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November 19, 2021

Abstract

We analyze and propose variants of the Adaptive Biasing Force method. First, we
prove the convergence of a version of the algorithm where the biasing force is estimated
using a weighted occupation measure, with an explicit asymptotic variance. Second, we
propose a new flavour of the algorithm adapted to high dimensional reaction coordinates,
for which the standard approaches suffer from the curse of dimensionality. More precisely,
the free energy is approximated by a sum of tensor products of one-dimensional functions.
The consistency of the tensor approximation is established. Numerical experiments on 5-
dimensional reaction coordinates demonstrate that the method is indeed able to capture
correlations between them.

keywords: Monte Carlo methods ; tensor ; free energy ; importance sampling ; molec-
ular dynamics.
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1 Introduction

Consider x ∈ TD a vector representing the positions of particles with periodic boundary
conditions (T = R/Z), and a potential energy V ∈ C∞

(
TD
)
. Our first motivation is the

computation, in multimodal cases, of expectations of the form

1∫
TD e

−βV (x)dx

∫
TD
ϕ(x)e−βV (x)dx =:

∫
TD
ϕdµV,β (1)

where ϕ : TD → R is called an observable and dµV,β := e−βV (x)dx is the Gibbs law with
potential V and inverse temperature β > 0. Our second motivation is the estimation of the
free energy associated to this Gibbs law and a given high-dimensional reaction coordinate,
as will be explained below. Our main contributions are, first, the long-time convergence of
an adaptive Importance Sampling method for estimating (1) (Theorem 2) with an explicit
asymptotic variance (Theorem 3) and, second, the definition of a variant of this algorithm
based on a tensor approximation (Algorithms 2 and 3) to tackle high-dimensional reaction
coordinates and the proof of its consistency (Theorem 5).

The large dimension D is so significant that, in practice, the quantities (1) have to be com-
puted with Markov Chain Monte Carlo (MCMC) algorithms, which consist in approximating

1



the average of ϕ with respect to µV,β along dynamics that are ergodic with respect to µV,β. A
typical sampler is the overdamped Langevin dynamics

dXt = −∇V (Xt)dt+
√

2β−1dBt

where (Bt)t>0 is a Brownian motion over TD. It is ergodic with invariant measure µV,β, so
that

1

t

∫ t

0

ϕ(Xs)ds −→
t→∞

∫
TD
ϕdµV,β a.s.

for all measurable bounded ϕ, see e.g. [37] and references therein. Nevertheless, the conver-
gence of the process (or, in practice, of any alternative Markov process with invariant measure
µV,β) toward its equilibrium in the long-time limit may be very slow. This is due to the
so-called metastability phenomenon, according to which the process remains for long times
in some region of the space, with very rare transitions from one of these metastable regions
to another. This is related to the multi-modality of the Gibbs measure and the fact MCMC
algorithms typically perform local moves, so that leaving a mode of the target measure µV,β is
a rare event. We refer to [34] for more details on this topic. For this reason, several adaptive
methods have been developed in order to force the process to leave the metastable traps faster.
Among those, we focus on the adaptive biasing force (ABF) algorithm, which may be seen as
a particular Importance Sampling method. The general idea is to run a biased process

dX̃t = −∇V (X̃t)dt+∇Vbias,t(X̃t)dt+
√

2β−1dBt (2)

where the biasing potential Vbias,t is adaptively constructed from the past trajectory (X̃s)s∈[0,t]

in such a way that it is expected to converge to some Vbias,∞. Expectations with respect to
µV,β are then recovered through a reweighting step, assuming that ergodicity still holds:

1
t

∫ t
0
ϕ(X̃s)e

−βVbias,s(X̃s)ds
1
t

∫ t
0
e−βVbias,s(X̃s)ds

−→
t→∞

∫
TD ϕe

−βVbias,∞dµV−Vbias,∞,β∫
TD e

−βVbias,∞dµV−Vbias,∞,β
=

∫
TD
ϕdµV,β . (3)

Classically, in such an Importance Sampling scheme, the aim is to design a target bias Vbias,∞
such that two conditions are met: 1) sampling the biased equilibrium µV−Vbias,∞,β is sim-
pler than the initial problem (i.e. the corresponding overdamped Langevin process is less
metastable) and 2) the biased equilibrium is not too far from the initial target so that the
exponential weights in (3) do not cause the asymptotical variance of the estimator to skyrocket.

In the ABF algorithm, this issue is addressed with the use of so-called reaction coordinates
(or collective variables) and the associated free energy as a bias. Reaction coordinates consist
of a small number d� D of macroscopic coordinates of the whole microscopic system x ∈ TD.
These coordinates are defined through a map ξ : TD →M whereM is a manifold of dimension
d. In molecular dynamics, for example, x ∈ TD is a vector which gathers the positions of all
the different atoms of the system of interest, and ξ(x) typically represents some distances
between particular pairs of atoms, or angles formed by some triplets of atoms. These reaction
coordinates should be chosen to capture the main causes of the metastability of the system.
More precisely, ξ(Xt) should converge to equilibrium as slowly as Xt, while the conditional
laws L(X | ξ(X) = z) for fixed z ∈M when X ∼ µV,β should be easier to sample (see [35] or
Section 2.4 for more detailed considerations). In other words, ξ(x) should be a low-dimensional
representation of x that captures the slow variables of the system.

To these reaction coordinates ξ is associated the corresponding free energy A : M → R,
given by

A(z) = − 1

β
ln

∫
{x∈TD, ξ(x)=z}

e−βV (x)δξ(x)−z(dx) ,
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where δξ(x)−z is the so-called delta measure, which can be defined from the Lebesgue measure
on the submanifold {x ∈ TD, ξ(x) = z} through the co-area formula, see for example [36,
Section 3.2.1]. This definition ensures that, if X is a random variable with law µV,β on TD,
then ξ(X) is a random variable with law µA,β on M. The heuristic of the ABF algorithm is
the following. Suppose that M is compact. If we were to sample from the process

dYt = −∇ (V − A ◦ ξ) (Yt)dt+
√

2β−1dBt, (4)

the equilibrium would be µV−A◦ξ,β, whose image through ξ, by definition of A, is the uniform
measure on M. This means that there would be no more metastability along ξ, since all
the regions of M would be equally visited by ξ(Yt). Unfortunately, it is not possible to use
directly this free-energy biased dynamics in practice, since it would require the knowledge of
A and thus the computation of expectations in large dimension. The idea of the ABF method
is to learn A on the fly, i.e. to run a process (X̃t)t>0 solving (2) with a biasing potential Vbias,t
constructed from (X̃s)s∈[0,t] and designed to target A ◦ ξ in the longtime limit.

