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Watermark driven Acoustic Echo Cancellation

Sonia Djaziri-Larbi, Gaél Mahé, Imen Mezghani, Monia Turki, and Mériem Jaidane

Abstract—The performance of adaptive acoustic echo cancelers enhancements were proposed to address AEC sensitivity to
(AEC) is sensitive to the non-stationarity and correlation of the correlation and non-stationarity of the input.
speech signals. In this article, we explore a new approach based Power normalized adaptive algorithme.d. the NLMS!)

on an adaptive AEC driven by data hidden in speech, to enhance . . - .
the AEC robustness. We propose a two-stage AEC, where the reduce the impact of amplitude variation only in the mean,

first stage is a classical NLMS-based AEC driven by the far- and not locally in the transient zone [1], [2]. Similarly, the
end speech. In the signal, we embed -in an extended conceptionaffine projection algorithm (APA) [3] reduces the effect of
of data hiding- an imperceptible white and stationary signal, variations of the frequency content only in the mean.
l.e. a watermark. The goal of the second stage AEC is 10 ggyera| approaches were proposed in the literature to
identify the misalignment of the first stage. It is driven by . . .
the watermark solely, and takes advantage of its appropriate strengthen the robustness of adaptive algorithms against corre-
properties (stationary and white) to improve the robustness of lation and non-stationarity of the speech input. They are essen-
the two-stage AEC to the non-stationarity and correlation of tially based on two principles: either pre-processing the speech
tsgsetet(\:/\?é iinndd;hgfsirfﬁdlléﬁemgﬁg‘r’gai':] iﬁsetiwst“?ﬁagumsémiggnweto soften the inappropriate variabilities of the adaptive AEC
referred to as A-WdApEC (Adaptive Watermark drivgn AEC),the’ (e.g. pre-whltenlng technlques_[4]—[6]), or using a “smart
watermark is a white stationary Gaussian noise. Driven by this SteP-size that scans the dynamics of the global adaptive AEC
signal, the second stage converges faster than the classical AE((€.9. gradient adaptive step size [7] and a variety of variable
and provides better performance in steady state. In the second step size algorithms [8]-[11]).
@mpkl)er_ne?tation, referred oo M'-S'WdAEC('M t[‘g) W?Lerma:ﬁ While all of these methods use the far-end speech as the
IS Dul rom maximum len sequences . us, e . . . . . [
second stage performs a bl%ck idgntification of the first stage dr!vmg signal, thg am of.the propos_ed systemll_s to |mpI|C|t_Iy
misalignment, given by the circular correlation watermark/pre- drive the AEC with a white and stationary auxiliary signal in
processed version of the first stage residual echo. The advantageorder to cope with the sensitivity of adaptive AEC algorithms
of this implementation lies in its robustness against noise and to the correlation and non-stationarity of the input. The main
under-modeling. Simulation results show the relevance of the jqea of this study is borrowed from recent applications of data
..‘évr?;errdmg;dx\gg..AEc approach, compared to the classical hiding, where information is embedded to enhance or assist
- _ _ ~a particular processing system. These applications address
_Index Terms—Adaptive Acoustic Echo Cancellation, data hid- 5 yariety of signal processing issues as source separation
ing, speech watermarking, MLS sequences, perceptual masking. [12]-[15], speech bandwidth extension [16], [17], packet loss
concealment for wireless communications [18], [19], voicing
of animated GIF [20], pre-echo reduction in audio coding [21],
. INTRODUCTION audio statistics modification [22]-[25], synchronization and

I N audio- and video-conferencing, the communication quaﬁhannel equalization [26], and watermark-aided processing for

ity is altered by the acoustic coupling between loudspeakefiear and nonlinear audio system identification [27], [28].
and microphones, which results in an echo transmitted througt” this article, we address the latter application, namely
the microphones. The echo is a sound caused by the reflecitiermark-aided system identification, and particularly acous-
of sound waves from a surface back to the listener or speakléy,8cho cancellation aided by data embedded in the driving
Itis generally modeled as the convolution of the original sourfi'dio input. Thiswatermark-driven AEQWAAEC) has its
(here the loudspeaker output) with the impulse response (IBfj9ins in [24], [29], where inserting a stationary watermark
of the conference room. The role of an adaptive acoustic edfigne input audio signal enhances its stationarity and thus the
canceler (AEC) is to identify the IR in order to reduce th@erformance of the AEC. Our goal is to take full advantage

echo in a robust manner, even in presence of non—stationQFgNhe appropriate characteristics of a watermark: we propose
input and ambient noise. a two-stage AEC, where the first stage is a classical NLMS-

The limits of conventional AECs have been widely coverel@S€d AEC driven by the watermarked far-end speech, and the
by researchers in the field (see for example [1]), and mafi conq stage is driven by _the_watermark solely and adaptively
identifies the first stage misalignment.
This work is part of the project WaRRIS funded by a grant from the French The proposed WAAEC is an enhanced version of the two-
National Research Agency (project ANR-06-JCJC-0009) stage AEC of [28], especially in terms of perceptual quality

S. Djaziri Larbi, M. Turki and M. Jaidane are with the System . . _
and Signals Lab (U2S), National Engineering School of Tunis, Unive?:—nc the watermarked SpeeCh' Indeed, in this study, a frame

sity of Tunis EI Manar, Tunisia, e-mail:{sonia.djaziri-larbi, monia.turki,adaptive perceptual spectral shaping is used, and low-energy
meriem.jaidane}@enit.utm.tn speech frames are not watermarked. Also, the input whitening

G. Mahé is with LIPADE, Paris-Descartes University, France. e-maik: . .
gael.mahe@mi.parisdescartes.fr filter used in the AEC structure of [28] has been removed: the
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A. Conventional AEC

The principle of a conventional time domain monophonic

AEC is depicted in Fig. 1 (full line schemey,, = 0). The IR

of the echo path to be identified is assumed to be time invariant
and denoted by the taps vector= [fo, f1,--- , fp—1], where

p is the length of the IRF and (-)* is the vector transpose
operator. The AEC input is the received far-end spegciThe
AEC tapsG,, = [go(n), -, gp—1(n)]" are updated with the
NLMS algorithm according to the residual ecb9 = y,, — n

