
Limits on reliable information flows through stochastic
populations

Lucas Boczkowski1, Emanuele Natale2, Ofer Feinerman3, Amos Korman1
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Abstract

Biological systems can share and collectively process information to yield emer-
gent effects, despite inherent noise in communication. While man-made systems
often employ intricate structural solutions to overcome noise, the structure of
many biological systems is more amorphous. It is not well understood how com-
munication noise may affect the computational repertoire of such groups. To
approach this question we consider the basic collective task of rumor spreading,
in which information from few knowledgeable sources must reliably flow into
the rest of the population. We study the effect of communication noise on the
ability of groups that lack stable structures to efficiently solve this task. We
present an impossibility result which strongly restricts reliable rumor spreading
in such groups. Namely, we prove that, in the presence of even moderate levels
of noise that affect all facets of the communication, no scheme can significantly
outperform the trivial one in which agents have to wait until directly interact-
ing with the sources - a process which requires linear time in the population
size. Our results imply that in order to achieve efficient rumor spread a system
must exhibit either some degree of structural stability or, alternatively, some
facet of the communication which is immune to noise. We then corroborate this
claim by providing new analyses of experimental data regarding recruitment in
Cataglyphis niger desert ants. Finally, in light of our theoretical results, we
discuss strategies to overcome noise in other biological systems.
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Introduction

Systems composed of tiny mobile components must function under conditions
of unreliability. In particular, any sharing of information is inevitably subject
to communication noise. The effects of communication noise in distributed liv-
ing systems appears to be highly variable. While some systems disseminate
information efficiently and reliably despite communication noise [1–5], others
generally refrain from acquiring social information, consequently losing all its
potential benefits [6–8]. It is not well understood which characteristics of a
distributed system are crucial in facilitating noise reduction strategies and, con-
versely, in which systems such strategies are bound to fail. Progress in this
direction may be valuable towards better understanding the constraints that
govern the evolution of cooperative biological systems.

Computation under noise has been extensively studied in the computer
science community. These studies suggest that different forms of error cor-
rection (e.g., redundancy) are highly useful in maintaining reliability despite
noise [9–12]. All these, however, require the ability to transfer significant amount
of information over stable communication channels. Similar redundancy meth-
ods may seem biologically plausible in systems that enjoy stable structures, such
as brain tissues.

The impact of noise in stochastic systems with ephemeral connectivity pat-
terns is far less understood. To study these, we focus on rumor spreading -
a fundamental information dissemination task that is a prerequisite to almost
any distributed system [13–16]. The literature on rumor spreading is quite vast
and encompasses different disciplines over the last decades [17, 18]. For a suc-
cinct overview as for theoretical computer science, see Section Related works in
computer science in the Supplementary Information [48].

A successful and efficient rumor spreading process is one in which a large
group manages to quickly learn information initially held by one or a few in-
formed individuals. Fast information flow to the whole group dictates that mes-
sages be relayed between individuals. Similar to the game of Chinese Whispers,
this may potentially result in runaway buildup of noise and loss of any initial
information [19]. It currently remains unclear what are the precise conditions
that enable fast rumor spreading. On the one hand, recent works indicate that
in some models of random noisy interactions, a collective coordinated process
can in fact achieve fast information spreading [20, 21]. These models, however,
are based on push operations that inherently include a certain reliable compo-
nent (see more details in Section Separation between PUSH and PULL). On
the other hand, other works consider computation through noisy operations,
and show that several distributed tasks require significant running time [22].
The tasks considered in these works (including the problem of learning the
input bits of all processors, or computing the parity of all the inputs) were
motivated by computer applications, and may be less relevant for biological
contexts. Moreover, they appear to be more demanding than basic tasks, such
as rumor spreading, and hence it is unclear how to relate bounds on the former
problems to the latter ones.
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In this paper we take a general stance to identify limitations under which
reliable and fast rumor spreading cannot be achieved. Modeling a well-mixed
population, we consider a passive communication scheme in which information
flow occurs as one agent observes the cues displayed by another. If these inter-
actions are perfectly reliable, the population could achieve extremely fast rumor
spreading [16]. In contrast, here we focus on the situation in which messages are
noisy. Informally, our main theoretical result states that fast rumor spreading
through large populations can only be achieved if either

• the system exhibits some degree of structural stability, or

• some facet of the pairwise communication is immune to noise.

