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A B S T R A C T

Comprehensively sampling the ocean in situ remains a challenge, even in the current era of rapid technological development. In less than a decade, the deployment of
thousands of autonomous profiling floats increased the number of ocean temperature profiles by an order of magnitude compared to ship-based sampling in the past.
But expendable floats cannot sample all the physical and biogeochemical regimes in the global ocean. A promising avenue that could guide in situ sampling is to
partition oceans based on selected properties in order to identify “homogeneous” areas. This approach greatly reduces the number of measurements needed to
represent the state of the ocean. However, homogeneous areas can be partitioned in many ways: depending on whether a single or several properties are considered;
and on whether the definition of boundaries is left to expert knowledge or derived from objective analysis techniques. Here, we use a clustering method to map and
partition many surface variables, and we further examine how this partitioning is affected by various ways of averaging or normalizing the input data. We performed
this study using 15 different surface fields of physical and biological properties derived from satellite remote sensing observations and from global model outputs at a
monthly resolution. The area of study is the Indian Ocean - one of the least-sampled oceans - which is the focus of a global research effort under the auspices of the
second International Indian Ocean Expedition (IIOE-2). We show a strong effect of the average absolute values of the data, which can be removed to better examine
the phenology of the properties. However, normalization is not mandatory; the technique selected should depend on the scientific questions at hand. Our clusters did
generally did not match closely the regions identified by Longhurst in his seminal work on ocean provinces.

1. Introduction

Covering more than 70% of the Earth's surface, the upper ocean is
vast and spatially heterogeneous. Biogeophysical heterogeneity is a
characteristic of the ocean appreciated by many: “snowbirds” head
south to enjoy beaches and warm waters, while fishermen choose
frontal regions to increase their catches. Oceanographers, too, have
been aware for centuries of ocean spatial variability, which they have
described and quantified. By carefully collecting data and contouring,
global ocean atlases have described many physical and chemical
properties (e.g., Locarnini et al., 2013). Satellite images of water tem-
perature and surface phytoplankton abundance are finally showing the
true complexity of this spatial heterogeneity at the global scale. Ad-
vances in numerical modeling and computing power now allow many
of these large-scale and mesoscale patterns to be reproduced. These
patterns can be verified with satellite data, and the models can be va-
lidated below the upper layer using observations from autonomous
robots.

Our observational and modeling capacities have grown tre-
mendously in recent years. Nevertheless, satellites provide estimates of

only a limited number of variables for the very upper layer of the ocean
(sometimes tens of meters but generally much less); robots can only
carry a limited suite of sensors, especially when it comes to chemistry
and biology; and model outputs will always be limited to their para-
meterization, which must stem from in situ or laboratory measure-
ments. To understand many of the finer processes occurring in the
ocean and how they respond to environmental changes, it remains
necessary for oceanographers to spend time at sea in order to collect in
situ measurements. Some process studies can be carried out almost
anywhere, but studies aiming to describe and understand how processes
vary spatially on large scales, as well as temporally, require statistically
representative sampling. Covering large areas with a fine spatial and
temporal grid is impossible using ships. One solution to this problem is
to partition the ocean into “homogeneous” areas based on selected
physical, biological and chemical properties. Sampling a few points in
space and time in such a “homogeneous” area would then allow the
resulting values to represent the whole region.

In the context of the second International Indian Ocean Expedition
(IIOE-2, Hood et al., 2016), we were interested in reassessing ap-
proaches to partition the Indian Ocean basin in order to provide basic
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partitioning for cruise planning and also to map key oceanographic
features.

Many studies have proposed partitioning the ocean using different
approaches and input variables (see review of Dowell et al., 2009). We
will not review them but will refer to appropriate references when
discussing our results. Many studies use satellite input (and sometimes
other geospatial data) together with a clustering algorithm to identify
homogeneous regions. In most cases (but see, Lévy et al., 2007) when
the Indian Ocean has been included in such an exercise, it has not been
specifically targeted and has instead been included as part of a global
analysis. Since it covers about one-fifth of the ocean surface (and less if
the Southern Ocean below ∼40˚S is excluded), it has a low weight in
statistical clustering approaches applied at a global scale, so that unique
features of this basin may be missed, such as the very strong impact of
the South Asian monsoon.

A key body of work in understanding the ecological provinces of the
Indian Ocean is a series of papers and books by Longhurst and co-au-
thors (Longhurst, 2007; Longhurst et al., 1995) in which expert
knowledge was used to identify biomes and provinces in the global
ocean. These studies are particularly important because they are not
simply based on an automated statistical approach, but rather use a
priori knowledge of oceanic processes. As such, they provide a basis for
comparing and understanding the results arising from statistical ap-
proaches for partitioning the ocean.

Among the myriad approaches for partitioning ocean waters, a
distinction must be made between “static” and “dynamic” partitioning.
In the static approach, most often used for the description of biomes on
land, the province boundaries do not change over time and the pro-
vinces remain statically bounded. In dynamic approaches, the bound-
aries are allowed to change on varying timescales (limited by the fre-
quency of the input data used to delineate the regions). Beyond a
changing climate, which affects both land and ocean, there is a clear
argument for the presence of dynamic provinces in the pelagic ocean
where currents transport water masses and their associated organisms
and physicochemical properties. In addition, the turnover times of
planktonic organisms dominating the pelagic ocean are much shorter
than those dominating land ecosystems such that changes in the cli-
matic conditions of a region can be rapidly reflected in its biota (e.g.,

Kintisch, 2015). Therefore, dynamic approaches are important for
identifying regions where water column properties are similar over
short times scales and where rapid changes in biota or ecophysiological
parameters can occur (such as biomass-specific photosynthetic rates,
which can respond within hours to days to changes in forcing Platt
et al., 1991). For longer climatic-scale events and slower changing
properties (e.g., regions with or without spring blooms), static pro-
vinces are more relevant as they reflect regions that share common
physical forcings and similar biota over longer time scales. This is
conceptually closer to the partitioning of biomes and ecological pro-
vinces on land where changing seasons do not alter the partitioning.
Static partitioning is the focus of our study.

