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Systemic sclerosis (SSc) is an autoimmune T-cell disease that is characterized by

pathological fibrosis of the skin and internal organs. SSc is considered a prototype

condition for studying the links between autoimmunity and fibrosis. Costimulatory

pathways such as CD28/CTLA-4, ICOS-B7RP1, CD70-CD27, CD40-CD154,

or OX40-OX40L play an essential role in the modulation of T-cell and inflammatory

immune responses. A growing body of evidence suggests that T-cell costimulation

signals might be implicated in the pathogenesis of SSc. CD28, CTLA-4, ICOS, and

OX40L are overexpressed in patients with SSc, particularly in patients with cutaneous

diffuse forms. In pre-clinical models of SSc, T-cell costimulation blockade with abatacept

(CTLA-4-Ig) prevented and induced the regression of inflammation-driven dermal

fibrosis, improved digestive involvement, prevented lung fibrosis, and attenuated

pulmonary hypertension in complementary models of SSc. Likewise, potent anti-fibrotic

effects were seen with the blockade of OX40L by reducing the infiltration of inflammatory

cells into lesional tissues leading to decreased fibroblast activation. Concerning clinical

effects, a preliminary observational study suggested some effectiveness of abatacept

on inflammatory joint involvement, whereas clinical improvement of skin fibrosis

was observed in a small placebo-controlled randomized trial. Currently there is one

ongoing phase II clinical trial assessing the efficacy of abatacept in SSc (ASSET trial,

NCT02161406). Overall, given the lack of available effective agents and the known toxic

effects of immunosuppressive agents approved for use in SSc, costimulatory pathways

offer the advantage of a targeted approach to costimulatory signals and potentially a

better safety profile.

Keywords: adaptive immunity, inflammation, costimulatory pathways, systemic sclerosis, fibrosis

INTRODUCTION

Systemic sclerosis (SSc) is a rare connective tissue disease characterized by the triad of vascular
damage, autoimmunity culminating in widespread fibrosis (1). It can be a devastating disease with
a profound impact on life expectancy reflected by high mortality rates (2, 3). The pathogenesis of
SSc involves a genetic predisposition together with some partly known environmental triggers. A
growing body of evidence suggests that in early stages of the disease there is an interplay between
the immune system in particular T and B cells and fibroblasts leading to the perpetuation of the
fibrotic process (4).
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The activation of naive T cells requires a first signal involving
the recognition by the T cell receptor (TCR) of a given antigen
and a second non antigen-specific costimulatory signal (5, 6). As
a matter of fact, activation and proliferation of naïve T cells are
unlikely in the absence of costimulatory signals (7). The CD28-
CD80/CD86 pathway is considered the classical co-stimulatory
pathway but other pathways such as ICOS-B7RP1, CD70-CD27,
CD40-CD154, or OX40-OX40L also play an essential role (8, 9).
Negative costimulatory pathways such as CTLA4-B7 or PD1-
PDL1/2 play a key role in restraining adaptive immune response
(10). There are numerous reports related to the implication of
T cell costimulatory pathways in the pathogenesis of several
different autoimmune conditions including multiple sclerosis,
systemic lupus erythematosus (SLE), and rheumatoid arthritis
(RA) (11, 12).

Positive and negative costimulatory signals might be
implicated in the pathogenesis of SSc (13, 14). Although a variety
of costimulatory molecules have been identified and different
immunotherapeutic strategies have been tested, objective clinical
responses are rare in SSc patients.

This review aims to discuss the contribution of T cell
costimulatory pathways in SSc pathogenesis with a specific focus
on their potential therapeutic applications.

POSITIVE COSTIMULATORY SIGNALS IN
SSC

CD28, which represents one of the most relevant costimulatory
pathways, is essential for naïve T cell activation. Indeed, it
promotes T-cell proliferation through the induction of IL-2
secretion after binding to CD80 and CD86 (15). Increased soluble
CD28 levels were detected in patients with SSc, compared to
healthy subjects, but no correlation was found between soluble
CD28 concentrations and extent of skin fibrosis. Furthermore,
higher levels of circulating soluble CD28 were more often
observed in SSc patients with associated autoimmune disorders
(Sjögren’s syndrome, systemic lupus, or polymyositis) (12). One
of the proposed mechanisms by which CD28 could be implicated
in the pathogenesis of SSc is that T cell activation through CD28
is associated with a different profile of cytokine production, with
increased proinflammatory and profibrotic cytokines such as
TNF, IL-2, IL-6, and IL-10 (16). Moreover, soluble CD28 was
shown to inhibit T cell response in vitro (12).

