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Watermark driven Acoustic Echo Cancellation
Sonia Djaziri-Larbi, Gaël Mahé, Imen Mezghani, Monia Turki, and Mériem Jaïdane

Abstract—The performance of adaptive acoustic echo cancelers
(AEC) is sensitive to the non-stationarity and correlation of
speech signals. In this article, we explore a new approach based
on an adaptive AEC driven by data hidden in speech, to enhance
the AEC robustness. We propose a two-stage AEC, where the
first stage is a classical NLMS-based AEC driven by the far-
end speech. In the signal, we embed -in an extended conception
of data hiding- an imperceptible white and stationary signal,
i.e. a watermark. The goal of the second stage AEC is to
identify the misalignment of the first stage. It is driven by
the watermark solely, and takes advantage of its appropriate
properties (stationary and white) to improve the robustness of
the two-stage AEC to the non-stationarity and correlation of
speech, and thus reduce the overall system misadjustment. We
test two kinds of implementations: in the first implementation,
referred to as A-WdAEC (Adaptive Watermark driven AEC), the
watermark is a white stationary Gaussian noise. Driven by this
signal, the second stage converges faster than the classical AEC
and provides better performance in steady state. In the second
implementation, referred to as MLS-WdAEC, the watermark
is built from maximum length sequences (MLS). Thus, the
second stage performs a block identification of the first stage
misalignment, given by the circular correlation watermark/pre-
processed version of the first stage residual echo. The advantage
of this implementation lies in its robustness against noise and
under-modeling. Simulation results show the relevance of the
"watermark-driven AEC" approach, compared to the classical
"error driven AEC".

Index Terms—Adaptive Acoustic Echo Cancellation, data hid-
ing, speech watermarking, MLS sequences, perceptual masking.

I. I NTRODUCTION

I N audio- and video-conferencing, the communication qual-
ity is altered by the acoustic coupling between loudspeakers

and microphones, which results in an echo transmitted through
the microphones. The echo is a sound caused by the reflection
of sound waves from a surface back to the listener or speaker.
It is generally modeled as the convolution of the original sound
(here the loudspeaker output) with the impulse response (IR)
of the conference room. The role of an adaptive acoustic echo
canceler (AEC) is to identify the IR in order to reduce the
echo in a robust manner, even in presence of non-stationary
input and ambient noise.

The limits of conventional AECs have been widely covered
by researchers in the field (see for example [1]), and many
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enhancements were proposed to address AEC sensitivity to
the correlation and non-stationarity of the input.

Power normalized adaptive algorithms (e.g. the NLMS1)
reduce the impact of amplitude variation only in the mean,
and not locally in the transient zone [1], [2]. Similarly, the
affine projection algorithm (APA) [3] reduces the effect of
variations of the frequency content only in the mean.

Several approaches were proposed in the literature to
strengthen the robustness of adaptive algorithms against corre-
lation and non-stationarity of the speech input. They are essen-
tially based on two principles: either pre-processing the speech
to soften the inappropriate variabilities of the adaptive AEC
(e.g. pre-whitening techniques [4]–[6]); or using a "smart"
step-size that scans the dynamics of the global adaptive AEC
(e.g. gradient adaptive step size [7] and a variety of variable
step size algorithms [8]–[11]).

While all of these methods use the far-end speech as the
driving signal, the aim of the proposed system is to implicitly
drive the AEC with a white and stationary auxiliary signal in
order to cope with the sensitivity of adaptive AEC algorithms
to the correlation and non-stationarity of the input. The main
idea of this study is borrowed from recent applications of data
hiding, where information is embedded to enhance or assist
a particular processing system. These applications address
a variety of signal processing issues as source separation
[12]–[15], speech bandwidth extension [16], [17], packet loss
concealment for wireless communications [18], [19], voicing
of animated GIF [20], pre-echo reduction in audio coding [21],
audio statistics modification [22]–[25], synchronization and
channel equalization [26], and watermark-aided processing for
linear and nonlinear audio system identification [27], [28].

In this article, we address the latter application, namely
watermark-aided system identification, and particularly acous-
tic echo cancellation aided by data embedded in the driving
audio input. Thiswatermark-driven AEC(WdAEC) has its
origins in [24], [29], where inserting a stationary watermark
in the input audio signal enhances its stationarity and thus the
performance of the AEC. Our goal is to take full advantage
of the appropriate characteristics of a watermark: we propose
a two-stage AEC, where the first stage is a classical NLMS-
based AEC driven by the watermarked far-end speech, and the
second stage is driven by the watermark solely and adaptively
identifies the first stage misalignment.

The proposed WdAEC is an enhanced version of the two-
stage AEC of [28], especially in terms of perceptual quality
of the watermarked speech. Indeed, in this study, a frame-
adaptive perceptual spectral shaping is used, and low-energy
speech frames are not watermarked. Also, the input whitening
filter used in the AEC structure of [28] has been removed: the

1NLMS: Normalized Least Mean Squares.
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Fig. 1. WaAEC (Watermark aided AEC [29]): Watermark embedding
system (dashed) as a pre-processing step of a conventional AEC (full
line: wn = 0). AM: Auditory Model, HN perceptual filter.

performance enhancement achieved by the WdAEC is due to
the watermarking solely.

The article is structured as follows. The principles and the
structure of the proposed WdAEC are described in Section II.
Two versions of the WdAEC are proposed and analyzed in
Sections III and IV. In the first version, referred to as Adaptive
WdAEC (A-WdAEC), the second stage is adaptive and driven
by a stationary white Gaussian noise. In the second one,
referred to as MLS-WdAEC, the second stage is based on a
block identification using maximum length sequences, known
for their performance in linear identification.

Finally, we compare and discuss the performance of A-
WdAEC and MLS-WdAEC in Section V,where we also
present a brief comparison with a state-of-the-art algorithm [8].