We have two main objectives for this study. The first is to provide a
small biophysical atlas of the Indian Ocean derived from state-of-the-art
satellite remote sensing data and modeling results that shows homo-
geneous regions with respect to different variables. While space limits
the size and the number of the maps in this paper, the supplementary
materials provide access to full size images as well as additional maps
(additional variables and months depending on the figures) not pre-
sented herein. The second objective is to examine how different ways of
using the same data (e.g., using either climatologies or time series, and
using either unmodified or normalized data) provide different in-
formation about the ocean. We have not examined the impact of dif-
ferent clustering approaches (e.g., fuzzy, density-based, decision trees).
Rather we have focused on a single method (k-means; see later) for all
partitioning.

We briefly discuss some general oceanographic interpretations of
the clusters and their temporal variability, but a full interpretation is
beyond the scope of this paper as the interpretation of the partitions
must largely be made within the context of specific questions. We also
provide supporting information that could be useful for further analyses
of the spatio-temporal distributions.

2. Materials and methods

2.1. Data used

We used data from four different sources: the Moderate Resolution

Table 1
Datasets used and symbols.

Source
Variable (algorithm; units; symbol/abbreviation used)

Timespan

MODIS AQUA sensor (Monthly climatology) Jul. 2002–Jun. 2014
Chlorophyll concentration (OC3M; mg m−3; Chl)
CDOM Index (Morel and Gentili, 2009; unitless; CDOM index)
Daily photosynthetically available radiation (PAR) (Frouin et al., 2003; mol m−2 day−1, EPAR)
Sea surface temperature (Minnett et al., 2004; ˚C; SST)
Detrital and gilvin absorption (QAA; m−1; adg)
Optical backscattering coefficient of particles (QAA, m−1, bbp)
AQUARIUS sensor
Wind speed (Fore et al., 2014; m s−1; N/A) Sept. 2011–Sept. 2015
Salinity (Meissner et al., 2014; PSS; N/A) Aug. 2011–May 2015
HYCOM (daily data, averaged to monthly climatologies) Sept. 2008–Apr. 2014
Mixed layer depth (see text; mld, expt_90.6 to expt_91.0; m; zMLD)
Surface current speed (HYCOM; expt_90.6 to expt_91.0; m s−1; not abbreviated)
NCEP DOE AMIP-II reanalysis (daily means, averaged to monthly climatologies) Jan. 2000–Dec. 2014
Total cloud cover (Kanamitsu et al., 2002; %; N/A)
Wind speed (Kanamitsu et al., 2002; m s−1; N/A)
Downward solar radiation flux (Kanamitsu et al., 2002; W m−2; N/A)
Precipitation rate (Kanamitsu et al., 2002; kg m−2 s−1; N/A)
Derived quantities (Calculated from the monthly climatological means) Jul. 2002–Jun. 2014
Integrated mixed-layer chlorophyll concentration (see eq. (1); mg m−2; Chlint)
Euphotic zone depth (see eq. (2); m; zeu)

Ratio of the mixed layer depth to the euphotic zone depth (see eq. (4); unitless Feu
MLD)

Average irradiance in the mixed layer (see eq. (5); mol m−2 day−1; ĒPAR)

Biological rate ratio (see eq. (6); Unitless; FT
23.9)

Difference between the MODIS day and night SST (N/A,˚C; ΔSST)
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Imaging Spectroradiometer (MODIS) AQUA sensor; the AQUARIUS
sensor; the Hybrid Coordinate Ocean Model (HYCOM); and the
National Center for Environmental Prediction (NCEP-DOE) reanalysis
(see Table 1 for a complete list of variables, abbreviations and symbols).
As a first step, we standardized the time and spatial resolution of each
of these datasets. This was achieved by using monthly climatologies for
all variables, which provided good spatial coverage of the Indian Ocean
for all variables. Because the estimates of chlorophyll concentration
(Chl) are key to clustering ecological regions, we used the MODIS
AQUA level 3, 9-km standard mapped data as a reference and all other
datasets were spatially interpolated to the grid center location of this
dataset (2D-linear interpolation). Regions below 42˚S were excluded
from our analysis because of the low solar zenith angle in winter and
unavailability of MODIS data. For the AQUARIUS dataset, we used
extrapolation to fill coastal points.

Five pre-processing methods, resulting in 5 data types were applied,
in which the monthly climatological time series were:

1 averaged into an annual climatology (1 point for each pixel);
2 used to derive their standard deviation (1 point for each pixel),
3 used unmodified (12 points for each pixel);
4 ‘normalized’ at each pixel by the yearly mean of the pixel (12 points
for each pixel);

5 ‘standardized’ by subtracting the annual mean and then dividing by
the annual standard deviation (12 points for each pixel).

