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On the root mean square quantitative chirality
and quantitative symmetry measures

Michel Petitjeana)

ITODYS (CNRS, ESA 7086), 1 rue Guy de la Brosse, 75005 Paris, France

~Received 22 February 1999; accepted for publication 22 March 1999!

The properties of the root mean square chiral index of ad-dimensional set ofn
points, previously investigated for planar sets, are examined for spatial sets. The
properties of the root mean squares direct symmetry index, defined as the normal-
ized minimized sum of then squared distances between the vertices of thed-set and
the permutedd-set, are compared to the properties of the chiral index. Some most
dissymetric figures are analytically computed. They differ from the most chiral
figures, but the most dissymetric 3-tuples and the most chiral 3-tuples have a
common remarkable geometric property: the squared lengths of the sides are each
equal to three times a squared distance vertex to the mean point. ©1999 Ameri-
can Institute of Physics.@S0022-2488~99!01009-9#

I. INTRODUCTION

Chirality and symmetry properties of a solid body can be viewed as a continuous va
quantity taking values over@0;1# rather than a logical property, i.e., the body is or is not symme
or chiral. The use of a chirality measure seems to be introduced by Rassat.1 Then, various quan-
titative chirality or symmetry measures have been used.2–12This concept has received applicatio
in physics, proposed mostly by the Avnir group.2–4

The root mean square chiral index CHI of ad-dimensional set ofn points was defined12 as the
sum of then squared distances between the vertices of the set and those of its inverted
normalized to 4T/d, T being the inertia of the set. This index is computed after minimization
the sum of the squared distances in respect to all rotations and translations and all permu
between equivalent vertices. It was shown to be a second kind of continuous chirality me
taking values over@0;1#, the zero value corresponding to an achiral compound perfectly su
posed to its inverted image. Similarly, the direct symmetry index DSI of ad-dimensional set ofn
points is defined here as follows. When all vertices are unequivalent, DSI is undefined. When
are at least two equivalent vertices, the sum of then squared distances between the vertices
those of the permuted set is minimized for all rotations and translations and permutations~exclud-
ing the identity permutation! between equivalent vertices. DSI is the ratio of this minimized s
to twice the inertiaT of the set.

The quantitative symmetry and chirality concepts used here are fully different from tho
Avnir et al. for the following reasons: no achiral reference is needed to compute CHI, no
metry assumptions are needed to compute CHI and DSI, no folding and unfolding proces5 are
needed here, the normalization are different, and the farthest point from the centroid is not n
here, and, of course, the extremal figures are different.

The properties of CHI were examined for monodimensional sets and planar sets.12 They are
now examined for spatial sets. Hyperspatial sets~i.e.,d is any positive integer! are examined when
all vertices are unequivalent. The major difference between planar, spatial, and hyperspat
lies in the expression of the optimal rotation. The properties of DSI are also examined. For c
a set ofn53 points will be called a triangle. The most dissymetric triangles, i.e., those max
ing DSI, are here analytically computed when there are two or three equivalent vertices.

a!Phone: 33~0!1 4427 4857; fax: 33~0!1 4427 6814; electronic mail: Petitjean@itodys.jussieu.fr
45870022-2488/99/40(9)/4587/9/$15.00 © 1999 American Institute of Physics
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II. NOTATIONS

The notations are those used in Ref. 12. X0 and X1 are then rows andd columns arrays of
coordinates. X0 is the fixed set and X1 is to move. The quote denotes the transposition op
All vectors are written as one-column matrices.^xuy& is the scalar product of the vectorsx andy,
and whend53, x∧y is their cross product. The trace and the determinant operators are de
respectively, Tr and Det. Y1 is the rotated and translated image of X1, andD25Tr„(X02Y1)
•(X02Y1…8) is the sum of the squared distances.D2 is minimized for rotation plus translation
when X0 and X1 are centered before computing the optimal rotation. Translations will b
longer considered, and the centering condition will not be assumed unless otherwise men
The following matrices are used: V005X08•X0, V115X18•X1, V105X18•X0, V015V108, and
T5(T01T1)/2, T05Tr~V00! and T15Tr~V11! being the respective inertia of X0 and X1, redu
ing to the usual inertia when the arrays are centered. The identity matrix isI , andR is a rotation
matrix, such that Y15X1•R8.