Conventional AEC:w,, =0

WaAEC: w, white & stationary

as follows:
Fig. 1. WaAEC (Watermark aided AEC [29]): Watermark embedding Grni1 = G+ ptinenXy,
system (dashed) as a pre-processing step of a conv_entional AEC (full { en = (F—Gpn)*Tn + vn, (1)
line: w, = 0). AM: Auditory Model, Hx perceptual filter.
where n is the discrete time index, X, =
[Tn, Tn—1,""+ ,Tn—pt1]* the input signal vector, and
performance enhancement achieved by the WAAEC is duejto — /|| X, ||> the normalized adaptation step size with
the watermarking solely. u a fixed step sizev, is an additive white Gaussian noise

The article is structured as follows. The principles and th&wGN), y,, is the echo with noise ang, is the estimated
structure of the proposed WAAEC are described in Section dlcho (x' denotes convolution).
Two versions of the WJAEC are proposed and analyzed inConventional AEC systems are driven by the speech signal,
Sections Il and IV. In the first version, referred to as Adaptivighich is non-stationary and highly correlated. The perfor-
WAAEC (A-WdAEC), the second stage is adaptive and drivefance of AEC systems suffers from these unsuitable speech
by a stationary white Gaussian noise. In the second or@aracteristics as adaptive algorithms converge faster if the
referred to as MLS-WdAEC, the second stage is based omn@ut signal is white. In the steady state, adaptive algorithms
block identification using maximum length sequences, knovgie very sensitive to the non-stationarity of the input. Indeed,
for their performance in linear identification. peaky variations of the residual echo are interpreted as channel
Finally, we compare and discuss the performance of Amriations, and the algorithm gets into tracking mode to pursue
WAdAEC and MLS-WdAEC in Section V,where we alstthose variations [1]. This situation results in the degradation
present a brief comparison with a state-of-the-art algorithm [&f the AEC performance, which is equivalent to an altered
quality of the transmitted signal after echo removal. Several
improvements were proposed to address this problem, mainly
Il. METHODOLOGY. focusing on fitting algorithms with the input signal properties
PRINCIPLES OFWATERMARK DRIVEN AEC (WDAEC) [4]-[11]. In this study, we consider a conventional identifica-

We propose a new AEC concept, driven by a white and stéon algorithm, the NLMS, and we focus on adapting the input
tionary watermark that is embedded in the AEC speech inp&tgnal to the algorithm.
This concept, hereafter referred to as Watermark driven AEC
(WdAEC), takes advantage of the appropriate characteristls Watermark aided AEC: the WaAEC

of the watermark signab,, to enhance the echo cancellation As a first step -and to address the non-stationarity of the
performance. Itis important to note that the auxiliary signal input z,,- the authors proposed in [24] to add a stationary
does not convey any particular information (even if it could b@ind white) watermarko,, to the speech input, as depicted in
the case), it just has to be white and stationary. It is referrggy. 1 by the dashed line$ly is a perceptual filter (its gain

to as watermark only because of the embedding technigggproximates the frequency masking threshold of the analyzed
borrowed from data hiding/steganography principles. speech frame) and is updated eve¥ysamples frame (cf.

In this section, we put forward the methodology behind th&ppendix A). Since the spectrally shaped watermagks h

design of the proposed AEC system, from which two differenfyhereh y is the IR of H y- is stationary over eaci-samples

design versions are presented in Sections Il and IV. We fifgdme, the non-stationarity of the watermarked signal
briefly remind the conventional NLMS-adapted AEC and its

limits. We then describe a previously developed AEC system

[24], [29] driven by a watermarked speech input, here referrgdinoticeably reduced. This was reported in [24], [25] where
to as the Watermark aided AEC (WaAEC), and we explatime-frequency stationarity indices [25], [30] were used to
the advantages of its concept. These steps finally lead to Hgess abrupt changes in signal characteristics.

design of a watermark-driven -and not only aided- AEC, the The AECG,, of Fig. 1 is adapted by the NLMS algorithm
WAAEC, which is driven by the watermark solely and thugccording to (1), as in the conventional case, except that

fully exploits both its properties, stationarity and whiteness.js replaced by the watermarked speech vegf(r.
In this work, the NLMS algorithm has been chosen to

" Ty + Wy * Ay (2)

n —

T

illustrate the methodology and the simulation results of the { Gt i %jgnizXﬁu’Jr 3)
proposed system. Nevertheless, the proposed system may be €n o ) ¥ & T Vns
applied to any conventional AEC algorithm. where X? = [z¥, 2% 4, - ,:cj,‘f_p+1]t.
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Fig. 3. WJAEC: two-stage Watermark driven AEC with spectrally

0} shaped watermark.

ERLE [dB]

Sor o9 oo 1 T02 104 106 108 Fig. 4 is an equivalent block diagram of the WAAEC system,

time index n

Fig. 2. Performance of the WaAEC and of the conventional ABERS30dB,

where the2"? stage identification may be performed adaptively
(e.g.by the NLMS algorithm) or on a frame-by-frame basis,

1 = 0.02, echo path and adaptive filter wigh= 200 taps). Top panel: mean as proposed in Sections Ill and IV respectively. In both cases,
squared deviation (MSD). Bottom: zoom of the echo return loss enhancemggnis expected that the" AEC stage takes full advantage of

(ERLE) in steady state.

the whiteness and stationarity of its inpuf, to perform an
efficient identification of the misadjustmehft— G,,.

The WaAEC performance described by (3) is given in Fig. 2, It is worth .n_oting that both stages QO no_t.identif.y the same
where it is compared to the performance of a conventiorf?:ﬂ_‘th-_m addition, the second stage |d_ent|f|es a tlme varying
AEC: the WaAEC reaches an ERE Enprovement ofa. 2 to misalignmentt’ — G,,. We also emphasize that the first stage

5dB in the steady state as compared to the conventional ABREC, 1-€. the WaAEC, has proven to perform better than
the classical AEC (cf. Section II-B). For this reason, the

o , performance of the WaAEC is used as a reference for all
C. Principles of the Watermark driven AEC (WdAEC) following performance evaluations and comparisons.