In fact, our lower bounds hold even when individuals are granted unlimited
computational power and even when the system can take advantage of complete
synchronization. In light of these theoretical results, we then turn to discuss
several examples of information sharing in distributed biological systems. We
provide new analyses of the efficiency of information dissemination during re-
cruitment by desert ants. These suggest that this system lacks reliability in
all its communication components, and its deficient performances qualitatively
validate our predictions. Finally, we revisit existing rumor spreading solutions
in large biological systems and discuss different strategies for confronting noise.

The problem

An intuitive description of the model follows. For more precise definitions, see,
The models Section in the Supplementary Information [48].

Consider a population of n agents. Thought of as computing entities, as-
sume that each agent has a discrete internal state, and can execute randomized
algorithms - by internally flipping coins. In addition, each agent has an opinion,
which we assume for simplicity to be binary, i.e., either 0 or 1. A small number,
s, of agents play the role of sources. Source agents are aware of their role and
share the same opinion, referred to as the correct opinion. The goal of all agents
is to have their opinion coincide with the correct opinion.

To achieve this goal, each agent continuously displays one of several mes-
sages taken from some finite alphabet Σ. Agents interact according to a random
pattern, termed as the parallel-PULL model: In each round t ∈ N+, each agent
u observes the message currently displayed by another agent v, chosen indepen-
dently and uniformly at random from all agents. Importantly, communication
is noisy, hence the message observed by u may differ from that displayed by
v. More precisely, for any m,m′ ∈ Σ, let Pm,m′ be the probability that, any
time some agent u observes an agent v holding some message m ∈ Σ, u ac-
tually receives message m′. The probabilities Pm,m′ define the entries of the
noise-matrix P [21], which does not depend on time.

The noise is characterized by a noise parameter δ > 0. Our model encap-
sulates a large family of noise distributions, making our bounds highly general.
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Specifically, the noise distribution can take any form, as long as it satisfies the
following criterion.

Definition 1 (Noise ellipticity parameter δ) We say that the noise has el-
lipticity δ if Pm,m′ ≥ δ for any m,m′ ∈ Σ.

When messages are noiseless, it is easy to see that the number of rounds
that are required to guarantee that all agents hold the correct opinion with high
probability is O(log n) [16]. In what follows, we aim to show that when the
δ-uniform noise criterion is satisfied, the number of rounds required until even
one non-source agent can be moderately certain about the value of the correct
opinion is very large. Specifically, thinking of δ and s as constants independent
of the population size n, this number of rounds is at least Ω(n).

To prove the lower bound, we will bestow the agents with capabilities that
far surpass those that are reasonable for biological entities. These include:

• Unique identities: Agents have unique identities in the range {1, 2, . . . n}.
When observing agent v, its identity is received without noise.

• Complete knowledge of the system: Agents have access to all parameters
of the system (including n, s, and δ) as well as to the full knowledge of the
initial configuration except, of course, the correct opinion and the identity
of the sources. In addition, agents have access to the results of random
coin flips used internally by all other agents.

• Full synchronization: Agents know when the execution starts, and can
count rounds.

We show that even given this extra computational power, fast convergence can-
not be achieved. All the more so, fast convergence is impossible under more
realistic assumptions.

Results

The purpose of this work is to identify limitations under which efficient rumor
spreading would be impossible. Our main result is theoretical and, informally,
states that when all components of communication are noisy fast rumor spread-
ing through large populations is not feasible. In other words, our results imply
that fast rumor spreading can only be achieved if the system either exhibits
some degree of structural stability or that some facet of its communication is
immune to noise. These results in hand, a next concern is how far our highly
theoretical analysis can go in explaining actual biological systems.

Theoretical results with a high degree of generality may hold relevance to a
wider range of biological systems. Lower bound and impossibility results follow
this approach. Indeed, impossibility results from physics and information the-
ory have previously been used to further the understanding of several biological
systems [23,24]. The results we present here are, similarly, in the form of lower
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bounds but, this time, they are derived from the realm of distributed computa-
tion. As such, our theorems are general enough to constrain the performances
of a vast class of computational systems regardless of their particulars or the
specific computational algorithms which they apply. This generality stretches
over to biology and can provide us with fundamental lessons regarding the lim-
itations faced by distributed biological systems [24–26].