As mentioned at the beginning of this introduction, in fact, independently from the ques-
tion of obtaining MCMC estimations for (1), estimating the free energy A associated to some
reaction coordinates ξ can be an objective per se. Indeed, in molecular dynamics (for either
chemistry, biophysics or material science), it is a key quantity to analyze phenomena such as
conformational stability, solvation properties or ligand binding affinity, see e.g. [24, 36, 28, 5]
and references within. In these cases, the reaction coordinates work as a small dimensional
representation of the macroscopic state of the system. This is also the case in coarse-graining
problems, where the goal is to replace numerically intensive high-dimensional molecular simu-
lations of a microscopic system Xt by cheaper simulations of an approximate effective dynamics
for the low-dimensional ξ(Xt). In that case, the effective force is usually given by the free en-
ergy, which has to be estimated on an all-atom high dimensional simulation, see e.g. [41, 43]
and references within.

In practice, the choice of good reaction coordinates, both in term of enhanced sampling
and of low-dimensional representation of the system, is a difficult problem. Up to recently,
their definition has been based on the knowledge and intuition of specialists. The question of
the automatic learning of suitable reaction coordinates is currently a vivid research area, see
for instance [10, 11] and the recent review [22]. Moreover, some techniques like the orthogonal
space random walk [40] provide a general way to construct new reaction coordinates from
previous ones. Due to these recent progresses, one would like to consider a relatively large
d. In ABF, Vbias,t is a function of the d reaction coordinates. From a numerical point of
view, since Vbias,t is adaptively learned on the fly, its values have to be kept in memory, which
requires a grid whose size typically scales exponentially with d. This limits the application of
ABF to small dimensional reaction coordinates (d 6 4). The aim of the present work is to
lift this limitation by approximating Vbias,t using a sum of tensor products of one-dimensional
functions, which reduces the size of the memory to O(dm) where m is the number of tensor
terms. Remark that this can in turn help for the definition of good reaction coordinates, by
considering as candidates a relatively large number of reaction coordinates and then conduct
a statistical study to select or combine some of them. A basic idea would be to conduct a
sensitivity analysis of the free energy, computing for instance for each reaction coordinate ξi
the best approximation in the least square sense of the (estimated) free energy by a function
only of the other reaction coordinates (ξj)j 6=i (which is easily done for a function given as a
sum of tensor products, see [31]) and then discarding the reaction coordinate whose disparition
gives the lowest error. Nevertheless, this question exceeds the scope of the present work, in
which ξ is supposed to be given.

Note that the question of increasing the number of reaction coordinates in adaptive biasing
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algorithms has also been considered in the Bias-Exchange algorithm introduced in [48], where
several replicas of the system are run in parallel, each associated with a one-dimensional
reaction coordinate. The replicas exchange their bias according to some Metropolis-Hastings
probability, so that each replica eventually feels the bias in all the different directions of the
reaction coordinates. Nevertheless, in this case where one-dimensional reaction coordinates are
treated independently one from the others, correlations between reaction coordinates cannot
be measured (the same goes for the generalized ABF introduced in [51]), contrary to the
algorithm introduced in the present work.

Besides, let us mention that numerical methods involving both tensor approximation and
Monte Carlo methods for molecular dynamics are also introduced in [30, 45] for other purposes.

The rest of the paper is organized as follows. The algorithms are introduced in Section 2,
where our main results are stated and discussed. Section 3 is devoted to the proofs of The-
orems 2 and 3 which are related to the long-time convergence of the ABF algorithm. In
Section 4, we prove Theorem 5, which concerns the tensor approximation scheme. Section 5
provides a detailed discussion on practical considerations and possible variations of the algo-
rithm. Finally, some numerical experiments with the tensor ABF algorithm are reported in
Section 6.

2 Algorithms and results

In this section we provide a presentation of the ABF algorithm which is considered in this work
in a simple framework, and refer to Section 5 for generalizations. The presentation is divided
into two parts. In Section 2.1, we present the reference ABF algorithm that we consider,
without the tensor-product approximation, and state a long-time convergence result and a
CLT. In Section 2.2, we introduce the tensor-product approximation of the bias and state
its consistency. These two ingredients are then combined to yield the Tensor-ABF algorithm
in Section 2.3. The two algorithms and associated convergence proofs of the reference ABF
algorithm and of the tensor-product approximation are presented separately since they have
their own interest.

2.1 Free energy and the ABF algorithm

Let us first present the ABF algorithm in a simple framework (see [26, 17, 35] for more general
settings). From now on, we write

µ = µV,β ,

seen both as a probability law and as the density of the latter with respect to the Lebesgue
measure.

Let us assume thatM = Td and that, for all x = (q, z) ∈ TD = Tp×Td, ξ(x) = ξ(q, z) = z
where p = D − d.

At first sight, this may seem a very restrictive choice of reaction coordinates. But, using
extended variables (see [21]), this can actually be applied in very general contexts. We refer
the reader to Section 5 for more details on this point.

The associated free energy for z ∈ Td is then

A(z) = − 1

β
ln

∫
Tp
e−βV (q,z)dq .
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Following the previous discussion, our aim is then to define for all time t > 0 a function At on
Td and to sample the process{

dQt = −∇qV (Qt, Zt)dt+
√

2β−1dB1
t

dZt = −∇zV (Qt, Zt)dt+∇zAt(Zt)dt+
√

2β−1dB2
t ,

(5)

where B1 and B2 are independent Brownian motions respectively of dimension p and d, in
such a way that At gets close to A in large time.

Note that the free energy A satisfies

∇zA(z) =

∫
Tp ∇zV (q, z)e−βV (q,z)dq∫

Tp e
−βV (q,z)dq

= Eµ [∇zV (Q,Z) | Z = z] .