The correspondence between X0 and X1 is handled via ann-dimensional square permutatio
matrix P. Let be Z15P•Y1. When X1 is the inverted image of X0 and when the center
condition is satisfied, the chiral index of a spatial set is CHI5D2/(4T/d), with D25Tr„(X0
2P•X1•R8)•(X02P•X1•R8)8… being minimized over all rotationsR and allowed permutations
P. When X1 is a rotated and translated image of X0 and when the centering condition is sa
DSI5D2/2T, D being minimized over all rotations and allowed nonidentity permutations.

The computation of either CHI or DSI requires the optimal rotation superimposing two
Whend53, the analytical expression of the optimal rotation superposing X1 on X0, X0 and
being anyn rows and 3 columns arrays of coordinates, is given in the Appendix.

III. THE OPTIMAL ROTATION FOR 3D ENANTIOMERS

In this section, the centering condition is not assumed and three-dimensional enantiom
considered. For clarity, X0 is noted;X and its inverted image is X152P•X, and we define
V5X8•P•X52V01. From Appendix A, we have

D25D0222^quBq&, ~1!

the optimal quaternionq being the eigenvector associated to L1, the highest eigenvalue ofB:

B5S 0 c8

c A D , ~2!

A5Tr~V1V8!•I2~V1V8!, ~3!

c5S V~2,3!2V~3,2!
V~3,1!2V~1,3!
V~1,2!2V~2,1!

D . ~4!

WhenP is a symmetric permutation,c is null, and the eigenvalues ofB are the three eigenvalue
of A and zero.

IV. ENANTIOMERS WITH ALL VERTICES UNEQUIVALENT

All the conditions of the preceding section are assumed to stand, and the vertices
unequivalent, i.e., the only allowed permutation isP5I . V5X8•X is symmetric andc is therefore
null. The sum of squares prior rotation is D0254 Tr(V), which is the maximizedD2 value
because zero is the smallest eigenvalue ofB. We haveA52„Tr(V)•I2V…. Let v1, v2, v3 be the
eigenvalues ofV arranged in decreasing order. The largest eigenvalue ofB is L15d152~v11v2!
and the optimal rotation of2X is 180 degrees around the principal axis associated to the sm
eigenvalue ofV. Now we haveD254 Tr(V)24(v11v2), i.e.,
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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D254v3. ~5!

We assume now thatX is centered, i.e.,V is n times its variance matrix. The chiral index o
the set ofn vertices is therefore:

CHI53v3/~v11v21v3!. ~6!

CHI is d times the percentage of inertia associated to the smallest eigenvalue ofV. Looking at
Eqs.~3! and~7! in Ref. 12 and Appendix 1 in Ref. 12, we can see that this is also true for pl
sets (d52) and unidimensional sets (d51).

The eigenvalues ofV being positive and in decreasing order, CHI is maximized
v15v25v35v, i.e., CHI51 andV5v•I . WhenX has only 4 vertices, it is therefore a regul
tetrahedron~see Appendix 2 in Ref. 12!.

V. HYPERSPATIAL SETS WITH ALL UNEQUIVALENT VERTICES

The optimal rotation superimposing twod-dimensional sets is unknown whend.3, except for
enantiomers with all unequivalent vertices, as shown hereafter. The sum of squares to b
mized isD25Tr„(X2X•Q8)•(X2X•Q8)8…52„Tr(X8•X)2Tr(Q•X8•X)…, X being the~n,d! ar-
ray of coordinates andQ being an orthogonal matrix with det(Q)521. Thus, Tr(Q•X8•X) has to
be maximized. Assuming thatX is in its principal components axis~i.e.,V5X8•X is diagonal!, we
have to find the maximum ofE5v~1!•Q~1,1!1v~2!•Q~2,2!1...1v(d)•Q(d,d),v~1!,...,v(d) being
the eigenvalues ofV in decreasing order.