While the generality of our lower bound results makes them relevant to a
large number of biological systems it also constitutes a weakness. Namely, the
assumptions on which such theorems are based are not tailored to describe a
particular system. This implies that comparisons between the model assump-
tions and the actual details of a specific system will not be perfect. Never-
theless, we show how our theoretical results can shed light on some non-trivial
behaviors in a specific biological system whose characteristics are close enough
to the underlying theoretical assumptions (see Section Recruitment in desert
ants). Particularly, we empirically show that when desert ants communicate
information regarding a new food source they are subject to limitations which
are similar to those assumed by our model. We then demonstrate a non-trivial
slowdown in the speed at which information spreads through the system as a
function of group size. Despite the non-perfect matching between the theoreti-
cal assumption and the biological system, this non-trivial result stands in direct
accordance with our theoretical lower bounds.

Distributed computing provides an effective means of studying biological
groups [27–30]. However, to the best of our knowledge, there are no examples
in which algorithmic lower bounds, one of distributed computing most pow-
erful tools, have been applied to a particular living system. This work uses
lower bounds to provide insights into non-trivial dynamics observed during ant
recruitment behavior.

Theoretical results

In all the statements that follow we consider the parallel-PULLmodel satisfying
the δ-uniform noise criterion, with cs/n < δ ≤ 1/|Σ| for some sufficiently large
constant c, where the upper bound follows from the criterion given in Definition
1. Hence, the previous lower bound on δ implies a restriction on the alphabet
size, specifically, |Σ| < n/(cs).

Theorem 1.1 Any rumor spreading protocol cannot converge in less than Ω( nδ
s2(1−δ|Σ|)2 )

rounds.

Observe that the lower bound we present loses relevance when s is of order
greater than

√
n, as our proof technique becomes uninformative in presence

of a large number of sources (see Remark 2 in the Supplementary Information
[48]). message, which is, in turn, subject to noise. We also consider the case
in which an agent can reliably identify a source when it observes one (that
is, this information is not noisy). For this case, the following lower bound,
which is weaker than the previous one but still polynomial, apply (see also the
Supplementary Information [48], Detectable Sources Section):
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Corollary 1.1 Assume that sources are reliably detectable. There is no rumor
spreading protocol that converges in less than Ω(( nδ

s2(1−δ|Σ|)2 )1/3) rounds.

Our results suggest that, in contrast to systems that enjoy stable connec-
tivity, structureless systems are highly sensitive to communication noise (see
Figure 1). More concretely, the two crucial assumptions that make our lower
bounds work are: distinguishable signals only when necessary.

Figure 1: Non-uniform noise vs. uniform noise. On the left, we consider an
example with non-uniform noise. Assume that the message vocabulary consists
of 5 symbols, that is, Σ = {m1,m2,m3,m4,m5}, where m1 = 0 and m5 = 1,
represent the opinions. Assume that noise can occur only between consecutive
messages. For example, m2 can be observed as either m2, m3 or m1, all with
positive constant probability, but can never be viewed as m4 or m5. In this sce-
nario, the population can quickly converge on the correct opinion by executing
the following. The sources always display the correct opinion, i.e., either m1

or m5, and each other agent displays m3 unless it has seen either m1 or m5 in
which case it adopts the opinion it saw and displays it. In other words, m3 serves
as a default message for non-source agents, and m1 and m5 serve as attracting
sinks. It is easy to see that the correct opinion will propagate quickly through
the system without disturbance, and within O(log n) number of rounds, where
n is the size of the population, all agents will hold it with high probability. In
contrast, as depicted on the right picture, if every message can be observed as
any other message with some constant positive probability (for clarity, some
of the arrows have been omitted from the sketch), then convergence cannot be
achieved in less than Ω(n) rounds, as Theorem 1.1 dictates.

Recruitment in desert ants

Our theoretical results assert that efficient rumor spreading in large groups could
not be achieved without some degree of communication reliability. An example
of a biological system whose communication reliability appears to be deficient
in all of its components is recruitment in Cataglyphis niger desert ants. In this
species, when a forager locates an oversized food item, she returns to the nest
to recruit other ants to help in its retrieval [31,32].

