈ {1, . . . , d}. We begin with the first term in this decomposition and
use Lemma 16 to obtain that∫ tj,n

r
(∂xBk,lBH)(sn, nY sn)(h(sn)− h(sn))nẆ (l)

s ds

=
∫ tj−1,n

r
(∂xBk,lBH)(sn, nY sn)(h(sn)− h(sn)) dW (l)

s a.s.

for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Proposition 31
gives l1 > 0 such that (5.1) is satisfied for p = 1 when the appearing constant
cp is replaced by l1. Hence, condition (C.ii) gives

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lBH)(sn, nY sn)(h(sn)− h(sn))nẆ (l)
s ds

∣∣∣∣∣
2]

≤ 2c4w1

∫ tkn−1,n

r

(
1 + E

[
‖nY sn‖2

])
|h(sn)− h(sn)|2 ds

≤ c1,1|Tn|
(
1 + E

[
‖nY r‖2

])
,

where w1 satisfies (M) for p = 1 and c1,1 := 2c4w1(1 + l1)(T − r)
∫ T
r |ḣ(s)|2 ds.

Similarly, another application of Lemma 16 gives us that∫ tj,n

r
(∂xBk,lB)(sn, nY sn)(nWsn − nWsn

)nẆ (l)
s ds

=
∫ tj−1,n

r
(∂xBk,lB)(sn, nY sn)∆Wsn dW

(l)
s a.s.

for all j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}. Thus, we define
c1,2 := c4w1d(T − r), then we can estimate that

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lB)(sn, nY sn)(nWsn − nWsn
)nẆ (l)

s ds

∣∣∣∣∣
2]
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≤ c4w1

∫ tkn−1,n

r
E
[
|∆Wsn|2

]
ds ≤ c1,2|Tn|.

Let us move on to the third expression in (5.9). First of all, we define an
Rd-valued Fti,n-measurable random vector by

l,nVi := ∆Wti,n∆W (l)
ti,n −∆ti,nel (5.10)

for every l ∈ {1, . . . , d} and i ∈ {1, . . . , kn}, then l,nVi is independent of
Fti−1,n and satisfies E[|l,nVi|4] < ∞ and E[l,nVi] = 0. Moreover, a case
distinction shows that

E[l1,nVi l2,nV ′i ] = 1{l2}(l1)(∆ti,n)2
Id + (∆ti,n)2Il2,l1 (5.11)

for all l1, l2 ∈ {1, . . . , d} and i ∈ {1, . . . , kn}, where Il2,l1 ∈ Rd×d denotes
the matrix whose (l2, l1)-entry is 1 and whose all other entries are zero. We
compute that∫ tj,n

r
(∂xBk,lΣ)(sn, nY sn)

(
∆WsnnẆ

(l)
s − δn(s)el

)
ds

=
j−1∑
i=1

(∂xBk,lΣ)(ti−1,n, nY
ti−1,n)l,nVi

for all j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, since δn(s) = 0
for each s ∈ [r, t1,n]. Consequently, Lemma 36 and the representation (5.11)
imply that

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lΣ)(sn, nY sn)
(
∆WsnnẆ

(l)
s − δn(s)el

)
ds

∣∣∣∣∣
2]

≤ 8
kn−1∑
i=1

(∆ti,n)2
m∑
k=1

d∑
l=1

E[|(∂xBk,lΣ)(ti−1,n, nY
ti−1,n)|2] ≤ c1,3|Tn|

for c1,3 := 8c4(T − r), since we can use that xtIl2,l1y ≤ (1/2)(x2
l2 + y2

l1) for all
x, y ∈ Rd, by Young’s inequality. To deal with the fourth term in (5.9), let
us note that∫ tj,n

r
(∂xBk,lBH)(sn, nY sn)(h(s)− h(sn))nẆ (l)

s ds

=
j−1∑
i=1

(∂xBk,lBH)(ti−1,n, nY
ti−1,n)