E5@„v~1!2v~d!…•Q~1,1!1„v~2!2v~d!…•Q~2,2!1¯1„v~d21…2v~d!!

•Q~d21,d21!#1v~d!•Tr~Q!.

The eigenvalues ofQ can be either11, or 21, or pairs of conjugate complex roots of 1.
follows that Tr(Q) is maximized whend21 eigenvalues are11 and one is21. Obviously, the
sum of thed21 terms (v(i )2v(d)…•Q( i ,i ) is also maximized for Q(i ,i )51 wheni ,d. ThusE
is maximized andD2 is minimized whenX and its enantiomer have opposite coordinates on
principal axis with smallest inertia. Thus, Eqs.~5! and ~6! are generalized:

D254v~d!, ~7!

and assumingX centered:

CHI5d•v~d!/„v~1!1v~2!1¯1v~d!…. ~8!

As previously, CHI is maximized when all eigenvalues ofV are equal. Whenn5d11, CHI
is therefore maximized whenX is a regulard-simplex.~See Appendix 2 in Ref. 12.!

From Eq.~8!, it is possible to compare practical CHI values with the distribution of CHI wh
X is an isotropic multinormal sample.V is a Wishart matrix,13 from which the joint density of the
percentages of inertia can be derived,14 leading to the distribution15 of CHI/d. Unfortunately, the
final expression is not trivial whend.2.

VI. THE DIRECT SYMMETRY INDEX

In this section,d-dimensional sets are considered and the centering condition is not ass
The situation where all vertices are unequivalent precludes the existence of direct symmetry
set. This situation should not be confused with the purely geometric situation where all vertic
equivalent~i.e., undistinct!, for which symmetry properties are potentially observable. Thus,
consider now only sets with at least two equivalent vertices. As for the chiral index, the suD2
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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of then squared distances between the vertices and those of the permuted set is minimized
rotations and all authorized permutations, excluding of course the identity permutationP5I .
When the set is centered DSI5D2/(2T).

P being fixed, the sum of the squared distances to minimize is, as previously,D25Tr„(X0
2P•X1•R8)•(X02P•X1•R8)8…. Setting X05X15X andV5X8•P•X, we get

D252„T2Tr~V•R8!…. ~9!

There are at least two equivalent pointsx andy. Thus the minimum ofD2 for all rotations and
permutations cannot exceed the minimum ofD2 for all rotations and for the permutation exchan
ing x andy, i.e.,P is such thatV5x•y81y•x81Z8•Z, with Z being the (n22,d) block extracted
from X by elimination ofx andy. For this permutation,

Tr~V•R8!5y8•R8•x1x8•R8•y1Tr~Z8•Z•R8!. ~10!

Assumingd.1, a rotation existsR which rotates from190 degrees the first axis toward th
second axis, i.e.,R(2,1)52R(1,2)51, R( i ,i )51 for i .2, all other elements ofR being null.
Thus, R1R850, y8•R8•x1x8•R8•y50 and 2Tr(Z8•Z•R8)5Tr(Z8•Z•R)5Tr(R8•Z8•Z)
5Tr(Z8•Z•R8)50, which means that Tr(V•R8) is null. Because a permutation and a rotati
exist such that Tr(V•R8)50, it follows from ~9! that the minimum ofD2 is upper bounded by 2T,
and then DSI pertains to@0;1# whend.1.

The following centered set containing three points is such that DSI51 for all d.1: x5e1
•(212))/2, y5e1•(211))/2, z5e1, e1 being the first base vector,x andy being equivalent
andz being not.

When d51, x and y are numbers,Z is a vector,T5x21y21Z8•Z, R51, and Tr(V•R8)
52x•y1Z8•Z. Thus, 4T2D252•„T1Tr(V•R8)…52(x1y)214•Z8•Z, which cannot be nega
tive. Thus, ford51, D2 varies from 0 to 4T and the direct symmetry index pertains to@0;2#, the
extremal value DSI52 being reached for a centered set containing two opposite values. B
course, direct rotational symmetry has little interest ford51.