II. M ETHODOLOGY:
PRINCIPLES OFWATERMARK DRIVEN AEC (WDAEC)

We propose a new AEC concept, driven by a white and sta-
tionary watermark that is embedded in the AEC speech input.
This concept, hereafter referred to as Watermark driven AEC
(WdAEC), takes advantage of the appropriate characteristics
of the watermark signalwn to enhance the echo cancellation
performance. It is important to note that the auxiliary signalwn

does not convey any particular information (even if it could be
the case), it just has to be white and stationary. It is referred
to as watermark only because of the embedding technique
borrowed from data hiding/steganography principles.

In this section, we put forward the methodology behind the
design of the proposed AEC system, from which two different
design versions are presented in Sections III and IV. We first
briefly remind the conventional NLMS-adapted AEC and its
limits. We then describe a previously developed AEC system
[24], [29] driven by a watermarked speech input, here referred
to as the Watermark aided AEC (WaAEC), and we explain
the advantages of its concept. These steps finally lead to the
design of a watermark-driven -and not only aided- AEC, the
WdAEC, which is driven by the watermark solely and thus
fully exploits both its properties, stationarity and whiteness.

In this work, the NLMS algorithm has been chosen to
illustrate the methodology and the simulation results of the
proposed system. Nevertheless, the proposed system may be
applied to any conventional AEC algorithm.

A. Conventional AEC

The principle of a conventional time domain monophonic
AEC is depicted in Fig. 1 (full line scheme:wn = 0). The IR
of the echo path to be identified is assumed to be time invariant
and denoted by the taps vectorF = [f0, f1, · · · , fp−1]

t, where
p is the length of the IRF and (· )t is the vector transpose
operator. The AEC input is the received far-end speechxn. The
AEC tapsGn = [g0(n), · · · , gp−1(n)]

t are updated with the
NLMS algorithm according to the residual echoen = yn− ŷn
as follows:{

Gn+1 = Gn + µnenXn,
en = (F −Gn) ∗ xn + νn,

(1)

where n is the discrete time index, Xn =
[xn, xn−1, · · · , xn−p+1]

t the input signal vector, and
µn = µ/‖Xn‖

2 the normalized adaptation step size with
µ a fixed step size.νn is an additive white Gaussian noise
(AWGN), yn is the echo with noise and̂yn is the estimated
echo (′∗′ denotes convolution).

Conventional AEC systems are driven by the speech signal,
which is non-stationary and highly correlated. The perfor-
mance of AEC systems suffers from these unsuitable speech
characteristics as adaptive algorithms converge faster if the
input signal is white. In the steady state, adaptive algorithms
are very sensitive to the non-stationarity of the input. Indeed,
peaky variations of the residual echo are interpreted as channel
variations, and the algorithm gets into tracking mode to pursue
those variations [1]. This situation results in the degradation
of the AEC performance, which is equivalent to an altered
quality of the transmitted signal after echo removal. Several
improvements were proposed to address this problem, mainly
focusing on fitting algorithms with the input signal properties
[4]–[11]. In this study, we consider a conventional identifica-
tion algorithm, the NLMS, and we focus on adapting the input
signal to the algorithm.

B. Watermark aided AEC: the WaAEC

As a first step -and to address the non-stationarity of the
input xn- the authors proposed in [24] to add a stationary
(and white) watermarkwn to the speech input, as depicted in
Fig. 1 by the dashed lines.HN is a perceptual filter (its gain
approximates the frequency masking threshold of the analyzed
speech frame) and is updated everyN -samples frame (cf.
Appendix A). Since the spectrally shaped watermarkwn ∗hN

-wherehN is the IR ofHN - is stationary over eachN -samples
frame, the non-stationarity of the watermarked signal

xw
n = xn + wn ∗ hN (2)

is noticeably reduced. This was reported in [24], [25] where
time-frequency stationarity indices [25], [30] were used to
assess abrupt changes in signal characteristics.

The AECGn of Fig. 1 is adapted by the NLMS algorithm
according to (1), as in the conventional case, except thatXn

is replaced by the watermarked speech vectorXw
n :

{
Gn+1 = Gn + µnenX

w
n ,

en = (F −Gn) ∗ x
w
n + νn,

(3)

whereXw
n = [xw

n , x
w
n−1, · · · , x

w
n−p+1]

t.
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Fig. 2. Performance of the WaAEC and of the conventional AEC (SNR=30dB,
µ = 0.02, echo path and adaptive filter withp = 200 taps). Top panel: mean
squared deviation (MSD). Bottom: zoom of the echo return loss enhancement
(ERLE) in steady state.

The WaAEC performance described by (3) is given in Fig. 2,
where it is compared to the performance of a conventional
AEC: the WaAEC reaches an ERLE2 improvement ofca. 2 to
5dB in the steady state as compared to the conventional AEC.

C. Principles of the Watermark driven AEC (WdAEC)

The performance enhancement reached by the WaAEC
suggests the design of an AEC that fully exploits both sta-
tionarity and whiteness of the watermark: an AEC driven by
the watermark itself. If we filter the outputen of the diagram
of Fig. 1 by the inverse ofHN , denoted byH ′

N , we get

e′n = en ∗ h′
N

= (F −Gn)︸ ︷︷ ︸
Dn

∗wn + ξn, (4)

whereh′
N is the IR ofH ′

N and

ξn = [(F −Gn) ∗ xn + νn] ∗ h
′
N . (5)

Hence, the identification task comes back to identifying the
1st stage misalignmentDn = F −Gn, where the input is the
stationary and white signalwn and the background noise is
ξn. This system, named WdAEC, is depicted in Fig. 3: the
1st stage is the WaAEC of Fig. 1 driven by the watermarked
speechxw

n , and the2nd stage AEC is driven bywn and uses
the filtered1st stage residual echoe′n as reference signal. In
this configuration, the new actually transmitted echo is:

etrn = en − D̂n ∗ xw
n

= [Dn − D̂n] ∗ x
w
n + νn, (6)

where D̂n is the 2nd stage estimate ofDn = F − Gn.
Hence, the goal of the 2nd stage is to estimate the 1st stage
misalignment in order to further reduce the overall system’s
residual echo.
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Fig. 3. WdAEC: two-stage Watermark driven AEC with spectrally
shaped watermark.