The following alternative equivalent characterization of A will be useful in the sequel. Denoting
by H1(T) the set of functions of L2(Td) with a weak gradient in L2(Td), define

H :=

{
f ∈ H1(Td) :

∫
Td
f(z)dz = 0

}
, (6)

and let us denote by P(Tp × Td) the set of probability measures on Tp × Td = TD. For all
ν ∈ P(Tp × Td) and f ∈ H, let us define

Eν(f) :=

∫
Tp×Td

|∇zV (q, z)−∇zf(z)|2dν(q, z).

As detailed in [1], up to an additive constant (like the potential V , the free energy is in fact
always defined up to an additive constant), A is the unique minimizer in H of the functional
Eµ, i.e.

A−
∫
Td
A(z)dz = argmin

f∈H
Eµ(f). (7)

At time t > 0, a trajectory (Qs, Zs)s∈[0,t] of (5) is available. Let νt be the probability
measure on Tp × Td = TD defined as follows: for all ϕ ∈ C(Tp × Td),∫

Tp×Td
ϕdνt =

(∫ t

0

e−βAs(Zs)ds

)−1 ∫ t

0

ϕ (Qs, Zs) e
−βAs(Zs)ds . (8)

We call νt the unbiased occupation distribution of the process. By the ergodic limit (3), νt is
expected to converge weakly to µ as t goes to infinity almost surely (at least if At does not
change too fast with t).

However, note that νt is a singular probability measure, so that the minimization problem

inf
f∈H
Eνt(f)

is ill-posed. To circumvent this difficulty, one may consider two different alternatives to reg-
ularize the problem which we detail hereafter. Consider a smooth symmetric positive density
kernel K ∈ C∞(Td × Td,R+) with∫

Td
K(y, z)dz = 1 and K(y, z) = K(z, y) ∀y, z ∈ Td . (9)
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In practice, K(y, ·) should be close to a Dirac mass at y (see Theorem 2 below). For instance,
a possible choice for K would be the so-called von-Mises kernel for a given small parameter
ε > 0, i.e.

K(y, z) ∝
d∏
i=1

exp

(
− 1

ε2/2
sin2

(
zi − yi

2

))
. (10)

Now, consider also a regularization parameter λ > 0. For all ν ∈ P(Tp × Td) and all f ∈ H,
we define

Jν(f) :=

∫
Tp×Td×Td

|∇yV (q, y)−∇zf(z)|2K(y, z)dzdν(q, y) + λ

∫
Td
|∇zf(z)|2dz , (11)

Note that, as K(y, ·) converges weakly toward the Dirac mass at y and λ goes to 0, for all
f ∈ H, Jν(f) converges towards Eν(f). The interest of introducing Jν is that, thanks to the
regularization, the minimization problem is now well-posed:

Proposition 1. Assume that either K > 0 on Td×Td or λ > 0. Then, for all ν ∈ P(Tp×Td),
Jν admits a unique minimizer in H.

This is a direct consequence of the strict convexity of J , see Section 4. In summary, in
the whole article, we work under the following conditions.

Assumption 1. V ∈ C∞(TD), D > 3, β > 0, λ > 0 and K ∈ C∞(Td × Td,R+) satisfies (9).
Moreover, either K > 0 or λ > 0.

We now have all the elements to define the reference ABF algorithm in this work, see
Algorithm 1 below.

Algorithm 1 ABF algorithm
1: Input:
2: Initial condition (q0, z0) ∈ Tp × Td
3: Brownian motion (B1

t , B
2
t )t>0 on Tp × Td

4: Regularization parameters K, λ
5: Update period Tup > 0, number of updates Nup ∈ N∗, total simulation time Ttot = TupNup

6: Output:
7: Estimated free energy ATtot ∈ H
8: Trajectory (Qt, Zt)t∈[0,Ttot] ∈ C

(
[0, Ttot],Tp × Td

)
9: Begin:

10: Set (Q0, Z0) = (q0, z0).
11: Set A0(z) = 0 for all z ∈ Td.
12: Set tk = kTup for all k ∈ J0, NupK.
13: for k ∈ J1, NupK do
14: Set At = Atk−1

for all t ∈ [tk−1, tk).
15: Set (Qt, Zt)t∈[tk−1,tk] to be the solution of (5) with initial condition (Qtk−1

, Ztk−1
) at

time tk−1.
16: Set Atk to be the minimizer in H of Jνtk given by (8) and (11).

17: end for

18: Return ATtot and (Qt, Zt)t∈[0,Ttot].
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Remark that, contrary to the cases studied in other theoretical works like [35, 1, 6], in
Algorithm 1, the bias At is piecewise constant in time, with updates at the times tk, k ∈
J1, NupK. This is due to the fact that, as will be detailed in Section 2.2, in addition to the
classical case, we are also interested in a case where a bias update is numerically demanding,
and thus cannot be performed at each time step.

We prove in Section 3 the long-time convergence of Algorithm 1:

Theorem 2. Under Assumption 1, let (Qt, Zt, At)t>0 be given by Algorithm 1 (with a fixed
Tup > 0 and Nup = +∞ so that Ttot = +∞ and the process is defined for all positive times).
Then, as t→ +∞, almost surely, νt given by (8) weakly converges toward µ and

‖∇At −∇A∗‖∞ −→
t→∞

0,

where A∗ is the unique minimizer in H of Jµ. Moreover, A∗ satisfies∫
Td
|∇A(z)−∇A∗(z)|2

(∫
Tp×Td

K(y, z)µ(q, y)dqdy

)
dz

6 4‖∇2A‖∞ sup
y∈Td

∫
Td
|y − z|2K(y, z)dz + 2λ

∫
Td
|∇A(z)|2dz . (12)

Note that (12) implies that, as λ and supy∈Td
∫
Td |y−z|

2K(y, z)dz go to zero, A∗ converges
in H to A−

∫
A (which corresponds to λ = 0 and K(y, z) = δy(z)).

The almost sure weak convergence of νt toward µ implies, of course, the almost sure
convergence of the importance sampling estimator

∫
TD ϕdνt toward the target

∫
TD ϕdµ for all

continuous observable ϕ.

