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and gquantitative symmetry measures
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(Received 22 February 1999; accepted for publication 22 March)1999

The properties of the root mean square chiral index ofdimensional set oh

points, previously investigated for planar sets, are examined for spatial sets. The
properties of the root mean squares direct symmetry index, defined as the normal-
ized minimized sum of tha squared distances between the vertices ofltket and

the permutedl-set, are compared to the properties of the chiral index. Some most
dissymetric figures are analytically computed. They differ from the most chiral
figures, but the most dissymetric 3-tuples and the most chiral 3-tuples have a
common remarkable geometric property: the squared lengths of the sides are each
equal to three times a squared distance vertex to the mean point99® Ameri-

can Institute of Physic§S0022-24889)01009-9

[. INTRODUCTION

Chirality and symmetry properties of a solid body can be viewed as a continuous varying
guantity taking values ové0;1] rather than a logical property, i.e., the body is or is not symmetric
or chiral. The use of a chirality measure seems to be introduced by RaEsan, various quan-
titative chirality or symmetry measures have been ¥s&tThis concept has received applications
in physics, proposed mostly by the Avnir grofif.

The root mean square chiral index CHI oflalimensional set of points was definéd as the
sum of then squared distances between the vertices of the set and those of its inverted image,
normalized to &/d, T being the inertia of the set. This index is computed after minimization of
the sum of the squared distances in respect to all rotations and translations and all permutations
between equivalent vertices. It was shown to be a second kind of continuous chirality measure
taking values ovef0;1], the zero value corresponding to an achiral compound perfectly super-
posed to its inverted image. Similarly, the direct symmetry index DSl afanensional set of
points is defined here as follows. When all vertices are unequivalent, DSI is undefined. When there
are at least two equivalent vertices, the sum ofritegjuared distances between the vertices and
those of the permuted set is minimized for all rotations and translations and permutexolusl-
ing the identity permutationbetween equivalent vertices. DSI is the ratio of this minimized sum
to twice the inertial of the set.

The quantitative symmetry and chirality concepts used here are fully different from those of
Avnir et al. for the following reasons: no achiral reference is needed to compute CHI, no sym-
metry assumptions are needed to compute CHI and DSI, no folding and unfolding pracess
needed here, the normalization are different, and the farthest point from the centroid is not needed
here, and, of course, the extremal figures are different.

The properties of CHI were examined for monodimensional sets and planaf Séisy are
now examined for spatial sets. Hyperspatial $e¢s, d is any positive integgrare examined when
all vertices are unequivalent. The major difference between planar, spatial, and hyperspatial sets
lies in the expression of the optimal rotation. The properties of DSI are also examined. For clarity,
a set ofn=3 points will be called a triangle. The most dissymetric triangles, i.e., those maximiz-
ing DSI, are here analytically computed when there are two or three equivalent vertices.
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II. NOTATIONS

The notations are those used in Ref. 12. X0 and X1 aretteevs andd columns arrays of
coordinates. X0 is the fixed set and X1 is to move. The quote denotes the transposition operator.
All vectors are written as one-column matricésly) is the scalar product of the vectorandy,
and whend= 3, x[y is their cross product. The trace and the determinant operators are denoted,
respectively, Tr and Det. Y1 is the rotated and translated image of X1D&rdTr((X0— Y1)
-(X0—Y1)") is the sum of the squared distancB¥. is minimized for rotation plus translation
when X0 and X1 are centered before computing the optimal rotation. Translations will be no
longer considered, and the centering condition will not be assumed unless otherwise mentioned.
The following matrices are used: V&X0’-X0, V11=X1'-X1, V10=X1'-X0, V01=V10’, and
T=(TO+T1)/2, TO=Tr(V00) and T1=Tr(V11) being the respective inertia of X0 and X1, reduc-
ing to the usual inertia when the arrays are centered. The identity matrpaiglR is a rotation
matrix, such that YEX1-R’.