The performance enhancement reached by the WaAEQBefore introducing both implementations of the WJAEC in
suggests the design of an AEC that fully exploits both st&ections Ill and IV, we explain in the following the watermark
tionarity and whiteness of the watermark: an AEC driven bymbedding procedure and how it is adapted to meet the
the watermark itself. If we filter the outpat, of the diagram requirements of the proposed AEC system.
of Fig. 1 by the inverse off y, denoted byH;, we get

e, = enxhly D. The watermark embedding process of the WdAEC
= (F = Gyp)*wy + &n, (4) The embedding process used in this study -and detailed in
——— Appendix A- is carried out in real time on a frame-by-frame
D basis (Vv samples per frame, i.e. 20msec). However, for the
whereh/y, is the IR of H), and purpose of the proposed WAAEC, only speech frames where
€ = [(F = G) * 2n + 1] % M. ) the signal energy is sufficiently high are watermarked. This is

done mainly for two reasons:

Hence, the identification task comes back to identifying the « the perceptual filted of (17) is an approximation of

15t stage misalignmenb,, = F — G,,, where the input is the the frequency masking threshold of the analyzed speech
stationary and white signal,, and the background noise is frame. Hence, embedding watermarks in frames where
&, This system, named WAAEC, is depicted in Fig. 3: the

1st stage is the WaAEC of Fig. 1 driven by the watermarked 2ERLE: Echo Return Loss Enhancement, cf. Appendix C

speechz?, and the2" stage AEC is driven bys,, and uses
the filtered 1%t stage residual echd, as reference signal. In

this configuration, the new actually transmitted echo is: Un_lp_a
ef;" = e, — Dn * X,
_ 3 w
- [Dn - Dn] * l‘n + Un, (6) an AEC stage
where D,, is the 2"? stage estimate ofD,, F — G,.

Hence, the goal of the"? stage is to estimate thefIstage
misalignment in order to further reduce the overall system’s
residual echo. Fig. 4. WJAEC: Equivalent block diagram of Fig. 3.

F — G, estimate
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w,, IS white Gaussian with unit variance. The AEC tapsﬁ;Lf
are adapted according to:

— copy of Dy, —=

w D7L+1 = Dn + /J}:e:l; Wi, (7)
o WaAEC . . .
" l where u% = p¥/||W,||* is the normalized step size and
T/—’ W, = [wn,wp—1, - ,wn—pt1]" is the input vector. The
1°" AEC stage signal e controlling the second stage is obtained using (4)
wn [ / o el and is expressed by:
C%Ll_, e}yl; - [(F - Gn) - Dn} *Wnp, + €7La (8)
—_———
2nd AEC stage Dy

Fig. 5. A-WdAEC (Adaptive WAAEC): thel® stage AEC is the where DY is the misalignment vector related 10, and¢,
WaAEC and the ¥ stage is a NLMS adapted filtgp,,. is the filtered equivalent noise of (5).

voice activity is low introduces audible distortions and\. A-WdAEC: performance analysis

the listening quality of the far-end speech is impaired, The yransient and steady states of both the WaAEC and the
« low-energy speech frames yield very small; values A \wgAEC are described by analyzing the deviation vectors
(cf. Appendix A-A). This leads to a high-energy nogge D, =F -G, andD¥ = (F — Gy) — D,,, derived from 8),

when filtering the residual eche, by the inverse filter 5, (3) and (7) respectively (see for example [1]):
Hj,. This noise amplification considerably penalizes the

performance of the second stage AEC. Do = (I B uXﬁ)(Xf{’)t) Dy — js Xy )
To address these issues, only frames with greater than a X212 X512
given threshold, denoted here By are watermarked. This acts an
as a pseudo voice activity detector: during non watermarked _ w W (W)t w w W,
signal segments, where the energy coefficieqtis smaller Dy = (I - W) Dy —p Enw(lo)
than A, the 29 stage AEC freezes the identification and the ﬁ/ﬁ

most recent estimation of — G,, is used.
This trade-off between speech quality and AEC performanederel is the identity matrix. Classically, the transient and

implicitly controls the overall embedding raté&{), which is steady state behaviors of adaptive systems are described by the

computed as the ratio between the number of watermarkagdtantaneous mean deviation and the mean squared deviation

frames and the total number of frames in the speech samdSD) [1]. The mean deviation vectors of WaAEC and A-

the smallerA is, the higher the embedding rate is. On th&VdAEC are given by

other hand, when the embedding rdfev is too low, the

watermark signal is not sufficiently present in the reference ElDni1] = (I— pRxw(n)) E[Dyl, (11)

signale’, for the 2"%stage identification which may decrease its E[Dy1] = (I-p"Rw(n))EDy], (12)

performance. However, it is worth noting that high embeddin . .

rates do not necessarily yield high AEC performance. Inde\gh%e(vg-])tdenotes the matherpﬁt(lggl)texpectatlm(n) -

as mentioned above, when the threshalis low, even though E W} and Ryw (n) = E {W} are the autocorre-

the embedding rate is relatively high, the inverse filtered noi&ion matrices ofw,, andzy’.

