Intestinal dysbiosis in Inflammatory Bowel Disease associated with primary immunodeficiency.

Harry Sokol, MD, PhD^{1,2,3,4}, Nizar Mahlaoui, MD^{4,5,17}, Claire Aguilar, MD, PhD^{6,8,17}, Perrine 3 Bach, MSc⁴, Olivier Join-Lambert, MD, PhD⁷, Aurélie Garraffo^{,6}, Philippe Seksik, MD, PhD 4 ^{1,3}, François Danion, MD,⁶, Sarah Jegou, MSc¹, Marjolene Straube, MSc², Christelle Lenoir, 5 MSc,⁸, Bénédicte Neven, MD, PhD^{5,8,9}, Despina Moshous^{5,8,9} MD, PhD, Stéphane Blanche, 6 MD, PhD^{5,9}, Bénédicte Pigneur, MD, PhD^{8,10}, Olivier Goulet, MD, PhD^{8,10}, Frank Ruemmele, 7 MD, PhD^{8,10}, Felipe Suarez, MD, PhD^{4,8,12}, Laurent Beaugerie, MD, PhD³, Stéphanie Pannier, 8 MD, PhD^{11,13}, Françoise Mazingue, MD, PhD¹⁴, Olivier Lortholary, MD, PhD^{4,6,9}, Lionel 9 Galicier, MD, PhD¹⁵, Capucine Picard, MD, PhD^{8,9,11,4}, Geneviève de Saint Basile, MD, PhD 10 ^{8,9,11}, Sylvain Latour, PhD^{8,9}, Alain Fischer, MD, PhD^{4,5,8,9,16} 11

12

¹ Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research
 University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de
 Chaligny, 75005 Paris, France

² INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France

³ Department of Gastroenterology, Saint Antoine Hospital, AP-HP, UPMC Univ Paris 06, Paris,
France

⁴ French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker

20 Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris,
21 France

⁵ Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.

24	⁶ Paris Descartes University, Infectious Diseases and Tropical Medicine Department Necker-
25	Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital AP-HP, Paris, France.
26	⁷ Paris Descartes University, Microbiology Department, Necker-Enfants Malades Hospital AP-
27	HP, Paris, France
28	⁸ INSERM UMR 1163, Paris, France, Imagine Institute, Paris, France.
29	⁹ Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.
30	¹⁰ Paris Descartes University, Paediatric Gastroenterology Hepatology and Nutrition
31	Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
32	¹¹ Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital,
33	Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
34	¹² Paris Descartes University, Hematology Department, Necker-Enfants Malades University
35	Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
36	¹³ Department of Orthopedic Pediatrics, Necker-Enfants Malades University Hospital,
37	Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
38	¹⁴ Department of Pediatrics, Hôpital Jeanne de Flandre, University Hospital of Lille, Lille,
39	France.
40	¹⁵ Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique Hôpitaux de
41	Paris (APHP), Paris, France.
42	¹⁶ Collège de France, Paris, France.
43	¹⁷ These authors contributed equally to this work.
44	
45	Corresponding authors :

her

- 47 Institut Imagine
- 48 24 Bld Montparnasse, 75015, Paris, France.
- 49 <u>alain.fischer@aphp.fr</u>
- 50
- 51 Professor Harry Sokol
- 52 Gastroenterology Department, Hôpital Saint-Antoine
- 53 184 rue du Faubourg Saint-Antoine, 75571 Paris CEDEX 12, France
- 54 <u>harry.sokol@aphp.fr</u>
- 55
- 56 Word count: 3200
- 57
- 58
- 59 DECLARATION OF INTERESTS
- 60 The authors declare no competing financial interests.
- 61
- 62

63	CAPSULE SUMMARY: The gut microbiota plays a key role in host physiology and is an
64	actor in inflammatory bowel disease pathogenesis. Patients with primary immunodeficiency
65	causing intestinal inflammation have disease-specific dysbiosis.

67 Keywords: gut microbiota; inflammatory bowel disease; primary immunodeficiency

69 *To the Editor:*

The gut microbiota is composed of a huge amount and diversity of microorganisms playing major roles in physiological and pathological settings such as inflammatory bowel disease (IBD). The triggering role of the gut microbiota on intestinal inflammation is known and an intestinal dysbiosis (i.e. an imbalance in the microbiota composition and function) has been pointed out in IBD 15 years ago. Moreover, a positive efficacy signal has been observed in studies evaluating fecal microbiota transplantation in IBD demonstrating that the gut microbiota alterations is an actor in the inflammatory process and not simple consequence¹.

Environmental factors have an important effect on gut microbiota composition, but host genetic has an impact too. This effect has been demonstrated in knockout mouse for innate immunity genes. Microbiome genome-wide association studies have identified several associations between genetic polymorphisms and the gut microbiota composition offering some clues for the effects of genes on microbiota composition in humans². However, the effect of major specific disease-causing genetic defects on gut microbiota has never been studied in humans yet.