The correspondence between X0 and X1 is handled viadmensional square permutation
matrix P. Let be Z=P-Y1. When X1 is the inverted image of X0 and when the centering
condition is satisfied, the chiral index of a spatial set is €BF/(4T/d), with D?=Tr((X0
—P-X1-R')-(X0—P-X1-R’)") being minimized over all rotationR and allowed permutations
P. When X1 is a rotated and translated image of X0 and when the centering condition is satisfied,
DSI=D?/2T, D being minimized over all rotations and allowed nonidentity permutations.

The computation of either CHI or DSI requires the optimal rotation superimposing two sets.
Whend= 3, the analytical expression of the optimal rotation superposing X1 on X0, X0 and X1
being anyn rows and 3 columns arrays of coordinates, is given in the Appendix.

lll. THE OPTIMAL ROTATION FOR 3D ENANTIOMERS

In this section, the centering condition is not assumed and three-dimensional enantiomers are
considered. For clarity, X0 is noted X and its inverted image is X2 —P-X, and we define
V=X"-P.-X=-V01. From Appendix A, we have

D?=D0%-2(q|Bq), 1)

the optimal quaternion being the eigenvector associated to L1, the highest eigenvalBe of

_(0 c’)
B= c Al 2
A=Tr(V+V')-1—(V+V'), ©)

V(2,3-V(3,2
c=| VED-V(13]. (4)
V(1,2-V(2,1)

WhenP is a symmetric permutatiom,is null, and the eigenvalues &fare the three eigenvalues
of A and zero.

IV. ENANTIOMERS WITH ALL VERTICES UNEQUIVALENT

All the conditions of the preceding section are assumed to stand, and the vertices are all
unequivalent, i.e., the only allowed permutatiorPis |. V=X"-X is symmetric and is therefore
null. The sum of squares prior rotation is $64 Tr(V), which is the maximizedD? value
because zero is the smallest eigenvaluB.0Ve haveA=2(Tr(V)-1—-V). Let v1, v2, v3 be the
eigenvalues oV arranged in decreasing order. The largest eigenvallkisfl1=d1=2(v1+v2)
and the optimal rotation of X is 180 degrees around the principal axis associated to the smallest
eigenvalue olV. Now we haveD?=4 Tr(V)—4(v1+v2), i.e.,
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D?=4v3. (5)

We assume now thaX is centered, i.eV is n times its variance matrix. The chiral index of
the set ofn vertices is therefore:

CHI=3v3/v1+v2+Vv3). (6)

CHI is d times the percentage of inertia associated to the smallest eigenvallieLafoking at
Egs.(3) and(7) in Ref. 12 and Appendix 1 in Ref. 12, we can see that this is also true for planar
sets @=2) and unidimensional setsl€1).

The eigenvalues oV being positive and in decreasing order, CHI is maximized for
vl=v2=v3=v, i.e., CHI=1 andV=v-I. WhenX has only 4 vertices, it is therefore a regular
tetrahedror(see Appendix 2 in Ref. 12

V. HYPERSPATIAL SETS WITH ALL UNEQUIVALENT VERTICES

The optimal rotation superimposing twdedimensional sets is unknown whdp-3, except for
enantiomers with all unequivalent vertices, as shown hereafter. The sum of squares to be mini-
mized isD?=Tr(X—X-Q")- (X—X-Q")")=2(Tr(X"-X)—Tr(Q-X"- X)), X being the(n,d) ar-
ray of coordinates an@ being an orthogonal matrix with df=—1. Thus, TrQ-X'-X) has to
be maximized. Assuming thatis in its principal components axise.,V=X'- X is diagonal, we
have to find the maximum d&=v(1)-Q(1,)+v(2)-Q(2,2+...+v(d) - Q(d,d),v(1),...,v(d) being
the eigenvalues o¥ in decreasing order.

E=[(v(1)—v(d)-Q(1,D)+ (V(2—Vv(d))- Q2,2+ + (v(d—1)—v(d))
-Q(d=1d-1)]+v(d)-Tr(Q).