Computing simultaneously CHI and DSI for spatial sets is easy, since they both lead
same quadratic form defined by Eqs.~1!–~4!, except that the quadratic form associated to DSI n
takes the opposite sign, because X1 was set toX rather than to2X. It means that the smalles
eigenvalue L4 should be used to compute DSI rather than L1 for CHI, the minimized su
squared distances being now

D25D0212L4. ~11!

As shown in the Appendix, L4 is always nonpositive. Another difference between CHI
DSI is that the normalizing coefficients are, respectively, 4T/d and 2T, but this is not a crucial
difference.

VII. THE DIRECT SYMMETRY INDEX OF PLANAR TRIANGLES

We assume thatd52. Letx be the column vector of the abscissas, andy the column vector of
their ordinates:x85(x1 ,x2 ,...,xn) andy85(y1 ,y2 ,...,yn). The points will bep1 ,p2 ,...,pn . The
image of~x,y! through the permutationP is ~Px,Py!. P being fixed, the distanceD minimized for
all rotations is known:12

D252~T2E!, ~12!

E being the non-negative number, such that

E25~x8P8x!21~x8P8y!21~y8P8x!21~y8P8y!212~x8P8x!~y8P8y!22~y8P8x!~x8P8y!.

Thus,
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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E25~x8Px1y8Py!21~y8Px2x8Py!2. ~13!

The minimization for rotations plus translations is reached when the set is centered. The in
thusT5x8x1y8y. We assumeT non-null, i.e., there are at least two distinct points. Let1 be the
n-vector such that all itsn components are 1. Centering means18x518y50. We define alsoM
5(P1P8)/2 andN5(P2P8)/2, which implies thatx8Nx5y8Ny50.

We assume now thatn53, and that all vertices are equivalents.d12, d23 and d31 are the
respective lengths of the sides of the triangle.ip1i , ip2i andip3i are the lengths of the segmen
joining the barycenter to the vertices at the opposite of the sides with respective lengthsd23, d31

andd12. The inertia can be also written asT5ip1i21ip2i21ip3i2, or T5(d23
2 1d31

2 1d12
2 )/3.

The surfaceS of the triangle is such that 16S252(d12
2 d23

2 1d23
2 d31

2 1d31
2 d12

2 )2(d12
4 1d23

4

1d31
4 ).

A. Extremal values for a given permutation

Using M andN, Eq. ~13! becomes

E25~x8Mx1y8My!214~x8Ny!2. ~14!

The gradient of (12D2/2T)25(E2/T2) if set to zero forx, then fory,

T~x8Mx1y8My!Mx12T~x8Ny!Ny5E2x, ~15!

T~x8Mx1y8My!My22T~x8Ny!Nx5E2y. ~16!

Multiplying on the left ~15! by x8 then ~16! by y8, and substracting,

T~x8Mx!22T~y8My!25E2~x8x2y8y!. ~17!

Then from~15! or ~16!,

T~x8Mx1y8My!~x8My!5E2~x8y! . ~18!

From ~17! and ~18!, it comes

E2~x8My!~x8x2y8y!5E2~x8y!~x8Mx2y8My!. ~19!

Whenn53,5 permutations are possible: 3 are symmetric and 2 are circular.
WhenP is symmetric,M5P, N50, and Eqs.~15! and ~16! reduce to the same eigenvalu

equations:T2Px5E2x andT2Py5E2y. Forn53, the eigenvalues ofP are11, 11 and21. Only
the solution such thatE25T2 is possible, implyingD50, leading to a minimum for DSI, rather t
a maximum.

WhenP is one of the 2 circular permutations~the other being its transposed!, we have: 2M
51•182I , implying thatx8Mx52x8x/2 andy8My52y8y/2, and thenE254(x8Ny)21T2/4.
Moreover, 2x8Ny is equal to the determinant of the matrix@1uxuy# or to the opposite of this
determinant, depending on which circular permutation is used. That impliesE254S21T2/4. The
minimum is therefore reached by a null-area triangle: the points are aligned.

