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ABSTRACT

Context. Fireball networks are developing over the whole planet, with the aim of recovering meteorites and at the same time deter-
mining their orbits. The ultimate goal of such networks is to identify the parent bodies of meteorite families to achieve this, orbit
accuracy is critical. Yet, the determination of an orbit relies on a long and complex reduction process including: (1) astrometry, with
heavy distortion for fish-eye lenses, (2) estimation of the external bias on the observation, (3) fit of the trajectory, (4) deceleration
model, and (5) actual orbit computation.

Aims. Our goal is to compute accurate trajectories with an estimate of internal and external errors as realistic as possible, taking
advantage of the dense observation network FRIPON (Fireball Recovery and InterPlanetary Observation Network), which comprises
more than 100 cameras in France and Europe. In particular, we pay special attention to the distortion of images due to fish-eye lenses.
In the present paper, we describe the analytical protocol that allows us to compute trajectories and their uncertainties.

Methods. We developed a general distortion model to be used on the FRIPON fish-eye cameras. Such a model needs to be accurate
even at low elevation, as most fireball observations are performed low on the horizon. The radial distortion is modelled by a nine-
degree odd polynomial, hence by five parameters. In addition, we used three parameters to describe the geometry of the camera and
two for non-symmetrical distortion. Lastly, we used a new statistical method taking systematic errors into account, which allows us
to compute realistic confidence intervals. We tested our method on a fireball that fell on 2017-08-94 UT 00:06.

Results. The accuracy of our astrometrical model for each camera is 2arcmin (10), but the internal error on the fireball of
2017-08-94 UT 00:06 measurement is 0.7 arcmin (better than 1/10 pixel). We developed a method to estimate the external error
considering that each station is independent and found it equal to 0.8 arcmin. Real residuals are coherent with our estimation of
internal and external error for each camera, which confirms the internal consistency of our method. We discuss the advantages and
disadvantages of this protocol.

Key words. astrometry — meteorites, meteors, meteoroids

1. Introduction

Most of the fireball networks, such as the European Fireball
Network (Oberst et al. 1998) and the Desert Fireball Network
(Bland et al. 2012) use fish-eye lenses to survey the entire sky.
However, the small focal length and the heavy distortion of these
lenses induce reduction problems. In addition, external errors
are difficult to determine, so that errors on orbits and strewn
fields are poorly constrained. This problem was first addressed
by Ceplecha (1987), taking advantage of the fact that trajectories

are almost linear, and that they can be determined based on obser-
vations from two different stations. Borovicka et al. (1995) sub-
sequently improved on this methodology by using a least squares
method to fit all the observations at the same time. This pro-
cedure is at the heart of all the methods used thereafter by the
different fireball networks (Bland et al. 2012; Weryk et al. 2008;
Trigo-Rodriguez et al. 2007), but the geometrical distortion and
the error estimations differ among the projects. All networks have
to deal with low elevation errors (& < 15°), which constitute a
serious problem as most of the final trajectories are seen low on
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the horizon. We developed a new method, inspired by Hivon et al.
(2017) and based on a nine degree odd polynomial distortion
function. This method allows us to perform measurements at a
5° elevation with an accuracy of 1 arcmin or 0.1 pixel. As orbit
accuracy strongly depends on measurement error, a reliable error
estimate is needed. While the internal error is more easily deter-
mined than the external error, the latter is critical to the final
result. Borovicka et al. (1995) elected to estimate it based on the
quality of the trajectory fit. In this paper, we propose a new exter-
nal error estimation method based on observation errors between
stations being independent from one another. This makes it pos-
sible to use several stations to perform a Gaussian analysis and
therefore a global analysis of external errors.

The internal and external errors are then propagated on tra-
jectories and velocities. The latter task is rendered difficult as
observations are never reproducible (Egal 2017). However, such
estimates are needed to compute the orbital parameters of mete-
oroids. In particular the measurement of the velocities is critical:
a small error in velocity leads to significant errors in semi-major
axis and eccentricity. In consequence, poorly constrained uncer-
tainties in the trajectories and velocities of fireballs can lead to
major errors in orbital element estimates. In the present paper,
we detail the analytical method we developed to determine tra-
jectories and their confidence intervals for fireballs seen by cam-
eras that show all types of optical aberrations. Such aberrations
include asymmetrical defects, for example staggered or slanted
lenses, and cameras installed on structures that vibrate with the
wind, or dilate with temperature.

FRIPON network data are used to the test our method.
This fireball network was funded by Agence Nationale pour la
Recherche (ANR) in 2014 (Colas et al. 2012). It now comprises
95 cameras (Colas et al., in prep.), and has started expanding to
Europe (Gardiol et al. 2016; Koschny et al. 2017; Nedelcu et al.
2018). All the optical observations are made with the same hard-
ware configuration (Colas et al. 2015). The heart of the network
is a digital camera using a fish-eye lens. As the mesh of the net-
work is 80 km, an event can be detected by many cameras, which
can be used to estimate external errors on the measurements. The
method described in the present paper is the cornerstone of the
FRIPON reduction pipeline.