Fig. 4 is an equivalent block diagram of the WdAEC system,
where the2nd stage identification may be performed adaptively
(e.g.by the NLMS algorithm) or on a frame-by-frame basis,
as proposed in Sections III and IV respectively. In both cases,
it is expected that the2nd AEC stage takes full advantage of
the whiteness and stationarity of its inputwn to perform an
efficient identification of the misadjustmentF −Gn.

It is worth noting that both stages do not identify the same
path. In addition, the second stage identifies a time varying
misalignmentF −Gn. We also emphasize that the first stage
AEC, i.e. the WaAEC, has proven to perform better than
the classical AEC (cf. Section II-B). For this reason, the
performance of the WaAEC is used as a reference for all
following performance evaluations and comparisons.

Before introducing both implementations of the WdAEC in
Sections III and IV, we explain in the following the watermark
embedding procedure and how it is adapted to meet the
requirements of the proposed AEC system.

D. The watermark embedding process of the WdAEC

The embedding process used in this study -and detailed in
Appendix A- is carried out in real time on a frame-by-frame
basis (N samples per frame, i.e. 20msec). However, for the
purpose of the proposed WdAEC, only speech frames where
the signal energy is sufficiently high are watermarked. This is
done mainly for two reasons:

• the perceptual filterHN of (17) is an approximation of
the frequency masking threshold of the analyzed speech
frame. Hence, embedding watermarks in frames where

2ERLE: Echo Return Loss Enhancement, cf. Appendix C
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Fig. 4. WdAEC: Equivalent block diagram of Fig. 3.
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voice activity is low introduces audible distortions and
the listening quality of the far-end speech is impaired,

• low-energy speech frames yield very smallλN values
(cf. Appendix A-A). This leads to a high-energy noiseξn
when filtering the residual echoen by the inverse filter
H ′

N . This noise amplification considerably penalizes the
performance of the second stage AEC.

To address these issues, only frames withλN greater than a
given threshold, denoted here byΛ, are watermarked. This acts
as a pseudo voice activity detector: during non watermarked
signal segments, where the energy coefficientλN is smaller
thanΛ, the 2nd stage AEC freezes the identification and the
most recent estimation ofF −Gn is used.

This trade-off between speech quality and AEC performance
implicitly controls the overall embedding rate (%w), which is
computed as the ratio between the number of watermarked
frames and the total number of frames in the speech sample:
the smallerΛ is, the higher the embedding rate is. On the
other hand, when the embedding rate%w is too low, the
watermark signal is not sufficiently present in the reference
signale′n for the2ndstage identification which may decrease its
performance. However, it is worth noting that high embedding
rates do not necessarily yield high AEC performance. Indeed
as mentioned above, when the thresholdΛ is low, even though
the embedding rate is relatively high, the inverse filtered noise
ξn is so amplified that the second stage AEC performs poorly.

The relationship between embedding rate and listening
quality of the watermarked speech is given in Table I of Ap-
pendix A for different languages and voice activity thresholds
Λ. For the simulations presented in this paper, we used a
French speech sample, withΛ = 0.003 as a trade-off between
listening quality and AEC performance. This setting yields an
average PESQ MOS3 of 3.5 andca. 44% embedding rate.

III. A DAPTIVE WATERMARK DRIVEN AEC:
THE A-WDAEC

In this Section, the second AEC stage is implemented as a
NLMS adapted filterD̂n, as shown in Fig. 5. The watermark

3PESQ MOS: Perceptual Evaluation of Speech Quality Mean Opinion Score
[31].

wn is white Gaussian with unit variance. The AEC taps ofD̂n

are adapted according to:

D̂n+1 = D̂n + µw
n e

w
nWn, (7)

where µw
n = µw/‖Wn‖

2 is the normalized step size and
Wn = [wn, wn−1, · · · , wn−p+1]

t is the input vector. The
signal ewn controlling the second stage is obtained using (4)
and is expressed by:

ewn =
[
(F −Gn)− D̂n

]
︸ ︷︷ ︸

Dw
n

∗wn + ξn, (8)

whereDw
n is the misalignment vector related tôDn, andξn

is the filtered equivalent noise of (5).

A. A-WdAEC: performance analysis

The transient and steady states of both the WaAEC and the
A-WdAEC are described by analyzing the deviation vectors
Dn = F −Gn andDw

n = (F −Gn)− D̂n, derived from (8),
and (3) and (7) respectively (see for example [1]):

Dn+1 =

(
I− µ

Xw
n (Xw

n )t

‖Xw
n ‖

2

)
Dn − µνn

Xw
n

‖Xw
n ‖

2

︸ ︷︷ ︸
an

(9)

Dw
n+1 =

(
I− µwWn(Wn)

t

‖Wn‖2

)
Dw

n − µwξn
Wn

‖Wn‖2︸ ︷︷ ︸
bn

,(10)

whereI is the identity matrix. Classically, the transient and
steady state behaviors of adaptive systems are described by the
instantaneous mean deviation and the mean squared deviation
(MSD) [1]. The mean deviation vectors of WaAEC and A-
WdAEC are given by

E[Dn+1] = (I− µRx
w(n))E[Dn], (11)

E[Dw
n+1] = (I− µw

Rw(n))E[Dw
n ], (12)

where E[·] denotes the mathematical expectation.Rw(n) =

E
[
Wn(Wn)

t

‖Wn‖2

]
and Rx

w(n) = E
[
Xw

n (Xw
n )t

‖Xw
n ‖2

]
are the autocorre-

lation matrices ofwn andxw
n .