B. Maximizing DSI

Let us consider the symmetric permutation associatingp1 to itself. The following comes:N
50 and E252x2x31x1

212y2y31y1
25(T2d23

2 )2. Similarly, the E values associated with th
symmetric permutations associatingp2 with p2 andp3 with p3 are such thatE25(T2d31

2 )2 and
E25(T2d12

2 )2. Both circular permutations lead toE254S21T2/4, S2 andT being homogeneous
polynomials ofd12

2 , d23
2 and d31

2 . The 4 expressions ofE2 are homogeneous polynomials of
variables, returning non-negative values.
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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For a given triangle, the optimal permutation is that which leads to the highestE value. Thus
a maximum of DSI, or a minimum of@Max(E2)/T2#, should be searched either among t
extrema ofE2/T2 associated with a permutation, or at the intersection of at least two of t
polynomials associated with the permutations,T being the same for all permutations.

It was shown above that only one extremum ofE2/T2 is useful, and it is such thatE5T/2 and
S50. This is possible only if the length of a side is equal to the sum of the two others. Assu
for example, thatd235d311d12, and reporting it inE5uT2d23

2 u5ud12
2 1d31

2 22d23
2 u/3. The fol-

lowing comes:E5(d23
2 12d12d31)/3, or E5(T/2)1d12d31. The circular permutation could b

optimal only if d12d3150, which should imply that DSI50 ~degenerate isocele triangle!. Similar
conclusions should be reached ifd31 or d12 have been used: the extrema ofE2/T2 associated to a
given permutation are not adequate.

Thus, it is needed to look at the intersection of the polynomials. Noting that theE/T values
depend only on the distances ratios, we can work with only two independent variables, a
search the minimum at the intersection of 3 among the 4 polynomials. There are at least 2
3 symmetric permutations which lead to the same value. Assuming, for example, thatE5uT
2d12

2 u5uT2d31
2 u, thus,ud23

2 1d31
2 22d12

2 u5ud12
2 1d23

2 22d31
2 u. Either we getd12

2 5d31
2 , which does

not work because the triangle should be isocele (DSI50), or we get 2d23
2 5d31

2 1d12
2 , and thus

E5ud12
2 2d31

2 u/2. In this situation, theE value associated to the third symmetric permutation
null, and theE value associated to circular permutations isE5d12d31. The equality between the
3 nonzeroE2 values give the desired relation: (d12

2 2d31
2 )254d12

2 d31
2 . Reusing 2d23

2 5d31
2 1d12

2 , the
ratios of the squared lengths of the sides are deduced: (d12

2 /d23
2 )511&/2, (d31

2 /d23
2 )512&/2,

andE2/T25(12DSI)251/2.

C. Remarkable geometric properties of the optimal triangles

Using the distances, we get the angles associated, respectively, to the pointsp1 , p2 and
p3 :p/4, p/8 and 5p/8.

A possible set of coordinates of the most dissymetric triangle is

X5S &/3 1/3

~232& !/6 21/6

~32& !/6 21/6
D . ~20!

It is easy to see thatd23
2 53ip1i2, d12

2 53ip2i2, andd31
2 53ip3i2. It should be pointed out tha

this relation is symmetric only forp2 andp3 . This remarkable proportionality exists also for th
degenerate triangle with only two equivalent vertices, which was cited in Sec. VI, and corres
ing to the maximal value DSI51, for any dimensiond.1. Ford52, the most chiral triangles als
offer this remarkable proportionality, discarding which vertices are equivalent,12 but none of them
has the shape of the most dissymmetric triangle. The shape of the most dissymmetric trian
been measured using random triangles, with vertices uniformly distributed over a square
results~Table I! are in accordance with the theory.