2. Astrometrical analysis
2.1. FRIPON network and data

All the observations of the FRIPON fireball network are made
with the same hardware configuration (Colas et al. 2015): both
for the fish-eye lens (f = 1.25mm) and for the detector (Sony
ICX445). Fish-eye lenses are known to produce heavy distor-
tion, and we were unable to obtain the optical design from the
lens manufacturer. Furthermore we found a strong heterogeneity
among the distortion figures in the same set of lenses, and among
the positions of the chip inside the camera. Hence, we devel-
oped our own distortion model to be fitted on each camera, as we
needed to compute calibrations with background stars (Ceplecha
1987; Bland et al. 2012). Our objective is to get a good calibra-
tion for elevations superior to 10°. Indeed, with a characteris-
tic distance between two cameras of about 80km, a meteor at
20km altitude will be seen with an elevation down to 10° by
six or seven cameras; but on average only one or two cameras
will see it at an elevation superior to 20°. So a calibration from
zenith to 10° allows us to observe the whole trajectory of a large
majority of bolides. Other networks, such as the Desert Fireball
Network (Devillepoix et al. 2019) use better resolution cameras
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with larger spacing, but the need for low altitude astrometry is
the same. As we used a video acquisition frame rate of 30 fps,
the limiting magnitude is only zero, so there are almost no stars
visible on a single frame. In order to detect enough calibration
stars, longer exposure frames are needed. A pause of even five
seconds is not sufficient to efficiently sample the field of view,
as only a few dozen stars are measured. Hence, the measure-
ment needs to be repeated and this is done every ten minutes so
that the acquisition is disturbed as little as possible. With such a
strategy, for a clear night, a few thousand stars are measured per
camera and they fill the whole field of view as shown below in
Sect. 5.2 (Fig. 4).

As the camera mount is stable, this calibration can be used
over several nights in the case of a partly cloudy sky. Photomet-
ric corrections (flatfield, bias, and dark) are not used as such cal-
ibration images are not obtainable with remote fish-eye cameras.
Instead, we computed the median of all the calibration images
of the night, which automatically removes the stars as they move
with the sky. This produces a map of the hot pixels and other
static features related to the camera itself, which can in turn
be subtracted from each frame. All the frames (calibration and
detection) are then processed with SExtractor (Bertin & Arnouts
1996) to produce pixel positions (x,y). These calibrations are
processed with Scamp (Bertin et al. 2006) to get astrometri-
cal and photometrical plate solutions. As Scamp was not pro-
grammed for fish-eye observations, it only works at elevations
above 30°, where the distortion is lower. This solution serves
as the first order for our global model. The output of Scamp is
a file associating objects found on the CCD (x, y) with topocen-
tric positions (Alt, Az) and celestial positions for the observation
epoch (Ra, Dec).

2.2. Reference frames and geometrical parameters

The camera reference frame is a Cartesian coordinate system:
O, is the camera’s optical axis and O, and O, are defined by the
orientation of the CCD chip. The goal of the calibration is to con-
nect this reference frame with the Earth-fixed one International
Terrestrial Reference Frame (ITRF), common to all cameras and
necessary to compute the trajectory. Stars are used to fit a model
to link these two reference frames as star positions are fixed into
the celestial reference frame ICRF2 (Gaia Collaboration 2018),
making it easy to convert their positions into the Earth-fixed ref-
erence frame ITRF. The geometrical parameters are the three
angles describing the orientation of the camera (6;, 65, 63) in
the Earth-fixed reference frame and the optical centre position
(x0, Yo) on the camera CCD.

At the beginning of the process, the geographical position
of the camera is not used and no hypothesis is made on its ori-
entation. The latter has to be determined to calibrate each new
camera by exploring all possible directions and optical centres.
The determination of the distortion function as described below
allows us to convert a position in the image (x,y) into coordi-
nates (Alt, Az) in the camera reference frame.

2.3. Distortion function

In addition to determining the geometrical parameters character-
istic of each camera, its distortion function has to be modelled.
In the CCD frame, the position of a star is described by the dis-
tance to the optical centre R and the argument A (Eq. (1)) where
(x0, Yo) is the position of the optical centre. In the first instance,
we assumed that fish-eye lenses are perfectly symmetrical so that
a radial distortion model is sufficient. In this case, the azimuth of
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Fig. 1. Zenith distance of stars as a function of the distance R to the opti-
cal centre. Comparison of recorded stars (in black) with the equidistant
model (in red).

a star (in the camera’s frame) is directly measured by the angle A.

Y~—Yo.
X — X0

R= Jr—x +@-yP  tan(A) = (1)

The zenith distance z is given by a distortion function f(R)
shown in Fig. 1. Kwon et al. (2014) show that it is possible to
reach an accuracy of 0.4 pixel at 10° elevation with a standard
equisolid fish-eye distortion model described by Eq. (2). How-
ever, this was not usable for lower elevation.
R = ky sin(k; - 2). 2)

Most lens manufacturers attempt to design lenses in which
the distortion more or less follows the equisolid model (Bettonvil
2005). However, this is not always the case and, due to manufac-
turing processes, fish-eye lenses often deviate from this canon-
ical projection. For a better accuracy Hivon et al. (2017) use an
odd power law of sin(k; - z), the main term of the equisolid dis-
tortion model. With a very different setup (camera and lens),
they reach an accuracy of 1 arcmin with a smaller pixel size of
3 arcmin, even at low elevation. We found this method unnec-
essarily complex, and followed Hughes et al. (2010) by using
a standard odd polynomial function that can model any distor-
tion feature (Eq. (3)). This model can also be understood as the
modified development of a sin function. Our tests show that a
nine-degree odd polynomial function is sufficient to model the
distortion of FRIPON fish-eye camera as shown in Fig. 2.
z=a1-R+a3 -R3+a5 -R5+a7 ~R7+a9~R9.