Each of these data types highlights different properties of the data
(see Table 2). Since the data spanned about two orders of magnitude for
chlorophyll concentration, adg and bbp (see Table 1 and definition
below), the data were always logarithmically transformed (base 10)
first, unless they were normalized or standardized, in which case no
further transformation was applied. Since the annual variance is gen-
erally proportional to the average annual concentration, this avoids
regions with much higher values from dominating the selection of
centroids during clustering.

We used the MODIS and AQUARIUS monthly climatologies dis-
tributed by NASA (http://oceancolor.gsfc.nasa.gov/cgi/l3). For the
other variables, the monthly climatologies were generally not available
and were calculated from the daily data. Table 1 provides the time
period over which the data was collected to compute the monthly cli-
matologies.

Beyond the most common variables, we also included optical vari-
ables that are less often examined. We briefly describe them here. The
adg is the absorption coefficient of gilvin and detrital substances, often
referred to as ‘yellow substance’; it gives coastal waters brownish colors
but is present in small concentrations everywhere in the ocean (Nelson
and Siegel, 2013). In the open ocean, it arises mostly from the decay of
organisms, while in coastal waters it is largely driven by land runoff.
Photolysis removes this colored material in surface waters. The CDOM
index is a measure of the amount of detrital substance relative to the
expected concentration for a region given the amount of phyto-
plankton. It reflects a departure in the ‘detrital material to living ma-
terial’ ratio. It is centered on 1, values above 1 imply that there is
greater detrital material to living material than expected (it can reflect

an increasing source or a decreasing sink for detrital material). The bbp
is the optical backscattering coefficient of particles in suspension. It
reflects the concentration of particles in the water.

2.2. Clustering

We used the k-means algorithm with the Manhattan distance me-
trics for the clustering analysis. The results using the Manhattan dis-
tance were found to be less affected by outliers and provided cluster
centroids that did not show large spikes. Such spikes were present when
using standard Euclidean distance metrics. The clusters were computed
using MATLAB 2017a, using the built-in algorithm in the statistics and
machine learning toolbox (in this toolbox, the Manhattan distance is
referred to as “city block”). To reduce the risk of finding local minima
during clustering, the clusters were computed 10 times with different
initial cluster positions, and the clusters with the lowest sum of the
point to centroid distances were kept.

The k-means method requires a number of clusters to be specified a
priori. Many objective methods have been developed to identify the
optimal number of clusters to use. The “NBclust” R statistical software
toolbox (Charrad et al., 2014) tests 30 different published indexes to
find the optimal number of clusters (the authors recommend using the
number of clusters that arises the most often in the 30 indexes). The
number of clusters selected by the different methods varied greatly
(from 2 to 13) when we used the chlorophyll concentration as a test
variable, with 2 being the most frequently selected number of clusters.
Given that 2 was an unrealistically low number and that there is no
consensus in the literature on the appropriate metric to estimate the
optimal number of clusters, we turned to a more subjective approach
where we initially set the number of clusters to 10, which is the number
of Longhurst provinces in the Indian Ocean. We then evaluated the
impact on the results of changing the values around this number and
finally settled on eight clusters.

When clustering time series, the cluster centroids were obtained
using all available pixels that had 12 months of data available. A large
region in the northern Arabian Sea had no measurements in the AQUA
Level 3 archive for July and August in the ocean color dataset. In order
to cluster this region for the MODIS data (and the data derived from
them), we assigned the pixels with missing data to the class of the
centroid derived in the rest of the Indian Ocean over 12 months from
which we removed the missing months before assigning the class.

2.3. Derived quantities

We also calculated some derived quantities from the measured and
modeled variables obtained from MODIS and HYCOM, as follows.

The integrated chlorophyll over the mixed layer (Chlint, mg m−2)
was computed as:

=Chl Chl z· .MLDint (1)

where Chl (mg m−3) is the MODIS-estimated chlorophyll concentration,
and zMLD (m) is the mixed-layer depth from HYCOM, computed as the
depth where the temperature increases by 0.2 °C from its surface value.

The depth of the euphotic zone, zeu (m), which is defined as the

Table 2
Data type and property of the data that has the strongest influence on the clustering output.

Data type Properties of the data emphasized

Annual climatology (from averaging the monthly climatology data) Average value of the variable
Standard deviation “climatology” (from calculating the standard

deviation of the monthly climatology data)
Variability of the variable

The time series unmodified Yearly average value has an overwhelming impact on the clustering output, with a secondary effect of
the amplitude of the annual variation. Timing of the variation has little impact.

Time series divided by the annual mean The annual cycle amplitude and shape (timing) of the annual cycle.
Time series standardized The shape (timing) of the annual cycle.
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depth where net photosynthesis is null, has been approximated as the
depth where irradiance is equal to the average compensation irradiance
Ec= 0.17molm−2 day−1 from Table 2 in Marra et al. (2014),

⎜ ⎟= − ⎛
⎝

⎞
⎠

z
K E

1 ln 0.17 .eu
dPAR PAR (2)

This parameterization of the euphotic zone depth accounts for both
the amount of incident irradiance and its attenuation in the water
column, instead of only considering the latter when using the 1% light
level (Banse, 2004). It ignores some spectral effects and the small im-
pact of sea-surface reflection.