Here we characterized the fecal microbiota composition of patients with three types of rare primary immunodeficiency (PID) causing IBD conditions, chronic granulomatous disease (CGD, 11 samples), X-linked inhibitor of apoptosis (XIAP, 7 samples) deficiency and partial Tetratricopeptide Repeat Domain 7A (TTC7A, 7 samples) deficiency, in comparison to patients with non-genetic determined IBD (18 samples) and healthy subjects (HS, 23 samples, Suppl Table 1).

90

91 The microbiota composition was assessed by 16S sequencing. As seen previously, gut 92 microbiota composition was influenced by age, antifungal and antibiotic treatment³ (Suppl

Figure 1). Beta diversity analysis showed a remarkable clustering of samples according to 93 disease phenotypes (Figure 1A). The difference with HS was statistically significant for CGD 94 and TTC7A groups while it did not reach significance for XIAP (Figure 1 A-D). Interestingly 95 96 the difference with IBD patients was statistically significant for all three PID patients groups (Figure 1A). Age was very heterogeneous in patients from TTC7A and XIAP groups (0.62 to 97 18 and 1.3 to 34 years respectively). The gut microbiota composition changes constantly 98 between birth and the age of 3 years when it reaches an adult-like configuration⁴. We thus 99 100 performed the same analysis after segregating the patients according to their age (younger or older than 3 years). The difference with HS was maintained for TTC7A patients in both age 101 groups and reached significance in XIAP patients older than 3 (only 2 XIAP patients younger 102 than 3) (Suppl Figure 2). 103

104

Patients with CGD, XIAP and TTC7A deficiency can experience intestinal inflammation 105 mimicking IBD⁵. In our study population, samples were taken from patients with (PID_{IBD}) or 106 107 without (PID_{no-IBD}) IBD involvement. In addition, PID patients could be in active phase (flare) 108 or remission of IBD (PID, IBD flare/inactive). Microbiota from patients with active intestinal 109 inflammation (PID_{IBD (flare)}) was significantly different from the one of PID_{no-IBD} patients (Figure 1E). We observed a significant diversity reduction in patients with PID_{IBD} compared to 110 HS (Figure 1F, Suppl Figure 3A). Moreover, this reduction was even stronger in patients with 111 active intestinal inflammation (Figure 1G, Suppl Figure 3B). These effects were seen in the 112 three-studied PID although the numbers were too low to reach statistical significance when 113 analyzing each PID independently (Suppl Figure 4). 114

In accordance with the published literature, the bacterial microbiota of all groups was dominated by bacteria from Firmicutes, Bacteroidetes, Actinobacteria and Proteobacteria phyla. Differences were noticed between PID patients and HS with notably a dramatic increase

in Proteobacteria from the Enterobacteriaceae family in the TTC7A group and an increase 118 proportion in bacteria from the Bacteroidetes phylum and from the Clostridiaceae family in the 119 CGD and XIAP groups respectively (Figure 1 H, Suppl Figure 3C). These alterations were 120 found both in patients younger and older than 3 years (Suppl Figure 4 B, D) and were clearly 121 stronger in patients with IBD and PID_{IBD} with active inflammation (Figure 1I; Suppl Figure 4 122 C, E). We then looked for the microbial features associated with the three studied PID and used 123 a multivariate association test (MaAsLin) to control for potential confounding factors such as 124 125 age, gender, smoking, intestinal inflammation and treatment. We observed several alterations specific to each PID compared to HS. Patients with TTC7A deficiency exhibited an increased 126 abundance of Proteobacteria involving several components of the Gammaproteobacteria and 127 Epsilonproteobacteria classes (Figure 2A). On the other hand, bacteria from the 128 Ruminococcaceae family and notably the Oscillospira genera were decreased. Patients with 129 130 XIAP deficiency exhibited an increased abundance of several bacterial taxa including members of the Proteobacteria, Firmicutes, Actinobacteria and Fusobacteria phyla (Figure 2B). Four of 131 132 these taxa (Scardovia, Fusobacterium, Rothia dentocariosa, Veillonella) are not usually found in the gut but are known members of the oral microbiota that are implicated in dental caries, 133 but also IBD, colorectal cancer, and liver diseases⁶. Interestingly, an increased abundance of 134 oral bacteria in the gut has been observed in several intestinal and extra-intestinal diseases⁷. 135 Moreover, a recent study showed that some members of the oral microbiota can have pro-136 inflammatory effects when colonizing the gut⁷ suggesting a possible direct effect of these oral 137 bacteria in the intestinal inflammatory phenotype observed in patients with XIAP deficiency. 138 Another important specificity in XIAP patients was the presence of Lactococcus garvieae 139 which is a highly virulent pathogen affecting saltwater fish⁸ and is rarely involved in human 140 infection. L. garvieae was found at a high level (0.23-0.5% of all reads) in XIAP patients with 141 active intestinal inflammation but not in all other patients in this study. Patients with CGD 142

exhibited an increased abundance of *Ruminococcus gnavus* that has also been associated with
ileal Crohn's disease⁹ (Figure 2C).