The eigenvalues o) can be either+1, or —1, or pairs of conjugate complex roots of 1. It
follows that Tr@Q) is maximized wherd—1 eigenvalues are-1 and one is—1. Obviously, the
sum of thed—1 terms (v{) —v(d))- Q(i,i) is also maximized for Q(i)=1 wheni<d. ThuskE
is maximized and? is minimized whenX and its enantiomer have opposite coordinates on the
principal axis with smallest inertia. Thus, EqS) and(6) are generalized:

D2=4v(d), (7)
and assuming centered:
CHI=d v(d)/(v(1)+Vv(2)+---+v(d)). (8)

As previously, CHI is maximized when all eigenvalues\baire equal. Whem=d+ 1, CHI
is therefore maximized wheX is a regulard-simplex.(See Appendix 2 in Ref. 1P.

From Eq.(8), it is possible to compare practical CHI values with the distribution of CHI when
X is an isotropic multinormal sampl¥. is a Wishart matrix from which the joint density of the
percentages of inertia can be deriVédeading to the distributior? of CHI/d. Unfortunately, the
final expression is not trivial whed>2.

VI. THE DIRECT SYMMETRY INDEX

In this sectiond-dimensional sets are considered and the centering condition is not assumed.
The situation where all vertices are unequivalent precludes the existence of direct symmetry in the
set. This situation should not be confused with the purely geometric situation where all vertices are
equivalent(i.e., undistincy, for which symmetry properties are potentially observable. Thus, we
consider now only sets with at least two equivalent vertices. As for the chiral index, th®$um
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of then squared distances between the vertices and those of the permuted set is minimized for all
rotations and all authorized permutations, excluding of course the identity permuRstidn
When the set is centered DSD?/(2T).

P being fixed, the sum of the squared distances to minimize is, as previ@syTr((X0
—P-X1-R’)-(X0—P-X1-R’)"). Setting XC=X1=X andV=X'-P-X, we get

D?=2(T-Tr(V-R")). 9)

There are at least two equivalent poirtandy. Thus the minimum ob? for all rotations and
permutations cannot exceed the minimunDdffor all rotations and for the permutation exchang-
ing x andy, i.e.,Pis such thaV=x-y’' +y-x'+Z'-Z, with Z being the 6—2,d) block extracted
from X by elimination ofx andy. For this permutation,

Tr(V-R")=y"-R"-x+x"-R"-y+Tr(Z'-Z-R’). (10

Assumingd>1, a rotation exist® which rotates from+90 degrees the first axis toward the
second axis, i.e.R(2,1)=—-R(1,2)=1, R(i,i)=1 for i>2, all other elements oR being null.
Thus, R+R'=0, y"-R'-x+x’"-R"-y=0 and —Tr(Z’'-Z-R')=Tr(Z'-Z-R)=Tr(R'-Z'-2)
=Tr(Z'-Z-R")=0, which means that TX:-R") is null. Because a permutation and a rotation
exist such that T\ R’) =0, it follows from (9) that the minimum oD? is upper bounded by P,
and then DSI pertains f{®;1] whend>1.

The following centered set containing three points is such that=0Sfor all d>1: x=el
(=1-v3)/12,y=el-(—1+v3)/2,z=¢€l, el being the first base vectorandy being equivalent
andz being not.

Whend=1, x andy are numbersZ is a vector,T=x?+y?+Z'-Z, R=1, and Tr{V-R’)
=2Xx-y+Z'-Z. Thus, —D?=2.(T+Tr(V-R’))=2(x+y)?+4-Z'-Z, which cannot be nega-
tive. Thus, ford=1, D? varies from 0 to & and the direct symmetry index pertains[@2], the
extremal value DS+ 2 being reached for a centered set containing two opposite values. But of
course, direct rotational symmetry has little interestder1.