In Eq. (2), EPAR (mol m−2 day−1) is the average daily downward
photosynthetically available radiation (PAR, the integrated downward
irradiance, Ed, from 400 to 700 nm) at the surface obtained from the
MODIS algorithm (Frouin et al., 2003), and KdPAR is the diffuse at-
tenuation coefficient for PAR and is calculated according to Morel et al.
(Morel and Maritorena 2001 version derived over the first two optical
depths for Ed(490)):

= + −K K K0.0665 0.874 (490) 0.00121/ (490).dPAR d d (3)

where K (490)d is the diffuse attenuation coefficient for Ed(490).
The ratio of the mixed layer to the euphotic zone depth, Feu

MLD

(unitless), is then calculated as:

=F z z/ .eu
MLD

MLD eu (4)

The average PAR irradiance in the mixed layer (ĒPAR, mol m−2

day−1) is computed as:

∫= −E
z

E e dz¯ 1 .PAR
MLD

z

PAR
k z

0

MLD
dPAR

(5)

We finally computed the ratio of the biological rates relative to the
mean temperature in the Indian Ocean. Using the monthly climatology,
we computed the average annual temperature of the Indian Ocean (over
the latitudes used here), which we found equal to 23.9 °C. By assuming
a temperature sensitivity (Q10) of 2 (Raven and Geider, 1988; value
consistent with the temperature sensitivity of photosynthetic and
maximum growth rates in algae; see Eppley, 1972), we computed the
ratio of the biological rates at a given temperature relative to this
average temperature as

= −F 2 .T T
23.9

( 23.9)/10MODIS (6)

Biological rates do not respond to temperature exactly in this
manner because acclimation and adaptation allow phytoplankton to
change their cellular quotas in response to temperature changes (cel-
lular photoacclimation to low temperature is similar to acclimation to
high light, Maxwell et al., 1994). Nevertheless, Eq. (6) reflects a coarse
measure of temperature on phytoplankton physiology.

3. Results and discussion

3.1. Physical forcing

The physical forcing at the surface of the ocean influences many
biological processes. Such dependencies are well known from previous
studies, and we highlight here some key characteristics of the physical
fields (Figs. 1–4; see Table 2 for the source of the data) that help to
interpret the cluster distributions.

The Indian Ocean is strongly influenced by the South Asian mon-
soon, which leads to strong southwest trade winds during the boreal
summer (Fig. 1, see the August panel), peaking in July when the in-
tertropical convergence zone (ITCZ) is located above the Asian con-
tinent. This brings heavy cloud cover (Fig. 2) over the northern Indian
Ocean. As is the case most of the year, the cloud cover at that time is
higher in the eastern part of the ocean (Fig. 2). This leads to an
east–west asymmetry in the downward solar flux (Fig. 2) and

Fig. 1. Average monthly wind speeds and direction (NCEP DOE reanalysis). The
yellow line along the 25° meridian shows the sun declination angles spanned
during that month. (For interpretation of the references to color in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 2. Average monthly cloud cover (left) and downward solar flux (right). The yellow line along the 25° meridian shows the sun declination angles spanned during
that month. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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precipitation (Fig. 3) is heavier in the east. The southwest monsoon
winds lead to anticyclonic circulation north of the equator (Fig. 4);
currents at the equator flow westward, while north of the equator in the
Arabian Sea and the Bay of Bengal the circulation is generally eastward
(see, Fieux, 2010; Tomczak and Godfrey, 2005). An upwelling zone also
forms along the Somali coast (Fig. 4, strongly positive surface diver-
gence in August) and the east coast of India in the presence of the strong
southwest monsoon winds. East of the Maldives, a structured diver-
gence zone is observed along the equator and a convergence zone is
observed around 5˚N. During this period (see Fig. 1, August panel),
winds are blowing from the continent to the ocean along the northwest
coast of Australia leading to particularly clear skies, high irradiance and
low precipitation.

In February, the northeast monsoon winds (actually the northeast
trade winds) reach their maximum velocities in the northern Indian
Ocean (Fig. 1). The anticyclonic flow in the Arabian Sea has essentially
disappeared, and the anticyclonic circulation in the Bay of Bengal is
much reduced; both regions have much less structured flow. The
equatorial current has shifted northward (now referred to as the North
Equatorial Current) and strengthened. The upwelling along the Somali
coast has been replaced by a downwelling zone (Fig. 4). At this time of
year, the divergence along the equator is strongest (see also, Koné et al.,
2009), while a convergence zone is observed south of the equator
(Fig. 4). Dry air from Asia brings nearly cloudless weather to the
northern Indian Ocean (Fig. 2). The band of precipitation (Fig. 3) and
low wind (Fig. 1) has followed the ITCZ that is now straddling the 15˚S
parallel (slightly more south in the west and more north in the east),
bringing a large band of clouds (extending north of the ITCZ) and lower
surface irradiance. Along the northwest coast of Australia, the winds
have also reversed bringing clouds and rain to the region.

Except in northwest Australia, the regions at latitudes south of 15˚S
follow seasonal changes in solar irradiance and cloud cover; however,
the wind patterns do not reverse. The subtropical ridge region is clearly
seen as a band of low winds and cloud cover (∼30˚S to 35˚S) and re-
mains at a more or less constant position all year. The zone just north of
the subtropical ridge around 27˚S shows an interesting feature between
December and March (February is shown in Figs. 1–4), where a zone of
oceanic divergence (at ∼27˚S) is adjacent to a zone of convergence at
about 32˚S (Fig. 4). This corresponds roughly to the zone where large
episodic blooms of phytoplankton (Longhurst, 2001) have been ob-
served in late summer in some years.

Transitions between the monsoon periods occur around May and
November as the ITCZ moves near the equator and monsoon winds are
much reduced. At these times of year, the equatorial current reverses
direction and flows east. In November, a broad divergence zone is ob-
served east of Somalia, while the equator east of the Maldives becomes
a convergence zone. A weak divergence zone is observed along the west
coast of Sumatra throughout the year.