145

146 In summary, we showed that the gut microbiota of patients with CGD, TTC7A and XIAP deficiency have distinct alterations suggesting a primary defect in host immune system as a 147 basis of dysbiosis. Although it remains to be experimentally documented, the microbial 148 alterations induced by the host genetic defect might play a role in some aspects of the PID 149 phenotype and particularly intestinal involvement. The number of subjects studied was low 150 because of the extreme rarity of the studied diseases. However, independent and ideally larger 151 152 and longitudinal studies are required to confirm our findings. Controlling for potential confounding factors such as diet, treatment, age, delivery mode, socio-economic features, 153 gastrointestinal symptoms, is particularly difficult in studies aiming at discriminating genetic 154 factors from environmental and inflammation influences. Similarly, identification of ideal 155 controls is not trivial. Although non-affected healthy siblings sharing similar lifestyles would 156 be attractive, there are obvious limitations in term of feasibility. 157

Finally, if these observations are confirmed, the alteration in gut microbiota composition mighthave clinical interest as diagnosis biomarkers.

160

Harry Sokol^{1,2,3,4}, Nizar Mahlaoui^{4,5,17}, Claire Aguilar^{6,8,17}, Perrine Bach⁴, Olivier JoinLambert⁷, Aurélie Garraffo^{.6}, Philippe Seksik^{1,3}, François Danion⁶, Sarah Jegou¹, Marjolene
Straube², Christelle Lenoir⁸, Bénédicte Neven^{5,8,9}, Despina Moshous^{5,8,9}, Stéphane Blanche^{5,9},
Bénédicte Pigneur^{8,10}, Olivier Goulet^{8,10}, Frank Ruemmele^{8,10}, Felipe Suarez^{4,8,12}, Laurent
Beaugerie³, Stéphanie Pannier^{11,13}, Françoise Mazingue¹⁴, Olivier Lortholary^{4,6,9}, Lionel

166 Galicier¹⁵, Capucine Picard^{8,9,11,4}, Geneviève de Saint Basile^{8,9,11}, Sylvain Latour^{8,9}, Alain
167 Fischer^{4,5,8,9,16}

168

169 ¹ Sorbonne Universités, UPMC Univ. Paris 06, École normale supérieure, PSL Research

170 University, CNRS, INSERM, APHP, Laboratoire des Biomolécules (LBM), 27 rue de

171 Chaligny, 75005 Paris, France

² INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France

³ Department of Gastroenterology, Saint Antoine Hospital, AP-HP, UPMC Univ Paris 06, Paris,
France

⁴ French National Reference Center for Primary Immune Deficiency (CEREDIH), Necker
Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris (APHP), Paris,

177 France

⁵ Paediatric Haematology-Immunology and Rheumatology Department, Hôpital Necker-

179 Enfants Malades, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.

⁶ Paris Descartes University, Infectious Diseases and Tropical Medicine Department Necker-

181 Pasteur Infectious Diseases Center, Necker-Enfants Malades Hospital AP-HP, Paris, France.

⁷ Paris Descartes University, Microbiology Department, Necker-Enfants Malades Hospital AP-

- 183 HP, Paris, France
- ⁸ INSERM UMR 1163, Paris, France, Imagine Institute, Paris, France.

⁹ Paris Descartes University, Sorbonne Paris Cité, Imagine Institute, Paris, France.

186 ¹⁰ Paris Descartes University, Paediatric Gastroenterology Hepatology and Nutrition

187 Department, Hôpital Necker-Enfants Malades, AP-HP, Paris, France

- ¹¹ Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital,
- 189 Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
- 190 ¹²Paris Descartes University, Hematology Department, Necker-Enfants Malades University
- 191 Hospital, Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
- ¹³ Department of Orthopedic Pediatrics, Necker-Enfants Malades University Hospital,
- 193 Assistance Publique Hôpitaux de Paris (APHP), Paris, France.
- ¹⁴ Department of Pediatrics, Hôpital Jeanne de Flandre, University Hospital of Lille, Lille,
 France.
- ¹⁵ Department of Clinical Immunology, Saint-Louis Hospital, Assistance Publique Hôpitaux de
- 197 Paris (APHP), Paris, France.
- 198 ¹⁶Collège de France, Paris, France.
- ¹⁷These authors contributed equally to this work.
- 200

201 ACKNOWLEDGMENT

Financial support by patient association Association François Aupetit (SL, CA), ANR- 08MIEN-012-01 (SL).

204 AUTHOR CONTRIBUTION

205 Recruited patients with PID: Alain Fischer, Nizar Mahlaoui, Perrine Bach, Bénédicte Neven,

206 Despina Moshous, Stéphane Blanche, Francoise Mazingue, Lionel Galicier, Claire Aguilar,

207 Aurélie Garraffo, François Danion, Olivier Lortholary, Felipe Suarez.

208 Recruited patients with IBD: Harry Sokol, Laurent Beaugerie, Philippe Seksik, Olivier Goulet,

- 209 Frank Ruemmele, Benedicte Pigneur.
- 210 Recruited controls: Stéphanie Pannier, Perrine Bach, Francois Danion
- 211 Genetic diagnosis of patients with PID: Geneviève de Saint Basile, Capucine Picard, Sylvain
- 212 Latour, Christelle Lenoir
- 213 Original study developed by Sylvain Latour, Claire Aguilar and Alain Fischer
- Analysis of the data and manuscript writing: Harry Sokol, Alain Fischer, Nizar Mahlaoui.

