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Abstract

The assessment of the probability of a rare event with a naive Monte-Carlo

method is computationally intensive, so faster estimation methods, such as

variance reduction methods, are needed. We focus on one of these methods

which is the interacting particle (IPS) system method.

The method requires to specify a set of potential functions. The choice of

these functions is crucial, because it determines the magnitude of the variance

reduction. So far, little information was available on how to choose the

potential functions. To remedy this, we provide the expression of the optimal

potential functions minimizing the asymptotic variance of the estimator of the

IPS method.
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1. Introduction

Let (Zk)k∈{0,...,n} be a Markov chain with values in the measurable spaces (Ek, Ek),

and with initial law ν0, and with a kernel Qk such that for k > 0 and for any bounded

measurable function h : Ek → R

E[h(Zk)|Zk−1] =

∫
Ek

h(zk)Qk(dzk|Zk−1).

For any bounded measurable function h : E0 × · · · × En → R we have:

E[h(Z0, . . . , Zn)] =

∫
En×···×E0

h(z0, . . . , zn)Qn(dzn|zn−1) · · ·Q1(dz1|z0)ν0(dz0)

Let Zk = (Z0, Z1, . . . , Zk) be a trajectory of size k, and let Ek = E0 × E1 × · · · ×

Ek be the set of trajectories of size k that we equip with the product σ-algebra

Ek = E0 ⊗ E1 ⊗ · · · ⊗ Ek. For i < j, consider two trajectories zi and zj : when

it is necessary to differentiate the coordinates of these trajectories we write the co-

ordinates zi,k for k ≤ i and zj,k for k ≤ j such that zi = (zi,0, zi,1, . . . , zi,i) and

zj = (zj,0, zj,1, . . . , zj,j). We introduce the Markov Chain of the trajectories (Zk)k≥0

with values in the measurable spaces (Ek,Ek), and with the transition kernels Mk such

that:

Mk(dzk|zk−1) = δzk−1

(
d(zk,1, . . . , zk,k−1)

)
Qk(dzk|zk−1,k−1).

For any bounded measurable function h : En → R we have

ph = E [h(Zn)] =

∫∫∫
En×···×E0

h(zn)

n∏
k=1

Mk(dzk|zk−1)ν0(dz0). (1)

The IPS method provides an estimator p̂h of ph with a different variance than

the Monte-Carlo estimator. It was first introduced in [10], and with an alternative

formulation in [9]. The IPS takes in input potential functions, denoted Gk : Ek → R+

for k ≤ n. When these potential functions are properly tuned, the method can yield an

estimator with a smaller variance than the Monte-Carlo estimator. When such is the

case, the IPS method can assess the quantity ph with significantly less simulation runs

than the Monte-Carlo method, for the same accuracy. Such variance reduction method

is recommended in rare event analysis, where the Monte-Carlo method is well-known

to be computationally intensive.
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Rare event analyses are often carried out for reliability assessment where we want

to assess the probability of failure of a reliable system. Typically there is a region D

of En that corresponds to the system failure, and we want to assess the probability of

failure which happens when Zn enters D. In order to assess this probability of failure

P(Zn ∈ D), one can take h(Zn) = 1D(Zn) so that ph = P(Zn ∈ D) and use the IPS

method to get the estimation p̂h. Although the main application of the IPS method is

reliability assessment where it relates to the case h = 1D, the result of this paper will

be presented in its most general form, where h is an arbitrary measurable function.

As we said, the choice of the potential functions (Gk)k<n is paramount because

it determines the variance of the IPS estimator, but so far, little information has

been provided on the form of efficient potential functions. The standard approach

is to find the best potential function within a set of parametric potential functions,

and so the efficiency of the method strongly depends on the quality of the chosen

parametric family. For instance, in [10] the authors obtain their best variance reduction

by choosing

Gk(Zk) =
exp [−λV (Zk)]

exp [−λV (Zk−1)]

where λ is a positive tuning parameter, and the quantity V (z) = a−z roughly measures

the proximity of z to the critical region that was D = [a; +∞). In [15] they stress out

that it seems better to take a time-dependent proximity function Vk instead of V ,

yielding:

Gk(Zk) =
exp [−λVk(Zk)]

exp [−λVk−1(Zk−1)]
,

where the quantities Vk(z) are again measuring the proximity of z to D. Once the

set of parametric potential functions is chosen, it is necessary to optimize the tuning

parameters of the potentials. Different methods have been proposed. In [13], an

empirical heuristic algorithm is provided; in [12] a meta model of the variance is

minimized; in [10] the large deviation principle is used as a guide. One other common

option for the potential functions is the one done in splitting methods. Indeed the

splitting method can also be seen as a version of the IPS method [5]. In this method

one wants to assess the probability that a random variable Z belongs to a subset Bn. A

succession of nested sets E = B0 ⊇ B1 ⊇ B2 ⊇ · · · ⊇ Bn is chosen by the practitioner

or possibly chosen in an adaptive manner [4]. One considers a sequence ofrandom
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variables (Zi)i=1..n such that the small probability P(Z ∈ Bn) can be decomposed into

a product of conditional probabilities: P(Z ∈ Bn) =
∏n

i=1 P(Zi ∈ Bi|Zi−1 ∈ Bi−1)

and P(Z ∈ Bn) = E [h(Zn)] by setting h(Zn) = 1Bn
(Zn). In this method the potential

functions are chosen of the following form

Gk(Zk) = 1Bk
(Zk).

One usually optimizes the variance reduction within this family of potential functions

by optimizing the choice of the sets (Bk)k≤n.

In this paper we tackle the issue of the choice of the potential functions. Our

contribution is to provide the expressions of the theoretical optimal potential functions

that minimize the variance of the estimator of the IPS method. We hope these

expressions will lead the practitioners to design more efficient potential functions, that

are closer from the optimal ones.

The rest of the paper is organized as follows. The section 2 introduces the IPS

method, and section 3 presents the potential functions that minimize the asymptotic

variance of the IPS estimator, then the section 4 presents two example of applications

on a toy model, and finally section 5 discusses the implications of our results.

In the rest of the paper we use the following notations: We denote by M(A) the set

of bounded measurable functions on a set A. If f is a bounded measurable function,

and η is a measure we note η(f) =
∫
f dη. If M is a Markovian kernel, we denote

by M(f) the function such that M(f)(x) =
∫
f(y)M(dy|x), and for a measure η, we

denote by ηM the measure such that

ηM(f) =

∫ ∫
f(y)M(dy|x)η(dx).
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2. The IPS method

2.1. A Feynman-Kac model

The IPS method relies on a Feynman-Kac model [8] which is defined in this sub-

section. For each k ≤ n, we define a target probability measure η̃k on (Ek,Ek), such

that:

∀B ∈ Ek, η̃k(B) =
E
[
1B(Zk)

∏k
s=0Gs(Zs)

]
E
[∏k

s=0Gs(Zs)
] . (2)

For each k, 1 ≤ k ≤ n, we define the propagated target probability measure ηk on

(Ek,Ek) such that ηk = η̃k−1Mk−1 and η0 = η̃0. We have:

∀B ∈ Ek+1, ηk+1(B) =
E
[
1B(Zk+1)

∏k
s=0Gs(Zs)

]
E
[∏k

s=0Gs(Zs)
] . (3)

Let Ψk be the application that transforms a measure η defined on Ek into a measure

Ψk(η) defined on Ek and such that

Ψk(η)(f) =

∫
Gk(z)f(z)η(dz)

η(Gk)
. (4)

We say Ψk(η) gives the selection of η through the potential Gk. Notice that η̃k is

the selection of ηk as η̃k = Ψk(ηk). The target distributions can therefore be built

according to the following pattern of successive selection and propagation steps:

ηk
Ψk

−−−−−→ η̃k
.Mk

−−−−−→ ηk+1.

We also define the associated unnormalized measures γ̃k and γk+1, such that for

f ∈M(Ek):

γ̃k(f) = E

[
f(Zk)

k∏
s=0

Gs(Zs)

]
and η̃k(f) =

γ̃k(f)

γ̃k(1)
, (5)

and for f ∈M(Ek+1):

γk+1(f) = E

[
f(Zk+1)

k∏
s=0

Gs(Zs)

]
and ηk+1(f) =

γk+1(f)

γk+1(1)
. (6)

Denoting fh(z) = h(z)∏n−1
s=0 Gs(z)

, notice that we have:

ph = γn(fh) = ηn(fh)

n−1∏
k=0

ηk
(
Gk

)
. (7)
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2.2. The IPS’s algorithm and its estimator