Equation (11) is obtained using the statistical independence
of νn and xw

n and according to the classical hypothesis of
statistical independence ofXw

n andDn [1]. Similarly, in (12)
we assumed thatξn has a zero mean and is statistically
independent ofwn and thatWn is independent ofDw

n .
It is well known that the lower the condition number of the

autocorrelation matrix of the AEC input, the faster the AEC
convergence [1]. Aswn is obviously less correlated thanxw

n ,
the convergence speed described by (12) is expected to be
significantly higher [28].

The analytical study of the MSDsE[‖Dn‖
2] andE[‖Dw

n ‖
2]

is difficult to carry out as the involved signals are correlated
and non-stationary. However, one can see from (9) and (10)
that the steady state performance of the WaAEC and the A-
WdAEC adaptive filters depends on the instantaneous power
of the termsan andbn, respectively. The noiseξn is obviously
higher (due to the inverse filterH ′

N ) and less stationary than
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Fig. 6. Top panel: Instantaneous MSD of the A-WdAEC and of the first stage
(dotted) only (WaAEC). Middle and bottom panels: Instantaneous ERLE of
A-WdAEC and WaAEC (dotted).µ = µw = 0.02, SNR=30 dB,p=200 taps.

νn (AWGN). However, Wn

‖Wn‖2 has smoother time variations

than Xw
n

‖Xw
n ‖2 .

Hence, the performance of the NLMS-based second stage
is due to the following effects:

• the whiteness of the driving signalwn enhances the
convergence speed;

• the steady state behavior is impaired by the high-variance
and the non-stationarity of the noiseξn, but this is
counterbalanced by the stationarity of the driving signal.

B. Simulation results

The proposed A-WdAEC was simulated to estimate the
acoustic IR of a car withp = 200 taps, and 16kHz sampled
speech with a signal-to-noise ratio SNR=30 dB. The perfor-
mance of the A-WdAEC is compared with that of the WaAEC
(first stage of the A-WdAEC) in Fig. 6, in the case of exact
modeling (both AECs are FIR filters withp taps).

To compare the transient state behaviors, the MSD of both
stages is depicted in Fig. 6 (top panel), where both A-WdAEC
step size values were set toµ = µw = 0.02. As expected
theoretically, and since the watermarkwn is less correlated
than the watermarked speechxw

n , the convergence speed of
the A-WdAEC is higher than that of the reference WaAEC.

The ERLE -defined by (26)- of both systems is plotted in the
middle and zoomed in the bottom panels of Fig. 6. The residual
echo of the A-WdAEC isetrn of (6) and that of the WaAEC is
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en, given by (3). The results show that, in the steady state, the
ERLE improvement of the A-WdAEC reached up to 10dB.

C. First conclusions

In this Section, a watermark-driven AEC has been devel-
oped, which was designed to be robust against the correlation
and non-stationarity of far-end speech. The simulation results
provided in section III-B show that the A-WdAEC reached sig-
nificant enhancement as compared with the reference WaAEC.
It is worth noting that despite the high-variance and non-
stationary equivalent noiseξn, the second stage AEC outper-
formed the first stage thanks to the appropriate properties of
its inputwn.

In the following Section, we present a different implementa-
tion of the WdAEC, namely the MLS-WdAEC, the design of
which is expected to be even more robust in noisy situations.

IV. MLS WATERMARK-DRIVEN AEC:
THE MLS-WDAEC

The main interest of the proposed echo path estimation
method lies in the insertion of anL-periodic Maximum Length
Sequence (MLS) in the received far-end speech. Indeed, in
addition to the required whiteness and stationarity, MLS has
advantageous circular correlation properties [32]. The mathe-
matical background behind the use of MLS in the estimation
of channels IR is detailed in Appendix B. In particular,
when the input to a channel is an MLS, the channel’s IR is
estimated directly from the circular cross-correlation between
the channel’s input and output (Fig. 17) [33].

Hence, we embed an MLS watermarkwn in the AEC speech
input and we design the 2nd WdAEC stage (Fig.3 and Fig. 4)
as a circular cross-correlator. This delivers an estimateD̂n

of the 1st stage misalignmentDn = F − Gn as the cross-
correlation between the MLS watermarkwn and the filtered
1st stage residual echoe′n. We then obtain the new WdAEC
design, denoted by MLS-WdAEC and presented in Fig. 7.

As the high identification performance of MLS lies in
its circular correlation property and noise immunity [34],
it is expected that the MLS-WdAEC will provide a higher
robustness to noise, even if the latter is non-stationary and
correlated.
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Fig. 8. Diagram of the embedding process of theL-periodic MLS
and resulting embedding rate with two differentL values. Only sub-
frames marked with ’w’ are embedded in the received speech due to
voice activity threshold.

A. MLS-WdAEC design

1) MLS embedding:The input xw
n of the MLS-WdAEC

system of Fig. 7 is composed of the received far-end speech
xn, in which we embed anL-periodic MLS wn, spectrally
shaped according to Appendix A and subsection II-D. The
embedding process of theL-periodic MLS in the speech signal
and its piecewise perceptual spectral shaping are outlined in
Fig. 8. Each MLS period with lengthL is segmented into
sub-frames withN samples. The sub-frames are spectrally
shaped with the perceptual filterHN if the energy of the host
speech frame is higher than the thresholdΛ (cf. Section II-D),
otherwise no watermark is embedded. Consequently, several
MLS periods are only partially embedded in the speech signal.
Fig. 8 displays two examples of MLS with different lengths
L and the resulting embedding rate perL-period. The latter
point is important with respect to identification freezing when
the embedding rate is lower than a given threshold. This issue
is addressed in Subsection IV-B2.