215

216

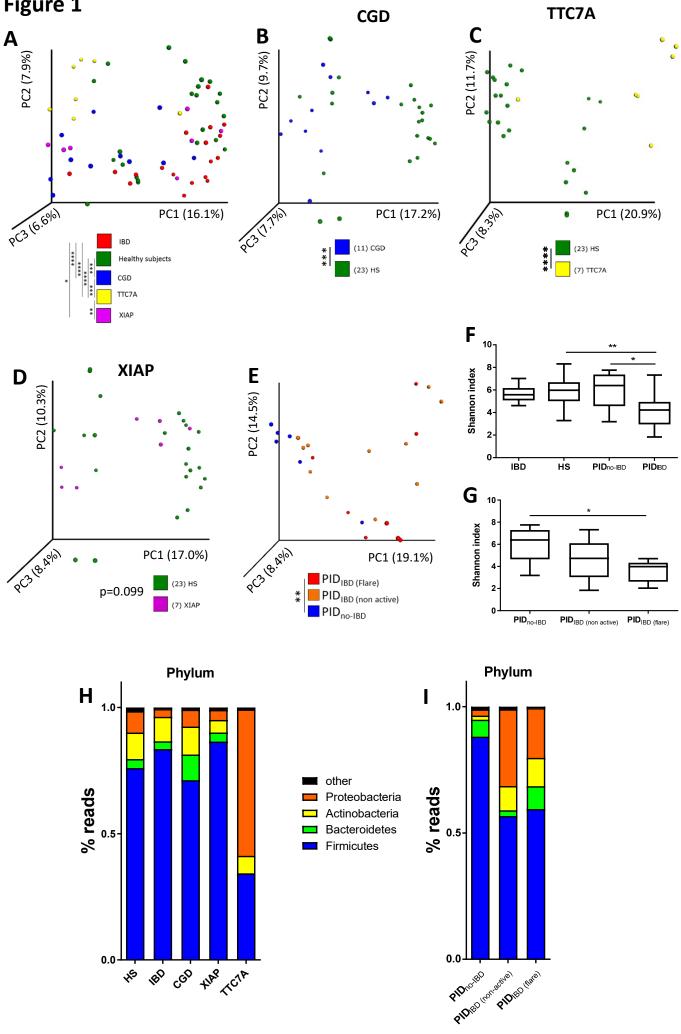
217 **REFERENCES**

Pigneur B, Sokol H. Fecal microbiota transplantation in inflammatory bowel disease: the quest for the holy grail. Mucosal Immunol. 2016;9:1360–5.

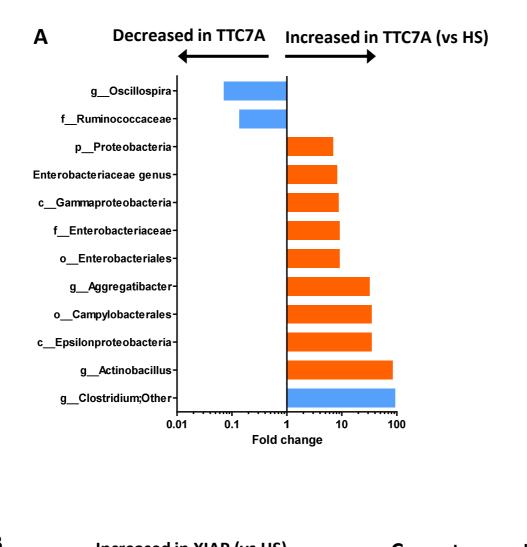
 Hall AB, Tolonen AC, Xavier RJ. Human genetic variation and the gut microbiome in disease. Nat Rev Genet. 2017;18:690–9.

Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, et al. Dysfunction
 of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol.
 2012;13:R79.

- 4. Tamburini S, Shen N, Wu HC, Clemente JC. The microbiome in early life: implications
 for health outcomes. Nat Med. 2016;22:713–22.
- 5. Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for
 the understanding of inflammatory bowel disease. Gut. 2013;62:1795–805.
- Kummen M, Holm K, Anmarkrud JA, Nygård S, Vesterhus M, Høivik ML, et al. The
 gut microbial profile in patients with primary sclerosing cholangitis is distinct from
 patients with ulcerative colitis without biliary disease and healthy controls. Gut.
 2017;66:611–9.
- Atarashi K, Suda W, Luo C, Kawaguchi T, Motoo I, Narushima S, et al. Ectopic
 colonization of oral bacteria in the intestine drives TH1 cell induction and inflammation.
 Science. 2017;358:359–365.
- Vendrell D, Balcázar JL, Ruiz-Zarzuela I, de Blas I, Gironés O, Múzquiz JL.
 Lactococcus garvieae in fish: a review. Comp Immunol Microbiol Infect Dis.
 2006;29:177–98.
- Sokol H, Leducq V, Aschard H, Pham H-P, Jegou S, Landman C, et al. Fungal
 microbiota dysbiosis in IBD. Gut. 2016;