The IPS method provides an algorithm to generate samples whose weighted empiri-

cal measures approximate the probability measures ηk and η̃k respectively for each step

k. These approximations are then used to provide an estimator of ph. For the sample

approximating ηk, we denote Zj
k the jth trajectory and W j

k its weight. Respectively in

the sample approximating η̃k, we denote
∼
Zj

k the jth trajectory and
∼
W j

k its associated

weight. For simplicity reasons, in this paper, we consider that the samples all contain

N trajectories, but it is possible to modify the sample size at each step, as illustrated

in [14]. The empirical measure approximating ηk and η̃k are denoted by ηNk and η̃Nk

and are defined by:

η̃Nk =

N∑
i=1

∼
W i

k δ∼Zi
k

and ηNk =

N∑
i=1

W i
k δZi

k
. (8)

So for all k ≤ n and f ∈M(Ek),

η̃Nk (f) =

N∑
i=1

∼
W i

k f
(∼
Zi

k

)
and ηNk (f) =

N∑
i=1

W i
k f
(
Zi

k

)
. (9)

By plugging these estimations into equations (5) and (6), we get estimations for the

unnormalized distributions. Denoting by γ̃Nk and γNk these estimations, for all k ≤ n

and f ∈M(Ek), we have:

γ̃Nk (f) = η̃Nk (f)

k−1∏
s=0

ηNs (Gs) and γNk (f) = ηNk (f)

k−1∏
s=0

ηNs (Gs). (10)

In particular if we apply (10) to the test function fh, we get an estimator p̂h of ph

defined by:

p̂h = ηNn (fh)

n−1∏
k=0

ηNk
(
Gk

)
. (11)

The IPS algorithm builds the samples sequentially, alternating between a selection

step and a propagation step.

The kth selection step transforms the sample (Zj
k,W

j
k )j≤N , into the sample

(
∼
Zj

k,
∼
W j

k )j≤N . This transformation is done with a multinomial resampling scheme.

This means that the
∼
Zj

k’s are drawn with replacement from the sample (Zj
k)j≤N , each
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Initialization: k = 0, ∀j = 1..N, Zj
0

i.i.d.∼ η0 and W j
0 = 1

N , and
∼
W j

0 =
G0(Zj

0)∑
s G0(Zs

0)

while k < n do
Selection:

(Ñ j
k)j=1..N ∼Mult

(
N, (

∼
W j

k )j=1..N

)
∀j := 1..N,

∼
W j

k := 1
N

Propagation:

for j := 1..N do

using the kernel Mk, continue the trajectory
∼
Zj

k to get Zj
k+1

set W j
k+1 =

∼
W j

k and
∼
W j

k+1 =
W j

k+1Gk+1(Zj
k+1)∑

s W s
k+1Gk+1(Zs

k+1)

if ∀j,
∼
W j

k+1 = 0 then

∀q > k, set ηNq = η̃Nq = 0 and Stop

else
k := k + 1

Table 1: IPS algorithm

trajectory Zj
k having a probability

W j
kGk(Zj

k)∑N
i=1 W i

kGk(Zi
k)

to be drawn each time. We let

Ñ j
k be the number of times the particle Zj

k is replicated in the sample (
∼
Zj

k,
∼
W j

k )j , so

N =
∑N

j=1 Ñ
j
k . After this resampling the weights

∼
W j

k are set to 1
N .

The interest of this selection by resampling is that it discards low potential trajectories

and replicates high potential trajectories. Thus, the selected sample focuses on trajec-

tories that will have a greater impact on the estimations of the next distributions once

extended.

If one specifies potential functions that are not positive everywhere, there can be a

possibility that at a step k we get ∀j,Gk(Zj
k) = 0. When this is the case, the probability

for resampling can not be defined, the algorithm stops, and we consider that ∀s ≥ k

the measures η̃Ns and ηNs+1 are equal to the null measure.

Then the kth propagation step transforms the sample (
∼
Zj

k,
∼
W j

k )j≤N , into the sample

(Zj
k+1,W

j
k+1)j≤N . Each trajectory Zj

k+1 is obtained by extending the trajectory
∼
Zj

k

on step further using the transition kernel Mk. The weights satisfy W j
k+1 =

∼
W j

k , ∀j.

Then the procedure is iterated until the step n. The full algorithm to build the samples

is displayed in table 1.
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For k < n, we denote by Êk = {zk ∈ Ek, Gk(zk) > 0} the support of Gk, and

we denote Ên = {zn ∈ En, h(zn) > 0} the support of h. We will make the following

assumption on the potential functions:

∃ ε > 0, ∀k ≤ n, ∀zk−1 ∈ Êk−1, Mk−1(Êk|zk−1) > ε, (G)

Theorem 1. When the potential functions satisfy (G), p̂h is unbiased and strongly

consistent.

