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“Canonical form" invariants of filtered complexes

» The decomposition arises from bringing of the Morse complex
over field F, defined by gradient trajectories of the function, to
what | called “canonical form” by a linear transform respecting
the filtration, given by order of the critical values.



“Canonical form" invariants of filtered complexes

» The decomposition arises from bringing of the Morse complex
over field F, defined by gradient trajectories of the function, to
what | called “canonical form” by a linear transform respecting
the filtration, given by order of the critical values.

» These “canonical forms™ are combinatorial invariants of filtered
complexes.



Chain complexes

Recall: chain complex (C,, d.) is a sequence of vector spaces over
fieldF and linear operators

i1 . 9
=G> G=>CGa—...— G

which satisfy
E)J- o aj_l =0

i.e. the image of 91 is contained in the kernel of 0;:
im (9j11) C ker (9;). The j—th homology of the chain complex
(Cs, 04) is the quotient

Hj = ker (9;) /im (9j11) -



Morse complex
f:M"—= TR, fe C® generic, {x | f(x) < c} —compact. Then
pa—critical points, df |TPa: 0, are isolated, near
pof =Y —(x)2+ Zfzj(x’)z. Let g is a generic metric. Then
Cj = 69inclex(p,x):j [Pa; Or(Tp_a)]

where T, = T, @& T, is wrt 9*f and g.
The differential is

djlpwor)= Y [pp or| #M(pa. pp)

index(pg)=j—1

M(pu,pp) ={7:R = M" |

= ~(grad, ) 7(0). = I = s | /R

t——o00 t——+o0



“Canonical form” invariants of filtered complexes [SB1994]

» Let C, is a filtered chain complex,- an increasing sequence of
subcomplexes FsC, C F,C,, s < r, indexed by finite set of real
numbers, FaxCy = Ci. It can come with a basis compatible
with filtration so that each subspace F,C; is the span

(... )



“Canonical form” invariants of filtered complexes [SB1994]

» Let C, is a filtered chain complex,- an increasing sequence of
subcomplexes FsC, C F,C,, s < r, indexed by finite set of real
numbers, FaxCy = Ci. It can come with a basis compatible
with filtration so that each subspace F,C; is the span

[ o)
icl,...dme G . . .
» Chain complex with bases {e }16{01 Ly isin canonical

form” if for any basis element e-(J) elther aé(') =0 or
ae( J) = (J Y. In the latter case, e 7é e ) = ae # ae



“Canonical form” invariants of filtered complexes [SB1994]

» Let C, is a filtered chain complex,- an increasing sequence of
subcomplexes FsC, C F,C,, s < r, indexed by finite set of real
numbers, FaxCy = Ci. It can come with a basis compatible
with filtration so that each subspace F,C; is the span

(..., D))
i€l,...dimg G

» Chain complex with bases {e }:e{o 1.y  isin “canonical

form” if for any basis element e-(J) elther aé(') =0 or
ae( J) = (J Y. In the latter case, e 7é e ) = ae # ae

> Theorem (SB, 1994) There is a basis compatlble with
filtration in which the complex takes the “canonical form”.
This “canonical form”, i.e. the pairing “birth-death” between
indices of filtration plus filtration indices of homology
generators, is uniquely determined.



“Canonical form" invariants ="Persistence Bar-codes”

There are three equivalent visualizations

« Canonical form » invariant f— « Persistence Bar-code »

of the same invariants. "Persistence Bar-codes”/"Persistence
diagrams” were introduced in the beginning of 2000s
(H.Edelsbrunner, J.Harer, A.Zamorodian “Hierarchical Morse
complexes for piecewise linear 2-manifolds” Proc. of Symp on
Comput Geometry, June 2001). There are several software
packages for computing these invariants of a finite filtration. The
principal algorithm is based on the bringing of the filtered complex
to its canonical form by upper-triangular matrices from [SB1994].
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metrics the complex changes via series of chage of

bases:e,.(j) — eI_U) + W)
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“Canonical form" invariants of Morse complexes

» The Morse complex is naturally filtered by the set {f(py)} of
critical values of f: [py, or] € FsCiif f(py) <'s

» —canonical partition of the set of critical values {f(p,)} into
pairs “birth-death”, plus separate set giving a basis H(M, F) or
“births” paired with 400

» Claim: the “canonical form" of Morse complex does not
depend on the metrics: under generic perturbation of the
metrics the complex changes via series of chage of
bases:e,-(J) — e,-m + egﬁm

» when the function is deformed the “canonical form” invariant
changes naturally in continuous way. This can be expressed in

€ — ¢ language.



Point clouds and Cech Complex

» Point cloud —filtered simplicial complex, f = distance




Point clouds and Cech Complex

» Point cloud —filtered simplicial complex, f = distance

» More generally, simplicial complex from collection of subsets of
a discrete set, closed under restrictions, equipped with
distances between points of the set.