∆W (l)
ti,n

∆ti+1,n

∫ ti+1,n

ti,n
h(s)− h(ti,n) ds

=
∫ tj,n

r
(∂xBk,lBH)(sn, nY sn)∆W (l)

sn

(sn − s)
∆sn

dh(s)

(5.12)
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for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, as integration
by parts yields that

∫ ti+1,n
ti,n h(s) − h(ti,n) ds =

∫ ti+1,n
ti,n ti+1,n − s dh(s) for all

i ∈ {0, . . . , kn − 1}. So,

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lBH)(sn, nY sn)(h(s)− h(sn))nẆ (l)
s ds

∣∣∣∣∣
2]

≤
m∑
k=1

∫ T

r
|ḣ(s)|2 ds

∫ T

r
E
[∣∣∣ d∑
l=1

(∂xBk,lBH)(sn, nY sn)∆W (l)
sn

∣∣∣2] ds
≤ 2c4

∫ T

r
|ḣ(s)|2 ds

∫ T

r

(
1 + E

[
‖nY sn‖2

])
∆sn ds

≤ c1,4|Tn|
(
1 + E

[
‖nY r‖2

])
with c1,4 := 2c4(1 + l1)(T − r)

∫ T
r |ḣ(s)|2 ds, by Cauchy-Schwarz’s inequality

and the facts that ∆W (1)
sn , . . . ,∆W (d)

sn are not only pairwise independent but
also independent of Fsn

for every s ∈ [r, T ].
Next, to handle the fifth expression in (5.9), we proceed similarly as with

the third expression. We define l,nUs := (nWs − nWsn)nẆ (l)
s − (1/2)δn(s)el

for all s ∈ [r, T ] and note that
∫ tj,n

r
(∂xBk,lB)(sn, nY sn)l,nUs ds = 1

2

j−1∑
i=1

(∂xBk,lB)(ti−1,n, nY
ti−1,n)l,nVi

for every j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, where l,nVi is
defined via (5.10) and we have used that

∫ ti+1,n
ti,n s − ti,n ds = (1/2)(∆ti+1,n)2

for all i ∈ {1, . . . , kn}. Consequently,

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lB)(sn, nY sn)l,nUs ds
∣∣∣∣∣
2]

≤ 2
kn−1∑
i=1

(∆ti,n)2
m∑
k=1

d∑
l=1

E[|(∂xBk,lB)(ti−1,n, nY
ti−1,n)|2] ≤ c1,5|Tn|

for c1,5 := 2c4(T − r). We turn to the last term in (5.9) and proceed just as
in (5.12) to get that∫ tj,n

r
(∂xBk,lΣ)(sn, nY sn)(Ws −Wsn)nẆ (l)

s ds

=
∫ tj,n

r
(∂xBk,lΣ)(sn, nY sn)∆W (l)

sn

(sn − s)
∆sn

dWs a.s.

for each j ∈ {1, . . . , kn}, k ∈ {1, . . . ,m} and l ∈ {1, . . . , d}, as Itô’s formula
gives

∫ ti+1,n
ti,n Ws−Wti,n ds =

∫ ti+1,n
ti,n ti+1,n−s dWs a.s. for all i ∈ {0, . . . , kn−1}.
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Therefore,

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣∣
∫ tj,n

r

d∑
l=1

(∂xBk,lΣ)(sn, nY sn)(Ws −Wsn)nẆ (l)
s ds

∣∣∣∣∣
2]

≤ w1

m∑
k=1

∫ T

r
E
[∣∣∣ d∑
l=1

(∂xBk,lΣ)(sn, nY sn)∆W (l)
sn

∣∣∣2] ds ≤ c1,6|Tn|

with c1,6 := c4w1(T − r). As before, we have used that ∆W (1)
sn , . . . ,∆W (d)

sn

are pairwise independent and independent of Fsn
for all s ∈ [r, T ]. Hence,

by setting c1 := 7(c1,0 + · · ·+ c1,6), the assertion follows.