241

242 FIGURE LEGENDS


Figure 1: Abnormal bacterial microbiota composition and diversity in PID. Principal 243 coordinate analysis of Bray-Curtis distance with each sample colored according to the studied 244 245 group. PC1, PC2 and PC3 represent the top three principal coordinates that captured most of the diversity. The fraction of diversity captured by the coordinate is given as a percentage. 246 Groups were compared using ANOSIM method (9999 permutations). (A) All the studied 247 groups plotted together. (B) CGD group compared to healthy subjects. (C) TTC7A group 248 compared to healthy subjects. (**D**) XIAP group compared to healthy subjects. (**E**) Patients with 249 active IBD involvement (PID_{IBD(flare)}) compared to non-active IBD involvement (PID_{IBD(non-} 250 active) and without IBD involvement (PID_{no-IBD}). (**F**,**G**) Bacterial diversity based on the Shannon 251 index in the fecal samples of indicated groups. Statistical significance was assessed using 252 ANOVA with a post hoc Dunn's test. (H,I) Global composition of bacterial microbiota at the 253 phylum levels for the indicated groups *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. 254

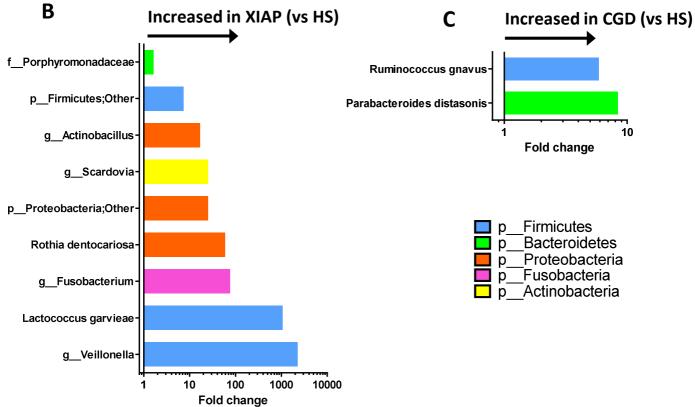
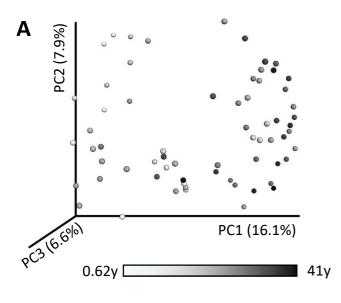
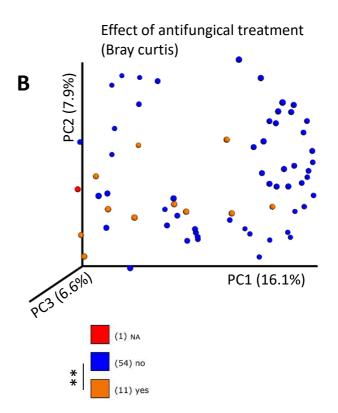
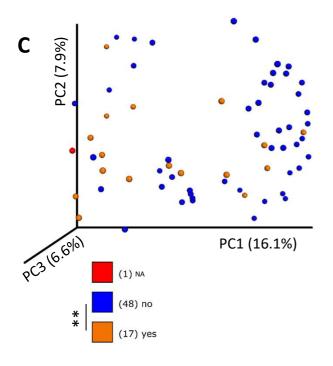
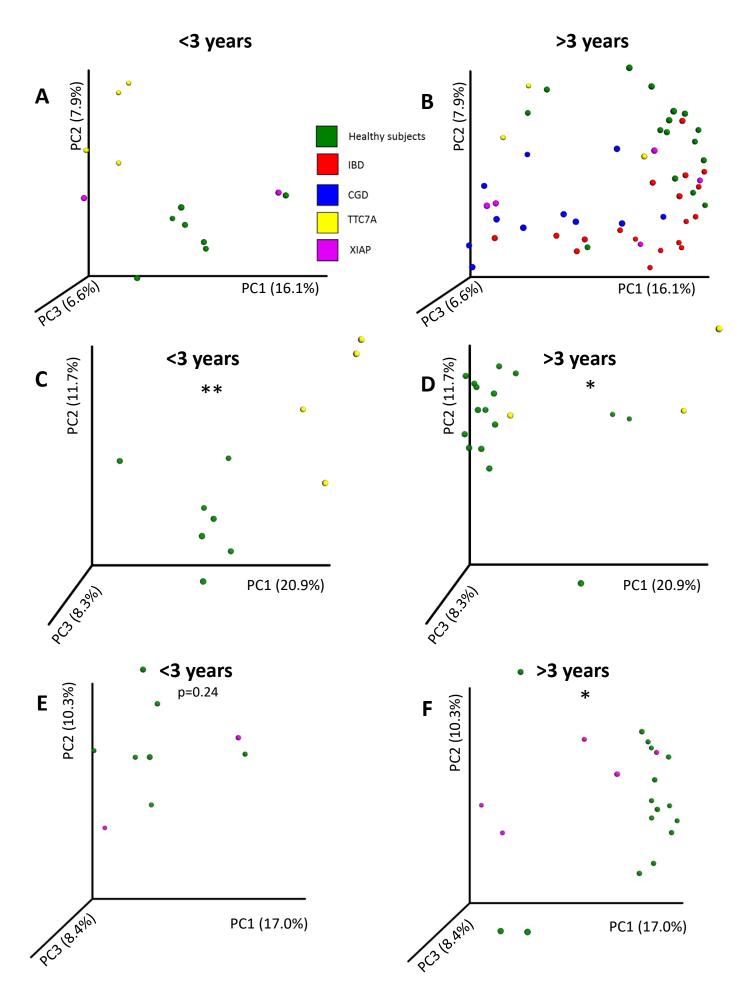