Arnold’s problem on extension of smooth function inside a

ball

» Given f € C® (0B" x [—¢, €]) —how many are there crtitical
points of generic smooth extension of f inside the ball B?



Arnold’s problem on extension of smooth function inside a

ball

» Given f € C® (0B" x [—¢, €]) —how many are there crtitical
points of generic smooth extension of f inside the ball B?

» Theorem (SB,1994) Pairs in “canonical form” f |3gn indicating

-

crititical points in B" :

e

They can

cancell each other in certain configurations, details are in

[SB1994].



Small eigenvalues of twisted Laplacian

These “canonical form” invariants were applied in Le Peutrec D.,
Nier F., Viterbo C. “The Witten Laplacian and Morse—Barannikov
Complex” [LNV2011] to find formulas for small eigenvalues of the
Witten Laplacian of df p = hd + df

dim M
App=(drh+df )2 = df pdrn + dradf, = €D AY).
p=0
There is a one to one correspondance j, between U(P) and the set of eigenvalues
(counted with multiplicities) of Ag.pz lying in [0, h3/2) such that

Uy =0 if U cy®

A PP Hessr (U172

Jp(UP)) = g2(utPt Dy 2
b ™ I/\SP) B _)\E,P)‘ |Hessf (U(P+D)|1/2

FUP))—rulP)y
B

(14 O(h))e~?

if 9gUPTD = Yy
) o PP AP Hessf(u-1) /2
Jp(UP) = w2(UP) — — s fp—l)‘ ( ® )1|/2

mAPTY AP Hessf(UR))]

2 FuP)—rulp—1)y
(1+O(h))e h

if 9gUP = ylp—1)

Here the \'s denote the negative eigenvalues of the Hessf at the corresponding points.



Arnold’s 4 cusps conjecture

conjecture solved in [ChP], Arnold described it in ([Arnold2002],
page 79) :

0151 1106020 OO0HONApaAMempuUYecKo2o 2Aa0Ko20 cemelcmsaa Aenanopo-
86X KpusbLx (MHTErpasbHbIX KPUBBIX €CTECTBEHHOH KOHTAKTHON CTPYKTYpHI B
NPOCTPAHCTBE KOHTAKTHBIX 3JIEMEHTOB ), CBA3bL8AIOU4ILX NCHCAHOPOBY KPUBYIO
@porma, 08UMYWYIOCA HA NAOCKOCMU BHYMPb OUCKA, 02PAHUYEHHO20
e, ¢ 1exHarOpoB8oL KpUBOL Bbl8ePHYMOC0 (POHmMA, O8UICYUelics Hapy-
HY, PPOHMbL HEKOMOPLIX NPOMENYMOUHbLX NeHAHOPOBLLX KPUBLIX U3
c8A3bI8AI0UE20 CeMelicnsa umelom no KpatHel mepe demoipe MOYKU
sozsama KaxnObLi.

Jloka3artesbCTBO 3TOH 3aMeuvaTe/bHOH, MMeIOLIeH IMIyGOKHi (PH3HUECKHI
CMBICJI TOIOJIOTHYECKOH TeOpeMbl OUEHb CJIOXKHO M HCIIONb3YET, C OIHOH CTO-
POHBI, HEJABHUH Mporpecc B CHUMIUIEKTHUECKOH TomoJioruu (romosioruu Paépa
¥ KBAHTOBbIE TOMOJIOTHH U T. 1.), a C Apyrod — peay.sratel C. Bapannukosa
06 anre6pe Kommiekca Mopca (He MoJy4UBLIHE, K COXKAJIEHHIO, 3aC/Ty?KEHHOTO
NIPU3HAHHSI B MOMEHT CBOETO MOSIBJIEHUS] HECKOJIBKO JIET Ha3al).



Klein bottle in data set of high contrast natural images

N
— 11—
i

1y e s it Mumford
& al data set: 8-10° points in R?: ‘3 x 3’ patches of high contrast
in 4 - 103 natural images. Normalized to mean intensity and
projected to S”. First using these invariants on the most dense part
of data set a circle of higher density is identified, then two more
intersecting circles and finally a Klein bottle [CISZ]



Persistent cosmic web (cosmology, Sousbie & al[SPK]

(b) An ascending 2-manifold (i.e. a wall)

(c) An ascending 3-manifold (i.e. a void) (d) Superposition of an ascending 3-manifold and an ascending 2-
‘manifold on its surface.

Figure 8. An asconding 2-manifold (i.c. blue 2D wall) and an ascending 3-manifold (i.c. gre
100 A~1 Mpc ACDM dark matter simulation. The manifolds where computed from a 643 particl

3D void) identified in a 5123 particles
sub-sampl




Persistent cosmic web (cosmology, Sousbie & al)
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