5.4 Proofs of Theorems 8 and 1
Proof of Theorem 8. (i) Applying Girsanov’s theorem shows that existence
and uniqueness follow from Proposition 5 when B = B + BH ḣ. Further,
Propositions 31 and 12 imply the second claim.

(ii) This assertion is an immediate application of Proposition 5 when
B = B +R +BH ḣ and Σ is replaced by B + Σ.

(iii) By Propositions 33 and 23 and Lemma 21, to establish (2.18), it
suffices to show that there is c1 > 0 such that

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r

(
B(s, nY s)−B(sn, nY sn)

)
nẆs−R(sn, nY sn) ds

∣∣∣∣∣
2]
≤ c1|Tn|

for all n ∈ N. To this end, we utilize the decomposition (5.6). First of all,
Proposition 34 allows us to apply Lemma 19, which yields c1,1 > 0 so that

E

[( ∫ T

r
|B(s, nY s)−B(sn, nY sn)−∂xB(sn, nY sn)(nYs − nYsn)||nẆs| ds

)2]
≤ c1,1|Tn|

for all n ∈ N. Secondly, since ∂xB is bounded, a combination of Lemma 35
with Lemma 19 gives c1,2 > 0 such that

E

[( ∫ T

r
|∂xB(sn, nY sn)(nYs−nYsn−Φh,n(s, nY s,W s))||nẆs| ds

)2]
≤ c1,1|Tn|

for all n ∈ N. Thirdly, using again the boundedness of ∂B, it follows from
Proposition 37 and Lemma 19 that there is c1,3 > 0 such that

E

[
max

j∈{0,...,kn}

∣∣∣∣∣
∫ tj,n

r
∂xB(sn, nY sn)Φh,n(s, nY s,W s)nẆs−R(sn, nY sn) ds

∣∣∣∣∣
2]
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≤ c1,3|Tn|

for each n ∈ N. Hence, by setting c1 := 3(c1,1 + c1,2 + c1,3), we obtain the
desired estimate. For this reason, (2.18) holds.

To justify the second assertion, we set nU := nY −Z ∈ C 1/2−
r,∞ ([0, T ],Rm)

for all n ∈ N, then (‖nU r‖)n∈N and (maxj∈{0,...,kn} |nUtj,n |/|Tn|α)n∈N converge
in probability to zero, by (2.18) and Chebyshev’s inequality. Let p > 1 be
such that 2α < 1 − 1/p, then Proposition 31 and corollary 32 give cp > 0
satisfying

E
[
‖nU s − nU

t‖2p
]
≤ cp|s− t|p

for all n ∈ N and s, t ∈ [r, T ]. As Remark 15 entails that condition (3.7) is
satisfied for q = p− 1, Proposition 14 implies that (‖nU‖α,r)n∈N converges in
probability to zero, which establishes (2.17).

Finally, to prove Theorem 1 we require the following basic result on the
support of image probability measures.

Lemma 38. Let (Ω̃, F̃ , P̃ ) be a probability space, (Ẽ, ρ̃) be a metric space,
D ⊂ Ẽ and Y : Ω̃→ Ẽ be measurable such that P̃ ◦ Y −1 is inner regular.

(i) Let (Yn)n∈N be a sequence of Ẽ-valued maps on Ω that converges to Y in
probability. If Yn ∈ D a.s. for all n ∈ N, then supp(P̃ ◦ Y −1) ⊂ D.

(ii) Suppose that for each y ∈ D there is a sequence (Py,n)n∈N of probability
measures on (Ω,F ) such that P̃y,n � P̃ for all n ∈ N and

inf
n∈N

P̃y,n(ρ̃(Y, y) ≥ ε) < 1 (5.13)

for each ε > 0. Then D ⊂ supp(P̃ ◦ Y −1).