In our experimental setup, summarized in Figure 2, recruitment occurs in
the small area of the nest’s entrance chamber (S2a Fig). We find that within
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this confined area, the interactions between ants follow a near uniformly random
meeting pattern [33]. In other words, ants seem to have no control over which
of their nest mates they will meet next (S2b Fig). This random meeting pattern
approximates the first main assumption of our model. Another of the model’s
assumptions is that ants interact in parallel. This implies that the interaction
rate per ant be constant and independent of group size. Indeed, the empirical
rate of interaction during the recruitment process was measured to be 0.82±0.07
(mean ± sem, N = 44) interactions per minute per ant and induces a small
increase with group size: 0.62 ± 0.13 for two ants (N = 8) and 1 ± 0.2 for a
group sizes of 9-10 (N = 5).

Figure 2: Unreliable communication and slow recruitment by desert
ant (Cataglyphis niger). a. The experimental setup. The recruiter ant
(circled) returns to the nest’s entrance chamber (dark, 9cm diameter, disc)
after finding the immobilized food item (arrow). Group size is ten. b. A pdf of
the number of interactions that an ant experiences before meeting the same ant
twice. The pdf is compared to uniform randomized interaction pattern. Data
summarizes N = 671 interactions from seven experiments with a group size of
6 ants. c. Interactions of stationary ants with moving ants were classified into
three different messages (’a’ to ’c’) depending on the ants’ speed. The noise at
which messages were confused with each other was estimated according to the
response recipient, initially stationary, ants (see Materials and Methods). Gray
scale indicates the estimated overlap between every two messages δ(i, j). Note
δ = min(δ(i, j)) ≈ 0.3. Data collected over N = 278 interactions. d. The mean
time it takes an ant that is informed about the food to recruit two nest-mates
to exit the nest is presented for two group size ranges. Error bars represent
standard error of the means over N = 24 experiments.
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It has been shown that recruitment in Cataglyphis niger ants relies on
rudimentary alerting interactions [34, 35] which are subject to high levels of
noise [32]. Moreover, the information an ant passes in an interaction can be at-
tributed solely to her speed before the interaction [32]. Binning ant speeds into
three discrete messages and measuring the responses of stationary ants to these
messages, we can estimate the probabilities of one message to be mistakenly
perceived as another one (see Section Methods). We find that this communica-
tion is extremely noisy which complies with the uniform-noise assumption with
a δ of approximately 0.3 (S2c Fig). While artificially dividing the continuous
speed signals into a large number of discrete messages (thus creating a larger
alphabet) would inevitably decrease δ, this is not supported by our empirical
data (see Section Methods).

Finally, the interaction scheme, as exhibited by the ants, can be viewed
somewhere in-between the noisy-push and the noisy-pull models. Moving ants
tend to initiate more interaction [32] and this may resemble, at first glance, a
noisy-push interaction scheme. However, the ants’ interactions actually share
characteristics with noisy-pull communication. Mainly, ants cannot reliably
distinguish an ant that attempts to transmit information from any other non-
communicating individual [32]. The fact that a receiver ant cannot be certain
that a message was indeed communicated to her coincides with the lack of
reliability in information transmission in line with our theoretical assumptions
(see more details on this point in the Section Separation between PUSH and
PULL).

Given the coincidence between the communication patterns in this ant sys-
tem and the requirements of our lower bound we expect long delays before any
uninformed ant can be relatively certain that a recruitment process is occur-
ring. We therefore measured the time it takes an ant, that has been at the
food source, to recruit the help of two nest-mates regardless of total group size.
One might have expected this time to be independent of the group size or even
to decrease as two ants constitute a smaller fraction of larger groups. To the
contrary, we find that the time until the second ant is recruited increases with
group size (p < 0.05 Kolmogorov-Smirnov test over N = 24 experiments, see
S2d Fig).

Our theoretical results set a lower bound on the minimal time it takes un-
informed ants to be recruited. Note that our lower bounds actually correspond
to the time until any individual can be sure with more than 2/3 probability of
the rumor. In the context of the ant recruitment experiment this means that if
an ant goes out of the nest only if she is sure with some probability that there
is a reason to exit, then the lower bounds correspond to the time until the first
ant (other than the recruiter) exits.