The inducible costimulator (ICOS) is a member of the CD28
superfamily. Its structure and function are very similar to that
of CD28 (15). ICOS is highly expressed in activated T cells
of patients with connective tissue diseases, including RA and
SLE (17, 18). ICOS has broad effects on adaptive immune
system activation by promoting germinal center formation, T cell
proliferation, antibody production and B cell isotype switching
(19). Previous reports showed that ICOS serum levels and
peripheral T cell expression were increased in patients with early
diffuse cutaneous SSc (dcSSc) (20, 21). Overexpression of ICOS
in activated T cells induces proinflammatory (IFN-γ, IL-17)
and pro-fibrotic (IL-4) cytokine synthesis, promoting fibroblast
activation and extracellular matrix synthesis (21).

OX40 and its binding partner, OX40L aremembers of the TNF
receptor superfamily and generate a potent costimulatory signal
that upregulates IL-2 production, enhances T cell survival, B cell
proliferation, and differentiation and proinflammatory cytokine
production (22, 23). OX40 also mediates inactivation of T-reg cell
function that unleashes nearby DCs, allowing them to induce an
adaptive immune response. OX40 levels were found significantly
increased in SSc patients compared to controls and patients with
SLE, particularly in the early-onset stage of the disease (24).
Two reports confirmed the influence of OX40-ligand (OX40L)
polymorphisms in SSc genetic susceptibility, highlighting its role
in the disease pathogenesis (13, 25).

Serum levels of the OX40 binding partner OX40 ligand
(0X40L) are increased in patients with SSc and were shown
to be predictive of the worsening of dermal and lung fibrosis
(26). OX40L expression is also prominent in the skin of patients
with diffuse SSc. Of great interest, OX40L has been recently
reported to be overexpressed in resting and activated dermal
fibroblasts, in addition to lesional skin T and B cells. Thus,
pathological activation of dermal fibroblasts may be directly
mediated by the OX40-OX40L axis, linking directly immunity
to fibrosis. The profibrotic effects of OX40L may also be related
to its crosstalk with matrix metalloproteinases (MMPs), which
are abnormally produced in SSc (27). OX40L has been shown to
directly modulate MMP expression in the lesional skin of fibrotic
mice invalidated for OX40L (26). Moreover, MMP-2 directly
stimulates dendritic cells to up-regulate OX40L on the cell surface
(28). MMPs also condition human naïve T cells and dendritic
cells to prime TH2 phenotype via an OX40L-dependent pathway
(28, 29).

CD40 is another member of the TNF receptor superfamily
that plays a pivotal role in mediating a broad variety of
immune and inflammatory responses including T cell-dependent
immunoglobulin class switching, memory B cell development,
and germinal center formation. The binding of CD154 (CD40L)
on TH cells to CD40 activates antigen-presenting cells and
induces a variety of downstream effects.

A wide array of evidence reported increased CD40 expression
in activated CD4+ T cells, skin fibroblasts, and the serum of
SSc patients (30–33). The upregulation of the CD40-CD40L axis
in immune cells seems at least partly mediated by epigenetic
modifications (Demethylation of CD40L regulatory elements)
(34, 35).

Soluble CD40L serum concentrations are associated
with vascular complications of the disease including
pulmonary arterial hypertension (PAH), digital ulcers and
destructive peripheral microangiopathy assessed by nailfold
videocapillaroscopy (36, 37).

Proteomic analysis of sera from individuals with diffuse
cutaneous SSc revealed a multianalyte signature, based notably
on CD40L levels, associated with clinical Improvement during
Imatinib Mesylate treatment. This results highlights the potential
interest of CD40L to predict treatment response in SSc (38).

DNAX accessory molecule 1 (DNAM-1) is an important
regulator of the adhesion and costimulation of T cells belonging
to the immunoglobulin supergene family (39). Strinkingly,
CD226, which encodes DNAM-1, polymorphisms have been
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identified as a genetic susceptibility factor to SSc, highlighting
the contribution of costimulatory pathways in the pathogenesis
of this condition (40, 41). DNAM-1 is also overexpressed in the
skin of patients with SSc (39) and upregulattion of DNAM-1 in
CD8+ T cells is associated with disease severity, suggesting this
factor to be a potential therapeutic target in SSc (42).