The long-time convergence of a similar ABF algorithm has been established in [1] but in
a case where, instead of its occupation measure, the process interacts with its law at time t.
Rather than a self-interacting process (i.e. a single trajectory with memory), this corresponds
to a system of N interacting particles (with no memory), and more precisely to the mean-field
limit as N goes to infinity of this system. The techniques to study such a non-linear process
is completely different from our non-Markovian case. Moreover, a result similar to Theorem
2 has been established in [6] for a closely related self-interacting process, the adaptive biasing
potential algorithm. In addition, in the recent work [8], a similar result is established for
the ABF algorithm but when the occupation measure is not unbiased (see the discussion in
Section 5.3).

The previous qualitative result states that the algorithm is consistent, but gives no infor-
mation on its efficiency. We now state that the asymptotic variance of the estimators obtained
from the ABF algorithm is the same as in the case of a process with constant biasing potential
equal to A∗. More precisely, consider X∗ = (Q∗, Z∗) the solution of{

dQ∗t = −∇qV (Q∗t , Z
∗
t )dt+

√
2β−1dB1

t

dZ∗t = −∇zV (Q∗t , Z
∗
t )dt+∇zA∗(Z

∗
t )dt+

√
2β−1dB2

t ,

where A∗ is given by Theorem 2, and let

ν∗t =

(∫ t

0

e−βA∗(Zs)ds

)−1 ∫ t

0

δX∗s e
−βA∗(Zs)ds .

Theorem 3. Under the settings of Theorem 2, there exist C > 0 such that for all t > 0 and
all ϕ ∈ C

(
TD
)
,

E
(
|νt(ϕ)− µ(ϕ)|2

)
6

C

t
‖ϕ‖2

∞ .
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Moreover, tE (|νt(ϕ)− µ(ϕ)|2) converges as t→ +∞ to a limit σ2
∞(ϕ) ∈ R+, which is also the

limit of tE (|ν∗t (ϕ)− µ(ϕ)|2).

As detailed in the proof of Theorem 3 (in Section 3), the asymptotic variance is given as
follows:

σ2
∞(ϕ) :=

2

β

∫
TD
eβA∗◦ξ |∇ψ|2 dµ

∫
TD
eβA∗◦ξdµ

where ψ solves the Poisson equation(
1

β
∆−∇ (V − A∗ ◦ ξ)∇

)
ψ = e−βA∗◦ξ

(
ϕ−

∫
TD
ϕdµ

)
.

The consequences of Theorem 3 in term of efficiency of the algorithm are discussed in
Section 2.4.

2.2 Tensor approximation

This section focuses on the minimization step of Algorithm 1. Assumption 1 is enforced. Fix
ν ∈ P(Tp × Td). For all f ∈ H, the cost function Jν(f) defined by (11) is equal to

Jν(f) = Cν + (1 + λ)

∫
Td
|Fν(z)−∇f(z)|2θν(z)dz (13)

with some constant Cν independent from f and where, for all z ∈ Td,

θν(z) :=
1

λ+ 1

(
λ+

∫
Tp×Td

K(y, z)dν(q, y)

)
(14)

Fν(z) :=
1

(λ+ 1)θν(z)

∫
Tp×Td

∇yV (q, y)K(y, z)dν(q, y) . (15)

Note that, under Assumption 1, θν is the density of a probability measure, bounded from
below by (λ + minK)/(1 + λ) > 0. Moreover, since K is smooth and bounded, so are θν
and Fν . Note that neither the additive constant Cν nor the multiplication by 1 + λ affect
the problem of minimizing Jν . As a consequence, the unique minimizer f∗ of Jν on H (see
Proposition 1) is equivalently the unique minimizer of

H 3 f 7→ J̃ν(f) :=

∫
Td
|Fν(z)−∇f(z)|2θν(z)dz. (16)

The gradient of J̃ν at f∗ is the Helmholtz projection in L2(θν) of Fν . The Euler-Lagrange

equation associated to the minimization problem of J̃ν over H is

∇ · (θν (∇f∗ − Fν)) = 0 , (17)

where ∇· denotes the divergence operator. When d is small (d = 2 in [1]), as t increases, the
functions θνt and θνtFνt are updated and kept in memory on a discrete grid of dimension Md

for some M ∈ N∗, and the Euler equation is solved with standard PDE techniques. However
this is not sustainable if one wants to consider a larger number of reaction coordinates. For
this reason, we now present a method to approximate f∗ by a sum of tensor products, namely
by a function fm ∈ H which reads as follows

∀z := (z1, · · · , zd) ∈ Td, fm(z) =
m∑
k=1

d∏
j=1

rk,j(zj)

8



for some m ∈ N∗ and some functions rk,j : T→ R for 1 ≤ j ≤ d and 1 ≤ k ≤ m. See [23] for
a general overview on tensor methods.

Let g be a simple tensor product function, i.e. a function such that for all z = (z1, · · · , zd) ∈
Td, g(z) =

∏d
j=1 rj(zj) for some r1, · · · , rd ∈ H1(T). Such a simple tensor product function

will be denoted herefater by g =
⊗d

j=1 rj.
If g belongs to H, its (Lebesgue) integral vanishes, which is equivalent to the fact there ex-

ists i ∈ J1, dK such that the (Lebesgue) integral of ri vanishes. This motivates the introduction
of the following subspaces of H: for i ∈ J1, dK, define

Σi :=

{
g ∈ H, g =

d⊗
j=1

rj with rj ∈ H1(T) for all j ∈ J1, dK and

∫
T
ri(zi)dzi = 0

}
.

Proposition 4. Under Assumption 1, for all ν ∈ P(Tp × Td), i ∈ J1, dK and f ∈ H, there
always exists at least one minimizer in Σi to the optimization problem

min
g∈Σi
Jν(f + g). (18)

This is proven in Section 4. From Proposition 4, the greedy algorithm described in Algo-
rithm 2 below is well-defined.

Algorithm 2 Greedy(ν, f0,m)

1: Input:
2: Probability measure ν ∈ P(Tp × Td)
3: Initial guess f0 ∈ H
4: number of tensor terms m ∈ N∗
5: Output:
6: fm ∈ H.

7: Begin:
8: n = 0
9: while n < m do

10: for i ∈ J1, dK do
11: Find gn :=

⊗d
j=1 rn,j a minimizer of g 7→ Jν (fn + g) over g ∈ Σi (i.e. with

rn,j ∈ H1(T) for all 1 ≤ j ≤ d and
∫
T rn,i = 0)

12: Set fn+1 = fn + gn .
13: Increment n← n+ 1.