Proof. (i) Let y ∈ supp(P̃ ◦ Y −1) and k ∈ N. Since (Yn)n∈N converges
to Y in probability, there exists nk ∈ N such that P̃ (ρ̃(Yn, Y ) > 1/(2k))
< P̃ (ρ̃(Y, y) < 1/(2k)) for all n ∈ N with n ≥ nk. Hence,

P̃
(
ρ̃(Yn, y) ≥ 1

k

)
≤ P̃

(
ρ̃(Yn, Y ) > 1

2k
)

+ P̃
(
ρ̃(Y, y) ≥ 1

2k
)
< 1

for any such n ∈ N. So, there is ωk ∈ Ω̃ such that yk := Ynk(ωk) ∈ D and
ρ̃(yk, y) < 1/k. As k ∈ N has been arbitrarily chosen, the resulting sequence
(yk)k∈N converges to y, which gives the claim.

(ii) By way of contradiction, suppose that there are y ∈ D and ε > 0 such
that P̃ (ρ̃(Y, y) ≥ ε) = 1. Let (yn)n∈N be a sequence in D that converges to y
and choose nε ∈ N such that ρ̃(ynε , y) < ε/2. Then from

P̃ (ρ̃(Y, y) ≥ ε) ≤ P̃ (ρ̃(Y, ynε) > ε/2) + P̃ (ρ̃(ynε , y) ≥ ε/2)
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and P̃ynε ,n � P̃ it follows that P̃ynε ,n(ρ̃(Y, ynε) ≥ ε/2) = 1 for each n ∈ N.
This, however, is a contradiction to (5.13).

Lemma 39. Let h ∈ H1
r ([0, T ],Rd) and n ∈ N, then the a.s. continuous local

martingale h,nZ given by (2.11) is a martingale.

Proof. We recall that
∫ ti+1,n
ti,n ḣ(s) dWs is independent of Fti,n and normally

distributed with zero mean and variance given by
∫ ti+1,n
ti,n |ḣ(s)|2 ds, which

yields that

E

[
exp

(∫ ti+1,n

ti,n
(ḣ(s)− nẆs) dWs −

1
2

∫ ti+1,n

ti,n
|ḣ(s)− nẆs|2 ds

)∣∣∣∣∣Fti,n

]

= E

[
exp

(∫ ti+1,n

ti,n
(ḣ(s)− x) dWs −

1
2

∫ ti+1,n

ti,n
|ḣ(s)− x|2 ds

)]∣∣∣∣∣
x=

∆Wti,n
∆ti+1,n

= 1

a.s. for each i ∈ {1, . . . , kn−1}, since ∆Wti+1,n is also independent of Fti,n and
we have

∫ ti+1,n
ti,n nẆs dWs = (∆W ′

ti,n
/∆ti+1,n)∆Wti+1,n . Hence, E[h,nZT ] = 1

follows by induction, from which we infer the claim.

Proof of Theorem 1. (i) By Lemma 30, pathwise uniqueness holds for (1.1)
and Proposition 5 provides a unique strong solution X such that Xs = x̂(s)
for all s ∈ [0, r] a.s. and X ∈ C 1/2−

r,∞ ([0, T ],Rm). For this reason, (i) holds.
(ii) Let h ∈ H1

r ([0, T ],Rd) and set Fh := b− (1/2)ρ + σḣ. We first check
that Fh satisfies conditions (O.i) and (O.ii). Since σ and ∂xσ are bounded,
there is c1 ≥ 0 such that |σ| ∨ |ρ| ≤ c1. Then

|Fh(t, x)| ≤ c(1 + ‖x‖κ) + c1(1 + |ḣ(t)|) ≤ c2(1 + |ḣ(t)|)(1 + ‖x‖)

for all (t, x) ∈ [r, T )× S with c2 := 3 max{c, c1}. Moreover, since σ and ∂xσ
are d∞-Lipschitz continuous, so is the map ρ. Thus, let λ1 ≥ 0 be a Lipschitz
constant for ρ, then

|Fh(t, x)− Fh(t, y)| ≤ (λ1 + λ(1 + |ḣ(t)|))‖x− y‖ ≤ λ2(1 + |ḣ(t)|)‖x− y‖

for all t ∈ [r, T ) and x, y ∈ S with λ2 := 2 max{λ, λ1}. Hence, an application
of Proposition 2 to the map Fh yields the first assertion and we may set
xh := yFh .