3

2.4. Asymmetrical correction

Anisotropic systematic effects are present in some cameras. Such
an effect is particularly visible for the Brussels FRIPON camera,
see Fig. 3. In order to correct for it, we used an empirical correc-
tion formula according to Borovicka et al. (1995):

R = Rya(1 + K, sin(A + ¢)). 4

15

10 | g

dEl (arcmin)

-10 | g

15 L L y L L L L
10 20 30 40 50 60 70 80 90

Elevation (deg)

Fig. 2. Residuals in elevation, using a nine degree odd polynomial
function Eq. (3) to model the distortion. The standard deviation is
2.12 arcmin. Toulouse fish-eye camera.

This formula adds two new parameters to our model: an asym-
metrical parameter K| and a phase ¢. Ryq is given by Eq. (1).
The improvement provided by this correction is shown in Fig. 3.
In this case, the asymmetrical factor K| is about 2.5 X 1073,

2.5. Summary

Our astrometrical model uses 12 parameters that can be sepa-
rated into four categories: the three angles describing the orienta-
tion of the camera (6, 6,, 63), the optical centre position (xo,yo),
five parameters for the radial distortion function (a,, as, as, a7,
ag) and two parameters for the asymmetrical correction (K, ¢)
to account for chip inclination or lens misalignment. The median
standard deviation of the positions of the stars calculated with
this model is typically 2 arcmin or 0.2 pixel, as shown in Fig. 2,
up to 4 arcmin in the worst cases. In the example described in
Sect. 5, we show that, for a bright meteor, the internal error
is of 0.7 arcmin. However, as the point spread function (PSF)
with a FWHM of 1.5 pixel is under-sampled, it seems difficult
to achieve an internal error better than 1/20 pixel, correspond-
ing to 15m at a 100 km distance, quite good enough for mete-
orite recovery. Another potential source of error is the motion
of the fireball in a single frame. With an average velocity of
20kms~! at a 100 km altitude, a meteor produces a 20 arcmin
trail on a FRIPON CCD. With a 15 arcmin PSF, this produces
only a slightly elongated feature, and induces no significant dis-
crepancy in accuracy along and across the trajectory.

3. Data reduction
3.1. Trajectories

FRIPON cameras record 30 images per second. As a meteor
has a velocity between 11 and 72kms~! when it enters into the
atmosphere, the distance travelled within one frame is between
0.4 and 2.4km, equivalent to 1-6pixel at a 100km distance.
The acquisition computer timing is obtained from an Network
Time Protocol (NTP) internet server. Typical median timing
accuracy is about 20 ms (Barry et al. 2015), but it can be worse
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Fig. 3. Residuals in azimuth for the Brussels FRIPON camera fitted
with a symmetrical distortion function (fop) and with an asymmetri-
cal correction (bottom). The standard deviation is 4.76’ without the
asymmetrical correction. It goes down to 3.93’ with the asymmetrical
correction.

if the internet connection is off, and the computer therefore
depends on its internal clock for timing. As a result, the cam-
era acquisitions are not synchronised as those of Desert Fireball
Network are (Sansom et al. 2019). This lack of temporal accu-
racy combined with the high speed of the meteors prevents us
from computing their positions by a direct triangulation as in
Sansom et al. (2019), hence we have not directly computed the
position of the meteor as a function of time as Gural (2012) does.
Instead, we computed its trajectory assuming a straight-line after
Ceplecha (1987). The relevance of this assumption is discussed
in Sect. 4.1. This assumption allows us to separate the space
and time components of our measurements and to overcome the
problem of temporal precision. But it is possible to measure an
internal timing accuracy referenced to an average time as dis-
played in Table 1. In this example, the timing accuracy is of the
order of 10 ms, which is better than expected, perhaps due to the
fact that every computer uses the same NTP address.

A straight-line in a three dimensional Euclidean space is
defined by four parameters. It is necessary to first fit the best
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Table 1. Time shift for the three cameras in the 2017-08-04 event.

Camera Time shift
St Lupicin ~ +0.0129 s
Sutrieu —0.0006s
Lignan -0.0123s

straight-line from all camera observations. Ceplecha (1987)
computed a straight line per couple of cameras and, finally, a
weighted average line from all these lines. For each all-sky cam-
era, a plane through the camera is defined as the plane that
minimises the square sum of scalar products between a vector
normal to this plane and the measured vectors pointing from
the camera towards the fireball (Ceplecha 1987). As the camera
positions are known, we measured the vectors (x;, y 2 ;) normal
to these planes:

x; = Zj: aﬁbﬁ] (Z bjicji) - [Zj b?i] (Z ajiCji) )

Y= Z ajibji] (Z/: ajicji] - [Z a?,‘] (Z bjiCji) (6)
n;j nj Wi ’

zj= Z aii] (Z bi") B [Z ajibji] "

where the n vectors (a;, b, c¢;) are unit vectors pointing from the
cameras towards the meteor and 7, is the number of images taken
by the jth camera. When a meteor is observed by n. cameras, we

have n. planes defining (nzc) intersections. Of course, these (:C)
trajectories are different, because of measurement errors and the
assumption of the straight-line model.