Our lower bound is linear in the group size (Theorem 1.1). Note that this
does not imply that the ants’ biological algorithm matches the lower bound and
must be linear as well. Rather, our theoretical results qualitatively predict that
as group size grows, recruitment times must eventually grow as well. This stands
in agreement with S2d Fig. Thus, in this system, inherently noisy interactions
on the microscopic level have direct implications on group level performance.
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Overview of the main lower bound proof

Here, we provide the intuition for our main theoretical result, Theorem 1.1. For
a formal proof please refer to the Supplementary Information [48], The Lower
Bounds Section. The proof can be broken into three parts and, below, we refer
to each of them separately.

Part I. From parallel-PULL to broadcast-PULL. Consider an efficient
protocol P for the parallel-PULL setting. The first part of the proof shows how
P can be used to produce a protocol P ′ that operates in another model, called
broadcast-PULL. In this latter model, at each time step t ∈ N+ one agent is
chosen u.a.r. and all agents observe it, receiving the same noisy sample of its
message. The running time of the resulting protocol P ′ will be n times the run-
ning time of P. The construction of P ′ builds on the permissive assumptions we
employ regarding the power of computation of agents and their unique identities
in {1, 2, . . . n}. In P ′, agents divide time steps in the broadcast-PULL model
into rounds, each composed of precisely n time steps. For an integer i, where
1 ≤ i ≤ n, during the i-th step of each round, all agents receive an observa-
tion, but n − 1 of them ignore it. Specifically, only agent (i mod n)+1 keeps
the observation. The agent will then wait until the end of the round to actu-
ally process this observation according to P. This ensures that when a round
is completed, each agent processes precisely one independent uniform sample
from the configuration of the previous round, as it would in a round of the
parallel-PULL model. This draws a precise injection from rounds in broadcast-
PULL and rounds in parallel-PULL. This construction implies that to prove
Theorem 1.1 it is enough to prove that there is no rumor spreading protocol in

the broadcast-PULL model that converges in less than Ω( n2δ
s2(1−δ|Σ|)2 ) rounds.

Part II. From broadcast-PULL to a statistical inference problem. To
establish the desired lower bound, we next show how the rumor spreading prob-
lem in the broadcast-PULL model relates to a statistical inference test. That
is, from the perspective of a given agent, the rumor spreading problem can be
understood as the following: Based on a sequence of noisy observations, the
agent should be able to tell whether the correct opinion is 0 or 1. We formulate
this problem as a specific task of distinguishing between two random processes,
one originated by running the protocol assuming the correct opinion is 0 and
the other assuming it is 1.

One of the main difficulties lies in the fact that these processes may have a
memory. At different time steps, they do not necessarily consist of independent
draws of a given random variable. In other words, the probability distribution
of an observation not only depends on the correct opinion, on the initial con-
figuration and on the underlying randomness used by agents, but also on the
previous noisy observation samples and (consequently) on the messages agents
themselves choose to display on that round. An intuitive version of this problem
is the task of distinguishing between two (multi-valued) biased coins, whose bias
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changes according to the previous outcomes of tossing them (e.g., due to wear).
See Figure 3 for an illustration.

Figure 3: Distinguishing between two types of coins. On the top there are
two possible coins with slightly different distributions for yielding a head (H) or
a tail (T ). (We depicted two possible outcomes but our model can account for
more.) Given a sequence of observations (corresponding to the random outcomes
of coin tosses), the goal of the observer is to guess the coin type being used (either
0 or 1). The wear induced by tossing the coins may, with time, change the
probability that they land on either heads or tails in a way that depends on the
coin type as well as on the previous toss outcomes (observations). In particular,
notice that without a change in the probability of heads in our example we
would not obtain a posterior probability 0.51 starting with a prior of 0.45 after
six coin flips involving two heads. Pj(H