3.2. Clustering yearly climatological measurements

3.2.1. Average
The first clustering analysis was based on the yearly average of in-

dividual properties. This partitioning was carried out with a k-means
algorithm, and regions with similar absolute values were grouped to-
gether (Fig. 5).

Similar to the observations above on the physical forcings, this
approach clearly highlights a strong east-west gradient in several phy-
sical variables north of approximately 15˚S. This is particularly striking
in the salinity distribution that shows lower salinity in the region with
the most precipitation (Fig. 3), cloudiness (Fig. 2) and lowest solar flux
(Fig. 2). The surface waters are warmer and less saline than in western
regions. These general trends obtained from satellite data match well
the maps of the World Ocean Atlas (Locarnini et al., 2013) that were
computed from in situ data. South of the Arabian Sea and Bay of Bengal,
the chlorophyll concentration is also lower in the east than in the west.

Fig. 3. Precipitation rate for selected months.
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Fig. 4. Average monthly current (left column) and surface divergence (right; upwelling in red and downwelling in blue) from the HYCOM model. Current arrows are
not proportional to the current speed and show only the current direction. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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An even stronger north-south dichotomy is present with a boundary
at around 10˚S to 15˚S for variables like wind speed, SST, ΔSST, and
chlorophyll. The southern region is characterized by stronger winds,
generally lower EPAR, deeper zMLD, and much larger temperature var-
iations. Note that the FT

23.9 clusters expectedly resemble those in SST
and, as such, we will use this ratio because it is a more direct measure of
the impact of temperature on biological rates (it is also conveniently
scaled and dimensionless). Between 15˚S and 30˚S, much lower phyto-
plankton abundances are found in the subtropical gyre region, which
lead to deeper zeu reaching around 180m in the clearest part of the
gyre. By comparing the maps of zeu, chlorophyll concentration and
EPAR, it is clear that the attenuation coefficient of PAR irradiance, here
parameterized as a function of Kd(490) (and functionally similar to
Chl), has an overwhelming influence on zeu compared to EPAR; the use of
a percentage of incident surface irradiance is thus not a bad approx-
imation - at least over the latitudes examined here – as a first estimate

of the depth of the euphotic zone (but see Banse, 2004 for the limita-
tions of this approach). Similarly, adg roughly follows Chl and therefore
the same north-south gradient. The north-south gradient is also ob-
served in the day-night difference in surface temperature. Because this
difference is largely driven by wind speed (and solar irradiance), with
lighter winds and higher irradiance increasing the daily difference
(Gentemann et al., 2003), the distributions largely reflect the wind
speed patterns superimposed on a north-south gradient. Regions north
of 10˚S have a much stronger daytime stratification than more southern
regions.

Some of the derived variables seem to transcend these north-south
and east-west gradients. Such is the case of ĒPAR and Feu

MLD. Both result
from the combination of zMLD, EPAR and KdPAR (driven mostly by phy-
toplankton absorption/chlorophyll concentration). The average irra-
diance in the mixed layer is strongly affected by the attenuation coef-
ficient and also reflects the complex interplay of the attenuation, the

Fig. 5. Clustering of the annual climatology (average) for the 15 variables identified. Color bars show the range of values within each cluster, except for the upper
and lower clusters, which extend (uppermost and lowermost value of highest and lowest cluster respectively) to 2 standard deviations from the cluster centroid value.
The white lines correspond to the province boundaries identified by Longhurst (2007). (For interpretation of the references to color in this figure legend, the reader is
referred to the Web version of this article.)
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incident irradiance and mixing depth. The depth of the mixed layer also
has a strong influence on Chlint in that layer. The shallower mixed layer
north of∼15˚S leads to almost uniform Chlint (∼3mgm−2) for much of
the open ocean between 15˚N and 30˚S. The bbp does not appear to
covary with any other variable. It shows surprisingly low values in the
eastern Arabian Sea and in the Bay of Bengal, while in the gyre, unlike
in other gyres (e.g., Brewin et al., 2012; Huot et al., 2008), it does not
seem to follow the changes in chlorophyll. The high backscattering
values south of ∼40˚S have been associated with the presence of coc-
colithophores (“the great calcite belt” Balch et al., 2011), but the pre-
sence of higher winds (inducing bubble formation) and higher Chl
concentration (causing an increased concentration of particles of all
sizes) could also contribute to this elevated backscattering.

This analysis provides clusters for chlorophyll that are similar to
those in the analysis by Hardman-Mountford et al. (2008), who used
principal component analysis to objectively map oceanic regions. In our
study, the partitioning based on average annual chlorophyll is the most
similar to the partitioning proposed by Oliver and Irwin, (2008), who
used normalized water leaving radiance (nLw) at 443 and 551 nm as
well as SST to identify their regions. This highlights the strong impact of
Chl on the Oliver and Irwin provinces, through its impact on nLw.

For our next analyses, we decided to drop the CDOM index and the
day-night temperature differences because they were noisier in the data
types that were examined next; we also dropped SST, which is re-
dundant with FT

23.9 (they are provided in the supplementary materials).