VIII. DISCUSSION AND CONCLUSION

The properties of the RMS~root mean square! chiral index have been examined for spat
sets. As for planar sets, it is easily analytically computed, but the expression of the optim
rotation is fully different from those of the 2D one. The optimal rotation is unknown for hy
spatial sets, except whenX is superposed with its unpermuted enantiomer. Whend.3, it is
proposed to extend the iterative procedure16 to compute the optimal rotation superposing tw
d-dimensional sets, and to use it for permuted enantiomers. Similarly, computing the RMS
symmetry index is easy for 2D and 3D sets, but suffers from the same limitation than the
index whend.3.

Looking at Eq.~8!, it is clear that the RMS chiral index is also extendible to continu
distributions with all distinct points, provided that the variance exists. When there are subs
d 14 May 2003 to 134.157.1.23. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jmp/jmpcr.jsp
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undistinct points, handling continuous sets is more difficult, because the set of authorized p
tations must be redefined. This latter remark applies to the direct symmetry index. Thu
extension of CHI and DSI to continuous sets will be examined in a further work.

The most chiral triangles and the most dissymmetric triangles offer the same rema
geometric property. Its extension to higher-dimensional simplices is an open problem.

The chiral index and the direct symmetry index provides a coherent quantification of
tional symmetries carrying more information than a boolean value indicating the presen
absence of such symmetries. Although a perfect symmetry can be destroyed when a small
bation is applied, the ability to quantify proper and improper rotational symmetries provid
robust tool to overcome this problem. As a by-product of computing CHI or DSI, the axe
angle associated to the optimal quaternion locate nonambiguously the symmetry element
computing either CHI or DSI, if more than one permutation leads to small values of the ind
the set of optimal quaternions provides informations about the existence of more than one
metry element. Building an automated procedure returning all symmetry elements of a pertu
symmetric set is currently investigated.
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APPENDIX: THE OPTIMAL ROTATION FOR SPATIAL SETS

In this section, the centering condition is not assumed, andd53. X0 and X1 are anyn rows
and 3 columns arrays of coordinates. The identity permutationP5I is assumed, but the final resu
will be valid for any P with replacing X1 byP•X1. The well-known Procrustes algorithm16,17

used to find the optimal orthogonal transformation superposing twod-sets does not work for
enantiomers, because it leads always toD50 and the optimal orthogonal matrix has a negat
determinant (Det521). Some iterative procedures are available,18,19 but the final expression o
the optimal rotation was found by Diamond,20 leading to expressD2 with a quadratic form of the

TABLE I. Measure of the shape of the most dissymmetric triangle with three equivalent vertices. Ntr: number of r
triangles. Popt: optimal permutation. DSI: direct symmetry index. The 3 angles are expressed as multiples ofp/8.

Ntr Popt (1-DSI)2 Angles

1 321 0.724887 0.829182 1.305712 5.865106
11 312 0.632934 1.239900 2.710587 4.049513
13 231 0.546920 1.160093 1.859441 4.980466
37 213 0.539919 1.004153 1.865056 5.130791
85 321 0.537833 1.120757 1.822010 5.057233

179 321 0.519058 0.988815 2.067136 4.944049
363 321 0.513820 0.993675 2.054628 4.951697
751 231 0.503264 1.007408 2.009480 4.983112

13052 213 0.501541 0.999541 2.006778 4.993681
51783 231 0.500970 1.001485 2.007749 4.990766

161448 231 0.500631 1.001784 1.999454 4.998762
394890 231 0.500541 1.000720 2.005067 4.994213

1097067 231 0.500420 1.000829 2.002094 4.997077
1347455 312 0.500412 1.000807 2.002092 4.997100
1483751 132 0.500085 1.000198 1.999638 5.000164

62565625 132 0.500073 1.000213 1.999673 5.000114
90476880 132 0.500062 1.000012 2.000374 4.999613

143978185 321 0.500048 1.000032 2.000369 4.999599
178782085 312 0.500024 1.000037 2.000189 4.999775
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quaternion associated to the rotation. This quadratic form is maximized by an orthonormal b
four quaternions. For convenience, the expression of the optimal rotation is retrieved here f
ing a different presentation.