Regarding the second, let us also choose l ∈ H1
r ([0, T ],Rd). We define

c3 := 22(T − r + 1), then the above estimation shows that

‖xth − xtl‖2
H,r ≤ c3

∫ t

r
|Fh(s, xh)− Fl(s, xsl )|2 ds
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≤ c3

∫ t

r
2λ2

2(1 + |ḣ(s)|2)‖xsh − xsl ‖2 + c2
1|ḣ(s)− l̇(s)|2 ds

for given t ∈ [r, T ]. For this reason, ‖xh − xl‖2
H,r ≤ c4e

c4‖h‖2H,r‖h− l‖2
H,r with

c4 := (c2
1 + 2λ2

2)c3 exp(2λ2
2c3(T − r)), by Gronwall’s inequality. As c4 merely

depends on T − r, c1 and λ2, the second claim follows.
(iii) Let Nα be the P -null set of all ω ∈ Ω so that X(ω) /∈ Cα

r ([0, T ],Rm),
then (N c

α,F ∩N c
α, P|F∩Nc

α
) is readily seen to be a probability space and the

image probability measure

B(Cα
r ([0, T ],Rm))→ [0, 1], B 7→ P ({X ∈ B} ∩N c

α) (5.14)

is inner regular, where B(Cα
r ([0, T ],Rm)) is the Borel σ-field with respect to

the complete norm ‖ · ‖α,r. Note that the support of (5.14) consists of all
x ∈ Cα

r ([0, T ],Rm) satisfying P ({‖X − x‖α,r ≥ ε} ∩ N c
α) > 0 for all ε > 0,

that is, it is the support of P ◦X−1 in Cα
r ([0, T ],Rm).

For n ∈ N we define Yn : N c
α → Cα

r ([0, T ],Rm) by Yn(ω) := xnW (ω),
then Yn ∈ {xh |h ∈ H1

r ([0, T ],Rd)}. So, Lemma 38 entails that the support
of (5.14) is included in the closure of {xh |h ∈ H1

r ([0, T ],Rd)} with respect
to ‖ · ‖α,r once we have shown that

lim
n↑∞

P ({‖Yn −X‖α,r ≥ ε} ∩N c
α) = 0 for all ε > 0.

This, however, already follows from Theorem 8 by the choice B = b− (1/2)ρ,
BH = 0, B = σ and Σ = 0. To obtain the converse inclusion in (1.7), let
h ∈ H1

r ([0, T ],Rd) and for each n ∈ N define Ph,n : F → [0, 1] by

Ph,n(A) := E[h,nZT1A],

where the a.s. continuous local martingale h,nZ : [0, T ] × Ω → (0,∞) given
by h,nZ

r = 1 a.s. and (2.11) is shown in Lemma 39 to be a martingale. So,
Ph,n is a probability measure satisfying Ph,n ∼ P and by Lemma 38, if

inf
n∈N

Ph,n({‖X − xh‖α,r ≥ ε} ∩N c
α) < 1 for each ε > 0, (5.15)

then the closure of {xl | l ∈ H1
r ([0, T ],Rd)} with respect to ‖ · ‖α,r is included

in the support of (5.14). Now Girsanov’s theorem implies that for each n ∈ N
the process h,nW : [0, T ]× Ω→ Rd defined by

h,nWt := Wt −
∫ r∨t

r
ḣ(s)− nẆs ds

is a d-dimensional (Ft)t∈[0,T ]-Brownian motion under Ph,n and X is a strong
solution to (2.13) under Ph,n. Hence, an application of Theorem 8 in the
case that B = b, BH = σ, B = −σ and Σ = σ gives (2.12). As this readily
implies (5.15), the proof is complete.
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