P deficiency (B) and CGD (C). Differences in abundance are ed using a multivariate statistical approach (see 'Material and
ed using a multivariate statistical approach (see 'Material and
ences are statistically significant with p<0.05 after correction
ange for each taxon was calculated by dividing the mean
he controls.

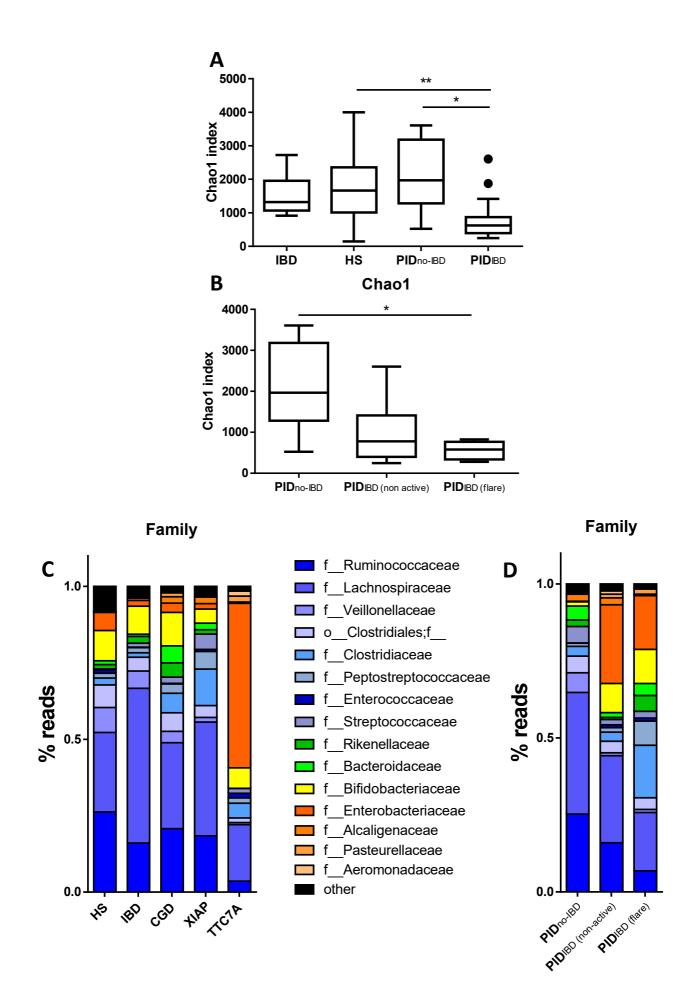
Figure 1

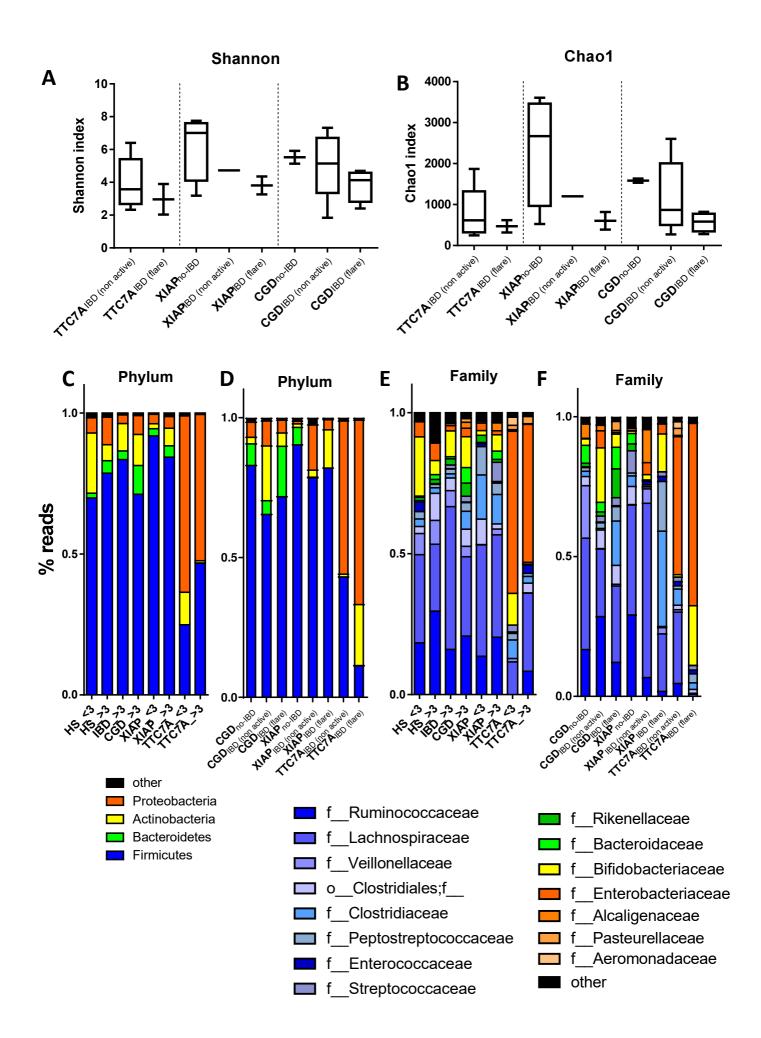



Figure 2




Effect of age (Bray curtis)