Another method, proposed by Borovicka (1990), is a global
least squares regression minimising the sum of squares of angu-
lar distances between the lines of vision and the trajectory. We
chose the latter method, to which we add a specific weight
attached to each camera (see Sects. 3.2 and 3.3), in order to
increase the robustness of the results. Meteor positions over time
were then calculated by projecting the lines of vision of each
image onto this line. The modified sum of residuals is presented
in the section below.

3.2. Modified sum of residuals

We use a least squares regression to fit the four parameters of
the straight-line trajectory. If the measurements are not biased,
it is possible to get the internal uncertainties. By making this
assumption, the sum of squares of residuals is:

ne  nj ; (/] 2
s10=> 6-’0(_2) ®)
i J

where 7, is the number of cameras and n; the number of images
taken by camera j. €;;(6) is the difference between the measure-
ment and the model, assuming a vector of parameters . o; is the
standard deviation expected for camera j. In this case, the uncer-
tainty on the vector of parameters 6 decreases with the number
of recorded images.

However, as mentioned above, the images from any given
station may have systematic errors related to the station itself, for
example in the case of structures that evolve with time and tem-
perature or located at the top of masts that vibrate with the wind.
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In addition, some cameras may have an inclined or misaligned
lens. Lastly, the shape and thickness of the spherical porthole
may vary, especially low on the horizon. The cameras could
not be tested individually in the laboratory, and only the focus
was adjusted. For these reasons, a few cameras may have flaws,
which result in a permanent bias, and as a result the images from
the individual stations are not independent from one another.

Taking this into account, if we assume that the astrometri-
cal measurement noise is negligible compared to the systematic
errors, the least squares method can still be used, except that our
measurements have to be redefined. It can be assumed that each
station is independent of the others. This assumption is more
acceptable than the images of a given camera being independent
from one another. Hence, we considered each set of images from
one camera as one unique measurement, instead of each individ-
ual image being treated as a measurement. In the following text
we use the term “video” for the whole set of calibration images
of any given station. We obtain this new sum of residuals S':

& Ej(0)?
520 = Y1 LY

2
J Z:j

©))

where E(6) is the o—c (observed minus calculated, equal to the
difference between the video j measurement and the model),
assuming 23 is the standard deviation expected for the video

measurement j of parameters 6:
nj

=) €’
i

2_ . 2
Z n;s;

E;6)’ (10)

an

where s; is the systematic error expected for camera j. In this
case, the uncertainty on the vector of parameters 6 decreases
only with the number of stations, and not with the number of
recorded images. This results from our assumption that the error
is dominated by the systematic errors for each station, mak-
ing the images from a given station dependent on one another,
so that the addition of new images does not contribute new
information.

Hence, there are two ways to compute a sum of squares of
residuals. The first method applies in the case where our distor-
tion model is perfect for each station and errors only come from
normal noise, each image being considered as one independent
measurement. The sum of squares of residuals based on such
an assumption is described by Eq. (8). In the second case, in
which images from one video are dependent on one another and
the video becomes one unique independent measurement, their
square residuals are summed as shown in Eq. (9). A more gen-
eral case can be constructed by combining these two cases in a
third sum of residuals S:

S3(0) = Z Z O_ejfen)j

This new modified sum of squares of residuals allows us to
combine the measurements from different cameras with differ-
ent characteristics. Moreover, it allows us to highlight the tran-
sition between errors dominated by the internal noise and errors
dominated by the bias of each the camera.

12

3.3. Estimation of oj and s;

In order to compute our modified sum of residuals (Eq. (12)),
we need to characterise the standard deviation of measurements

o ; and the confidence parameters s; for each camera. In other
words, we need to separate the astrometrical noise from the sys-
tematic errors.

For o, we use the standard deviation of the measurements
of the jth camera referenced to the plane defined by the best fit
of these measurements. This plane is characterised by the posi-
tion of camera j and its normal vector (x;, y;, z;) described in
Eqgs. (5)—(7). As this plane is only computed with the measure-
ments of camera j, it will hide the systematic errors related to
that station, so that the standard deviation will be close to the
real astrometrical noise for camera j.

For s;, we needed to characterise systematic errors in the
measurements, which depend on the flaws and imperfections of
the station itself. However, they also depend of the path of the
meteor inside the images. Indeed, a difference between reality
and our distortion model will not lead to a global degradation of
the measurements, but to localised systematic errors. For exam-
ple, a water droplet on the spherical porthole will induce a sys-
tematic error if the light crosses this droplet. So the quality of
measurements on the path of the meteor needs to be charac-
terised. For each image i of the meteor, we computed the aver-
age €,; of errors on stars in an area around the meteor. This
area extends both in space (a circle around the meteor image)
and in time (clearly, stars measured only at the same time as the
meteor cannot be used). We chose to use stars seen during the
same night as the fireball within a radius of 100 pixels around
the fireball. The choice of such an area is discussed in Sect. 4.2.
The standard deviation to zero of these error averages is taken
as s

13)

The dividing factor of two is here to convert an uncertainty in a
two-dimensional space (the celestial sphere) to an uncertainty in
a one-dimensional space: the angular distance at the meridian,
defined by the projection of the straight-line trajectory on the
celestial sphere.