Computing simultaneously CHI and DSI for spatial sets is easy, since they both lead to the
same quadratic form defined by E¢¥)—(4), except that the quadratic form associated to DSI now
takes the opposite sign, because X1 was sef tather than to— X. It means that the smallest
eigenvalue L4 should be used to compute DSI rather than L1 for CHI, the minimized sum of
squared distances being now

D?=D0%+2LA4. (11)

As shown in the Appendix, L4 is always nonpositive. Another difference between CHI and
DSl is that the normalizing coefficients are, respectiveljj/diand 2T, but this is not a crucial
difference.

VII. THE DIRECT SYMMETRY INDEX OF PLANAR TRIANGLES

We assume that=2. Letx be the column vector of the abscissas, gide column vector of
their ordinatesx’ = (X1,X5,....X,) andy’=(y1,Ys,....yn). The points will bep,p,,...,p,. The
image of(x,y) through the permutatioR is (Px,Py). P being fixed, the distanc® minimized for
all rotations is knowrt?

D2=2(T—E), (12
E being the non-negative number, such that
EZ=(X'P'X)?+(X'P"y)?+(y'P'X)?+(y'P'y)?+ 2(x'P'X)(y'P'y) = 2(y'P'X)(x'P"y).

Thus,
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E2=(x'Px+y'Py)?+(y'Px—x'Py)?. (13

The minimization for rotations plus translations is reached when the set is centered. The inertia is
thusT=x'x+y’y. We assumé& non-null, i.e., there are at least two distinct points. Léte the
n-vector such that all ite components are 1. Centering medng=1'y=0. We define alsiM
=(P+P')/2 andN=(P—-P")/2, which implies thai’'Nx=y’'Ny=0.

We assume now that=3, and that all vertices are equivalents,, d,3 and ds; are the
respective lengths of the sides of the triang[®.||, |p,| and|ps| are the lengths of the segments
joining the barycenter to the vertices at the opposite of the sides with respective ldpgtios,
andd,,. The inertia can be also written @s=||p,|?+ | p,l|>+|/psll?, or T=(d5s+d3,+d3,)/3.

The surfaceS of the triangle is such that B5=2(d?,d5,+ d3,d3,+ d3;d%,) — (df,+d3,
+d3y).

A. Extremal values for a given permutation

UsingM andN, Eq. (13) becomes
E2=(x'Mx+y'My)?+4(x'Ny)2. (14)
The gradient of (+ D?/2T)?=(E?/T?) if set to zero forx, then fory,
T(x'Mx+y'My)Mx+2T(x'Ny)Ny=E?x, (15)
T(x'Mx+y'My)My—2T(x'Ny)Nx=E?y. (16)
Multiplying on the left(15) by x’ then(16) by y’, and substracting,
T(X'Mx)?=T(y'My)*=E*(x'x—Yy'y). (17)
Then from(15) or (16),
T(x'Mx+y'My)(x'My)=E?(x"y). (18
From (17) and(18), it comes
EX(x'My)(x'x—y'y)=E2(X'y)(x'Mx—y'My). (19)

Whenn=3,5 permutations are possible: 3 are symmetric and 2 are circular.

WhenP is symmetricM =P, N=0, and Egs(15) and(16) reduce to the same eigenvalues
equationsT?Px=E?x andT?Py=E?y. Forn=3, the eigenvalues ¢f are+1, +1 and—1. Only
the solution such thd2=T? is possible, implyind> =0, leading to a minimum for DSI, rather to
a maximum.

WhenP is one of the 2 circular permutatiorighe other being its transposedve have: M
=1-1'—1, implying thatx’ Mx=—x'x/2 andy’'My=—y'y/2, and therE?=4(x'Ny)?+ T?/4.
Moreover, X’'Ny is equal to the determinant of the matfi|x|y] or to the opposite of this
determinant, depending on which circular permutation is used. That infptietS?+ T2/4. The
minimum is therefore reached by a null-area triangle: the points are aligned.