14: end for
15: end while

16: Return fm.

In Section 4 is established the following:

Theorem 5. Under Assumption 1, let f∗ be the minimizer of Jν in H and fm = Greedy(ν, f0,m)
as given by Algorithm 2 for some ν ∈ P(Tp × Td), f0 ∈ H and m ∈ N. Then

‖fm − f∗‖H1 −→
m→+∞

0 .

The interest of Algorithm 2 is that at each iteration, one only has to compute d one-
dimensional functions, which makes it possible to implement even if d is relatively large (say
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4 < d < 10). Notice that the price to pay when going from the original problem of minimizing
Jν over H to the problem (18) is that the Euler-Lagrange equations associated to the initial
problem are linear (since Jν is a quadratic functional) whereas the Euler-Lagrange equations
associated to (18) are nonlinear. This is due to the fact that the quadratic functional is
minimized over a non-linear space in (18).

In practice, a minimizer of Jν (f + g) over g =
⊗d

j=1 rj ∈ Σi is approximated through the
Alternating Least Square method [19], which is a fixed point procedure on the Euler-Lagrange
equation (17): the rj’s are optimized one after the other, the others being fixed, repeatedly.
This amounts to solving a system of one-dimensional elliptic PDEs of the form

∂zj
(
aj∂zjrj

)
(zj)− bj(zj)rj(zj) = cj(zj) (19)

with

aj(zj) =

∫
Td−1

(∏
l 6=j

rl(zl)

)2

θν(z)dz6=j

bj(zj) =
∑
h6=j

∫
Td−1

∣∣∣∣∣∂zh∏
l 6=j

rl(zl)

∣∣∣∣∣
2

θν(z)dz6=j

cj(zj) =

∫
Td−1

(∏
l 6=j

rl(zl)

)
∂zj (Fν,jθν) (z)dz6=j −

∑
h6=j

∫
Td−1

∂zh

(∏
l 6=j

rl(zl)

)
Fν,h(z)θν(z)dz6=j ,

where dz6=j means that all variables except the jth are integrated and Fν,j denotes the jth

component of Fν . If for all y = (y1, · · · , yd), z = (z1, · · · , zd) ∈ Td, K(y, z) = Πd
i=1Ki(yi, zi)

for some functions Ki : T× T→ R for all 1 ≤ i ≤ d (like the kernel (10)), for ν = νt given by
(8),

(1 + λ)aj(zj) = λ
∏
l 6=j

‖rl‖2
L2(T) +

∫
TD

(∏
l 6=j

∫
T
r2
l (zl)Kl(yl, zl)dzl

)
Kj(yj, zj)dνt(q, y) ,

which can be computed without computing Fνt(z) and θνt(z) for all z ∈ Td (which would be
impossible in practice). The same holds for bj and cj.

2.3 The tensor ABF algorithm

As already explained above, the main objective of this work is to introduce a new algorithm
to adapt the standard ABF approach to multi-dimensional reaction coordinates. Combining
Algorithms 1 and 2, the Tensor ABF (TABF) algorithm is described in Algorithm 3 below.
Note that, for the sake of clarity, it has been kept relatively simple. In particular, we haven’t
addressed here the question of time and space discretization.

Moreover, the proofs of convergence of Algorithm 1 and Algorithm 2 also have their own
interest. The convergence of Algorithm 1 is based on the so-called ordinary differential equa-
tion method [9], and requires specific contractivity bounds. The convergence of Algorithm 2 is
an adaptation of the proof of convergence of greedy algorithms [12], the main difficulty being
to deal with the zero average constraint in H.

2.4 Discussion on the results and efficiency

In view of our theoretical results, we now discuss separately the efficiency of the three al-
gorithms: first, the usual ABF algorithm (Algorithm 1) associated with Theorems 2 and 3;
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Algorithm 3 TABF algorithm
1: Input:
2: Initial condition (q0, z0) ∈ Tp × Td
3: Brownian motion (B1

t , B
2
t )t>0 on Tp × Td

4: Regularization parameters K, λ
5: Update period Tup > 0, number of updates Nup ∈ N∗, total simulation time Ttot = TupNup

6: Number of tensor terms by update m ∈ N∗
7: Output:
8: Estimated free energy ATtot ∈ H
9: Trajectory (Qt, Zt)t∈[0,Ttot] ∈ C

(
[0, Ttot],Tp × Td

)
10: Begin:
11: Set (Q0, Z0) = (q0, z0).
12: Set A0(z) = 0 for all z ∈ Td.
13: Set tk = kTup for all k ∈ J0, NupK.
14: for k ∈ J1, NupK do
15: Set At = Atk−1

for all t ∈ [tk−1, tk).
16: Set (Qt, Zt)t∈[tk−1,tk] to be the solution of (5) with value (Qtk−1

, Ztk−1
) at time tk−1.

17: Set fm = Greedy(νtk , Atk−1
,m) given by Algorithm 2 where νtk is given by (8).

18: Set Atk = fm.

19: Return ATtot and (Qt, Zt)t∈[0,Ttot].

second, the greedy tensor approximation of the free energy (Algorithm 2), associated with
Theorem 5; finally, the TABF algorithm (Algorithm 3).

2.4.1 Enhanced sampling with the ABF algorithm

As Algorithm 1 is meant to tackle metastability issues, a natural frame to discuss its efficiency
is the low temperature regime β → +∞. For Markov processes, obtaining an equivalent in this
regime of the convergence rate of the law of the process toward its equilibrium is a classical
topic, but the case of non-Markovian self-interacting dynamics or similar stochastic algorithms
is known to be much more difficult, and there are much less results. Theorem 3 states that,
in term of asymptotic variance, the efficiency of the adaptive scheme is approximately (as A∗
is close to A) the same as the efficiency of the importance sampling scheme based on (4). As
discussed earlier, the question is thus whether (4) would be efficient. One way to quantify the
interest of using (4) is to discuss the spectral gap of the associated infinitesimal generator: it
is indeed known that the larger the spectral gap, the smaller the asymptotic variance, and
the faster the convergence to equilibrium. In fact, at low temperature, the spectral gap of
the overdamped Langevin process is well known to scale as exp(−βc∗) where c∗ is the so-
called critical depth of the potential, see [27]. On the other hand, applying the results of
[33], we see that the spectral gap of (4) can be obtained, on the one hand, from the Poincaré
inequality satisfied by the marginal law of the reaction coordinates and, on the other hand,
by the conditional laws for fixed values of the reaction coordinates. The marginal law being
uniform on the torus for all β, the scaling in β of the spectral gap of (4) is given by the
scaling of the Poincaré inequality of the conditional laws, which means only the “orthogonal”
metastability intervenes. The spectral gap of (4) then scales at most as exp(−β supz∈Td c∗(z))
where c∗(z) is the critical depth of q 7→ V (q, z). This gives a precise criterion (although
difficult to use in practice) for selecting reaction coordinates: a reaction coordinate is good if
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supz∈Td c∗(z) < c∗. In the toy problem studied in Section 6.1, for instance, supz∈Td c∗(z) = 0
(there is no orthogonal metastability).