4. Discussion
4.1. Straight-line trajectories

Our straight-line model may be objected to as being unrealis-
tic. Indeed a fireball is under the influence of the Earth’s gravity,
therefore its trajectory must be curved. This effect is all the more
important given that the object is slow and that its trajectory is at
a low angle to the ground. The minimum radius of curvature of

2
an object undergoing constant acceleration g is Pyin = V;. For a

slow fireball with a velocity about 11kms™, ppin = 12300km,
or 1.93 Earth radius. Thus, in the worst case of a slow meteor,
with a length of ~100km and a trajectory parallel to the ground,
the maximum difference between a straight-line and the actual
curved trajectory is ~50m. This is comparable to the limit of
the precision that can be reached on trajectories computed by
FRIPON as discussed in Sect. 2.5. So, in a large majority of
cases, we would not be able to detect the meteor curvature. This
is confirmed by Borovicka (1990). After having analysed five
long fireballs, these authors conclude that it is not possible to
detect the meteor curvature from all-sky images. There are some
exceptions, such as the two cases described by Sansom et al.
(2019). If such bolides are observed by the FRIPON network,
they will need to be reduced by a particular method, and not by
the regular automatic method described here.
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4.2. Estimation of s;

Equation Eq. (13), giving s;, depends on the €, ; averages. Aver-
age €,;; is the average of errors on stars in an area around the
meteor position in the ith image of the jth camera. The choice of
this area is arbitrary, so the estimator of s; depends on the area
size we consider to compute the €, j; averages. A big area hides
short-frequency variations, but a small area introduces uncer-
tainty because of the smaller number of stars. That uncertainty
is inversely proportional to the square of the number of stars in
the chosen area. A defect that is localised in space (e.g. a default
related to the fabrication of the spherical porthole or the pres-
ence of a water droplet) has to be large enough to contain a large
number of stars. If not, we are unable to detect it. For all these
reasons, we can only estimate long-time and large-space varia-
tions. In the present model, we use stars from the night of the
fall within a 100 pixel radius around the position of the meteor.
Variations under these values will not be considered.

Moreover, if the systematic error for a camera is close to
zero, the expected value of €, will be \‘fnﬁ, where o, is the
expected standard deviation on the measurements of stars and
ny is the number of stars used to compute €,;. This value is a
limit, under which we cannot estimate s;. In other words, we
cannot determine if a camera is better than this confidence limit
Siimit- In the case for which a camera is actually better than its
confidence limit symi;, uncertainties on the meteor trajectory are
overestimated.

These problems might be reduced by increasing the density
of sources used for camera calibration. In order to increase the
number of stars recorded, we might increase the number of long
exposure images per night (at present, the long exposure images
are taken every ten minutes to avoid long acquisition disrup-
tions), or we might increase the exposure time of these images
(but a five-second exposure is already at the limit of sky satura-
tion in some locations, as many camera are located in the centre
of cities). In some cases (e.g. partly cloudy nights), the data for
several nights are used, based on the hypothesis that cameras do
not move.

4.3. Advantage and disadvantage of the method

The modified least squares method, described in Sect. 3.2 is not
perfect, and some objections may be raised. Indeed, this method
assumes that each camera is independent of the others. More-
over, it also assumes that the station characteristics, expressed
by the term s}, follow a normal distribution. The first assump-
tion (independence of stations) is solid: each station is several
dozens of kilometers away from the others. But the assumption
of a normal distribution is much less so. Each camera has its
own particularities, its own installation, with its own sensitivity
to temperature, wind, etc. So, for a meteor seen by a particular
set of only a few cameras, it is almost impossible to describe the
distribution law of the errors precisely.

Moreover, the computation of a confidence interval depends
on parameters s; and o; for each camera. These parameters are
not straightforward, especially s;, and errors can be made, cf.
Sect. 4.2. For all these reasons, there will always remain some
level of arbitrary choice, and our confidence intervals have to
be viewed with critical eyes. Hence, our uncertainties should be
taken as orders of magnitude, not as exact values.

Nevertheless, this method allows us to compute meteor tra-
jectories from a heterogeneous group of cameras and to get an
idea of the uncertainties on these trajectories. These uncertain-
ties can be propagated in the calculation of velocity, orbit, strewn
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field, etc. This method is useful for a large meteor survey system
such as FRIPON or in cases where videos from motley sources
have to be used (survey cameras, amateur videos, etc.). More-
over, this method allows us to compute trajectories and confi-
dence intervals consistent with one another, hence to compute
statistics on the populations of meteoroids that cross the path of
the Earth.

5. Application to a fireball
5.1. Characterisation of cameras

As an example of results obtained with the method presented
above, we have chosen a fireball event which occurred between
Italy, Switzerland, and France at 00:06 UT on August 4, 2017.
This fireball was recorded by three of the FRIPON and PRISMA
(Gardiol et al. 2016) cameras: St Lupicin, Sutrieu, and Lignan.
The stars used to calibrate each camera are displayed in Fig. 4.
This figure shows that all cameras are not equivalent. Residuals
between computed star positions and our predictions are larger
for the Lignan camera than for the others. Moreover, for this sta-
tion, residuals do not seem independent of their location in the
image. This shows that our distortion model, presented in Sect. 2,
is not able to fully describe the Lignan camera. This is our rea-
son for choosing this particular event: it allows us to demonstrate
how our method behaves in the face of measurements from mot-
ley stations.