NEGATIVE COSTIMULATORY SIGNALS IN
SSC

Since the advent of immunotherapy for the treatment of
several neoplastic conditions there has been a rising interest
in intrinsic immunity downregulators such as cytotoxic T-
lymphocyte-associated molecule-4 (CTLA-4) or programmed
cell death 1 (PD-1) and programmed cell death ligand 1
(PD-L1). One of the main drawbacks of immune checkpoint
blockade therapy is the emergence of the so-called immune-
related adverse events highlighting the role that immune
checkpoint play in maintaining immunologic homeostasis
(43). Recently there have been few reports of SSc and SSc-
like conditions induced by immune checkpoint inhibitors
(44, 45).

CTLA-4 is a T cell inhibitory molecule which binds to
CD80/86 with higher affinity than CD28, resulting in a drop
in IL-2 production and a decreased T cell proliferation (46).
Preliminary data suggest that CTLA-4 might contribute to
human SSc. Notably, serum soluble CTLA-4 levels (sCTLA4)
have been shown to be increased in patients with diffuse
cutaneous subset and to correlate with disease severity
and activity (14). Increased sCTLA4 serum levels are also
observed in several other autoimmune diseases. The biological
significance of elevated sCTLA-4 serum levels is not completely
clarified yet. sCTLA-4 may specifically inhibit early T-cell
activation by blocking CD80/CD86—CD28 interaction. On
the other hand, higher levels of sCTLA-4 could compete
for the binding of the membrane form of CTLA-4 with
CD80/CD86, leading to a reduction in inhibitory signaling
(47). In line with this, a meta-analysis of published data
showed CTLA-4 polymorphisms conferred susceptibility to
SSc (48). Macrophages in particular profibrotic M2 phenotype
macrophages may have an important in perpetuating the
disease (49). A previous study on tumor immune escape
showed that blocking CTLA-4 decreased M2 macrophages
differentiation thus suggesting a close relationship between these
entities (50).

PD-1 is another inhibitory molecule that regulates T cell
tolerance. The expression of PD-1 and its ligands PD-L1
and PDL-2 is antagonized by their soluble forms, leading to
augmented T-cell responses (51). Two previous reports showed
soluble PD-1 and PD-L1 and PD-L2 to be elevated in SSc patients
suggesting it to be correlated to disease development and severity
(52, 53). These data seem to suggest that the elevated levels of
soluble CTLA-4 and PD-1/PD-L1 and 2 observed in SSc is related
to an abnormal T cell and B cell activation.

Figure 1 summarizes the putative role of costimulatory
pathways in the pathogenesis of SSc.

COSTIMULATION THERAPY—DATA FROM
EXPERIMENTAL MODELS OF SSC

Altogether, positive and negative costimulatory T cell signals
seem to implicated in the pathogenesis of SSc. Therefore,
targeting these pathways through immunotherapy might be
more advantageous than current immunosuppressive therapies
traditionally used in SSc. Indeed, this strategy offers the
hypothetical advantage of targeting the antigen-specific T
cells involved in the disease without causing generalized
immunosuppression and therefore decreasing the theoretical risk
of infectious events (54). Data from in vivo complementary
animal models give us insight on the effects of the costimulatory
pathways blockade as a promising strategy for the treatment of
SSc.

A first set of data have shown that DNAM-1 gene invalidation
through the use of DNAM-1 deficient mice or the treatment
of mice with DNAM-1 neutralizing antibodies prevented the
development of dermal fibrosis in the bleomycin mouse model
by reducing the infiltration of lesional skin by inflammatory cells
and preventing the release of proinflammatory cytokines (TNF-α
and IL-6) (39).

OX40L blockade through gene invalidation or targeted
therapy using monoclonal antibodies prevented and induced
regression of established inflammation-driven dermal fibrosis
in the bleomycin mouse model, which mimics early and
inflammatory stages of SSc (26). Likewise, OX40L blockade
protected against the development of interstitial lung disease
and alleviated pulmonary hypertension in the Fra-2 transgenic
mouse model, which is characterized by extensive inflammatory
infiltrates with features of human vasculopathy, including PH,
paralleled by fibrosing alveolitis similar to that in patients
with SSc (26). The effects observed with OX40L blockade were
mediated by a dramatic reduction of T cells, B cells, and natural
killer cells as well as by reduced levels of proinflammatory
cytokines such as IL-6 and TNF-α (26). Interestingly, OX40L
knockout mice spontaneously develop interstitial pneumonia
and severe PH thus addressing several aspects of SSc pathogenesis
(24, 55).