The proof of theorem 1 can be found in [8] chapter 7.

Theorem 2. When the potential are strictly positive:

√
N(p̂h − ph)

d−→
N→∞

N
(
0, σ2

IPS,G

)
(12)

where, with the convention that
−1∏
i=0

Gi(Zi) =
−1∏
i=0

G−1
i (Zi) = 1:

σ2
IPS,G =

n∑
k=0

{
E
[ k−1∏

i=0

Gi(Zi)

]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]
− p2

h

}
. (13)

A proof of this CLT can be found in [8] chapter 9. This CLT is an important result

of the particle filter literature. The non-asymptotic fluctuations of the particle filters

as been studied in [3]. Recently two weakly consistent estimators of the asymptotic

variance σ2
IPS,G, that are based on a single run of the method, have been proposed in

[14]. One of these estimators is closely related to what was proposed in [6].

3. The theoretical expression for the optimal potential

Here we aim at estimating ph, the finality is not the estimation of some distributions

ηk and
∼
ηk for k < n, so we can choose any potential functions (Gk)k<n providing

they are positive. But the choice of the potential functions has an impact on the

variance of the estimation, so we would like to find potential functions that minimize

the asymptotic variance (13). Also, note that if potential functions Gk and G′k are

such that Gk = a.G′k with a > 0, then they yield the same variance: σ2
IPS,G = σ2

IPS,G′ .

Therefore all potential functions will be defined up to a multiplicative term.
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Theorem 3. For k ≥ 1, let G∗k be defined by:

G∗k(Zk) ∝



√√√√√E
[

E
[
h(Zn)

∣∣Zk+1

]2∣∣Zk

]
E
[

E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

] if E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]
6= 0

0 if E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]
= 0

(14)

and for k = 0,

G∗0(Z0) ∝
√

E
[
E
[
h(Zn)

∣∣Z1

]2∣∣Z0

]
. (15)

The potential functions minimizing σ2
IPS,G are the ones that are proportional to the

G∗k’s ∀k ≤ n. The optimal variance of the IPS method with n steps is then

σ2
IPS,G∗ = E

[
E
[
h(Zn)

∣∣Z0

]2]− p2
h

+

n∑
k=1

E

[√
E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]]2

− p2
h

 . (16)

Proof. As we lack mathematical tools to minimize σ2
IPS,G over the set of positive

functions (Gk)k≤n, we had to guess the expressions (14) and (15) before providing the

proof of the results. We begin this proof by presenting the heuristic reasoning that

provided the expressions (14) and (15).

Assuming we already know the k − 2 first potential functions, we started by trying

to find the k − 1-th potential function Gk−1 that minimizes the k-th term of the sum

in (13). This is equivalent to minimize the quantity

E
[ k−1∏

i=0

Gi(Zi)

]
E
[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

] k−1∏
s=0

G−1
s (Zs)

]
(17)

over Gk−1. As the Gk−1 are equivalent up to a multiplicative constant, we simplify

the equation by choosing a multiplicative constant so that E
[∏k−1

i=0 Gi(Zi)

]
= 1.

Our minimizing problem then becomes the minimization of (17) under the constraint

E
[∏k−1

i=0 Gi(Zi)

]
= 1. In order to be able to use a Lagrangian minimization we

temporarily assume that the distribution of Zk−1 is discrete and that Zk−1 takes its

values in a finite or numerble set E. For z ∈ E, we denote az = P(Zk−1 = z) and

dz = E
[
E[h(Zn)|Zk]2

∣∣Zk−1 = z
]

and gz =
∏k−2

i=0 Gi(Zi)Gk−1(z) our minimization

problem becomes the minimization of

L =

(∑
z∈E

pzdz
gz

)
− λ

(
1−

∑
z∈E

pzgz

)
(18)
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Finding the minimum of this Lagrangian we get that gz =
√
dz∑

z′∈E pz′
√

dz′
. Now relaxing

the constraint of the multiplicative constant, we get that

k−1∏
i=0

Gi(Zi) ∝
√
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

]
,

which gives the desired expressions. After these heuristic arguments we can now

rigorously check that these expressions, obtained by minimizing each of the term of

sum in (13) one by one, also minimize the whole sum for any distribution of the Zk−1’s.