B. Maximizing DSI

Let us consider the symmetric permutation associgpindgo itself. The following comesN
=0 and E?=2x,X3+ X2+ 2y,y5+yi=(T—d3)?. Similarly, the E values associated with the
symmetric permutations associatipg with p, and p; with p; are such thaE2=(T—d§1)2 and
E?=(T—d2,)2. Both circular permutations lead &°=4S?+ T?/4, S?> andT being homogeneous
polynomials ofd?,, di; andd3,. The 4 expressions dE? are homogeneous polynomials of 3
variables, returning non-negative values.
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For a given triangle, the optimal permutation is that which leads to the highesiue. Thus
a maximum of DSI, or a minimum ofMax(E?)/T?], should be searched either among the
extrema ofE2/T? associated with a permutation, or at the intersection of at least two of the 4
polynomials associated with the permutatiohdyeing the same for all permutations.

It was shown above that only one extremunEsfT? is useful, and it is such th&=T/2 and
S=0. This is possible only if the length of a side is equal to the sum of the two others. Assuming
for example, thatlys=dg;+dy,, and reporting it iNE=|T—d34 =|d%,+ d3,— 2d34/3. The fol-
lowing comes:Ez(d§3+2d12d31)/3, or E=(T/2)+d;,d3;. The circular permutation could be
optimal only if d;,d3;=0, which should imply that DSt 0 (degenerate isocele triangl&Similar
conclusions should be reachedlif; or d;, have been used: the extremaE¥ T2 associated to a
given permutation are not adequate.

Thus, it is needed to look at the intersection of the polynomials. Noting theEAfevalues
depend only on the distances ratios, we can work with only two independent variables, and we
search the minimum at the intersection of 3 among the 4 polynomials. There are at least 2 among
3 symmetric permutations which lead to the same value. Assuming, for exampleg #H{at
—d?|=|T—d3,, thus,|d5;+d3,— 2d2,| = |d2,+ d3,— 2d3,|. Either we ged?,=d3,, which does
not work because the triangle should be isocele (B®), or we get 25,=d3,+d>2, and thus
E=|d3,—d3,|/2. In this situation, theE value associated to the third symmetric permutation is
null, and theE value associated to circular permutation&is d,,ds;. The equality between the
3 nonzerde? values give the desired relatiord%,— d3,)?=4d3,d3,. Reusing 215,=d3,+d?,, the
ratios of the squared lengths of the sides are deduagidsy) =1+v2/2, (d3,/d39) =1—v2/2,
andE?/T?=(1-DSI)?>=1/2.

C. Remarkable geometric properties of the optimal triangles

Using the distances, we get the angles associated, respectively, to the paims and
ps3: /4, w/8 and 57/8.
A possible set of coordinates of the most dissymetric triangle is

V2/3 1/3
X=| (—3-v2)l6 —1/6]. (20
(3—v2)I6  —1/6

Itis easy to see thats,= 3||p4||2, d2,=3||p,||?, andd3,= 3| p4l|2. It should be pointed out that
this relation is symmetric only fop, andp;. This remarkable proportionality exists also for the
degenerate triangle with only two equivalent vertices, which was cited in Sec. VI, and correspond-
ing to the maximal value DS1 1, for any dimensiom> 1. Ford= 2, the most chiral triangles also
offer this remarkable proportionality, discarding which vertices are equividnt; none of them
has the shape of the most dissymmetric triangle. The shape of the most dissymmetric triangle has
been measured using random triangles, with vertices uniformly distributed over a square. The
results(Table ) are in accordance with the theory.

VIIl. DISCUSSION AND CONCLUSION

The properties of the RM&o00t mean squaiechiral index have been examined for spatial
sets. As for planar sets, it is easily analytically computed, but the expression of the optimal 3D
rotation is fully different from those of the 2D one. The optimal rotation is unknown for hyper-
spatial sets, except wheX is superposed with its unpermuted enantiomer. WHerB, it is
proposed to extend the iterative procedfir® compute the optimal rotation superposing two
d-dimensional sets, and to use it for permuted enantiomers. Similarly, computing the RMS direct
symmetry index is easy for 2D and 3D sets, but suffers from the same limitation than the chiral
index whend> 3.