Effect of antibiotic treatment (Bray curtis)

Supplementary Table 1 : Characteristics of patients

Patients n	HS 23	IBD 18	CGD 10	TTC7A 5	XIAP 6
Sample n	23	18	11	7	7
Age: median (min-max)	9 (0.83-32)	28.5 (10-41)	10 (6-31)	1.8 (0.62-18)	8 (1.3-34)
Male Gender % (n)	61% (14)	89% (16)	100% (11)	43% (3)	100% (7)
Gut inflammation history	0	100% (18)	82% (9)	100% (7)	43% (3)
Active gut inflammation	0	0	64% (7)	71% (5)	71% (5)
Smoking	4% (1)	22% (4)	0	0	43% (3)
Sulfamethoxazole / trimethoprim	0	0	100% (11)	29% (2)	50% (3)
Other antibiotics	0	0	27% (3)	0	29% (2)
Itraconazole	0	0	91% (10)	0	0
Posaconazole	0	0	9% (1)	0	0
5-ASA	0	33% (6)	18.2% (2)	0	0
Corticosteroid	0	0	0	0	33% (2)
Azathioprin	0	50% (9)	0	0	0
Methotrexate	0	0	9% (1)	0	17% (1)
Anti-TNFα	0	61% (11)	0	0	0
Anti IL1 therapy	0	0	0	0	17% (1)
Natalizumab (anti α4) therapy	0	0	0	0	17% (1)
Any immunosuppressant	0	61% (11)	9% (1)	0	50% (3)
PPI	0	0	0	14% (1)	0
lg substitution	0	0	0	100% (7)	17% (1)
Enteral nutrition	0	0	0	43% (3)	0
Hydroxychloroquine	0	0	9% (1)	0	0

5-ASA: 5 aminosaclicylate ; PPI: proton pump inhibitor ; Ig: Immunoglobulin substitution

1 CGD patient, 1 XIAP patient and 2 TTC7A patients experienced flare during the follow up and were then sampled twice

SUPPLEMENTARY INFORMATION

MATERIAL AND METHODS

Patients and sample collection

Patients with primary immunodeficiency were recruited at Necker-Enfants malades University Hospital, Paris, France (Pediatric Immunology-Hematology-Rheumatology Unit, Adult Hematology Unit, Adult infectious Disease Unit), Saint-Louis Hospital, Paris, France and Lille Regional University Hospital, Lille, France and provided informed consent. Pediatric healthy subjects were recruited from the pediatric orthopedic surgery unit, Necker-Enfants malades University Hospital. Approval was obtained from the local ethics committee (Comité de Protection des Personnes III (Ref.: 3149, 2014, June 10th, Dipobiota study, ClinicalTrials.gov Identifier: NCT02909244). Patients with IBD in remission were recruited at the Gastroenterology Department of the Saint Antoine Hospital (Paris, France) and provided informed consent (local ethics committee: Comité de Protection des Personnes Ile-de-France IV, Suivitheque study). None of the IBD patients and the healthy subjects reported having taken antibiotics, probiotics or using colon-cleansing products for at least 1 months prior to enrollment. Patient characteristics are presented in Table 1. Whole stools were collected in sterile boxes and immediately homogenized, and 0.2 g aliquots were frozen at -80°C for further analysis. Patients' data were collected, including clinical, treatment, immunological and genetic diagnosis. Enrolled patients with PID had damaging causal mutation respectively in either the TTC7A gene "ELA syndrome"²⁶, BIRC4 (XIAP deficiency) and CYBBNox2 (X-linked CGD). None of the subjects received probiotics.

Fecal DNA extraction

Genomic DNA was extracted from 200 mg of feces as previously described.²⁷ . Following microbial lysis with both mechanical and chemical steps, nucleic acids were precipitated in isopropanol for 10 minutes at room temperature, incubated for 15 minutes on ice and

centrifuged for 30 minutes at 15,000 g and 4°C. Pellets were suspended in 112 μ L of phosphate buffer and 12 μ L of potassium acetate. After RNase treatment and DNA precipitation, nucleic acids were recovered via centrifugation at 15,000 g and 4°C for 30 minutes. The DNA pellet was suspended in 100 μ L of TE buffer.