The proof now consists in showing that, for any set of potential functions (Gs), we

have σ2
IPS,G ≥ σ2

IPS,G∗ . This is done by bounding from below each term of the sum in

(13).

We start by decomposing a product of potential functions as follows:

∀k ∈ {1, . . . , n},
k−1∏
s=0

Gs(Zs) = εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs) + ε̄k−1(Zk−1) (19)

where when Zk−1 ∈ supp
∏k−1

s=0 G
∗
s,

εk−1(Zk−1) =

∏k−1
s=0 Gs(Zs)∏k−1
s=0 G

∗
s(Zs)

, and ε̄k−1(Zk−1) = 0

and when Zk−1 /∈ supp
∏k−1

s=0 G
∗
s,

εk−1(Zk−1) = 0, and ε̄k−1(Zk−1) =

k−1∏
s=0

Gs(Zs).

Using (19) we get that

E
[ k−1∏

s=0

Gs(Zs)

]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

= E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)

]
E
[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

] k−1∏
s=0

G−1
s (Zs)

]

+ E
[
ε̄k−1(Zk−1)

]
E
[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

] k−1∏
s=0

G−1
s (Zs)

]

≥ E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)

]
E

[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

]∏k−1
s=0 Gs(Zs)

]
+ 0 (20)
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For Zk−1 ∈ supp
∏k−1

s=0 G
∗
s we have:

k−1∏
s=0

G∗s(Zs) ∝
√
E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]
So suppE

[
E[h(Zn)|Zk]2

∣∣Zk−1

]
= supp

∏k−1
s=0 G

∗
s and we get

E

[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

]∏k−1
s=0 Gs(Zs)

]
= E

[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

]
εk−1(Zk−1)

∏k−1
s=0 G

∗
s(Zs)

]

= E

[
1

εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)

]
. (21)

Combining (21) with inequality (20) we get that

E
[ k−1∏

s=0

Gs(Zs)

]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

≥ E
[
εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)

]
E

[
1

εk−1(Zk−1)

k−1∏
s=0

G∗s(Zs)

]
(22)

and using the Cauchy-Schwarz inequality on the right term, we get that

E
[ k−1∏

s=0

Gs(Zs)

]
E
[
E[h(Zn)|Zk]2

k−1∏
s=0

G−1
s (Zs)

]

≥ E
[ k−1∏

s=0

G∗s(Zs)

]2

= E
[ k−1∏

s=0

G∗s(Zs)

]
E

[
E
[
E[h(Zn)|Zk]2

∣∣Zk−1

]∏k−1
s=0 G

∗
s(Zs)

]
. (23)

By summing the inequalities (23) for each k, we easily see that

σ2
IPS,G ≥ σ2

IPS,G∗ ,

which completes the proof of the theorem. �

Remark that the optimal potential is unfortunately not positive everywhere, so it

violates the hypothesis under which the TCL was proven in [8]. We claim that this

question of the positiveness of the potential has not much interest in practice. Assume

we take potential functions (Gk)k<n such that in the equation (20) we have εk(Zk) = 1

and ε̄k(Zk) = ε > 0 with ε very small. Choosing ε small enough, we can get (Gk)k<n as

close has we want from (G∗k)k<n. With such potential functions (Gk)k<n and ε small

enough, it is very likely that we would obtained the same samples in the algorithm as

if we had taken the potentials (G∗k)k<n, and so we would have the same estimation.
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Moreover, with such potential functions we would also have a TCL with a variance

very close to σ2
IPS,G∗ . (According to (20) by choosing ε as small as we want, we get

a variance as close as we want from σ2
IPS,G∗ .) In practice, positive potential functions

(Gk)k<n with ε close to zero give the same results as the potentials (G∗k)k<n.

4. Application on a toy model

In this section we apply the IPS method on a toy system for which we have explicit

formulas. The system under consideration is the Gaussian random walk Zk+1 = Zk +

εk+1, Z0 = 0, where the (εk)k∈{1,...,n} are i.i.d. Gaussian random variables with

mean zero and variance one. We explore two situations, one where the quantity to

estimate,the optimal potential and the variance of the estimator can be calculated

explicitly, and one where these quantities can be approximated by a large deviation

inequality.

