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“Canonical form” invariants of filtered complexes

I The decomposition arises from bringing of the Morse complex
over field F , defined by gradient trajectories of the function, to
what I called “canonical form” by a linear transform respecting
the filtration, given by order of the critical values.

I These “canonical forms” are combinatorial invariants of filtered
complexes.
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Chain complexes

Recall: chain complex (C⇤, ∂⇤) is a sequence of vector spaces over
fieldF and linear operators
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Morse complex

f : Mn ! R, f 2 C •, generic, {x | f (x)  c}�compact. Then
pa�critical points, df |

Tpa
= 0, are isolated, near

pa:f = Âj

l=1 �(x l )2 + Ân

l=j
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“Canonical form” invariants of filtered complexes [SB1994]

I Let C⇤ is a filtered chain complex,- an increasing sequence of
subcomplexes F

s

C⇤ ⇢ F
r

C⇤, s < r , indexed by finite set of real
numbers, F

max

C⇤ = C⇤. It can come with a basis compatible
with filtration so that each subspace F

r

C
j

is the spanD
e(j)1 , . . . , e(j)

ir

E

I Chain complex with bases {ẽ(j)
i

}i21,...,dimF Cj
i2{0,1,...} is in “canonical

form” if for any basis element ẽ(j)
i

either ∂ẽ(j)
i

= 0 or
∂ẽ(j)

i

= ẽ(j�1)
i

0 . In the latter case, ẽ(j)
i

6= ẽ(j)
i1

) ∂ẽ(j)
i

6= ∂ẽ(j)
i1

.
I

Theorem (SB, 1994) There is a basis compatible with
filtration in which the complex takes the “canonical form”.
This “canonical form”, i.e. the pairing “birth-death” between
indices of filtration plus filtration indices of homology
generators, is uniquely determined.
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i

}i21,...,dimF Cj
i2{0,1,...} is in “canonical

form” if for any basis element ẽ(j)
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6= ẽ(j)
i1

) ∂ẽ(j)
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“Canonical form” invariants =”Persistence Bar-codes”

There are three equivalent visualizations

of the same invariants. ”Persistence Bar-codes”/”Persistence
diagrams” were introduced in the beginning of 2000s
(H.Edelsbrunner, J.Harer, A.Zamorodian “Hierarchical Morse
complexes for piecewise linear 2-manifolds” Proc. of Symp on
Comput Geometry, June 2001). There are several software
packages for computing these invariants of a finite filtration. The
principal algorithm is based on the bringing of the filtered complex
to its canonical form by upper-triangular matrices from [SB1994].



“Canonical form” invariants of Morse complexes

I The Morse complex is naturally filtered by the set {f (pa)} of
critical values of f : [pa, or] 2 F

s

C⇤if f (pa)  s

I !canonical partition of the set of critical values {f (pa)} into
pairs “birth-death”, plus separate set giving a basis H(M,F ) or
“births” paired with +•

I Claim: the “canonical form” of Morse complex does not
depend on the metrics: under generic perturbation of the
metrics the complex changes via series of chage of
bases:e(j)

i

! e(j)
i

+ e(j)
l

lower

I when the function is deformed the “canonical form” invariant
changes naturally in continuous way. This can be expressed in
e � d language.
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Point clouds and Čech Complex

I Point cloud !filtered simplicial complex, f = distance

I More generally, simplicial complex from collection of subsets of
a discrete set, closed under restrictions, equipped with
distances between points of the set.
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Arnold’s problem on extension of smooth function inside a

ball

I Given f 2 C • (∂Bn ⇥ [�#, #]) !how many are there crtitical
points of generic smooth extension of f inside the ball B?

I Theorem (SB,1994) Pairs in “canonical form” f |∂Bn indicating

crititical points in Bn : They can
cancell each other in certain configurations, details are in
[SB1994].



Arnold’s problem on extension of smooth function inside a

ball

I Given f 2 C • (∂Bn ⇥ [�#, #]) !how many are there crtitical
points of generic smooth extension of f inside the ball B?

I Theorem (SB,1994) Pairs in “canonical form” f |∂Bn indicating

crititical points in Bn : They can
cancell each other in certain configurations, details are in
[SB1994].



Small eigenvalues of twisted Laplacian

These “canonical form” invariants were applied in Le Peutrec D.,
Nier F., Viterbo C. “The Witten Laplacian and Morse–Barannikov
Complex” [LNV2011] to find formulas for small eigenvalues of the
Witten Laplacian of d

f ,h = hd + df



Arnold’s 4 cusps conjecture

conjecture solved in [ChP], Arnold described it in ([Arnold2002],
page 79) :



Klein bottle in data set of high contrast natural images

Mumford
& al data set: 8 · 106 points in R9: ‘3⇥ 3’ patches of high contrast
in 4 · 103 natural images. Normalized to mean intensity and
projected to S7. First using these invariants on the most dense part
of data set a circle of higher density is identified, then two more
intersecting circles and finally a Klein bottle [CISZ]



Persistent cosmic web (cosmology, Sousbie & al[SPK])



Persistent cosmic web (cosmology, Sousbie & al)
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