3.2.2. Standard deviation
The variance or its derived standard deviation is also informative as

it allows grouping regions according to the amount of yearly variation
within the regions (Fig. 6); this allows identifying stable vs variable
regions. For parameters such as the chlorophyll concentration, zMLD and
to some extent adg, the maps based on the standard deviation show
spatial distributions that are similar to the maps based on average va-
lues (Fig. 5). Most other variables show very different patterns. As an
example, the incident EPAR variable does not show the east-west gra-
dient seen in the average maps but shows a mostly latitudinal gradient
as expected from solar insolation changing with season. Similarly,
variability in the SST (presented as FT

23.9) shows very distinct patterns
from those in the annual climatology maps. In particular, a strong east-
west gradient is present at all latitudes with the eastern side of the gyre
showing much less variability in FT

23.9.
The eastern equatorial region extending to about 10˚S and 5˚N

shows particularly low variability in most variables (except for salinity
and bbp). This feature is likely due to low wind speed and high water
temperature that lead to a stable and well-stratified ocean with little
variability. The shallowest zMLD according to HYCOM in the Indian
Ocean are, however, found in the western region between 0 and 15˚S
(Fig. 5).

The sharp boundary that marks the North Subtropical Front (NSTF)
between ∼33˚S and 37˚S (depending on longitude) in the euphotic zone
depth variable is a striking feature of these maps. South of the front, the
increased irradiance in summer is almost exactly compensated by the
increased attenuation due to chlorophyll (and associated material) such
that the depth of the euphotic zone remains stable. This feature would
not be observed if using the 1%-light level as the depth of the euphotic
zone since it would only be determined by light attenuation. This fea-
ture also highlights the slight inaccuracy in the boundary of Longhurst's
ocean provinces in this region. Reygondeau (Reygondeau et al., 2013
their Fig. 3) also observed this departure in the static version of their
classification of the Indian Ocean.

3.3. Clustering time series

Instead of using one measurement to capture the mean or variability
of the time series, clustering the complete time series allows each time
point, in this case monthly observations, to vary independently. It

allows separating different annual patterns even if the annual mean or
standard deviation in two regions are similar.

3.3.1. Un-normalized time series
The simplest approach to use the times series is without any mod-

ification (apart from the log transform for variables that span several
orders of magnitude). In this case, the absolute value of the times series
has a large impact on the clustering analysis, and most of the variables
(Fig. 7) have distributions that resemble the average maps (Fig. 5). With
the addition of the temporal aspect, the separation of the different
clusters tends, however, to be stronger. Two variables that show dif-
ferent clustering patterns when using the time series are EPAR and ĒPAR.
In the (simpler to describe) case of EPAR, the presence of very different
annual cycles (more or less affected by the monsoon and/or cloudiness)
leads to a very distinct distribution of clusters. North of 15˚S in the time
series clustering, there is a clear north-south clustering with the
northern regions showing a stronger effect of the monsoon (cycles that
show two minima per year). The north-south clusters are further se-
parated in an east-west fashion with the eastern portion showing higher
irradiances due to lower cloudiness. In a similar, but less distinct,
fashion from the average maps, the FT

23.9 variable also separates along an
east-west gradient. A region in the northern Bay of Bengal and in the
Arabian Sea shows the distinct bimodal monsoon features.

The annual cycles of bbp show that the minimum and very low va-
lues in the Bay of Bengal occur from January to February when the
mixed-layer depth is deepest and monthly wind speeds are nearly at the
lowest values measured in the whole Indian Ocean. The highest values
of bbp in the southern portion of the study area, previously referred to as
‘the great calcite belt’ (Balch et al., 2011), also occur around that time
of year.

The annual cycles of the mixed-layer depth show that the east-west
difference in the depth occurs mostly during the austral winter months,
when the mixed layer is deeper in the eastern region by about 20m.
This feature does not seem to be reflected in the remotely measured
fields (Chl, bbp, adg, salinity).

A strong north-south separation occurs in the adg variable around
the equator (this was also observed but less obviously in Fig. 5). This
strong feature is not seen in any other variable. Values north of the
equator tend to show more seasonality and/or higher values, which are
perhaps linked to the relative proximity to the continent.

3.3.2. Time series normalized by the annual mean
The relative changes in the variables can be examined by dividing

the time series by its annual average (Fig. 8). This approach removes
the effect of the average value of a property and the spatial distribution
of the clusters becomes very different from those obtained by using the
time series without normalization. As described in Table 2, normalizing
by the mean emphasizes at the same time the amplitude (related to the
standard deviation examined in section 3.2.2) and the shape of the
annual cycle. For time series of variables that show little variability
compared to the mean, such normalization by the mean leads to clus-
ters that have little meaning. This is certainly the case for salinity (apart
perhaps in the northern Bay of Bengal), and the clusters appear to be
very heterogeneous and without links to oceanographic or atmospheric
patterns.

For some variables, there is an interesting added value in the re-
lative changes that helps to understand the processes. For example, EPAR

highlights very clearly the increasing annual variability in the irra-
diance with increasing latitude, with only a slight effect of clouds su-
perimposed in the equatorial region. In all regions, irradiance values
match their yearly average twice a year (i.e., a value of 1 in Fig. 8) near
the equinoxes. The ĒPAR has similar patterns to EPAR, though with more
variability in the latitudinal patterns as it is influenced by zMLD. Simi-
larly, the SST, here presented as FT

23.9, shows a mostly north-south
gradient. The effect of the monsoon in the north region is emphasized
relative to the un-normalized time series. South of 10˚S, there is a clear
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east-west separation where the western region has lower variability in
the FT

23.9 (pale blue cluster; similar to what was observed in Fig. 6). In a
similar fashion to the EPAR centroids reaching their mean annual value
at the equinox, FT

23.9 values reach their annual mean twice a year in mid-
November and at the beginning of March. The heating and cooling
cycle is controlled by the net heat flux; this “crossing” of the annual
average is later in the year than the incident irradiance.