For these three cameras, we computed estimates of confi-
dence parameters s; and standard deviations o ;, with the meth-
ods described in Sect. 3.3. These estimates are displayed in
Table 2.

It is interesting to compare the astrometrical noise term 0'3

and the systematic error term n jsﬁ. Data from the Lignan camera

are clearly in the case n js§ > 0'3. All the images are strongly

dependent on one another. In this case the full video should be
considered as a unique measurement (cf. Eq. (9)).
For the St Lupicin and Sutrieu cameras, n js§ is only about

ten times larger than 2. But, for these two stations, s j 1S near
to the confidence limit s);; discussed in Sect. 4.2. There are not
enough stars in our calibration sample to estimate the divergence
between the distortion model and reality under this limit. This
means that these two stations probably have a smaller systematic
error than is indicated by their confidence parameters s;. But
we do not have enough stars in our calibration sample to prove
this. Conversely, for the Lignan station, s; is clearly higher than
its limit. This describes the divergence between our distortion
model and that camera.

5.2. Computing fireball trajectory

We used the least squares method, with the modified sum of
residuals described by Eq. (12) with the parameters shown
in Table 2. The calculated straight-line trajectory starts at
46.01898° N, 6.77494° E, and at an altitude of 72.96km. Its
ends at 46.28917° N, 7.04590° E, and at an altitude of 43.49 km.
The residuals of this trajectory are shown in Fig. 5. The standard
deviations of these residuals are 0.71, 0.51 and 1.78 arcmin for,
respectively, St Lupicin, Sutrieu, and Lignan. These values are
consistent with those displayed in Table 2. The residuals from
the Lignan camera clearly do not follow a Gaussian law, but
they are compatible with the systematic error s; expected for this
camera. The confidence intervals are shown in Fig. 6. At the top
of the trajectory, the 20~ confidence interval is an ellipse with a
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Fig. 4. Superposition of all calibration stars observed during one night
used to compute distortion parameters for the St Lupicin, Sutrieu, and
Lignan cameras (from fop to bottom). X and Y are the positions of
the stars in the images (pixel). Errors between the distortion model
and measurements are represented by a colour scale (arcmin). The
positions of the meteor of 2017-08-04 UT 00:06 are shown in dark
blue.

Table 2. Results for the three cameras of the 2017-08-04 event.

L2
l‘l/S.

Camera oj Sjoonj 5 Siimic
St Lupicin  0.68" 0.33" 57 134 037
Sutrieu 049" 0.18 61 82 020
Lignan 094 2.15" 70 3662 0.35

Notes. j, camera number; o, standard deviations; s;, estimates of
parameter confidence intervals; 7, number of frames; n js§ /o-?, ratio
between systematic and standard deviations; $jm; confidence limit.

220 m semi-major axis and a 50 m semi-minor axis. For the 1o
confidence interval, these values fall to 100 m and 30 m.

This example was chosen to demonstrate our statistical
method. We emphasise that if the lines of view for two stations
are close, as for St Lupicin and Sutrieu in the present exam-
ple, the results are not significantly affected. This example also
demonstrates the effects of systematic biases as in the Lignan
case. Last, it indicates that an accuracy as high as ~20 m might
be reached in the case of bright events seen by many cameras.

5.3. Photometry and velocity

Based on the astrometrical data reduction presented in Sect. 3,
a detected calibration star of the calibration frames (X, Y, F) can
be connected with a star from a catalogue (Ra, Dec, Mag). In
order to convert the arbitrary fluxes computed by SExtractor
(Bertin & Arnouts 1996) with the magnitudes of a photomet-
ric catalogue, we used the Hipparcos catalogue (Bessell 2000),
as its filter passband is similar to the CCD one. As these cal-
ibration frame are made with a 5s exposure time, we have to
apply a correction factor of 1/150 for the flux of the meteor on
detection images made with a 30 frame per second acquisition
rate. Finally, to compare the light curves originating from differ-
ent cameras, we used the absolute meteor photometric system,
which corresponds to the magnitude of the same meteor as seen
from 100 km without atmospheric absorption. The atmospheric
absorption is modelled with the simplified law (Eq. (14)):
F=F,—«k-m (14)
where F is the flux from a source, F is the flux from this source
at the zenith, m is the air mass (m = Kl(z))’ and « is the extinction
coefficient.

To measure the extinction coefficient %, it is necessary to
compute for each star, the flux of a magnitude zero (Fy) star
located at the same elevation, hence with the same absorption
(Eq. (15)), and then to compute the linear regression of Fy mea-
sured as a function of the air mass m (Eq. (16)),

Mag
Fo=F- 107
F0=F0Z—K'm

15)
(16)
where F, is the flux from a zero magnitude star at the zenith.