Looking at Eq.(8), it is clear that the RMS chiral index is also extendible to continuous
distributions with all distinct points, provided that the variance exists. When there are subsets of
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TABLE |. Measure of the shape of the most dissymmetric triangle with three equivalent vertices. Ntr: number of random
triangles. Popt: optimal permutation. DSI: direct symmetry index. The 3 angles are expressed as multifes of

Ntr Popt (1-DSI¥ Angles
1 321 0.724887 0.829182 1.305712 5.865106
11 312 0.632934 1.239900 2.710587 4.049513
13 231 0.546920 1.160093 1.859441 4.980466
37 213 0.539919 1.004153 1.865056 5.130791
85 321 0.537833 1.120757 1.822010 5.057233
179 321 0.519058 0.988815 2.067136 4.944049
363 321 0.513820 0.993675 2.054628 4.951697
751 231 0.503264 1.007408 2.009480 4.983112
13052 213 0.501541 0.999541 2.006778 4.993681
51783 231 0.500970 1.001485 2.007749 4.990766
161448 231 0.500631 1.001784 1.999454 4.998762
394890 231 0.500541 1.000720 2.005067 4.994213
1097067 231 0.500420 1.000829 2.002094 4.997077
1347455 312 0.500412 1.000807 2.002092 4.997100
1483751 132 0.500085 1.000198 1.999638 5.000164
62565625 132 0.500073 1.000213 1.999673 5.000114
90476880 132 0.500062 1.000012 2.000374 4.999613
143978185 321 0.500048 1.000032 2.000369 4.999599
178782085 312 0.500024 1.000037 2.000189 4.999775

undistinct points, handling continuous sets is more difficult, because the set of authorized permu-
tations must be redefined. This latter remark applies to the direct symmetry index. Thus, the
extension of CHI and DSI to continuous sets will be examined in a further work.

The most chiral triangles and the most dissymmetric triangles offer the same remarkable
geometric property. Its extension to higher-dimensional simplices is an open problem.

The chiral index and the direct symmetry index provides a coherent quantification of rota-
tional symmetries carrying more information than a boolean value indicating the presence or
absence of such symmetries. Although a perfect symmetry can be destroyed when a small pertur-
bation is applied, the ability to quantify proper and improper rotational symmetries provides a
robust tool to overcome this problem. As a by-product of computing CHI or DSI, the axe and
angle associated to the optimal quaternion locate nhonambiguously the symmetry element. When
computing either CHI or DSI, if more than one permutation leads to small values of the indices,
the set of optimal quaternions provides informations about the existence of more than one sym-

metry element. Building an automated procedure returning all symmetry elements of a perturbated
symmetric set is currently investigated.
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APPENDIX: THE OPTIMAL ROTATION FOR SPATIAL SETS

In this section, the centering condition is not assumed,cnd. X0 and X1 are any rows
and 3 columns arrays of coordinates. The identity permutdfern is assumed, but the final result
will be valid for any P with replacing X1 byP-X1. The well-known Procrustes algorittfrt’
used to find the optimal orthogonal transformation superposingdwets does not work for
enantiomers, because it leads alwayPte 0 and the optimal orthogonal matrix has a negative
determinant (Det —1). Some iterative procedures are availdBi¥ but the final expression of
the optimal rotation was found by DiamoAtleading to expresB? with a quadratic form of the
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quaternion associated to the rotation. This quadratic form is maximized by an orthonormal basis of
four quaternions. For convenience, the expression of the optimal rotation is retrieved here follow-
ing a different presentation.