2) MLS-WdAEC system design:The1st stage misalignment
estimateD̂n is obtained as the circular cross-correlation be-
tween the MLSwn and the filtered residual echoe′n given
by (4), computed eachL-samples frame as

d̂l = φwe′(l) =
1

L

L−1∑

k=0

wke
′
(l+k) modL

=

p−1∑

j=0

djφw(l − j) + φwξ(l), (13)
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Fig. 9. Convergence speed analysis: Instantaneous MSD of theMLS-WdAEC
(full lines) and of the 1st stage WaAEC (dotted line).µ = 0.02, p = 200,
L = 8191, SNR = 30 dB, 44% watermarked.

whereφ denotes circular correlation,dj is thejth component
of misalignment vectorDn = F −Gn and l = 0, · · · , L− 1.
More details about the derivation of (13) are given in Ap-
pendix B-B. Using the notation of Appendix B, (13) is
rewritten as

d̂l = dl + P1(l)︸ ︷︷ ︸
=0 if p<L

+P2(l) + P3(l)︸ ︷︷ ︸
=φwξ(l)

. (14)

We remind the definitions ofP1(l) and P2(l) (given in
Appendix B) using the notations of this section:

• P1(l) =
∑⌊p/L⌋

j=1 dl+jL is an additive under-modeling
noise term whenp > L, wherep is the length of the
channel’s IR. In case ofp ≤ L, P1(l) = 0.

• P2(l) = − 1
L

∑p−1
j=0
j 6=l+kL

dj is an additive error term due to

φw(l) 6= 0 for l 6= 0 (cf. (22)).

• P3(l) =
1
L

∑L−1
k=0 wkξ(l+k) mod L is an additive term due

to the equivalent noiseξn given by (5).

Note that the termP3(l) should be low thanks to the noise
immunity of MLS.

We note from (14) and according to the analysis of Ap-
pendix B, that the choice ofL is a very important issue.
Indeed, an optimal estimation is reached under the following
conditions:

• p < L and thusP1(l) = 0,
• high L value, and thusP2(l) ≈ 0, asP2(l) is inversely

proportional toL,
• highL value implies thatP3(l) is small as it is inversely

proportional toL.

Besides, it is possible to further increase the noise immunity
of the MLS-based identification by using the preaveraging
technique [34]. This technique consists in preaveraging several
L periods of the reference signal,e′n, before computing the
cross-correlation (13). Preaveraging reduces the effect of the
noiseξn, and thus increases the SNR at the cross-correlator
input. Both approaches, with and without preaveraging, are
evaluated in the following simulations.
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Fig. 10. Instantaneous ERLE of MLS-WdAEC (full line) and WaAEC (dotted
line). µ = 0.02, p = 200, L = 8191, SNR=30 dB, 44% watermarked.
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Fig. 11. Comparison of residual noise after cross-correlation for two MLS
lengthsL (top L = 2047, bottomL = 8191). The higherL, the higher the
noise immunity. (µ = 0.02, p = 200, SNR=30dB, 44% watermarked.)

B. General performance analysis

The performance of the MLS-WdAEC of Fig. 7 strongly
depends on the values and characteristics ofP1(l), P2(l), and
φwξ(l) given by (14). In this section, we evaluate and discuss
the general performance in terms of steady state behavior
and convergence speed with respect to the MLS parameters
settings. Note that the cross-correlator of the MLS-WdAEC
provides one estimatêDn per L-period, contrarily to the A-
WdAEC which delivers instantaneous estimates.

1) Convergence speed and steady state behavior:The per-
formance analysis was carried out with the same car’s IRF
(p = 200 taps) as in Section III, the additive noiseνn was set
to yield an SNR of 30 dB and the 1st stage AEC hasp taps
(exact modeling) with a step sizeµ = 0.02. The overall MLS
embedding rate wasca. 44% and the embedded MLS has a
period ofL = 8191. Under these conditions, the termP1(l)
of (14) is zero andL is sufficiently large to provide a suitable
noise immunity.

In Fig. 9, we compare the MSD of the MLS-WdAEC with
that of the WaAEC (1st stage). We observe that the MSD of the
MLS-WdAEC is significantly lower, particularly in the case of
the preaveraging-based approach. Accordingly, Fig. 10 shows
that in the steady state, the MLS-WdAEC achieves a higher
ERLE than the reference AEC (up to 10 dB higher for the
preaveraging-based method).

Note that MSD and ERLE are here computed once perL-
samples frame, yielding a constant value per MLS-period. To
facilitate performance visualization, the instantaneous ERLE
of the1st stage WaAEC is averaged overL-periods in Fig. 10.

2) Parameter settings:As mentioned above, the choice of
the MLS length is important, in particular regarding the iden-
tification immunity against the noiseξn. Indeed, in Fig. 11,
we show the noisy termP3 of the cross-correlation (14) for
two differentL values:P3 has a lower energy for the largest
L value. However,P3 has nearly the same energy for bothL
values when preaveraginge′n prior to cross-correlation.
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Fig. 12. Improvement of the noise immunity at the cross-correlator input:
input SNR (15) with and without preaveraging.(L = 8191, µ = 0.02, p =

200, SNR=30dB, 44% watermarked.)

In fact, for L = 2047, the ERLE of the2nd stage of the
MLS-WdAEC without preaveraging is similar to that of the
1st stage (no improvement), while it is nearly the same as the
performance of2nd stage withL = 8191 when preaveraging
is used.

The increased noise immunity of MLS, thanks to preaver-
aging, is shown in Fig. 12, where we plot the SNR at the
cross-correlator input, computed for each MLS period as:

SNRin =
E[((F −Gn) ∗ wn)

2]

E[(ξn)2]
. (15)

SNRin is enhanced byca. 8 dB in the steady state, in addition
to its stability, compared to the non-averaged approach. Note
that in Fig. 12, SNRin is computed only forL-signal periods
where the watermark embedding rate is higher than the20%
threshold, below which the 2nd stage identification is frozen.
Identification is frozen when the MLS signal is not sufficiently
present ine′n to provide an efficient identification through the
cross-correlator.