Finally, the magnitude of a fireball in the Hipparcos photometric
system is determined as:

F()z—K~m't_s) (17)

Magﬁreball =25 lOglO( Fhireball h
rebal

where Fprepan 18 the flux measured from the fireball, f; is the
exposure time of short exposure images, and f is the expo-
sure time of long exposure images. The absolute magnitude of
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Fig. 5. Residuals of the best trajectory in arcmin (top) and metres (bot-
tom) from cameras of Lignan (red), St Lupicin (green), and Sutrieu
(blue). Meteor of 2017-08-04 UT 00:06.

a fireball is defined as its magnitude at a distance of 100 km
(Eq. (18)).

d
AMag; pan = Magg e — 5 - 1ogy (m) . (18)

We also determine the position of the meteor as a function
of time by projecting the lines of vision on its previously com-
puted trajectory. Altitude, velocity, and magnitude are shown in
Figs. 7-9. The fireball magnitude brutally increases at a 45 km
altitude, shortly before it disappears. Moreover, the velocity at
the last visible point is 10kms~'. According to Brown et al.
(2013), these values indicate that the body was totally disin-
tegrated. This result will be confirmed below in Sect. 5.4 and
Table 3. Meteoroids that survive their journey through the atmo-
sphere, can be seen at lower altitudes (under 30 km). In addition,
their magnitude does not increase suddenly, but gradually with
their deceleration (Campbell-Brown et al. 2013).

5.4. Deceleration model

We estimated (18.59 + 0.17)km s~ as the velocity at the top of
the visible trajectory by using a linear approximation on the first
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Fig. 6. Top: lines of vision from cameras to the meteor of 2017-08-04
UT 00:06, projected in a plane normal to the best trajectory found. This
trajectory crosses the plane at coordinates (0, 0). Botfom: zoom on the
centre showing random trajectories drawn within 1o~ confidence interval
(blue) and in 20" confidence interval (green).

five points of each video. In order to estimate the velocity at the
top of the atmosphere, we used a dynamic model from Bronshten
(1983), Eqgs. (19) and (20), which describes the deceleration and
the ablation of a meteoroid in the atmosphere. This model takes
four parameters: the pre-entry velocity V. (our unknown vari-
able), a deceleration parameter A, an ablation parameter B, and
a shape change coefficient u.

dv 1 s

— = ——Apum V= 19
dr 3 Lat m (19)
dm 1

— = —=Bpym 3 2
ar 5 Bpat Vs (20
s =mt. (21)

With ¢4 = drag coefficient, ¢, = heat-transfer coeflicient,
H = destruction, enthalpy by kg, p.m = gas density, M = mete-
oroid mass, M, = pre-entry mass, S = middle section area, S, =
pre-entry middle section area, i = shape change coefficient, we
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Fig. 7. Absolute magnitude as function of altitude for the fireball of
2017-08-04 UT 00:06 seen by the Lignan (red), St Lupicin (green), and
Sutrieu (blue) cameras. The absolute magnitude of a fireball is its mag-
nitude at 100 km.
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Fig. 8. Altitude of the fireball of 2017-08-04 UT 00:06 as a function of
time, seen by the Lignan (red), St Lupicin (green), and Sutrieu (blue)
cameras. Time starts at 2017-08-04 UT 00:06:18.159.

, B= ChSe, mzﬂ, and s:i~

HM, M. Se
These four parameters can be reduced to three if only the
deceleration of the meteoroid is considered, and not its mass
loss (Sansom et al. 2017). After Turchak & Gritsevich (2014)
Egs. (19) and (20) can be rewritten as follows:

v BU- o o,

—— = —=APam > - 22

i > AP Vexp( A Vo=V (22)
_ B . 2)

m—exp(—ZA(V v2). 23)

The deceleration of a meteoroid is then described by only
three parameters: V., A, and B(1 — u). As a result, only B(1 — u)

24

22 + + + 4
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Fig. 9. Velocity as function of altitude for the fireball of 2017-08-04
UT 00:06 seen by the Lignan (red), St Lupicin (green), and Sutrieu
(blue) cameras. Dots are point to point measurements. Lines are linear
approximation on groups of five points.

Table 3. Estimates for dynamical parameters in Egs. (19) and (20).

Ve 18905 + 63 ms™!

A 0.0205 + 0.0011 m*kg ™!
B(u=0.66) 55+04x1071"m?J!
a 152+ 8.2

B 1.6 £0.2

Mfinal 0.83%

Notes. Uncertainties are the frontiers of the 20~ confidence interval.

can be determined by observing the evolution of the velocity of
a meteoroid, and not B and yu individually. This new equation
system gives us an explicit expression of the normalised mass
m as a function of velocity. So the final mass (Eq. (24)) can be
computed.

BV?
Mfinal = €XP (= —-= |- (24)
These three parameters can be converted into the

Turchak & Gritsevich (2014) system:

o= pPohoA
2 sin(y)

BV2
2A

p=(-p

with pg the gas density at sea level, A the scale height and vy the
angle between horizon and trajectory.

We computed confidence intervals in the three-dimension
parameter space using the least squares method. The atmo-
spheric gas density p,m, was obtained from the empirical
NRLMSISE-00 model. The pertinence of this atmospheric model
for meteor science is discussed by Lyytinen & Gritsevich (2016).
Results are presented in Table 3. According to this deceleration
model, there is about 300m s~ difference between the velocity
at the top of the atmosphere and the first observed velocity. This
illustrates the fact that a direct measurement of the meteor veloc-
ity cannot be used to estimate its pre-entry velocity (Egal 2017).