(t) | observations) for j ∈ {0, 1} denotes
the probability of Coin of type j to yield H given the particular sequence of t
observations. Here, this sequence is H,T, T,H, T, T . At the beginning of the
next round, i.e., the 7th round, |ε(t=6)|1 measures how “far” the the H vs T
distribution generated by the worn down coin 1 is from the same distribution
as generated by the worn down coin 2. More precisely, for the case above,
|ε(6)|1 = |P0(H | observations)−P1(H | observations)|+ |P0(T | observations)−
P1(T | observations)| = |0.51 − 0.43| + |0.49 − 0.57| = 0.16. The parameter ε
bounds all possible |ε(t)|1 from above.
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Despite this apparent complexity, we show that the difficulty of this dis-
tinguishing task can be captured by two scalar parameters, denoted ε and δ.
Parameter δ lower bounds the probability for any observation to be attained
(given any sequence of observations). Parameter ε captures the extent to which
the processes are ‘similar’. More specifically, at round t, given a sequence of
previous observations, denoted x(<t), the next observation has the same proba-
bility to be attained in each process, up to an ε additive term (see Figure S3). A
crucial observation is that ε is very small, precisely, ε = Θ(s(1− δ|Σ|)/n). This
follows from the fact that given x(<t), the behavior of non-source agents in the
two processes is the same, regardless of the value of the correct opinion. Indeed,
internally, an agent is only affected by its initial knowledge, the randomness it
uses, and the sequence of observations it sees. This means that at round t, the
processes would differ only if the agent to be observed on that round happens
to be a source (which happens with probability s/n) and, on top of that, the
observed message is not the same due to noise (which accounts for the factor
(1 − δ|Σ|)). However, a small value of ε is not enough to ensure slow running
time. Indeed, even though the t’th observation may be distributed almost the
same, if it happens that some observation can be attained only in one process,
then seeing such an observation would immediately allow the observer to dis-
tinguish the two processes. A sufficiently large δ prevents the aforementioned
scenario.

Part III. A lower bound for the statistical test problem. The last step
of the proof shows that at least Ω(δ/ε2) samples are required in order to solve any
distinguishing task with parameters δ and ε. The proof involves notions from
Statistical Hypothesis Testing such as the Kullback-Leibler (KL) divergence
(see, e.g., Chapter 5 in [36]). For example, generalizing known results, we show

that, if P
(≤t)
0 and P

(≤t)
1 are the two distributions of observations up to time

t, any distinguishing algorithm must satisfy that the error probability is at

least 1 −
√
KL(P

(≤t)
0 , P

(≤t)
1 ). Hence, for the probability of error to be small,

the term KL(P
(≤t)
0 , P

(≤t)
1 ) must be large. To calculate the KL-divergence one

often uses a tensorization lemma, but this could not be used in our case since
the observations in different rounds are not independent. Instead, we use the
more general Chain Rule identity (see [36]). This allows us to focus on the
KL-divergence of every round separately rather than of the whole sequence.
In contrast to the fully independent case, we also condition on the previous
draws, on the randomness used by agents, and on the initial configuration.

Finally, we obtain: KL(P
(≤t)
0 , P

(≤t)
1 ) = O( tε

2

δ ). This implies that the number
of observations t needs to be of order δ/ε2 to make the error less than, say 1/3.
This bound translates to a lower bound of Ω

(
n2δ/(s2(1− δ|Σ|)2)

)
steps for

the broadcast-PULL model and hence a lower bound of Ω
(
nδ/(s2(1− δ|Σ|)2)

)
rounds for the parallel-PULL model.
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Generalizations

Several of the assumptions discussed earlier for the parallel-PULL model were
made for the sake of simplicity of presentation. In fact, our results can be
shown to hold under more general conditions, that include: 1) different rate
for sampling a source, and 2) a more relaxed noise criterion. In addition, our
theorems were stated with respect to the parallel-PULL model. In this model,
at every round, each agent samples a single agent u.a.r. In fact, for any integer
k, our analysis can be applied to the model in which, at every round, each agent
observes k agents chosen u.a.r. In this case, the lower bound would simply
reduce by a factor of k. Our analysis can also apply to a sequential variant, in
which in each time step, two agents u and v are chosen u.a.r from the population
and u observes v. In this case, our lower bounds would multiply by a factor of
n, yielding, for example, a lower bound of Ω(n2) in the case where δ and s are
constants. Observe that the latter increase is not surprising as each round in
the parallel-PULL model consists of n observations, while the sequential model
consists of only one observation in each time step. See more details in the
Supplementary Information [48].