Besides, from Fig. 8 we observe that for smallL, the
embedding rate perL−period tends to be higher than for large
L. Hence, for largeL we reach a better noise immunity but a
lower MLS embedding rate perL-host period. The simulation
results with differentL values show that the noise immunity
seems to be of more importance for the echo cancellation
performance, as it significantly reduces the noise level.

V. RESULTS AND DISCUSSION

In this Section, we compare the general performance of the
two WdAEC implementations as well as their robustness to
noisy and under-modeling conditions. We also emphasize the
key points of each of them. It is however worth noting that the
performance evaluation and comparison in noisy and under-
modeling situations is somewhat delicate, as in the case of
NLMS adapted identification, the performance depends on the
step size value and its possible regularization. It is possible
to improve the identification performance by using noise-
dependent step sizes (e.g. Variable Step Size (VSS) adaptation
algorithm [9], [10]), or by introducing an SNR dependent
regularization term in the adaptation step size, as proposed
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Fig. 13. ERLE comparison of A-WdAEC and MLS-WdAEC (µ = µw =

0.02, p = 200, SNR=30dB,L = 8191, 44% watermarked signal.)

in [35], [36]. These considerations are beyond the focus of this
study, which aims at evaluating the general performance of the
proposed system, independently of the adaptation algorithm
and its very particular settings and variants.

Hence, we are concerned in this Section by providing
"objective" results while maintaining the NLMS step sizes
at the same values, keeping in mind however that these are
probably not the optimal values in noisy and under-modeling
conditions. Regardless of the 1st stage adaptation algorithm,
the 2nd stage is designed to help the overall system perform
better than the1st stage alone.

A. General performance comparison

For comparison, we report the ERLE of the A-WdAEC and
the MLS-WdAEC (with and without preaveraging) in Fig. 13,
where the parameters setting is identical to Sections III and IV
(i.e. SNR=30dB,p = M =200 taps,µ = µw = 0.02, L =
8191 andca. 44% embedding rate). Note that, for comparison
convenience, the instantaneous ERLE of the A-WdAEC is here
averaged per MLS period.

The results show that the MLS-WdAEC with preaveraging
has the highest echo cancellation performance, while the
other two are nearly equivalent, except in the speech segment
between 6.104 and 105, where the A-WdAEC seems to
outperform the MLS-WdAEC. This is mainly due to the low
embedding rate in that particular segment, where the signal
energy is too low to embed the MLS watermark in each frame.
The A-WdAEC computes a channel estimate instantaneously,
rather than overL long frames (case of MLS-WdAEC).
Consequently, the filter taps are adapted each instant to the
presence/absence of watermark and identification is stopped
during signal frames where voice activity is too low to embed
the watermark. This is not the case of the MLS-WdAEC,
which estimates the channel from anL period, containing a
minimum of 20% watermark (cf. Fig. 8). Nevertheless, this
issue is solved by the preaveraging, which enables the cross-
correlator to take advantage of previous signal periods, which
may have a higher watermark content.
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Fig. 14. ERLE comparison of A-WdAEC and MLS-WdAEC for noisy
condition SNR=15dB (µ = µw = 0.02, p = 200, L = 8191, 44%
watermarked signal.)
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Fig. 15. ERLE comparison of A-WdAEC and MLS-WdAEC with1st stage
under-modeling (µ = µw = 0.02, p = 200, M = 100, L = 8191,
SNR=30 dB, 44% watermarked signal).

B. Robustness to noise

As mentioned above, it is a delicate issue to compare the
noise robustness of both systems as the noise robustness of
NLMS depends on the adaptation step size and its potential
regularization. We have chosen in this study to set a fixed
step size (µ and µw), which provided optimal performance
for a moderately high SNR, in order to better focus on the
enhancements due to the second AEC stage only. Hence, using
the same simulation settings as in Section V-A, we reduce the
SNR to 15 dB, and we display in Fig. 14 the ERLE reached
by the A-WdAEC and the MLS-WdAEC. These results show
the higher robustness of the preaveraging-based MLS-WdAEC
as compared with the other two systems, which achieve lower
but similar performance.

C. Robustness to first stage under-modeling

In conventional AEC, an under modeling situation occurs
when the channel’s IR is longer than the IR of the adaptive
AEC filter. This usually causes the degradation of the identi-
fication quality. The residual echo caused by the part of the
echo path that cannot be modeled is equivalent to an additional
noise that disturbs the algorithm’s performance.
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situations. (Referring to the notation of [8], the JO-NLMS parameters are set
to ǫ=0.1,λ = 1−1/KM , K = 2, and the noise variance estimation of [37]).

To evaluate the robustness of the proposed A-WdAEC
and MLS-WdAEC when the1st stage is in under-modeling
situation, both systems were run with1st stage AEC having
only 100 taps while the echo path IR hasp = 200 taps.
The 2nd stage AEC filter of the A-WdAEC was set in exact
modeling mode (200 taps), and the2nd stage of the MLS-
WdAEC usedL = 8191 for the MLS period.

Fig. 15 displays the steady state behavior of both implemen-
tations. As expected, the reached ERLE enhancement is lower
than in the case of1st stage exact modeling. These results
confirm the higher robustness of the preaveraging-based MLS-
WdAEC to the additional noise due to under-modeling: its
ERLE is higher than in the A-WdAEC and MLS-WdAEC
cases. The latter two show similar performance and hence
equivalent noise robustness properties.

In this context, the2nd stage of A-WdAEC has to cope with
an additional noise (due to under-modeling) with the same step
values as in exact modeling, which is not the optimal setting,
as already mentioned in Section V-B.