¢, is so amplified that the second stage AEC performs poorly. Equation (11) is obtained using the statistical independence
The relationship between embedding rate and listeni® ¥» and z;7 and according to the classical hypothesis of

quality of the watermarked speech is given in Table | of Apstatistical independence of;’ and D,, [1]. Similarly, in (12)

pendix A for different languages and voice activity threshold¥e assumed thaf, has a zero mean and is statistically

A. For the simulations presented in this paper, we usedngependent ofv, and thatl¥,, is independent o).

French speech sample, with = 0.003 as a trade-off between It is well known that the lower the condition number of the

listening quality and AEC performance. This setting yields a#titocorrelation matrix of the AEC input, the faster the AEC

average PESQ MOG%f 3.5 andca. 44% embedding rate. ~ convergence [1]. Asu, is obviously less correlated thary,
the convergence speed described by (12) is expected to be
significantly higher [28].
I1l. ADAPTIVE WATERMARK DRIVEN AEC: The analytical study of the MSDE[HD,,LHQ] andE[HD“’HQ]

n
THE A-WDAEC is difficult to carry out as the involved signals are correlated

In this Section, the second AEC stage is implemented a&@d non-stationary. However, one can see from (9) and (10)
NLMS adapted ﬁ|tean, as shown in Fig. 5. The watermarkthat the steady state performance of the WaAEC and the A-
WAAEC adaptive filters depends on the instantaneous power

SPESQ MOS: Perceptual Evaluation of Speech Quality Mean Opinion Scd?_é the termsa,, andb.'r“ respegtively. The nOiS@L is pbviously
[31]. higher (due to the inverse filtef};) and less stationary than

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
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—> copy of Dy,

WaAEC

— — - WaAEC (stage 1)
A-WAAEC (stages 1 & 2)

MSD [dB]

15t AEC stage
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' " .{ CORR °n
30 T T T T T T T T
Dn
—_———

o
S
T

2nd AEC stage

ERLE [dB]

H
o =
=
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=
,_3
=
4";_‘
-

Fig. 7. MLS-WdAEC: block diagram of the two-stage WAAEC withigcular
cross-correlator a8"d AEC stage.

time <o 10* en, given by (3). The results show that, in the steady state, the
ERLE improvement of the A-WdAEC reached up to 10dB.

C. First conclusions

In this Section, a watermark-driven AEC has been devel-
. WaheC (suge 1) oped, which was designed to be robust against the correlation
A-WAAEC (stages 1 & 2) and non-stationarity of far-end speech. The simulation results
e 1m im im im 15 1, v % 1w provided in section I1I-B show that the A-WdAEC reached sig-
time index 10° nificant enhancement as compared with the reference WaAEC.
It is worth noting that despite the high-variance and non-
Fig. 6. Top panel: Instantaneous MSD of the A-WdJAEC and of tret fitage  stationary equivalent noisg,, the second stage AEC outper-
,(&j-wgi)EocngnévaaaAfgg <Z"$?$§> ;‘T,ffti"g_gingﬁhl”iéagéﬁf%é tEEsL.E f’érmed the first stage thanks to the appropriate properties of
its input w,.
In the following Section, we present a differentimplementa-
vn (AWGN). However,”v‘{,"# has smoother time variationstion of the WJAEC, namely the MLS-WdAEC, the design of

than X which is expected to be even more robust in noisy situations.
HX’w HZ .

Hence, the performance of the NLMS-based second stage V. MLS AEC:
is due to the following effects: ' MG .

. . . THE MLS-WDAEC
« the whiteness of the driving signal,, enhances the o o
convergence speed: The main interest of the proposed echo path estimation

« the steady state behavior is impaired by the high-varian@thod lies in the insertion of ahr-periodic Maximum Length
and the non-stationarity of the noisg, but this is Sequence (MLS) in the received far-end speech. Indeed, in

counterbalanced by the stationarity of the driving Signaql_ddition to the r_equired Whiter_less and s?ationarity, MLS has
advantageous circular correlation properties [32]. The mathe-
. ) matical background behind the use of MLS in the estimation
B. Simulation results of channels IR is detailed in Appendix B. In particular,
The proposed A-WdAEC was simulated to estimate thehen the input to a channel is an MLS, the channel’s IR is
acoustic IR of a car witlp = 200 taps, and 16kHz sampledestimated directly from the circular cross-correlation between
speech with a signal-to-noise ratio SNR=30 dB. The perfahe channel’s input and output (Fig. 17) [33].
mance of the A-WdAEC is compared with that of the WaAEC Hence, we embed an MLS watermark in the AEC speech
(first stage of the A-WdAEC) in Fig. 6, in the case of exadhput and we design the2 WdAEC stage (Fig.3 and Fig. 4)
modeling (both AECs are FIR filters with taps). as a circular cross-correlator. This delivers an estimafe
To compare the transient state behaviors, the MSD of baih the 15t stage misalignmenD,, = F — G,, as the cross-
stages is depicted in Fig. 6 (top panel), where both A-WdAE€rrelation between the MLS watermatk, and the filtered
step size values were set fo= p* = 0.02. As expected 1% stage residual eche,. We then obtain the new WJAEC
theoretically, and since the watermatutk, is less correlated design, denoted by MLS-WdAEC and presented in Fig. 7.
than the watermarked speectf, the convergence speed of As the high identification performance of MLS lies in
the A-WdAEC is higher than that of the reference WaAEC.its circular correlation property and noise immunity [34],
The ERLE -defined by (26)- of both systems is plotted in thie is expected that the MLS-WdAEC will provide a higher
middle and zoomed in the bottom panels of Fig. 6. The residuabustness to noise, even if the latter is non-stationary and
echo of the A-WdAEC ig!" of (6) and that of the WaAEC is correlated.

ERLE [dB]
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N ; PR -th
embedded sub-frames T W TwWT T TwI T T Twj... heree denotes circular correlatio, is the ;™ component
; 5 : 5 ; of misalignment vectoD,, = F — G, andl =0,--- , L — 1.
embedding rate S 3% Aan 0% More details about the derivation of (13) are given in Ap-
0 . § Lo ; ' g pendix B-B. Using the notation of Appendix B, (13) is
embedding rate 45% : 22% S rewritten as
of MLS; T '
, : : - dy=di+ Pi(l) +P(1)+ Ps(l) . (14)
Fig. 8. Diagram of the embedding process of theperiodic MLS . ( ) (1) RQ

and resulting embedding rate with two differeitvalues. Only sub- —0if p<L =$ue(l)
frames marked with 'w’ are embedded in the received speech due to

voice activity threshold. : - , .
Y We remind the definitions ofP; (1) and P»(I) (given in

Appendix B) using the notations of this section:

A. MLS-WAAEC design e Pi(l) = S di;p is an additive under-modeling

1) MLS embeddingThe inputz? of the MLS-WdAEC noise term wherp > L, wherep is the length of the
system of Fig. 7 is composed of the received far-end speech channel's IR. In case gf < L, P;(I) = 0.
Tp, IN Which we embed arl.-periodic MLS w,,, spectrally Py(l) = —1 Zf;é d; is an additive error term due to

shaped according to Appendix A and subsection II-D. The GoEl+kL
embedding process of tHeperiodic MLS in the speech signal ¢ (1) # 0 for I # 0 (cf. (22)).
and its piecewise perceptual spectral shaping are outlined in Py(l) = %Zﬁ;ol W€ (11k) mod £ 1S AN additive term due
Fig. 8. Each MLS period with lengtll is segmented into to the equivalent nois€, given by (5).
sub-frames withN samples. The sub-frames are spectrall .
shaped with the perceptual filtéfy if the energy of the host _Note that the termPs(7) should be low thanks to the noise
speech frame is higher than the threshaldcf. Section 11-D), immunity of MLS. i .
otherwise no watermark is embedded. Consequently, severaf/é note from (14) and according to the analysis of Ap-
MLS periods are only partially embedded in the speech signBEndix B, that the choice of. is a very important issue.
Fig. 8 displays two examples of MLS with different Iengthé”de?‘_j' an optimal estimation is reached under the following
L and the resulting embedding rate pemperiod. The latter conditions:
point is important with respect to identification freezing when o p < L and thusP; (1) = 0,
the embedding rate is lower than a given threshold. This issue high L value, and thusP, (1) ~ 0, as P»(1) is inversely
is addressed in Subsection 1V-B2. proportional toL,

2) MLS-WdAEC system desigfihe 1% stage misalignment o high L value implies thatPs (1) is small as it is inversely
estimateD,, is obtained as the circular cross-correlation be-  proportional toL.
tween the MLSw,, and the filtered residual echd, given

by (4), computed eacii-samples frame as Besides, it is possible to further increase the noise immunity

of the MLS-based identification by using the preaveraging

. 1 L=t , technique [34]. This technique consists in preaveraging several
di = guer () = 7 > Wk€{1 k) modr L periods of the reference signat,, before computing the
k=0 cross-correlation (13). Preaveraging reduces the effect of the

p-t ] noise&,, and thus increases the SNR at the cross-correlator
= Zdj%(l = J)+ duwe(l),  (13) input. Both approaches, with and without preaveraging, are
g=0 evaluated in the following simulations.

-30

T T T T
— — — WaAEC (stage 1) 25

MLS-WdAEC — — — WaAEC (stage 1)
MLS-WdAEC+av
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MLS-WdAEC+av
20 1
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ERLE [dB]
-
(4]

[
(=}
T

h
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. . . . .
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Fig. 9. Convergence speed analysis: Instantaneous MSD MItiseWdJAEC
(full lines) and of the ¥ stage WaAEC (dotted linels = 0.02, p = 200, Fig. 10. Instantaneous ERLE of MLS-WdAEC (full line) and WaBdotted
L = 8191, SNR = 30 dB, 4% watermarked. line). n = 0.02, p = 200, L = 8191, SNR=30 dB, 4% watermarked.
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_12 i ; ;
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—0.05 B
L=8191 Fig. 12. Improvement of the noise immunity at the cross-datoe input:
—0.1 input SNR (15) with and without preaveraging.& 8191, p = 0.02, p =
° 2 4 6 &8 10 12 14 16 900, SNR=30dB, 4% watermarked.)
discrete time 4

Fig. 11. Comparison of residual noise after cross-cormafor two MLS d
lengths L (top L = 2047, bottom L = 8191). The higherL, the higher the In fact, for L = 2047, the ERLE of the2" stage of the

noise immunity. { = 0.02, p = 200, SNR=30dB, 4% watermarked.) MLS-WdAEC without preaveraging is similar to that of the
1%t stage (no improvement), while it is nearly the same as the
performance o™ stage withLZ = 8191 when preaveraging

is used.

The performance of the MLS-WdJAEC of Fig. 7 strongly The increased noise immunity of MLS, thanks to preaver-
depends on the values and characteristicBi@f), P(1), and aging, is shown in Fig. 12, where we plot the SNR at the
dwe (1) given by (14). In this section, we evaluate and discussoss-correlator input, computed for each MLS period as:
the general performance in terms of steady state behavior E[(F — Gy) * wp)?]
and convergence speed with respect to the MLS parameters SNR;,, = E[(6)7] .
settings. Note that the cross-correlator of the MLS-WdAEC "
provides one estimat®,, per L-period, contrarily to the A- SNR;, is enhanced bga. 8 dB in the steady state, in addition
WAAEC which delivers instantaneous estimates. to its stability, compared to the non-averaged approach. Note

1) Convergence speed and steady state behatibe per- thatin Fig. 12, SNR, is computed only fotL-signal periods
formance analysis was carried out with the same car's"IR Where the watermark embedding rate is higher than2tie
(p =200 taps) as in Section I, the additive nois@ was set threshold, below which the”? stage identification is frozen.
to yield an SNR of 30 dB and thes'lstage AEC hagp taps Identification is frozen when the MLS signal is not sufficiently
(exact modeling) with a step size= 0.02. The overall MLS Present ine/, to provide an efficient identification through the
embedding rate wasa. 44% and the embedded MLS has &ross-correlator.
period of L = 8191. Under these conditions, the terf (1) Besides, from Fig. 8 we observe that for small the
of (14) is zero and_ is sufficiently large to provide a suitableembedding rate peft—period tends to be higher than for large
noise immunity. L. Hence, for largd. we reach a better noise immunity but a