Discussion

Exponential Separation between PUSH and PULL
Our lower bounds on the parallel-PULL model (where agents observe other
agents) should be contrasted with known results in the parallel-PUSH model
(this is the push equivalent to parallel-PULL model, where in each round
each agent may or may not actively push a message to another agent cho-
sen u.a.r.). Although never proved, and although their combination is known to
achieve more power than each of them separately [16], researchers often view the
parallel-PULL and parallel-PUSH models as very similar on complete commu-
nication topologies. Our lower bound result, however, undermines this belief,
proving that in the context of noisy communication, there is an exponential
separation between the two models. Indeed, when the noise level is constant for
instance, convergence (and in fact, a much stronger convergence than we con-
sider here) can be achieved in the parallel-PUSH using only logarithmic number
of rounds [20,21], by a simple strategy composed of two stages. The first stage
consists of providing all agents with a guess about the source’s opinion, in such
a way that ensures a non-negligible bias toward the correct guess. The second
stage then boosts this bias by progressively amplifying it. A crucial aspect in
the first stage is that agents remain silent until a certain point in time that they
start sending messages continuously, which happens after being contacted for
the first time. This prevents agents from starting to spread information before
they have sufficiently reliable knowledge. This allows to control the dynamics
of the information spread in a balanced manner. More specifically, marking an
edge corresponding to a message received for the first time by an agent, the
set of marked edges forms a spanning tree of low depth, rooted at the source.
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The depth of such tree can be interpreted as the deterioration of the message’s
reliability. On the other hand, as shown here, in the parallel-PULL model, even
with the synchronization assumption, rumor spreading cannot be achieved in
less than a linear number of rounds.

Perhaps the main reason why these two models are often considered similar
is that with an extra bit in the message, a PUSH protocol can be approximated
in the PULL model, by letting this bit indicate whether the agent in the PUSH
model was aiming to push its message. However, for such a strategy to work,
this extra bit has to be reliable. Yet, in the noisy PULL model, no bit is safe
from noise, and hence, as we show, such an approximation cannot work. In
this sense, the extra power that the noisy PUSH model gains over the noisy
PULL model, is that the very fact that one node attempts to communicate
with another is reliable. This, seemingly minor, difference carries significant
consequences.

Strategies to overcome noise in biological systems

Communication in man-made computer networks is often based on reliable sig-
nals which are typically transferred over highly defined structures. These allow
for ultra-fast and highly reliable calculations. Biological networks are very dif-
ferent from this and often lack reliable messaging, well defined connectivity
patterns or both. Our theoretical results seem to suggest that, under such cir-
cumstances, efficient spread of information would not be possible. Nevertheless,
many biological groups disseminate and share information, and, often, do so
reliably. Next, we discuss information sharing in biological systems within the
general framework of our lower-bounds.

The correctness of the lower bounds relies on two major assumptions: 1)
stochastic interactions, and 2) uniform noise. Communication during desert ant
recruitment complies with both these assumptions (see S2b-c Fig) and indeed
the speed at which messages travel through the group (see S2d Fig) is low.
Below, we discuss several biological examples where efficient rumor spreading
is achieved. We expect that, in these examples, at least one of the assumptions
mentioned above should break adding some degree of reliability to the overall
communication. The group can then utilize this reliability and follow one of
the strategies mentioned in Section Theoretical results, in order to yield reliable
collective performance. We begin by discussing examples that violate the first
assumption, namely, that of stochastic interactions, and then discuss examples
that violate the second assumption, namely, uniform noise.

Stable connectivity as a means to overcome noise

Synaptic connectivity in the mammalian brain is known to be highly noisy
[37]. However, this cellular-level noise has little effect on the global function of
brains which are highly reliable. A major factor that allows this restoration of
reliability are the structural stability and redundancies that characterize brain
connectivity. It is well understood how such properties can allow for fast and
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efficient propagation of electrical signals through large neuronal populations
[1, 2].

Animal groups can also benefit from stable connectivity to enhance the relia-
bility of rumor spreading. An example comes from house-hunting rock ants [38].
When these ants commence their move between nest sites, the information re-
garding the location of the target nest is held by only a few scout ants, that then
disseminate it to the entire colony. To communicate this information, the ants
engage in prolonged interactions which include the formation of stable pairs that
walk in tandem towards the target nest and frequently contact each other [39].
These tandem run interactions allow for highly reliable communication and per-
mit the follower ant to lead a subsequent interaction such that the rumor can
continue to spread efficiently. While this redundancy of multiple interaction
allows for the efficient flow of information, it comes at the inevitable price of
long interaction durations [40].