D. Performance comparison with the Joint-Optimized NLMS

The main idea of this study was the following: while most
research work on AEC focus on fitting the basic identification
algorithms with the inappropriate properties of the speech
input (correlation and non-stationarity), we proposed to adapt
the input signal to the properties required by a basic algo-
rithm (NLMS and MLS-based correlation). To compare the
efficiency of these two opposite approaches, we ran a state-
of-the-art algorithm following the first approach, the Joint-
Optimized NLMS (JO-NLMS [8]). The JO-NLMS is based
on a state-variable model and sets a variable step-size and
a regularization term so as to minimize the global system
misalignment. The advantage of the JO-NLMS is that it
does not rely on a fine parameter setting that could bias
the comparison. We ran it in the same simulation conditions
as those used in this section (see Fig. 13 to 15) and we
compared it to the MLS-WdAEC with preaveraging. The
results of the comparison are summarized in Fig. 16. While
the JO-NLMS outperforms the MLS-WdAEC in the case of

exact modeling and moderately high SNR, the MLS-WdAEC
performs better in noisy conditions (SNR=15dB) and in the
case of undermodeling. The results for SNR=30dB andM = p
should not obliterate the fact that, in these conditions, the
MLS-WdAEC reaches an ERLE in the range 15-20 dB, as
illustrated in Fig. 13.

VI. CONCLUSION

Conventional adaptive algorithms for acoustic echo cancel-
lation are sensitive to the non-stationarity and correlation of
speech signals. To reduce AEC sensitivity, we proposed in
this study a two-stage AEC: the1st stage is an NLMS based
AEC driven by the imperceptibly watermarked far-end speech,
and the2nd stage AEC is driven by the white and stationary
watermark signal solely. The role of this2nd stage is to
estimate the1st stage misalignment in order to further reduce
the overall residual echo, as stated by (6). The watermark is
used as an auxiliary signal having the adequate properties to
drive the2nd stage identification algorithm.

Although the second stage performs in severe conditions -
the misalignment to identify is slowly time-varying; the SNR
is low; the noise is non-stationary; and the auxiliary signal is
embedded during only a part of the time- the proposed two-
stage AEC converges faster than the conventional AEC and
achieves a better ERLE.

The two proposed implementations, adaptive (A-WdAEC)
or MLS-correlation based (MLS-WdAEC), have similar per-
formance, but the MLS-WdAEC is improved by preaveraging
its input over several frames, although it seems counterintuitive
as the misalignment to identify is slowly time-varying. This
improved implementation is efficient to cope with lower SNR
or with under-modeled first stage.

Beyond the proof of concept presented in this paper, other
algorithmic refinements could be added to the second stage
to take into account its particular operating conditions. For
example, a noise-dependent step size could be used in the A-
WdAEC [8]–[10], [36] to adapt to the high and variable noise,
or a gradient adaptive step size [7] to track the variations of
the impulse response to identify.

More fundamentally, watermarking for AEC enhancing is
not restricted to the proposed two methods. The convergence
speed of the algorithm is related to the condition number
of the autocorrelation matrix of the driving signal, which
depends, among others, on the signal distribution [2]. While
we enhanced this condition number through the whiteness and
stationarity of the driving watermark, it could also be enhanced
in the first stage AEC by forcing the distribution of the input
(doping watermarking, see [12], [22]–[24]) and in the second
stage by choosing a watermark with an optimal distribution.

APPENDIX A
WATERMARK EMBEDDING

A. Embedding procedure

The considered watermarking technique is based on spread
spectrum insertion in the time-domain [38][39]. A frequency
masking thresholdMN(f) is computed from the host signal
xn on a frame-by-frame basis. The indexN indicates that
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❍❍❍❍
Λ 0.001 0.003 0.005

Data PESQ %w PESQ %w PESQ %w

French 3.3 70 3.5 44 3.6 25

AmEnglish 3.5 59 3.6 34.2 3.7 18.9

BrEnglish 3.4 59 3.5 41.7 3.5 25.5

average 3.4 62.67 3.53 39.96 3.6 23.13

TABLE I
L ISTENING QUALITY (PESQ MOS)vs.EMBEDDING RATE%w OF THE

WATERMARKED SPEECH DATA BASEITU-T P.50.

the masking threshold is updated eachN -samples frame to
take into account the non-stationarity of speech.MN (f) is
usually computed from an auditory model, but in the case of
speech signals, it can be approximated by the LPC4 spectral
envelope ofxn. The LPC coefficients define a filter with
transfer function

H0
N (z) =

bN

1−
∑Q

i=1 aN(i)z−i
, (16)

whose gain approximates the masking thresholdMN(f). To
achieve the inaudibility of the watermark, the white and
stationary sequencewn is spectrally reshaped by the all-pole
filter HN , referred to as perceptual filter and defined by:

HN (z) = αH0
N

(
z

γ

)
. (17)

The factorα is a constant attenuation to further reduce the
power of the filtered watermark to strengthen the inaudibility
constraint. The weighting factor0 < γ < 1 is used to flatten
the peaks of the filter’s spectral magnitude.
As the coefficientbN is proportional to the power of the host
signal in the processed frame, we define the factorλN by:

λN = α.bN , (18)

which indicates the speech energy in each processed frame
and allows to control the watermark embedding process, as
explained in Section II-D. The spectrally reshaped watermark
wn has a power spectral density fittingαMN (f) and the
watermarked speech signal is given by:

xw
n = xn + hN ∗ wn, (19)

wherehN denotes the IR ofHN .
In this study, the filter settings are:Q = 50, γ = 0.9 andα
corresponds to an attenuation of -10dB.