A numerical comparison of a classical overdamped Langevin sampler and of a TABF al-
gorithm in this case at low temperature is given in Figure 4. We can see that, in the same
physical time, the adaptive process successfully visits the whole space, while the classical
sampler remains trapped in its initial well. Of course this is not a fair comparison of the prac-
tical algorithms since the numerical cost of the adaptive algorithm is higher, but it illustrates
the difference of the sampling rates of the continuous-time processes. In fact, for a reaction
coordinate of dimension less than 3, a standard ABF method, for which the free energy is
recorded on a grid rather than approximated in a tensor form, has a numerical cost in term
of computational time which is very similar to a basic unbiased simulation of an overdamped
Langevin process (there is also a small additional memory). This means that, in that case, a
comparison at a given computational time between the two algorithms yields a result similar
to a comparison at a given physical time (as in our theoretical result of Theorem 3 and in
the numerical results displayed in Figure 4), i.e. the ABF method is efficient in practice at a
given computational cost. From a numerical point of view, this is a well-known fact, indeed
this algorithm has proven to be useful and efficient for nearly 20 years in a large number of
empirical studies, see e.g. [17, 26, 21, 16] and references within. For this reason, in the present
work, only the TABF variant has been implemented and used for the numerical experiments
of Section 6. However, our contribution, i.e. Theorems 2 and 3, gives the first theoretical
proof of the consistency and efficiency of the self-interacting ABF method.

2.4.2 Tensor approximation of the free energy

First, it should be noticed that the convergence of the greedy tensor method, Algorithm 2, is
proven only in the case where the problem of minimizing Jν(f + g) over single tensor terms
g =

⊗d
j=1 rj is exactly solved, which is in fact not the case with the Alternating Least Square

method (see [19, 50] for convergence results for this algorihm). Moreover, by contrast with
Theorem 3 for the long-time convergence, the convergence of the tensor approximation stated
in Theorem 5 is only qualitative.

That being said, let us focus on the efficiency of Algorithm 2. Whereas the precise conver-
gence rate is not known from a theoretical point of view, it is numerically observed in numerous
applications related to computational mechanics [14, 15, 44], rheology [13], biology [4] or un-
certainty quantification [49], that this method, also called Proper Generalised Decomposition
enables to give very good numerical approximations of the functions to be computed with
a low number of tensor terms or iterations. In our context, we provide in Section 6 a nu-
merical experiment where interesting non-trivial results are obtained when approximating a
5-dimensional free energy with m = 140 tensor terms, each one-dimensional function being
piecewise linear on a grid with M = 30 points. Hence, the total memory cost is 5mM , orders
of magnitude smaller than M5. We refer to the end of Section 6 (in particular Figure 10) for
a more detailed numerical discussion on the efficiency of the tensor approximation.

2.4.3 TABF and free energy estimation

Recall that there are two distinct motivations for the TABF algorithm: first, enhancing the
sampling and, second, estimating the free energy associated to a high-dimensional reaction
coordinate.

Concerning the first objective, what has been said in Section 2.4.1 for the usual ABF
algorithm is still true for the TABF variant as far as we consider the continuous-time processes
in physical time (again, see Figure 4, which is obtained with the TABF algorithm). However,
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in contrast with the usual case where the free energy is recorded on a grid, since the greedy
tensor approximation is numerically demanding, the numerical cost of the TABF algorithm
is increased with respect to a non-biased standard MCMC simulation. In the context of the
numerical experiments conducted in Section 6, which have a purely illustrative purpose, the
TABF algorithm does not yield any gain with respect to a non-biased simulation in term only
of sampling at a given computational cost, for two reasons:

� As discussed in Section 5, to be competitive with unbiased algorithms, a more efficient
implementation of the TABF algorithm would be necessary.

� In the models used in the numerical experiments (e.g. 100 particles with pairwise inter-
actions), the numerical cost for computing the forces ∇V is low, which implies that the
construction of the tensor approximation becomes the bottleneck. This is not represen-
tative of the real-life test cases where evaluating the force is much more expensive.

As a consequence, the current implementation of the algorithm which has been used in Sec-
tion 6 does not allow for a real comparison in term of sampling efficiency of the TABF algorithm
with a standard MCMC method. This would require the interfacing of a high-performance
TABF module within a general molecular dynamics software, in order to test the algorithm
on applications in computational chemistry where the computation of the forces at each time
step is the overwhelming limiting factor, so that the extra cost of the tensor algorithm does
not impair the overall complexity. This exceeds the scope of the present work.

Concerning the second objective, namely the estimation of the free energy, the numerical
experiments of Section 6 show that a simple implementation of Algorithm 3 is able to estimate
the free energy of 5-dimensional highly-correlated reaction coordinates (see in particular Fig-
ure 7). Let us emphasize that, to our knowledge, there are no other implementable provably
convergent algorithm to perform such a task due to the curse of dimensionality.

3 Proof of the long-time convergence

In the whole Section 3 we consider the ABF process (Qt, Zt, At)t>0 obtaind through Algo-
rithm 1 (with Nup = +∞), and Assumption 1 holds.

Lemma 6. For all r ∈ N∗ and all multi-index α ∈ Nr, there exists a constant Cα > 0 such
that, for all t > 0, ‖∂αAt‖∞ 6 Cα.

Proof. Since R+ 3 t 7→ At is piecewise constant, we may assume that t = tk = kTup for some
k ∈ N without loss of generality. Using the notation of Section 2.2, At is then the minimizer
over H of J̃νt defined in (16). Recall that for all f ∈ H,

J̃νt(f) =

∫
Td
|Fνt(z)−∇f(z)|2θνt(z)dz.