Abatacept (CTLA4-Ig) is a recombinant fusion protein
comprising the extracellular domain of human CTLA-4 and the
modified Fc region of human IgG1 widely used for the treatment
of rheumatoid arthritis (56). In complementary murine models
of SSc abatacept prevented the development of inflammation-
driven fibrosis and reversed established bleomycin-induced
fibrosis. Abatacept treatment led to reduced total and activated
T cell, B cell and monocyte infiltration in the lesional skin, as
well as decreased release of proinflammatory and profibrotic
cytokines. Abatacept demonstrated no efficacy in the treatment
of late and non-inflammatory dermal fibrosis in the tight skin-1
mouse model, supporting that T cells are necessary to drive the
antifibrotic effects of this molecule (57).

Abatacept also improves gastrointestinal involvement in the
chronic graft-vs.-host disease (cGvHD) model by decreasing
liver transaminase levels and improving colon inflammation.
Abatacept alleviated interstitial lung disease and reversed PH in
Fra-2 mice by improving vessel remodeling and related cardiac
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FIGURE 1 | Costimulatory pathways and T cell responses in the pathogenesis of SSc. Naïve CD4+ T cells undergo expansion and differentiation at the time of T cell

receptor (TCR) binding to a major histocompatibility complex (MHC) molecule carrying a peptide antigen. The engagement of positive costimulatory pathways

(ICOS-B7RP1, DNAM-CD112/115, CD28-CD80/86, CD40-CD154, and OX40-OX40L) and the inhibition of negative costimulatory pathways (CTLA4-CD80/86,

PD1-PDL1/2) promote the development of T helper subsets. T helper cell cytokines (TNF, IFNγ, IL-4, IL-17) induce profibrotic type 2 macrophages (M2) polarization

with T helper type 2 (Th2) playing a central role. Regulatory T cells (Treg) promote further M2 macrophage polarization and activation through the secretion of IL-10

and TGFβ. M2 activated macrophages promote fibroblast activation leading to excessive extracellular matrix production. In its turn metalloproteinases (MMPs) directly

stimulate antigen-presenting cells (APCs) to upregulate positive costimulatory molecules in particular OX40L.

hemodynamic impairment. Abatacept significantly reduced, in
lesional lungs of Fra-2 mice, fibrogenic markers levels, T-cell
proliferation and M1/M2 macrophage infiltration (58). These
findings suggest that abatacept might be an appealing therapeutic
approach beyond skin fibrosis for organ involvement in SSc.

FROM BENCH TO BEDSIDE: DATA FROM
OBSERVATIONAL STUDIES AND CLINICAL
TRIALS

Data from an observational (59) and case control study (60)
suggested beneficial effects of abatacept in patients with SSc.
Indeed, in the study from de Paoli et al. (60) abatacept was
added to standard therapy in four patients suffering from severe
diffuse cutaneous SSc (dcSSc). In this study, abatacept induced
a medically significant and pronounced improvement of the
modified Rodnan skin score (mRSS) as well as in pulmonary
function tests. However, these results are difficult to interpret
since regression of skin fibrosis and overall disease activity over
time may reflect the natural history of SSc. Data from the
EUSTAR (European League Against Rheumatism Scleroderma

Trials and Research group) cohort showed that abatacept
induced clinical improvement particularly some effectiveness on
inflammatory joint involvement on a group of 11 patients with
SSc (59).

One small randomized, placebo-controlled trial assessed the
efficacy of abatacept in patients with dcSSc over a period
of 24 weeks (61). After randomization, 7 patients received
abatacept therapy, while 3 patients in the control group received
placebo. At week 24, subjects randomized to abatacept showed
a trend toward improvement in mRSS (−8.6 p = 0.0625). After
adjusting for disease duration, mRSS significantly decreased in
the abatacept group as compared to the placebo group (−9.8 p
= 0.0114). Interestingly, after differential gene expression and
pathway enrichment analysis the authors showed that improvers
tended to be in the inflammatory intrinsic subset at baseline.
Notwithstanding, the small sample size does not allow do draw
any conclusions regarding its clinical efficacy.

Conversely, pembrolizumab, a PD-1 inhibitor approved for
the treatment of advanced melanoma, selected lymphomas, and
advanced non-small cell lung cancer due to its robust antitumor
immunity, 2 cases of treatment-induced sclerodermoid reactions
resembling to SSc have been published (44). This report

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2998

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Boleto et al. Costimulatory Pathways and SSc

T
A
B
L
E
1
|
S
u
m
m
a
ry

o
f
th
e
d
iff
e
re
n
t
c
o
st
im

u
la
to
ry

p
a
th
w
a
y
m
o
le
c
u
le
s
d
a
ta

in
S
S
c
.