A 3D-rotation R is associated to a 3D rotation axisand to a rotation angle. This is
expressed with a quaternion=(p,u), with p=cos{/2) and ||lu|={(ulu)?=sin(/2). Thus
(qlg)=1, and the image of a point throughR is?* Rx=(1—2(u|u))x+ 2(u|x)u+2p(uCx).
Because { p,—u) is the same rotation tharp(u), p is always taken non-negative, i.e.takes
values from 0 to 180 degrees.

Let ¢ be the sum of then vectorsx1;0x0;. Thus, we havec(1)=V10(2,3—V10(3,2),
c(2)=V10(3,)—-V10(1,3, and c(3)=V10(1,2—-V10(2,). The matrix A is defined asA
=(V10+V01)—Tr(V10+V01)-1. Let D& be the initial sum of squares, prior to rotating X1.
Now, we have the following equalitieRx1;|x0;)= (1—2{u|u)){x1;|x0;) + 2{u|x1;}{u|x0;)
+2p(ux1;|x0;) = (1—2(u|u))(xL;|x0;) + (u|(x1; - x0] +x0; - x1/)u) + 2p(u|x1;x0;). V10 is
the sum of then matricesx1;-x0/ , and Tr(v10) is the sum of the quantities(x1;|x0;). Thus we
getD2=D0?—2(u|Au)—4p(u|c). Let us define the %4 matrix B:

o %)
B=l¢c a)
a=(p,u) being the unknown quaternion; it follows th&?=D0?— 2(q|Bq).

B is a constant symmetric matrix depending only on the input data, and the quadratic form
(q|Bg) has to be maximizedj being a unit vector. This problem has a well-known solufibthe
stationary points are an othonormal basis eigenvectdss ahd the associated eigenvalues are the
optimal values of the quadratic form. The sense of each eigenvector is known bpaause be
non-negative. It is unimportant to getu or —u whenp=0. Let L1, L2, L3, L4 be the eigen-
values arranged in decreasing order.

B is the sum of two &4 symmetric matrices. One contains o#lyand zeros on the first row
and column. Let B1 be this matrix. The other contains arilyon the right of the first row and
on the bottom of the first column, zero as a first diagonal element, and nine zeros in the remaining
3% 3 block. Let B2 be this one-rank matrix, of which the four eigenvalues are obvidalgnd
zero with three as multiplicity. Let d1, d2, d3 be the eigenvalues afranged in decreasing order.
Thus, the following inequalities starfd: the eigenvalues of A separate those of
B:L1=d1=L2=d2=L3=d3=L4, and |Li—di’|<||c| for i=1,2,3,4, di being theith greatest
value among0,d1,d2,d3.

Two situations may arise. If d1 and d3 have not the same sign, the first set of inequalities
means that L1 and L4 have not the same sign. If d1 and d3 have the same sign, let us look at the
determinant oB expressed after diagonalization Af The components of become €1), ¢(2),

c(3), and detB)=—c(1)?-d2-d3—c(2)?-d1-d3—c(3)?-d1-d2. This determinant cannot be positive,
thus again L1 and L4 cannot have the same sign.

Thus L1 is always non-negative and L4 is always non-positive. The rotation mininiirg
those associated to the quaternion g1, suchifat DO?’—2L1, and the rotation associated to g4
such thatD?=D0?—2L4 is that which maximize®?. D2 has one saddle point associated to g2
and one associated to 3.

Some minor properties of the four optimal quaternions are obtained from their othonormality.
Considering the first row of the equation Bgq, it comes that D& D2=2L=2(v|c), with v
=u/p. It shows than only a positivie value leads td?<D0?. The three others equations may be
rewritten: (A—{v|n)I)v+n=0, but this is neither an eigenvector equation nor a linear system.
Two distinct directionsui and uj are generally not orthogonal: cos(ij)=—pi-pj/((1— pi?)- (1
—pj?)Y?= —cotg(ri)-cotg(rj), ri andrj being the 2D-angles associated, respectivelygito
andg;.
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