Non-uniform noise

When the physical structure of a group is not well defined, the importance
of reliable messaging schemes grows. In flocks of birds and schools of fish,
changes in the behavior of a single individual can be relayed across a series
of local interactions [41], and generate a response wave that travels across the
entire group [3–5]. It has been shown that information can travel faster in
flocks that display a higher level of alignment [42]. Within the context of our
analysis, as a group becomes more ordered it becomes easier to distinguish a
sudden directional change by an informed individual from the random velocity
fluctuations of uninformed birds. Besides a possibly reduced level of uniformity
in the interactions implied by the additional spatial structure, the reliability of
information transfer violates the δ-uniform noise assumption and allows for fast
and reliable directional changes on the collective scale.

As noted above, push-type communication is another route which may po-
tentially add sufficient reliability to support rumor spreading. In this sense,
what distinguishes push from pull is the trait by which a non-message can-
not be confused with a message. An example for the usefulness of an active
push behavior comes from alarm behavior in ants. A single ant sensing danger
can actively excrete discrete volatile alarm pheromones that are sensed by a
large number of group members and elicit panic or attack responses [43, 44].
Conversely, no ant would secrete these distinct pheromones unless she directly
perceived danger or sensed the alarm signal. Therefore, when an ant senses an
alarm pheromone the only possibility is that one of her nest mates has sensed
danger. As indicated by our theoretical lower bound, if alarm messages would
be confused with non-alarming messages then such fast and reliable information
spread would not be possible.

The difficulty of spreading information fast, as indicated by our theoretical
results, is further consistent with the fact that, even in fully-cooperative groups,
such as ants or bees, an animal that receives information from a conspecific will
often not transfer it further before obtaining its own independent first-hand
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knowledge [40,45–47,49].
Finally, we note that given the aforementioned discussion, our insight regard-

ing the difficulty of functioning under uniform noise can serve an evolutionary
explanation for the emergence of new communication signals (e.g., alarming
signal) that would be distinct from other signals, and prevent confusion.

Methods

All experimental results presented in this manuscript are re-analyses of data
obtained in Cataglyphis niger recruitment experiments [32]. In short, ants in
the entrance chamber of an artificial nest were given access to a tethered food
item just outside the nest’s entrance (S2a Fig). The inability of the ants to
retrieve the food induced a recruitment process [32].
The reaction of the ants to this manipulation was filmed and the locations,
speeds and interactions of all participating ants were extracted from the result-
ing videos.

Calculation of δ. To estimate the noise parameter δ we used interactions be-
tween ants moving at three different speed ranges (measured in cm/sec), namely,
‘a’: 1-10, ‘b’: 10-20, and ‘c’: over 20 and “receiver” ants. Only interactions in
which the receiver ant was initially stationary were used as to ensure that the
state of these ants before the interaction is as similar as possible. The message
alphabet is then assumed to be Σ = {a, b, c}. The response of a stationary ant
v to the interaction was quantified in terms of her speed after the interaction.

An alphabet of three messages was used since the average responses of v
to any two messages were significantly different (all p-values smaller than 0.01)
justifying the fact that these are not artificial divisions of a continuous speed
signal into a large number of overlapping messages. On the other hand, dividing
the bins further (say, each bin divided into 2 equal bins) yielded statistically
indistinguishable responses from the receiver (all p-values larger than 0.11).
Therefore, our current data best supports a three letter alphabet.

Assuming equal priors to all messages in Σ, and given specific speed of the
receiver ant, v, the probability that it was the result of a specific message i ∈ Σ
was calculated as pi(v) = p(v | i)/

∑
k∈Σ p(v | k), where p(v | j) is the probability

of responding in speed v after “observing” j. The probability δ(i, j) that message
i was perceived as message j was then estimated as the weighted sum over the
entire probability distribution measured as a response to j: δ(i, j) =

∑
v p(v | j)·

pi(v). The parameter δ can then be calculated using δ = min{δ(i, j) | i, j ∈ Σ}.
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