A 3D-rotation R is associated to a 3D rotation axisu and to a rotation angler. This is
expressed with a quaternionq5(p,u), with p5cos(r/2) and iui5^uuu&1/25sin(r/2). Thus
^quq&51, and the image of a pointx throughR is21 Rx5(122^uuu&)x12^uux&u12p(u∧x).
Because (2p,2u) is the same rotation than (p,u), p is always taken non-negative, i.e.,r takes
values from 0 to 180 degrees.

Let c be the sum of then vectors x1i∧x0i . Thus, we havec(1)5V10~2,3!2V10~3,2!,
c(2)5V10~3,1!2V10~1,3!, and c(3)5V10~1,2!2V10~2,1!. The matrix A is defined asA
5~V101V01!2Tr~V101V01!•I . Let D02 be the initial sum of squares, prior to rotating X
Now, we have the following equalities:^Rx1i ux0i&5 (122^uuu&)^x1i ux0i& 1 2^uux1i&^uux0i&
12p^u∧x1i ux0i&5 (122^uuu&)^x1i ux0i&1^uu(x1i•x0i81x0i•x1i8)u&12p^uux1i∧x0i&. V10 is
the sum of then matricesx1i•x0i8 , and Tr(V10) is the sum of then quantitieŝ x1i ux0i&. Thus we
get D25D0222^uuAu&24p^uuc&. Let us define the 434 matrix B:

B5S 0 c8

c A D ,

q5(p,u) being the unknown quaternion; it follows that:D25D0222^quBq&.
B is a constant symmetric matrix depending only on the input data, and the quadratic

^quBq& has to be maximized,q being a unit vector. This problem has a well-known solution:17 the
stationary points are an othonormal basis eigenvectors ofB, and the associated eigenvalues are
optimal values of the quadratic form. The sense of each eigenvector is known becausep must be
non-negative. It is unimportant to get1u or 2u when p50. Let L1, L2, L3, L4 be the eigen-
values arranged in decreasing order.

B is the sum of two 434 symmetric matrices. One contains onlyA and zeros on the first row
and column. Let B1 be this matrix. The other contains onlyc8 on the right of the first row andc
on the bottom of the first column, zero as a first diagonal element, and nine zeros in the rem
333 block. Let B2 be this one-rank matrix, of which the four eigenvalues are obviouslyici and
zero with three as multiplicity. Let d1, d2, d3 be the eigenvalues ofA arranged in decreasing orde
Thus, the following inequalities stand:22 the eigenvalues of A separate those o
B:L1>d1>L2>d2>L3>d3>L4, and uLi–di8u<ici for i 51,2,3,4, di8 being the i th greatest
value among~0,d1,d2,d3!.

Two situations may arise. If d1 and d3 have not the same sign, the first set of inequ
means that L1 and L4 have not the same sign. If d1 and d3 have the same sign, let us loo
determinant ofB expressed after diagonalization ofA. The components ofc become c~1!, c~2!,
c~3!, and det(B)52c~1!2

•d2•d32c~2!2
•d1•d32c~3!2

•d1•d2. This determinant cannot be positiv
thus again L1 and L4 cannot have the same sign.

Thus L1 is always non-negative and L4 is always non-positive. The rotation minimizingD2 is
those associated to the quaternion q1, such thatD25D0222L1, and the rotation associated to q
such thatD25D0222L4 is that which maximizesD2. D2 has one saddle point associated to
and one associated to q3.

Some minor properties of the four optimal quaternions are obtained from their othonorm
Considering the first row of the equation Bq5Lq, it comes that D022D252L52^vuc&, with v
5u/p. It shows than only a positiveL value leads toD2,D02. The three others equations may b
rewritten: (A2^vun&I )v1n50, but this is neither an eigenvector equation nor a linear sys
Two distinct directionsui anduj are generally not orthogonal: cos(ui,uj)52pi•pj/„(12pi2)•(1
2p j2)…1/252cotg(ri )•cotg(rj ), ri and rj being the 2D-angles associated, respectively, toqi
andqj.
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