The chlorophyll and zeu cluster in a similar fashion. Compared to
previous clusters (e.g. Fig. 7), the spatial distributions are more scat-
tered, with more mixing between the clusters as a large part of the
variance was removed by the normalization. In addition to showing
similar regions to those previously identified (e.g., Arabian Sea, east
coast of Africa, stable region in the eastern equatorial Indian Ocean in
Fig. 7), it highlights new regions and some regions in different ways. In
particular, it highlights a region that includes the Mozambique Channel
and southwest of Madagascar, which is characterized by an increase in
chlorophyll concentrations from December to June, which is very dis-
tinct from all other clusters (and influenced by the episodic blooms
described in section 3.1). South of 30˚S, there is also a very strong la-
titudinal (but varying with longitude) clustering. Apart from the cluster
southwest of Madagascar, the gyre region between 15˚S and 30˚S
clusters in three groups with differences in the timing and amplitude of
the annual chlorophyll cycle. The eastern region (green cluster in the
chlorophyll panel) shows less variability in a manner that is consistent

with the FT
23.9 clusters.

This clustering approach is very similar to the approach followed by
D'Ortenzio and d'Alcalà, 2009 in the Mediterranean Sea; they used
weekly instead of monthly averaged data and normalized to the annual
maximum instead of the annual average here. Our approach, however,
leads to more continuous clusters and less mixing between the clusters
when applied to the Mediterranean Sea (data not shown).

3.3.3. Standardized time series
Further standardization of the data by subtracting the mean and

dividing by the standard deviation provides clusters that are again quite
different from the previously described clusters (Fig. 9). The most im-
portant aspect is that any effect of amplitudes linked either to variations
of the annual cycle or to different average values are removed, so that
all clusters have roughly the same annual amplitude (non-normal dis-
tributions can lead to differences in range) and average mean.

This does not always lead to more useful interpretations, especially
in terms of understanding physical and biological changes, but it can
provide insight into smaller sources of variability as well as the timing/
phenology of events. This is clearly illustrated in the EPAR panel, where
the latitudinal variation almost disappears and where two very similar
clusters group most of the area south of 15˚S. Above 15˚S, the clusters
separate according to slightly different annual cycles that appear to be
influenced mostly by cloudiness in the different regions and to a lesser

Fig. 6. As in Fig. 5 but for clusters based on the standard deviation of monthly time series.
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extent by latitude. These clusters likely have very little power to explain
the ecology of different regions. Another example is the salinity, as was
already the case with the normalization by the mean that salinity
clusters make little sense and, though they show some spatial con-
tinuity, they are very patchy and probably do not reflect processes that

are easily understandable; adjacent clusters can show extremely dif-
ferent patterns.

This approach to standardizing is thus probably most suited to ex-
amining the distribution of phenology in the region, particularly for
focusing on the timing of events. The chlorophyll panel highlights this

Fig. 7. Clusters based on the monthly times series without normalization. Cluster are colored according to the mean value of the centroid presented as line plots
under each map.
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very clearly. For example, examining the low variability region near the
equator (purple color), which was identified from the previous clus-
tering maps, clearly shows that chlorophyll varies annually (though
only by ∼20%, see Fig. 7) with two maxima (large one in Octo-
ber–November and a smaller one in April–May) and two minima in July

and February–March. Such observations were barely shown in the
previous clustering analysis. At the same time, it may not be very im-
portant, and the most important characteristic in this region appears to
be its stability through time, which is not observable with the stan-
dardization. Standardization does, however, bring out new regions that

Fig. 8. Clusters on the times series normalized by the mean. Clusters are colored according to the standard deviation of the centroid (blue= low, red= high)
presented as line plots under each map.
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likely have different ecological regimes. This is the case in the area west
of the Maldives, which shows an annual cycle that is distinct from the
surrounding regions. South of 30˚S, this normalization in the chlor-
ophyll map also clearly highlights the very different annual cycles

present in the adjacent yellow and green clusters, which appear to
delineate the subtropical convergence zone. This region is also apparent
in the adg map and some of the maps derived from or related to
chlorophyll (zeu, Chlint). The region west and southeast of Madagascar

Fig. 9. As in Fig. 8 but for clusters based on the standardized times series (mean subtracted and divided by standard deviation). Colors are attributed randomly to the
clusters. The clusters centroids are presented as line plots under each map. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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that appeared in Fig. 8 is also apparent in this figure.
This approach is similar to the one used by Lacour et al. (2015) in

the North Atlantic to examine regions with different bloom character-
istics. They used weekly datasets and subtracted the minimum and di-
vided by the range instead of a subtraction of the mean and a division
by the standard deviation. It also allows examination of bloom char-
acteristics as was carried out by Lévy et al. (2007). While Levy et al.
limited their investigation to regions with larger annual cycles, there
are strong similarities in the regions they have identified and the pat-
terns retrieved here despite the reduced number or regions we de-
scribed (some of our regions include several regions in Levy et al.). The
timing of blooms certainly matches those observed by Levy et al. (who
manually decided on the regional separation by choosing parameter
intervals, instead of the statistical approach described here).

3.3.4. Multiple parameters
With 12 variables examined here and different data types, the

possible number of clusters based on combinations of variables and
data types is huge and we cannot explore them all. Specific combina-
tions should be chosen based on their relevance to specific questions.
One common approach is to use temperature and chlorophyll to cluster
surface fields (e.g., Devred et al., 2007); this is largely because both are
historically easily accessible from remote sensing and provide key
sources of information about oceanic biophysical processes.