16S rRNA gene sequencing

Fecal DNA was extracted from the weighted feces before and during the infection as previously described²⁷. Microbial diversity was determined for each sample by targeting a portion of the ribosomal genes. A 16S rRNA gene fragment comprising V3 and V4 hypervariable regions (16S; 5'-TACGGRAGGCAGCAG-3' and 5'-CTACCNGGGTATCTAAT-3') was amplified using an optimized and standardized 16S-amplicon-library preparation protocol (Metabiote, GenoScreen). Briefly, 16S rRNA gene PCR was performed using 5 ng genomic DNA according to the manufacturer's protocol (Metabiote) using 192 bar-coded primers (Metabiote MiSeq Primers, GenoScreen) at final concentrations of 0.2 µM and an annealing temperature of 50°C for 30 cycles. The PCR products were purified using an Agencourt AMPure XP-PCR Purification system (Beckman Coulter), quantified according to the manufacturer's protocol, and multiplexed at equal concentrations. Sequencing was performed using a 250-bp paired-end sequencing protocol on an Illumina MiSeq platform (Illumina) at GenoScreen. Raw paired-end reads were subjected to the following process: (1) quality filtering using the PRINSEQ-lite PERL script⁵ by truncating the bases from the 3' end that did not exhibit a quality < 30 based on the Phred algorithm; (2) paired-end read assembly using FLASH (fast length adjustment of short reads to improve genome assemblies) with a minimum overlap of 30 bases and a 97% overlap identity; and (3) searching and removing both forward and reverse primer sequences using CutAdapt, with no mismatches allowed in the primers sequences. Assembled sequences for which perfect forward and reverse primers were not found were eliminated.

16S rRNA gene sequence analysis

The sequences were demultiplexed and quality filtered using the Quantitative Insights Into Microbial Ecology (QIIME, version 1.9.1) software package ²⁸, and the forward and reverse Illumina reads were joined using the fastq-join method (http://code.google.com/p/ea-utils). The sequences were assigned to OTUs using the UCLUST algorithm ²⁹ with a 97% threshold of pairwise identity and classified taxonomically using the Greengenes reference database ³⁰. Principal component analyses of the Bray Curtis distance were built and used to assess the variation between experimental groups (beta diversity). Significance was assessed using ANOSIM (9999 permutations). The Shannon and Chao1 diversity index were calculated using rarefied data (depth = 17,000 sequences/sample) and used to characterize species diversity in a community.

Statistical analysis

GraphPad Prism version 6.0 (San Diego, CA) was used for all analyses and graph preparation. For all graph data, the results are expressed as the mean \pm SEM, and statistical analyses were performed using the 2-tailed nonparametric Mann–Whitney *U*-test or Kruskal-Wallis test with Dunn's Multiple Comparison Test. Statistical significance of sample grouping for beta diversity analysis was performed using Anosim method (9999 permutations). Differences with a p value less than 0.05 were considered significant.

Multivariate Analysis by Linear Models (MaAsLin), a multivariate statistical framework, was used to find associations between clinical metadata and microbial community abundance ³¹. We took into account as much factor as possible in the analysis to control for the effects of potential confounding factors including: age, gender, smoking, intestinal inflammation and treatment and enteral nutrition.

SUPPLEMENTARY FIGURE LEGEND

Supplementary Figure 1: Beta diversity analysis reveals effect of age, antibiotics and antifungics on the microbiota composition. Principal coordinate analysis of Bray–Curtis distance with each sample colored according to the studied group. PC1, PC2 and PC3 represent the top three principal coordinates that captured most of the diversity. The fraction of diversity captured by the coordinate is given as a percentage. Groups were compared using ANOSIM method (9999 permutations). All the studied samples are plotted together and colored according to age (**A**), antifungic treatment (**B**), and antibiotic treatment (**C**). *: p<0.05; **: p<0.01; ****: p<0.001.

Supplementary Figure 2: Beta diversity analysis according to age. Principal coordinate analysis of Bray–Curtis distance with each sample colored according to the studied group and stratified by age (< or > 3 years). PC1, PC2 and PC3 represent the top three principal coordinates that captured most of the diversity. The fraction of diversity captured by the coordinate is given as a percentage. Groups were compared using ANOSIM method (9999 permutations). (**A**, **B**) all the studied groups plotted together. (**C**, **D**) TTC7A group compared to healthy subjects. (**E**, **F**) XIAP group compared to healthy subjects. *: p<0.005; **: p<0.001; ****: p<0.001. In brackets, number of samples.

Supplementary Figure 3: Abnormal microbiota composition at Family level in PID.

Bacterial diversity based on Chao1 index (\mathbf{A} , \mathbf{B}) in the fecal samples of indicated groups. Statistical significance was assessed using ANOVA with a post hoc Dunn's test. *: p<0.05; **: p<0.01; ***: p<0.001; ****: p<0.0001. Global composition of bacterial microbiota at the levels for the indicated groups (**C**, **D**).

Supplementary Figure 4: Alpha diversity and microbiota composition according to age and IBD intestinal inflammation. Bacterial diversity based on the Shannon index (**A**) and Chao1 index (**B**) in the fecal samples of indicated groups. Global composition of bacterial microbiota at the phylum (**C**, **D**) and family (**E**, **F**) levels for the indicated groups.