B. Embedding rate vs. listening quality

The relationship between embedding rate (%w) and listen-
ing quality (assessed by PESQ MOS [31]) of the watermarked
speech is given in Tab. I, where we list average PESQ MOS for
three different languages (16 sentences male/female voices per
language) of the ITU-T speech database [40], and for different
voice activity thresholdsΛ. In the same table we also indicate
the resulting average embedding rate%w. We note that the

4LPC: Linear Predictive Coding

+F

yn

MLS wn

νn

✲

CORR
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F̂

Fig. 17. MLS-based channel identification.

higher the embedding rate, the lower the MOS score.
For the simulations presented in this article, and for compari-
son purposes, we used the same French speech sample, with
Λ = 0.003.

APPENDIX B
ACOUSTIC CHANNEL ESTIMATION USINGMLS

In this appendix we emphasize the advantage of introducing
maximum length sequences (MLS) as a watermark signal. We
first introduce the useful properties of MLS and then describe
the functionalities of a didactic AEC driven by an MLS input
to display the identification mechanism of the proposed AEC.
Finally, we evaluate the robustness of this MLS-driven AEC
to additive, correlated and non-stationary noise. This appendix
is thought as a complement to Section IV.

A. Correlation characteristic of Maximum Length Sequences

A Maximum Length Sequence is a periodic pseudo-random
sequence with periodL and values in{±1} (symmetrical
MLS) [32]. MLS is generated by Galois polynomials of order
m, so that the length of the MLS is given by

L = 2m − 1. (20)

Note that for a given orderm there exist different Galois
polynomials, that generate different MLS with the same length
L, and each of them generates only one MLS.
The main property of an MLSwn is its circular autocorrela-
tion, φw(l), which is anL-periodic impulse:

φw(l) =
1

L

L−1∑

n=0

wnw(n+l) modL
, (21)

=

{
1 if l modL = 0,
−1/L otherwise,

(22)

wheremod denotes themodulofunction.

B. Acoustic echo cancellation using MLS

The estimation of the IRF of a linear time invariant channel
using MLS input is depicted in Fig. 17, where the channel
input is anL-periodic MLSwn and the outputyn is

yn = F ∗ wn + νn =

p−1∑

k=0

fkwn−k + νn. (23)

p is the length of the channel’s IRF = [f0, ..., fp−1]
t andνn

is an additive noise, statistically independent fromwn. The
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Fig. 18. Robustness to non-stationary (speech) and stationary (AWGN) noise
at average SNR=−10dB. MSD vs. SNRin per L−period for twoL values
(IR F hasp = 200 taps).

IR estimateF̂ is obtained as the input output circular cross-
correlation, evaluated overL-samples frames as follows

φwy(l) =
1

L

L−1∑

k=0

wky(l+k) modL

=
1

L

[
L−1∑

k=0

p−1∑

j=0

fjwkw(l+k−j)modL
+

L−1∑

k=0

wkν(l+k)modL

]

=

p−1∑

j=0

fjφw(l − j) + φwν(l), (24)

for l = 0, ..., L − 1. Using the circular correlation property
(22), we get

f̂l = φwy(l) = fl + P1(l) + P2(l) + P3(l), (25)

for l = 0, ..., L−1 and wheref̂l is the estimate of the channel’s
impulse response taps and

• P1(l) =
∑⌊p/L⌋

j=1 fl+jL is an additive under-modeling
noise term whenL < p,

• P2(l) = − 1
L

∑p−1
j=0,j 6=l+kL fj is an additive error term

due to the fact thatφw(l) 6= 0 for l 6= 0 modL,

• P3(l) =
1
L

∑L−1
k=0 wkν(l+k) modL

is an additive term due
to the presence of noiseνn.

C. Robustness to non-stationary correlated additive noise

Noise immunity of MLS in linear and non-linear channel
identification has been widely studied [33], [41], [42]. In [34],
Rife et al. demonstrate that the circular cross-correlator of
Fig. 17 that recoversF from yn is equivalent to a matched
filter, which is in turn matched to the MLSwn. Furthermore,
MLS has a low crest factor5 (0 dB), which allows a relatively

5Signals with low crest factor are desirable as they contain more signal
power for a given peak level [34].

high SNR for a given peak level. It is also proven in [34]
that MLS-based identification is immune to transient noise of
different kinds (clicks, coughs, footsteps, etc.).

Thanks to all the properties cited above, the identification
system of Fig. 17 should be robust to any additive noise
characteristics. This robustness is confirmed by the results
plotted in Fig. 18, where we report the MSD perL−period
vs. the SNR in each period (SNRin of (15)). The overall
SNR was set to -10dB in both cases: the noiseνn is AWGN
(top panel) or speech. The crosses correspond to the results
obtained without preaveraging and the circles correspond to
the use of preaveraging (cf. Section IV). We note that MLS-
based identification is robust to non-stationary and correlated
noise, even if the results, compared to the AWGN case,
seem to be less stable (depending on the speech content of
eachL−period). We also note that preaveraging improves the
system’s robustness for both noise types. Finally, the longer
the MLS, the higher the identification performance is.

APPENDIX C
MATHEMATICAL SYMBOLS AND NOTATION

Time-invariant filter IR taps are denoted by uppercase and
single IR taps by lower case letters, thus the notation in case
of a time-invariant filterF is:

F = [f0, f1, · · · , fp−1]
t,

and in case of a time-varying filterFn:

Fn = [f0(n), f1(n), · · · , fp−1(n)]
t,

wheren is the discrete time index.
Convolution of filter IRF with a signalxn is written as:

F ∗ xn =

p−1∑

k=0

fkxn−k.

⌊·⌋ is the floor function.
a modb denotes the modulo function.
ERLE: Echo Return Loss Enhancement:

ERLE= 10 log10

(
E[y2n]

E[e2n]

)
, (26)

whereyn is the reference echo anden the residual echo.E[·]
denotes the mathematical expectation.
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