In Fig. 9, we compare the MSD of the MLS-WdJAEC withlower MLS embedding rate pédi-host period. The simulation
that of the WaAEC (i stage). We observe that the MSD of théesults with differentL values show that the noise immunity
MLS-WAAEC is significantly lower, particularly in the case offé€ms to be of more importance for the echo cancellation
the preaveraging-based approach. Accordingly, Fig. 10 shok@yformance, as it significantly reduces the noise level.
that in the steady state, the MLS-WdAEC achieves a higher
ERLE than the reference AEC (up to 10 dB higher for the V. RESULTS AND DISCUSSION
preaveraging-based method). In this Section, we compare the general performance of the

Note that MSD and ERLE are here computed oncelper two WAAEC implementations as well as their robustness to
samples frame, yielding a constant value per MLS-period. Tmisy and under-modeling conditions. We also emphasize the
facilitate performance visualization, the instantaneous ERIKey points of each of them. It is however worth noting that the
of the 15 stage WaAEC is averaged overperiods in Fig. 10. performance evaluation and comparison in noisy and under-

2) Parameter settingsAs mentioned above, the choice ofmodeling situations is somewhat delicate, as in the case of
the MLS length is important, in particular regarding the iderNLMS adapted identification, the performance depends on the
tification immunity against the noisg,. Indeed, in Fig. 11, step size value and its possible regularization. It is possible
we show the noisy ternPs of the cross-correlation (14) forto improve the identification performance by using noise-
two different L values:P; has a lower energy for the largestdependent step sizes (e.g. Variable Step Size (VSS) adaptation
L value. HoweverP; has nearly the same energy for bdth algorithm [9], [10]), or by introducing an SNR dependent
values when preaveraging, prior to cross-correlation. regularization term in the adaptation step size, as proposed

B. General performance analysis

(15)
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Fig. 13. ERLE comparison of A-WdAEC and MLS-WdAEQ = p* = Fig. 14. ERLE comparison of A-WdAEC and MLS-WdAEC for noisy
0.02, p = 200, SNR=30dB,L = 8191, 44% watermarked signal.) condition SNR=15dB g = p* = 0.02, p = 200, L = 8191, 44%

watermarked signal.)

in [35], [36]. These considerations are beyond the focus of tt 20
study, which aims at evaluating the general performance of t
proposed system, independently of the adaptation algoritt
and its very particular settings and variants.

Hence, we are concerned in this Section by providir
"objective" results while maintaining the NLMS step size
at the same values, keeping in mind however that these
probably not the optimal values in noisy and under-modelir
conditions. Regardless of theé!ktage adaptation algorithm,
the 2" stage is designed to help the overall system perfor
better than the St stage alone.

.
— — — " WaAEC(1%'stage)
18 A-WdAEC
MLS-WdAEC
MLS-WdAEC+av

16

14+

ERLE(dB)

discrete time x 10

A. General performance comparison Fig. 15. ERLE comparison of A-WdAEC and MLS-WdAEC witl stage
under-modeling 4 = p* = 0.02, p = 200, M = 100, L = 8191,

For comparison, we report the ERLE of the A-WdJAEC an8NR=30 dB, 44 watermarked signal).
the MLS-WdAEC (with and without preaveraging) in Fig. 13,
vyhere the parameters setting is identical to Sections Il and B/ Robustness to noise
(i.e. SNR=30dBp = M =200 taps,u = u* = 0.02, [ = _ . o
8191 andca. 44% embedding rate). Note that, for comparison AS mentioned above, it is a delicate issue to compare the

convenience, the instantaneous ERLE of the A-WdAEC is hel?gise robustness of both systems as the noise robustness of
averaged per MLS period. NLMS depends on the adaptation step size and its potential

regularization. We have chosen in this study to set a fixed

The results show that the MLS-WdAEC with preaveragin ep size 4 and ™), which provided optimal performance
has the highest echo cancellation performance, while tgtep A s P b P

. . of. a moderately high SNR, in order to better focus on the
other two are nearly e alent, except in the speech segmen ' .
W y equiv xcept! sP S€g enﬁancements due to the second AEC stage only. Hence, using

between 6.10% and 10°, where the A-WJAEC seems tothe same simulation settings as in Section V-A, we reduce the
outperform the MLS-WdAEC. This is mainly due to the low, 9 '

embedding rate in that particular segment, where the si nSaNF2 to 15 dB, and we display in Fig. 14 the ERLE reached
1ing P gment, wh 995 the A-WdAEC and the MLS-WJAEC. These results show
energy is too low to embed the MLS watermark in each fram

The A-WdJAEC computes a channel estimate instantaneous; g?cr:)'rgnhearrre%b\ljv?m?ﬁ: ?ﬂ:g? {\)/\r/ Eas\,/esrtae?:]nsg-v?/ﬁiscidall\gh%/vg??vse?
rather than overL long frames (case of MLS-WdAEC). P y '

Consequently, the filter taps are adapted each instant to Pﬁ"é similar performance.

presence/absence of watermark and identification is stopped ] .

during signal frames where voice activity is too low to embef: Robustness to first stage under-modeling

the watermark. This is not the case of the MLS-WdAEC, In conventional AEC, an under modeling situation occurs

which estimates the channel from dnperiod, containing a when the channel’s IR is longer than the IR of the adaptive

minimum of 2046 watermark (cf. Fig. 8). Nevertheless, thisAEC filter. This usually causes the degradation of the identi-

issue is solved by the preaveraging, which enables the crosation quality. The residual echo caused by the part of the
correlator to take advantage of previous signal periods, whiebho path that cannot be modeled is equivalent to an additional
may have a higher watermark content. noise that disturbs the algorithm’s performance.
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exact modeling and moderately high SNR, the MLS-WdAEC

30

L ‘ [T stmesose wepzoo performs better in noisy conditions (SNR=15dB) and in the
BLo : = = = SNR=30dB, p=200, M=100|] case of undermodeling. The results for SNR=30dB &he- p
2op 1 should not obliterate the fact that, in these conditions, the
1s] 1 MLS-WdAEC reaches an ERLE in the range 15-20 dB, as

illustrated in Fig. 13.