Remark that θνt is bounded from below uniformly in t and z by (λ + minK)/(1 + λ) > 0,
and similarly all the derivatives in z of θνt and of Fνt are bounded in L∞(Td) by constants
which depend on K and V but not on t. The Euler-Lagrange equation associated to the
minimization of J̃νt reads

∇ · (θνt∇At) = ∇ · (θνtFνt) . (20)

By elliptic regularity (cf. [2]), At is thus C∞ and, differentiating (20), multiplying it by
derivatives of ∇At and integrating, we classically get by induction that∫

Td
|∂α∇At|2θνt 6 Cα
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where α ∈ Nr is any multi-index for any r ∈ N∗, for some constant Cα > 0 which does not
depend on t. Conclusion follows from Sobolev embeddings.

Theorem 2 will be a direct corollary of:

Proposition 7. Almost surely, νt
weak−→
t→∞

µ.

The proof of Proposition 7 is postponed to the end of this section. Let us prove that
indeed, given the latter, Theorem 2 holds:

Proof of Theorem 2. By the arguments of the previous proof, for all t ≥ 0, the function
Td 3 z 7→ θνt(z) is bounded and Lipschitz with constants which are uniform in t. Hence, for
any ε > 0, we can find Nε ∈ N∗ and a finite set of points z1, · · · , zNε ∈ Td such that for all
z ∈ Td, there exists iz ∈ J1, NεK such that, for all t > 0, |θνt(ziz)− θνt(z)| 6 ε. The same holds
for θµ. On the other hand, according to Proposition 7, almost surely,

sup
i∈J1,NεK

|θνt(zi)− θµ(zi)| −→
t→∞

0,

so that ‖θνt − θµ‖∞ goes to zero as t → ∞. Similar arguments enable us to obtain the same
results for all the derivatives of θνt and for Fνt and all its derivatives. Note that A∗ is the
minimizer of

J̃µ(f) =

∫
Td
|Fµ(z)−∇f(z)|2θµ(z)dz.

Let t = tn for some n ∈ N∗. The associated Euler-Lagrange equations associated with the two
minimization problems on At and A∗ lead to

∇ · (θµ∇ (At − A∗)) = ∇ · (θνtFνt − θµFµ − (θνt − θµ)∇At) . (21)

Multiplying this equality by At − A∗, integrating and using the uniform control on ∇At
established in Lemma 6 (and the lower bound on θµ), we get that∫

Td
|∇ (At(z)− A∗(z)) |2dz −→

t→∞
0.

More generally, differentiating (21), multiplying it by derivatives of At − A∗, integrating and
using the uniform controls of the derivatives of At, we obtain by induction that∫

Td
|∇∂α (At − A∗) (z)|2dz −→

t→∞
0

for all multi-index α ∈ Nd. The first statement of Theorem 2 then follows from Sobolev
embeddings.

Finally, inequality (12) stems from the fact that Jµ(A∗) 6 Jµ(A). More precisely, using
that ∫

Td
∇A(y)µ(q, y)dq =

∫
Td
∇yV (q, y)µ(q, y)dq ,

we get that for all f ∈ H, Jµ(f) = Ĵµ(f) +
∫
|∇yV |2dµ−

∫
|∇A|2dµ where

Ĵµ(f) =

∫
Tp×Td×Td

|∇A(y)−∇f(z)|2K(y, z)dzdµ(q, y) + λ

∫
Td
|∇f(z)|2dz.
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In other words, Jµ and Ĵµ only differ by an additive constant, so that A∗ is the minimizer of

Ĵµ over H. Then∫
Tp×Td×Td

|∇A(z)−∇A∗(z)|2K(y, z)dzdµ(q, y)

6 2Ĵµ(A∗) + 2

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2Ĵµ(A) + 2

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2λ

∫
Td
|∇A(z)|2dz + 4

∫
Tp×Td×Td

|∇A(y)−∇A(z)|2K(y, z)dzdµ(q, y)

6 2λ

∫
Td
|∇A(z)|2dz + 4‖∇2A‖2

∞ sup
y∈Td

∫
Td
|y − z|2K(y, z)dz

The rest of the section is dedicated to the proof of Proposition 7 and Theorem 3. We start
with a presentation of the the so-called ordinary differential equation (ODE) method of [9],
which introduces some general ideas of the proof of Proposition 7 (although, as we will see,
we are in a very simple case so that we won’t really use the fully general method).

3.1 Time change and the ODE method

Following an idea of [6], we introduce the (random) time change:

τ(t) :=

∫ t

0

e−βAs(Zs)ds,

so that

νt =
1

τ(t)

∫ t

0

δQs,Zsτ
′(s)ds =

1

τ(t)

∫ τ(t)

0

δQτ−1(s),Zτ−1(s)
ds .

In other words, considering the time-changed process X t :=
(
Qτ−1(t), Zτ−1(t)

)
and its occupa-

tion measure

ν̄t =
1

t

∫ t

0

δXs
ds , (22)

then νt = ν̄τ(t). Since, at a fixed time t > 0, At is smooth and with Lebesgue integral zero,
there always exists z ∈ Td such that At(z) = 0, so that

‖At‖∞ 6
√
d/2‖∇At‖∞ (23)

where we used that
√
d/2 is the diameter of Td. Together with Lemma 6, this implies that in

particular, τ(t) goes to infinity with t.
Denoting St(x) := Aτ−1(t)(z) for all x = (q, z) ∈ Tp × Td, the inhomogeneous Markov

process X solves the SDE

dX t = −eβSt(Xt)∇ (V − St)
(
X t

)
+

√
2β−1eβSt(Xt)dBt , (24)

where (Bt)t>0 is a standard Brownian motion on TD, obtained from (Bt)t>0 through rescaling.
We denote by (Lt)t>0 its infinitesimal generator, defined by: for all ϕ ∈ C2(Tp×Td) = C2(TD)
and all x ∈ Tp × Td,

Ltϕ(x) = lim
h→0

E
(
ϕ(X t+h) | X t = x

)
− ϕ(x)

h
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whenever the limit exists. Here,

Ltϕ(x) =

(
−∇ (V − St) (x) · ∇ϕ(x) +

1

β
∆ϕ(x)

)
eβSt(x).