C
o
s
ti
m
u
la
to
ry

p
a
th
w
a
y

T
is
s
u
e

e
x
p
re
s
s
io
n

E
x
p
re
s
s
io
n

le
v
e
ls

C
li
n
ic
a
l

m
a
n
if
e
s
ta
ti
o
n
s

E
x
p
e
ri
m
e
n
ta
l
b
lo
c
k
a
d
e
in

S
S
c

a
n
im

a
l
m
o
d
e
ls

E
x
p
e
ri
m
e
n
ta
l

a
c
ti
v
a
ti
o
n
in

S
S
c

a
n
im

a
l
m
o
d
e
ls

C
li
n
ic
a
l
tr
ia
ls

M
a
in

re
s
u
lt
s

P
o
s
it
iv
e

c
o
s
ti
m
u
la
to
rs

C
D
2
8
-

C
D
8
0
/8
6

S
e
ru
m

In
c
re
a
se

d
N
o
n
e

N
o
n
e

N
o
n
e

IC
O
S
-B

7
R
P
1

S
e
ru
m
,
sk
in

In
c
re
a
se

d
E
a
rly

d
c
S
S
c

N
o
n
e

N
o
n
e

O
X
4
0
L
-O

X
4
0

S
e
ru
m
,
sk
in

In
c
re
a
se

d
E
a
rly

o
n
se

t,

w
o
rs
e
n
in
g
o
f

d
e
rm

a
lfi
b
ro
si
s

P
re
ve
n
te
d
a
n
d
in
d
u
c
e
d

re
g
re
ss
io
n
o
f
e
st
a
b
lis
h
e
d

in
fla
m
m
a
tio

n
-d
riv
e
n
d
e
rm

a
l

fib
ro
si
s
in

th
e
b
le
o
m
yc
in

m
o
u
se

m
o
d
e
l;
P
ro
te
c
te
d
a
g
a
in
st

in
te
rs
tit
ia
ll
u
n
g
d
is
e
a
se

a
n
d

p
u
lm

o
n
a
ry

h
yp

e
rt
e
n
si
o
n
in

th
e

F
ra
-2

m
o
d
e
l

S
p
o
n
ta
n
e
o
u
s
IL
D

P
ro
d
u
c
tio

n
o
f
a
n
tiD

N
A

a
n
tib

o
d
ie
s

C
D
4
0
L
-C

D
4
0

S
e
ru
m
,
sk
in

In
c
re
a
se

d
D
ig
ita
lu

lc
e
rs
,
P
H
,

e
a
rly
/a
c
tiv
e
N
V
C

p
a
tt
e
rn

N
o
n
e

N
o
n
e

C
D
1
1
2
/1
5
5
-

D
N
A
M
-1

S
ki
n

In
c
re
a
se

d
C
o
rr
e
la
te
s
w
ith

m
o
re

se
ve
re

d
e
rm

a
lfi
b
ro
si
s
a
n
d

IL
D

N
o
n
e

N
o
n
e

N
e
g
a
ti
v
e

c
o
s
ti
m
u
la
to
rs

C
T
L
A
-4
-

C
D
8
0
/8
6

S
e
ru
m

In
c
re
a
se

d
d
c
S
S
c
,
c
o
rr
e
la
te
s

w
ith

d
is
e
a
se

a
c
tiv
ity

a
n
d

se
ve
rit
y

N
o
n
e

P
re
ve
n
te
d
in
d
u
c
e
d

d
e
rm

a
lfi
b
ro
si
s;

w
a
s

e
ff
e
c
tiv
e
in

th
e

tr
e
a
tm

e
n
t
o
f

e
st
a
b
lis
h
e
d
fib

ro
si
s

1
)
P
ilo
t
st
u
d
y
e
va
lu
a
tin

g
th
e

c
lin
ic
a
la
n
d
m
o
le
c
u
la
r

e
ff
e
c
ts

o
f
A
b
a
ta
c
e
p
t
in

d
c
S
S
c

2
)
S
tu
d
y
o
f
S
u
b
c
u
ta
n
e
o
u
s

A
b
a
ta
c
e
p
t
to

Tr
e
a
t
D
iff
u
se

C
u
ta
n
e
o
u
s
S
ys
te
m
ic

S
c
le
ro
si
s
(A
S
S
E
T
)
tr
ia
l

(C
lin
ic
a
lT
ria

ls
.g
o
v
id
e
n
tifi
e
r:

N
C
T
0
2
1
6
1
4
0
6
)

1
)
Tr
e
n
d
to
w
a
rd

im
p
ro
ve
m
e
n
t
in

m
R
S
S

2
)
E
st
im

a
te
d
st
u
d
y

c
o
m
p
le
tio

n
d
a
te
:

S
e
p
te
m
b
e
r
2
0
1
8

P
D
1
-L
-P

D
1

S
e
ru
m

In
c
re
a
se

d
C
o
rr
e
la
te
s
w
ith

d
is
e
a
se

se
ve
rit
y

N
o
n
e

N
o
n
e

C
D
(c
lu
s
te
r
o
f
d
iff
e
re
n
ti
a
ti
o
n
),
IC
O
S
(in
d
u
c
ib
le
c
o
-s
ti
m
u
la
to
ry
m
o
le
c
u
le
),
B
7
R
P
1
(B
7
-r
e
la
te
d
p
ro
te
in
-1
),
D
N
A
M
-1

(D
N
A
X
A
c
c
e
s
s
o
ry
M
o
le
c
u
le
-1
),
C
T
L
A
-4

(c
yt
o
to
xi
c
T
ly
m
p
h
o
c
yt
e
-a
s
s
o
c
ia
te
d
p
ro
te
in
4
),
P
D
1
(p
ro
g
ra
m
m
e
d
d
e
a
th
1
),
d
c
S
S
c

(d
iff
u
s
e
c
u
ta
n
e
o
u
s
s
ys
te
m
ic
s
c
le
ro
s
is
),
P
H
(p
u
lm
o
n
a
ry
h
yp
e
rt
e
n
s
io
n
),
N
V
C
(n
a
ilf
o
ld
va
s
c
u
la
r
c
a
p
ill
a
ro
s
c
o
p
y)
,
IL
D
(in
te
rs
ti
ti
a
ll
u
n
g
d
is
e
a
s
e
),
m
R
S
S
(m
o
d
ifi
e
d
-R
o
d
n
a
n
s
ki
n
s
c
o
re
)

Frontiers in Immunology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 2998

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Boleto et al. Costimulatory Pathways and SSc

emphasizes the role of costimulatory pathways and immune
checkpoint molecules in the pathogenesis of SSc. A summary of
costimulatory pathways in SSc is available on Table 1.

RESEARCH AGENDA

SSc is a very severe autoimmune disease that is considered a
prototype for studying the pathogenesis of fibrosis in particular
the links between fibrosis and immunity (2). Current therapies
used in the treatment of SSc remain essentially palliative and do
not reverse the natural course of the disease. Given the lack of
available effective agents in SSc, and their high toxicity profiles,
targeted immunotherapy in particular blocking costimulatory
molecules could be a beneficial strategy for SSc and other
fibrotic conditions. Hence, in this context, abatacept appears to
be a promising therapy for SSc given the encouraging results
presented in this review but also given its well-documented safety
profile in other rheumatic diseases in particular in RA (62).
To better address the issue of abatacept in the treatment SSc
patients, the Study of Subcutaneous Abatacept to Treat Diffuse
Cutaneous Systemic Sclerosis (ASSET) trial (ClinicalTrials.gov
identifier: NCT02161406) is currently ongoing. This study is
a randomized placebo-controlled double-blind phase 2 trial
of patients with dcSSc comparing subcutaneous abatacept
against placebo. The primary outcome of this trial is defined

as the change from baseline in the mRSS to month 12.
Further randomized-controlled trials assessing the efficacy of
costimulation therapy against placebo and standard therapy
drugs (p.e. cyclophosphamide, mycophenolate mofetil) are
warranted.

CONCLUSION

There is a large body of evidence showing that T cell
costimulatory pathways play a critical role in the pathogenesis
of SSc. Data from in vivo experimental animal models and
from human studies showed meaningful effects of costimulation
blockade in SSc. Of most interest is abatacept a targeted
immunotherapy widely used in RA for which a randomized-
controlled trial is currently ongoing. Targeted innovative
therapies are one of the most important issues in SSc which is
a life-threatening condition free of effective therapies. Further
trials are awaited enthusiastically by the medical community
in order to stop the natural course of this destructive
condition.
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