éERLE [dB]

VI. CONCLUSION

Conventional adaptive algorithms for acoustic echo cancel-
lation are sensitive to the non-stationarity and correlation of
speech signals. To reduce AEC sensitivity, we proposed in
% 2 2 o discre%e“me 10 12 14 1 this study a two-stage AEC: thE' stage is an NLMS based

AEC driven by the imperceptibly watermarked far-end speech,

nd is dri : )
Fig. 16. Performance comparison of the MLS-WdAEC (with pezage) with and the2™ siage AEC Is driven by the white and stationary

) ond .
the JO-NLMS [8].5grie = ERLEwLs.waaec — ERLEjo.nLms in different Wa!:ermark Slgnal SOle!y. The rOle. of thig" stage Is to
situations. (Referring to the notation of [8], the JO-NLMS parameters are sstimate thels! stage misalignment in order to further reduce

©0e=0.1,A =1-1/KM, K = 2, and the noise variance estimation of [37)-the overall residual echo, as stated by (6). The watermark is
used as an auxiliary signal having the adequate properties to

. d . P .

To evaluate the robustness of the proposed A-WdAE®ive the2™ stage identification algorithm. -
and MLS-WJAEC when thd*t stage is in under-modeling Although the second stage performs in severe conditions -
situation, both systems were run withi' stage AEC having the misalignment to identify is slowly time-varying; the SNR
only 100 taps while the echo path IR has = 200 taps. is low; the noise is non-stationary; and the auxiliary signal is
The 2" stage AEC filter of the A-WJAEC was set in exacEmbedded during only a part of the time- the proposed two-
modeling mode (200 taps), and tR8¢ stage of the MLS- stage AEC converges faster than the conventional AEC and
WJAEC usedL = 8191 for the MLS period. achieves a better ERLE. . .

Fig. 15 displays the steady state behavior of both implemen-The two proposed implementations, adaptive (A-WdAEC)
tations. As expected, the reached ERLE enhancement is lo@eMLS-correlation based (MLS-WAAEC), have similar per-
than in the case of*t stage exact modeling. These resultformance, but the MLS-WJAEC is improved by preaveraging
confirm the higher robustness of the preaveraging-based MU&-INPut over several frames, although it seems counterintuitive
WUAEC to the additional noise due to under-modeling: i8S the misalignment to identify is slowly time-varying. This
ERLE is higher than in the A-WJAEC and MLS-WdAEcimproved implementation is efficient to cope with lower SNR
cases. The latter two show similar performance and herf¥gWith under-modeled first stage. o
equivalent noise robustness properties. Beyond the proof of concept presented in this paper, other

In this context, the" stage of A-WJAEC has to cope with algorithmic refinements could be added to the second stage
an additional noise (due to under-modeling) with the same St@ptake into account its particular operating conditions. For

values as in exact modeling, which is not the optimal settin§X@mMPple, a noise-dependent step size could be used in the A-
as already mentioned in Section V-B. dAEC [8]-[10], [36] to adapt to the high and variable noise,

or a gradient adaptive step size [7] to track the variations of
gqe impulse response to identify.
More fundamentally, watermarking for AEC enhancing is

The main idea of this study was the following: while mosf,. restricted to the proposed two methods. The convergence
research work on AEC focus on fitting the basic |dent|f|cat|o§beed of the algorithm is related to the condition number

algorithms with the inappropriate properties of the speeghl yo atocorrelation matrix of the driving signal, which

inpu_t (corre_lation and non-statiqnarity), we proposed to adqﬂ)épends, among others, on the signal distribution [2]. While

the input signal to the properties required by a basic alggs enhanced this condition number through the whiteness and
rithm (NLMS and MLS-based correlation). To compare thgaiionarity of the driving watermark, it could also be enhanced

efficiency of these two opposite approaches, we ran a staieye first stage AEC by forcing the distribution of the input

of—the—_art algorithm following the first approach, 'Fhe ‘Jomt(doping watermarking, see [12], [22]-[24]) and in the second
Optimized NLMS (JO-NLMS [8]). The JO-NLMS is b‘"’_‘sedsta(l]ge by choosing a watermark with an optimal distribution.
on a state-variable model and sets a variable step-size an

a regularization term so as to minimize the global system
misalignment. The advantage of the JO-NLMS is that it
does not rely on a fine parameter setting that could bias )
the comparison. We ran it in the same simulation conditiofs Embedding procedure

as those used in this section (see Fig. 13 to 15) and weThe considered watermarking technique is based on spread
compared it to the MLS-WdAEC with preaveraging. Thapectrum insertion in the time-domain [38][39]. A frequency
results of the comparison are summarized in Fig. 16. Whifeasking threshold/x (f) is computed from the host signal
the JO-NLMS outperforms the MLS-WdAEC in the case aof,, on a frame-by-frame basis. The indéX indicates that

—10}

D. Performance comparison with the Joint-Optimized NLM

APPENDIXA
WATERMARK EMBEDDING
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A 0.001 0.003 0.005 Vn
MLS ws,

Data ™ |PESQ %w PESQ %w PESQ %w F
French 3.3 70 3.5 44 3.6 25 Un
AmEnglish 35 59 36 342 37 18.9 CORR
BrEnglish| 3.4 59 3.5 41.7 3.5 25.5
average | 3.4 62.67 3.53 39.96 3.6 23.13 H F

TABLE |
LISTENING QUALITY (PESQ MOS)s.EMBEDDING RATE %w OF THE
WATERMARKED SPEECH DATA BASEITU-T P.50.

Fig. 17. MLS-based channel identification.

higher the embedding rate, the lower the MOS score.