An example of clustering these two variables is shown in Fig. 10 for
the standardized time series. By comparing this figure with the chlor-
ophyll and FT

23.9 panels in Fig. 9, it can be seen that temperature has
little effect on structuring the fields south of ∼10˚S. This lack of impact

of temperature is largely due to the fact that the standardized time
series of FT

23.9 for this region are very similar (leading to a very large
cluster in the FT

23.9 panel in Fig. 9), while the chlorophyll time series
shows substantial differences (thereby leading to a stronger “weight”
during the clustering when the centroid distances are computed). North
of ∼10˚S, the temperature and chlorophyll time series both play a role
in structuring the regions and together show distinct patterns relative to
each of the individual time series in Fig. 9. Adding information on
temperature also allows, in some cases, better separation of the clusters.
For example, the dark blue cluster in the chlorophyll panel in Fig. 9 that
spans the equator and is also found between 30˚S and 45˚S is not present
in this new partitioning. Although the two regions show similar annual
chlorophyll phenology, the temperature time series are clearly dif-
ferent. The region where the annual cycles are influenced by the
monsoon are particularly well highlighted in this clustering; the yellow
and red regions show a strong monsoon-like impact on the annual cy-
cles (double dips in the chlorophyll and temperature), while the purple
region is clearly more influenced by the annual cycles of solar irra-
diance.

3.4. Comparison with Longhurst's provinces

Our partitioning results did not closely reproduce the Longhurst
provinces (Longhurst, 2007). This is normal as the goals and ap-
proaches are different. This said, the average climatologies and the un-
normalized time series for chlorophyll and temperature provide the
closest match in most cases. However, the regions west of Madagascar
(Longhurst's East Africa Coastal province), along the west coast of India
(Longhurst's West India Coastal province), and along the coast in the
Bay of Bengal (Longhurst's East India Coastal province) do not appear
here. The very few in situ data in the Indian Ocean that were available
to Longhurst when he defined provinces, as compared to the spatially
continuous fields used here, are likely one reason for these differences.
In this work, we also focused on clustering single variables whereas
Longhurst considered multiple variables, including bathymetry which
we did not include. Our clustering results is only relevant to the surface
or near surface fields and will only be affected indirectly by deeper
features such as bathymetry if it influences the surface fields.

Finally, the clustering methods use a fundamentally objective ap-
proach whereas defining an ‘ecological biogeography’ as per Longhurst
is more subjective. Our clustering analysis attempts to reduce the var-
iance in the dataset by choosing the most appropriate centroids, while
the ecological biogeography approach attempts to identify regions that
have common sources of forcing and similar responses for multiple
variables. Longhurst also focused more specifically on partitioning that
would be relevant to estimates of primary production.

Our work must therefore be seen as complementary to that of
Longhurst and coworkers. It does not replace or contradict these find-
ings but present a different approach to partitioning the Indian ocean.
An attempt to link the clustering approach with the Longhurst approach
was made by Reygondeau et al. (2013) by forcing a clustering approach
to use the Longhurst provinces as the source of data for the cluster
centroids, and then using these centroids to identify regions using a
clustering approach. Their goal was basically to identify which regions
obtained from an ‘objective clustering’ would best match or extend
those defined by Longhurst allowing dynamic clustering.

4. Conclusions

Physical forcing in the Indian Ocean is highly variable and complex,
and many of the variables show distinct responses to common forcings.
The spatial patterns in the partitioning results were different for in-
dependent variables whereas dependencies between variables (e.g.,
euphotic zone depth being derived from the same underlying data as
chlorophyll) expectedly led to similar clustering results. In both cases,
the resulting partitions have clear biophysical underpinnings. Similarly,

Fig. 10. Top: Clusters obtained by the simultaneous clustering on the stan-
dardized chlorophyll and temperature time series. The white lines correspond
to the province boundaries identified by Longhurst (2007). Center and bottom:
The centroids of chlorophyll and temperature are presented as line plots under
the map.
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the different data types examined capture different properties of the
same data. Using the yearly average or the untransformed time series
provided very similar results, which indicates that in both cases the
amplitude of the data has an overwhelming influence on the clustering
analysis. However, using either the standard deviation of the data or the
normalized or standardized time series provided different patterns.

The patterns and clusters obtained with different variables and data
types highlight a key finding of our study: well-defined research ques-
tions should drive the selection of the variables and data types that, in
turn, determine the relevant ‘homogeneous’ regions. The ‘homo-
geneous’ regions will thus change depending on the research questions.
It is not advantageous, for example, to define one standard set of
‘homogeneous’ regions for a large range of scientific questions. The
partitioning should be different depending on the scientific questions
being addressed for a given sampling campaign. For example, ‘homo-
geneous’ regions in terms of chlorophyll phenology (e.g., Fig. 9) are
very different from the regions with similar average yearly chlorophyll
concentrations (e.g., Fig. 5). This observation does not preclude the use
of ‘homogeneous’ regions for extrapolating local results to larger re-
gions. Instead, if the basin is sufficiently well sampled, ‘homogeneous’
regions can be defined a posteriori depending on the questions, and the
measurements taken within a ‘homogeneous’ region can be used to
define its characteristics. Even better, sampling should be planned ac-
cording to ‘homogeneous’ regions that were developed specifically to
answer well-defined questions.
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