4.1. First example

In the first situation, taking b, a > 0 and n ∈ N\{0}, the goal is to compute the

expectation ph = E[h(Zn)] when h(z) = exp[b(z − a)]. As Zn is a centered Gaussian

of variance n, a simple calculation gives that for k < n:

E[h(Zn)|Zk = z] = exp

(
(n− k)

b2

2
+ b(z − a)

)
. (24)

Consequently we have that:

ph = exp
(n

2
b2 − ab

)
, (25)

and that, for k ≥ 1:√√√√√E
[
E
[
h(Zn)

∣∣Zk+1

]2∣∣Zk

]
E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

] = exp

[
−b

2

2
+ b(Zk − Zk−1)

]
(26)

with E
[
E
[
h(Zn)

∣∣Z1

]2∣∣Z0

]
= exp

[
(n+ 1)b2

2
+ b(Z0 − a)

]
, (27)

or equivalently that:

G∗k(Zk) ∝ exp
[
b(Zk − Zk−1)

]
(28)

with G∗0(Z0) ∝ exp
[
bZ0

]
. (29)
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Using the equations (28) and (29) in (13), it can easily be shown that the variance of

the IPS estimator with these optimal potential functions is:

σ2
IPS,G∗ = n

(
exp(b2)− 1

)
exp

[
nb2 − 2ab

]
= n

(
exp(b2)− 1

)
p2
h. (30)

It is notable that we obtain an asymptotically optimal variance [11], i.e. a variance

proportional to p2
h.

In order to confirm these theoretical results, we have carried out a simulation study.

We have run the method 200 times with N = 105, n = 10 and different values of a and

b, and for each of these values we have computed the mean of the estimation and the

empirical variance of the estimation. The results are displayed in table 2, where we

compare the theoretical value of ph to the empirical mean of the 200 estimations, and

σ2
IPS,G∗ to the empirical variance. As the theoretical values are close to the empirical

ones, this confirms that the method is unbiased and that the variance given by the

equation (13) is the right one. We also compare the empirical variance to the variance

of the Monte-Carlo estimator, showing that, on this example, the IPS method provides

a significant variance reduction with the optimal potential, as the variance is reduced

by at least a factor 104 on the considered cases.

4.2. Second example

In the second situation, the goal is to compute the probability that Zn exceeds a

large positive value a. Therefore we take h(Zn) = 1[a;+∞)(Zn) so that

ph = P(Zn ≥ a). (31)

In that case one can not compute E[h(Zn)|Zk = z] but the Chernov-Bernstein’s

inequality gives the following sharp exponential bound:

E[h(Zn)|Zk = z] ≤ exp

[
− (a− z)2

2(n− k)

]
, (32)

from which we can deduce that:

k−1∏
i=0

G∗i (Zi) =

√
E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]
≤ C1 exp

[
C2 −

(Zk−1 − a)
2

2(n− k + 2)

]
, (33)
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where C1 and C2 are some constants independent of Zk−1. One can therefore try to

set the product of the potentials equal to this upper bound, which yields:

for k ≥ 1, Gk(Zk) ∝ exp

[
− (Zk − a)

2

2(n− k + 1)
+

(Zk−1 − a)
2

2(n− k + 2)

]
(34)

and G0(Z0) ∝ exp

[
− (Z0 − a)

2

2(n− 1)

]
. (35)

Similarly as for the first example, we have carried out a simulation study. We

have run the method 200 times with the potentials defined in equation (34) and (35)

and taking N = 2 × 105, and n = 10, and different values of a, and for each of

these values we have computed the empirical mean of the estimation and the empirical

variance of the estimation. The results are displayed in table 3. We compare these

estimations with the actual values of ph and the variance of the Monte-Carlo method

σ2
MC , showing that the potentials built with the Chernov-Bernstein large deviation

inequality and our formula yield a significant variance reduction. Indeed the variance

reduction compared to the Monte-Carlo method is at least by a factor 8500, and at

best by a factor 2.4 ∗ 106. We also compared the efficiency of different potentials.

a ph σ2
IPS,G∗ σ2

MC mean(p̂h) σ̂2
IPS,G

4
√
n 3.17 ∗ 10−5 ? 3.17 ∗ 10−5 3.18 ∗ 10−5 8.14 ∗ 10−8

5
√
n 2.87 ∗ 10−7 ? 2.87 ∗ 10−7 2.86 ∗ 10−7 1.88 ∗ 10−11

6
√
n 9.87 ∗ 10−10 ? 9.87 ∗ 10−10 9.67 ∗ 10−10 6.63 ∗ 10−16

7
√
n 1.28 ∗ 10−12 ? 1.28 ∗ 10−12 1.29 ∗ 10−12 4.47 ∗ 10−21

Table 3: Theoretical and empirical comparisons (example 2)

results obtained with N = 105 and n = 10

We run the method with 1) the potential used on a Gaussian random walk in [13]:

Gk(Zk) = exp [α(Zk − Zk−1)] where the parameter was optimized to α = 1.1, 2) the

potential built with the Chernov-Bernstein large deviation inequality, and 3) with the

optimal potential that we computed using Gaussian quadrature formulas. The results

are displayed in table 4, and show that indeed the potential functions (G∗k)k<n, where

G∗k(Zk) =

√√√√ ∫
R

(∫∞
a

exp

[
-
(zn-zk+1)2

2(n-k+1)

]
dzn

)2

exp

[
-
(zk+1-Zk)2

2

]
dzk+1∫

R

(∫∞
a

exp
[
-
(zn-zk)2

2(n-k)

]
dzn

)2
exp
[
-
(zk-Zk-1)2

2

]
dzk

, yield the best variance.
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Gk(Zk) mean(p̂h) σ̂2
IPS,G

exp [α(Zk-Zk-1)] 1.04 ∗ 10−6 2.44 ∗ 10−10

exp
[
- (Zk-a)2

2(n-k+1) + (Zk-1-a)2

2(n-k+2)

]
1.03 ∗ 10−6 1.78 ∗ 10−10

G∗k(Zk) 1.04 ∗ 10−6 1.62 ∗ 10−10

Table 4: Comparisons of the efficiency of potentials (example 2)

results obtained for ph = 1.05 ∗ 10−6 N = 2000, n = 10, a = 15, α = 1.1

5. Discussion and implication

In this paper we give a closed form expression of the optimal potential functions

for the IPS method with multinomial resampling, and for its minimal variance. The

existence of optimal potential function, proves that the possible variance reduction of

an IPS method is lower-bounded. The expressions have been validated analytically,

and the expression for the minimal variance has been empirically confirmed in toy

examples.

Furthermore the results found in the literature seem consistent with our findings. In-

deed, in [10] the authors made the observation that it seemed better to build a potential

which increments of an energy function, this observation is confirmed as the optimal

potential is the multiplicative increment of the quantity

√
E
[
E
[
h(Zn)

∣∣Zk

]2∣∣Zk−1

]
which is then the optimal energy function. Also, the fact that in [15] the authors find

better results with time-dependent potential is explained by the fact the expression of

the optimal potential shows a dependency on k. Finally, as splitting methods can be

viewed as a version of the IPS-method with indicator potential functions, our results

show that the selections of splitting algorithms are not optimal, and could be improved

by using information on the expectations E
[
h(Zn)

∣∣Zk = z
]
.

The optimal potential functions may be hard to find in practice. Indeed, the expec-

tations E
[
h(Zn)

∣∣Zk = z
]

play a big role in the expression of the optimal potentials,

but if we are trying to assess ph = E
[
h(Zn)

]
, we typically lack information about the

expectations E
[
h(Zn)

∣∣Zk = z
]
. If no information on the expectation E

[
h(Zn)

∣∣Zk = z
]

is available, it might be preferable to use more naive variance reduction method, where

no input functions are needed. In such context, the Weighted Ensemble (WE) method
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[2, 1] seems to be a good candidate, as it does not take in input potential functions

but only a partition of the state space. Conversely if the practitioner has information

about the expectation E
[
h(Zn)

∣∣Zk = z
]
, this information could be used to derive very

efficient potentials.

The knowledge of these expectations is therefore crucial for a well optimized use of

the IPS method, but it is interesting to remark that the same knowledge seem to be

crucial for a well optimized importance sampling method. Indeed the optimal density

of importance sampling (that gives a zero variance) depends on E
[
h(Zn)

∣∣Z[0,t] = z[0,t]

]
when it is used on a piecewise deterministic process [7]. This confirms the well known

fact that, with a good knowledge of the dynamic of the process (Zk)k≥0, the importance

sampling methods is preferable to the IPS. Nonetheless the IPS method may still be

preferred to the importance sampling methods when that knowledge is not available.

When one fears to be in an over-biasing situation the IPS may be preferable, as in

the IPS method we do not alter the propagation, the over-biasing phenomenon should

then be less important than with importance sampling methods.
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