For the simulations presented in this article, and for compari-
the masking threshold is updated ealhsamples frame to son purposes, we used the same French speech sample, with
take into account the non-stationarity of speeshiy(f) is A = 0.003.
usually computed from an auditory model, but in the case of
speech signals, it can be approximated by the 1 Bgzctral APPENDIXB
envelope ofz,. The LPC coefficients define a filter with ACOUSTIC CHANNEL ESTIMATION USINGMLS

transfer function In this appendix we emphasize the advantage of introducing

HY(2) = bn (16) maximum length sequences (MLS) as a watermark signal. We
N 1— 2?:1 aN(z‘)z*i’ first introduce the useful properties of MLS and then describe

h . imates th king threshl T the functionalities of a didactic AEC driven by an MLS input
whose gain approximales theé masking thres Mf)'_ 0 display the identification mechanism of the proposed AEC.
achieve the inaudibility of the watermark, the white anff

. . I haped by the all-ol inally, we evaluate the robustness of this MLS-driven AEC
stationary sequence, is spectrally reshaped by the all-polg, additive, correlated and non-stationary noise. This appendix
filter Hy, referred to as perceptual filter and defined by:

is thought as a complement to Section IV.
Hy(z) = aHY, (5) . 17) _ o _
gl A. Correlation characteristic of Maximum Length Sequences

The factora is a constant attenuation to further reduce the A Maximum Length Sequence is a periodic pseudo-random
power of the filtered watermark to strengthen the inaudibilityequence with period. and values in{+1} (symmetrical
constraint. The weighting factdr < v < 1 is used to flatten MLS) [32]. MLS is generated by Galois polynomials of order
the peaks of the filter's spectral magnitude. m, SO that the length of the MLS is given by
As the coefficienby is proportional to the power of the host m
signal in the processed frame, we define the faaterby: L=2"-1 (20)
(18) Note that for a given ordern there exist different Galois

polynomials, that generate different MLS with the same length
which indicates the speech energy in each processed framend each of them generates only one MLS.
and allows to control the watermark embedding process, Bse main property of an MLSv,, is its circular autocorrela-

explained in Section II-D. The spectrally reshaped watermatikn, ¢,,(1), which is anL-periodic impulse:
wy, has a power spectral density fittingMy(f) and the

>\N = a.bN,

watermarked speech signal is given by: =

B2 = T+ iy %0, (19) Gull) = 2wt mos: .
whereh denotes the IR ofd . _J1 if { mody, = 0, (22)
In this study, the filter settings ar€ = 50, v = 0.9 and « | —1/L otherwise,

corresponds to an attenuation of -10dB. wheremod denotes thenodulofunction.

B. Embedding rate vs. listening quality B. Acoustic echo cancellation using MLS

_ The relationship between embedding rdte{) and listen-  Thg estimation of the IR of a linear time invariant channel
ing quality (assessed by PESQ MOS [31]) of the watermarkgding MLS input is depicted in Fig. 17, where the channel

speech is given in Tab. I, where we list average PESQ MOS fi%ut is anL-periodic MLSw, and the outpu,, is
three different languages (16 sentences male/female voices per

language) of the ITU-T speech database [40], and for different
voice activity threshold@\. In the same table we also indicate
the resulting average embedding r&tev. We note that the

p—1
yn:F*wn*l’Vn:kawnfk”"Vn' (23)
k=0

p is the length of the channel's IR = [fo, ..., f,—1]" andv,
4LPC: Linear Predictive Coding is an additive noise, statistically independent fram. The
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20 ‘ ‘ : : high SNR for a given peak level. It is also proven in [34]
F ’ +  without preaverage that MLS-based identification is immune to transient noise of

+w’ o with preaverage ) . .
—aof S 1 different kinds (clicks, coughs, footsteps, etc.).
g | 7 000ngg, ] Thanks to all the properties cited above, the identification
g [ o e e 1 system of Fig. 17 should be robust to any additive noise

characteristics. This robustness is confirmed by the results
plotted in Fig. 18, where we report the MSD p&rperiod
vs. the SNR in each period (SNR of (15)). The overall

—50

e w0 - © ° *®  SNR was set to -10dB in both cases: the naisés AWGN
~20 ‘ ‘ : — (top panel) or speech. The crosses correspond to the results
RE . | & el obtained without preaveraging and the circles correspond to
—or +, ‘ i the use of preaveraging (cf. Section 1V). We note that MLS-
g o %;J i . | based identification is robust to non-stationary and correlated
2 | SIS A ) SR noise, even if the results, compared to the AWGN case,
—s0f + . seem to be less stable (depending on the speech content of

Mnoisespesch. SNR= —10dB 1 eachL—period). We also note that preaveraging improves the
s ~10 s ) 10 System'’s robustness for both noise types. Finally, the longer
SN (931 the MLS, the higher the identification performance is.

Fig. 18. Robustness to non-stationary (speech) and statigA®/GN) noise
at average SNR=10dB. MSD vs. SNR;;,, per L—period for two L values APPENDIXC

(IR £ hasp = 200 taps). MATHEMATICAL SYMBOLS AND NOTATION

Time-invariant filter IR taps are denoted by uppercase and
IR estimateF’ is obtained as the input output circular crosssingle IR taps by lower case letters, thus the notation in case

correlation, evaluated ovei-samples frames as follows of a time-invariant filterF is:
L—1
1 = e t
duy(l) = I Zwky(l+k) mody, F=1fo. fuo s foal's
2 _— and in case of a time-varying filter,,:
1
=z;ZZMWWMmm+waWmL Fo = [fo(n), fr(n), -, fpa ()],
k=0 j=0
p—1 wheren is the discrete time index.
= fidw(l = 7) + duwn(l), (24) Convolution of filter IRE" with a signalz,, is written as:
j=0 p—l
for 1 = 0,...,L — 1. Using the circular correlation property Frzy=> fetn k.
(22), we get k=0

fi = buy(D) = fi+ PL() + Po() + P3(1),  (25) L] is the floor function.
a mody, denotes the modulo function.
forl = 0,..., L—1 and wheref; is the estimate of the channel'ser| E: Echo Return Loss Enhancement:

impulse response taps and £
o« P(I) = ZJL’;/ILJ fi+jr 1s an additive under-modeling ERLE = 1010g10( [y”]), (26)
noise term wherL < p, Ele?]
wherey,, is the reference echo arg the residual echaoZ|[ ]

— p— i it
o Do) = =7 37000 i fi IS @n additive error term denotes the mathematical expectation.

due to the fact tha«bw( ) # 0 for I # 0 mody,,

« Py(l) = L S0 wivus k) mods, IS @n additive term due REFERENCES
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