It is not possible to measure the pre-entry mass of the mete-
oroid, we can only estimate it by making some assumptions. If
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Fig. 10. Meteoroid orbits (black) from the fireball of 2017-08-04 UT
00:06. Initial position and direction, and initial velocity are uniformly
drawn from the 20 confidence intervals of, respectively, trajectory
geometry (see Sect. 5.2) and dynamical parameters (see Sect. 5.4). The
orbits of planets Mercury (brown), Venus (green), Earth (blue), Mars
(red), and Jupiter (orange) are also shown.

we assume that the meteoroid is spherical, that its drag coefli-
cient ¢g ~ 1, and that its density is ~3.5gcm™, we find a pre-
entry mass of 17 g.

5.5. Orbit

In order to propagate the geometrical and velocity uncertain-
ties of our calculation of orbital elements, we used a Monte-
Carlo method. We drew random meteoroid positions and direc-
tions from the 20 confidence interval presented in Sect. 5.2.
Their velocities were uniformly drawn between 18.842 and
18.968 km s~ (cf. Sect. 5.4 and Table 3). The results we obtained
are shown in Fig. 10 and Table 4.

This meteoroid may have originated from the Alinda aster-
oid family, which is an important source of near-Earth objects
(Milani et al. 1989). The objects in this family are in 3:1 res-
onance with Jupiter, and they have a semi-major axis close to
2.5 AU. Their eccentricities are modified by gravitational inter-
action with Jupiter, until a close encounter with an inner planet
ejects them from their resonance. Known objects from this group
have an eccentricity between 0.3 and 0.75, which is comparable
to the results we obtained for this meteoroid.

6. Conclusion

We have designed a new method to compute the confidence
intervals of meteor trajectories obtained from fish-eye cameras
with video rate acquisition speed. This method is an evolved ver-
sion of the classical least squares method. It consists in applying
a least squares regression on a modified sum of residuals. Each
camera involved in an event is assigned a specific weight, which
depends on the astrometrical measurement noise, the number
of images, and the accuracy of its calibration. Our modified
sum of residuals is a cross between two cases. In the first case,
we assumed that the cameras are perfectly calibrated, so that
each image can be considered as one independent measurement,
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Table 4. Orbital elements of the meteoroid of 2017-08-04 UT 00:06
into the mean ecliptic and equinox of J2000 frame.

Semi-major axis (AU) 2.53+£0.07
Perifocal distance (AU) 0.830 = 0.003
Eccentricity 0.671 + 0.008
Inclination 7.49° £ 0.14°
Longitude of the ascending node  131.6255° + 0.0007°
Argument of periapsis 236.9° £ 0.6°

Notes. Uncertainties are defined by the extrema obtained from the
Monte-Carlo method. See text for more detail.

yielding the sum of residuals described by Eq. (8). In the sec-
ond case, we assumed that residuals are dominated by artefacts
due to the cameras themselves. In this case, the images from one
camera are perfectly dependent on one another, so that adding
or removing images does not add or remove information. In this
latter case, it is not the images but the video itself that constitutes
one independent measurement; the sum of residuals is described
by Eq. (9).

For the FRIPON observation programme, which manages
more than 150 cameras and covers a large area, it is impossible
to have a perfect calibration of each camera of the network. As
aresult, assuming each image to be independent from the others
as in Eq. (8) may lead to an underestimation of the uncertainties
in our trajectories. Conversely, assuming that all the images from
a station are perfectly dependent on one another, as in Eq. (9),
may result in under-using the available information, and hence
overestimating the uncertainties. Our new method is a compro-
mise between these two cases, which are combined to construct
our modified sum of residuals: Eq. (12). This allows us to com-
pute realistic confidence intervals for meteor trajectories, even
when videos from cameras with different precision and proper-
ties are combined. Our results hence have to be looked at with a
critical eye, as our method is not derived from a rigorous math-
ematical demonstration in a general case (which will probably
be impossible, due to the complexity of our system), but from a
mathematical interpolation between two simpler cases.

As an example of our new method, we present the trajec-
tory of a meteor fallen on August 4, 2017 at 00h06 UT. This
meteor was observed by three cameras in Lignan, Sutrieu, and
St Lupicin. For the Lignan camera, the non-efficiency of our dis-
tortion model is clearly visible, unlike for the other two. The
best trajectory we computed reflects this property: the residuals
are consistent with Gaussian noise for the Sutrieu and St Lupicin
cameras, but not for the Lignan one. In addition, the confidence
intervals we computed also reflect our knowledge of the cam-
eras. Our data are less constrained by the observations from the
Lignan camera than by data from the other two. This shows that
our new method is now ready to be included in the FRIPON
pipeline to automatically provide an efficient analysis of mete-
ors observed each night.

Last, our analysis demonstrates that the measurement accu-
racy for the majority of FRIPON network stations is better than
1 arcmin or 0.1 pixel after implementation of the proper calibra-
tion procedures as described here, and that better precision can
be expected for bright fireballs. Our method would yield even
better results with a more evolved hardware as the FRIPON cam-
eras are limited by the under-sampling of the PSF.
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