We denote by (P
(t)
s )s>0 the Markov semi-group generated by Lt for a fixed t. Formally,

P
(t)
s = esLt . For all t > 0 the unique invariant measure of (P

(t)
s )s>0 is µ (see [6, Proposition

3.1]), which is a natural consequence of the fact we consider a process interacting with its
unbiased occupation measure. From Lemma 6 and the bound (23), we consider C0 > 0 such
that St ∈ BC0 for all t > 0 where

BC0 :=

{
S ∈ C∞

(
TD
)
,

∫
TD
S(x)dx = 0, ‖S‖C2(TD) 6 C0

}
.

The principle of the ODE method is the following: for large values of the time t, the
evolution of ν̄t is slow (because of the t−1 factor in (22)). Hence, for 1� s� t, in principle,
it holds that Su ' St for u ∈ [t, t+ s], so that

ν̄t+s =
t

t+ s
ν̄t +

s

s+ t

(
1

s

∫ t+s

t

δXu
du

)
' t

t+ s
ν̄t +

s

s+ t
µ. (25)

In other words, the evolution of ν̄t approximately follows the deterministic flow

∂tmt =
1

t
(µ−mt) ,

which converges to µ, so that ν̄t (hence νt) should also converge to µ.
In general cases of self-interacting processes, as those studied in [9], the asymptotic deter-

ministic flow may be more complicated (see in particular [8] for the ABF algorithm with the
non-reweighted occupation measure). Here, as mentioned above, we are in a very simple case
since for all t > 0, µ is the invariant measure of the time-homogenous Markov process with
generator Lt, so that the flow is simply a relaxation toward this equilibrium. For this reason,
in order to make rigorous the previous heuristic, instead of applying the technical arguments
of [9], we may use a shortcut that yields a simpler proof and more explicit estimates (allowing
in particular to tackle the question of the asymptotic variance, which may be much more
intricate in other cases), similarly to [7] for the ABP algorithm.

We will need some quantitative estimates. Indeed, note that, for the approximation (25) to
hold, the speed of convergence of P (t) toward µ should be uniform in t, and the time evolution
of At should be controlled in some sense. As we will see below, these are direct consequences
of the estimates of Lemma 6.

3.2 Preliminary estimates

For a fixed S ∈ C∞(TD), consider LS defined for ϕ ∈ C∞(TD) by

LSϕ(x) =

(
−∇ (V − S) (x) · ∇ϕ(x) +

1

β
∆ϕ(x)

)
eβS(x),

which is the infinitesimal generator of the SDE

dXS
t = −eβS(XS

t )∇ (V − S) (XS
t )dt+

√
2β−1eβS(XS

t )dBt .
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Denote
(
P S
t

)
t>0

the associated (homogeneous) semi-group and ΓS the associated carré-du-

champs operator, defined for ϕ, ψ ∈ C∞(TD) and all x ∈ TD by

ΓS(ϕ, ψ)(x) :=
1

2
(LS(ϕψ)− ϕLSψ − ψLSϕ) (x) = β−1eβS(x)∇ϕ(x) · ∇ψ(x) ,

and ΓS(ϕ) := ΓS(ϕ, ϕ). By classical elliptic regularity arguments, if ϕ ∈ C∞(TD) then P S
t ϕ ∈

C∞(TD), in particular C∞(TD) is a core for LS, see [3, Section 1.13]. More precisely each
derivative of P S

t ϕ is uniformly bounded over all finite time interval, which ensures the validity
of the computations in the proofs of the next lemmas. Integrating twice by parts, it can be
easily seen that for all ϕ, ψ ∈ C∞(TD),∫

TD
ϕ(x)LSψ(x)µ(dx) =

∫
TD
ψ(x)LSϕ(x)µ(dx) ,

in other words LS is a self-adjoint operator on L2(µ).

Lemma 8. Let us assume that D ≥ 3. Then, there exists C1 > 0 such that for all S ∈ BC0,
(µ, LS) satisfies a Poincaré inequality and a Sobolev inequality both with constant C1, in the
sense that for all ϕ ∈ C∞(TD),

‖ϕ‖2
L2(µ) 6 C1

∫
TD

ΓS(ϕ)dµ

‖ϕ‖2
Lp(µ) 6 C1

(
‖ϕ‖2

L2(µ) +

∫
TD

ΓS(ϕ)dµ

)
,

where p = 2D
D−2

.

Proof. For S = 0, the first inequality is the classical Poincaré inequality, which holds here
since the density of µ with respect to the Lebesgue measure is bounded above and below away
from zero, see [3, Proposition 5.1.6]. As a consequence, there exists c > 0 such that for all
S ∈ BC0 and ϕ ∈ C∞(TD),

‖ϕ‖2
L2(µ) 6 c

∫
TD
|∇ϕ|2dµ 6 ceβC0

∫
TD

ΓS(ϕ)dµ .

Similarly, from the Sobolev inequality satisfied by the Lebesgue measure on TD [3, Section 6],

‖ϕ‖2
Lp(µ) 6 ‖µ‖2/p

∞ ‖ϕ‖2
Lp(TD)

6 C‖µ‖2/p
∞

(
‖ϕ‖2

L2(TD) + ‖∇ϕ‖2
L2(TD)

)
6 C‖µ‖2/p

∞ ‖µ−1‖2
∞

(
‖ϕ‖2

L2(µ) + ‖∇ϕ‖2
L2(µ)

)
6 CeβC0‖µ‖2/p

∞ ‖µ−1‖2
∞

(
‖ϕ‖2

L2(µ) +

∫
TD

ΓS(ϕ)dµ

)
.

These inequalities, in turn, yield the following estimates:

Lemma 9. There exist C2 > 0 such that, for all S ∈ BC0, t > 0 and ϕ ∈ C∞(TD),

‖P S
t Πϕ‖L2(µ) 6 e−t/C2‖Πϕ‖L2(µ)

‖P S
t ϕ‖∞ 6

C2

min(1, td/2)
‖ϕ‖L2(µ)

‖∇P S
t ϕ‖∞ 6

C2

min(1,
√
t)
‖ϕ‖∞,

with Πϕ := ϕ−
∫
TD ϕdµ.
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Proof. The first estimate is a usual consequence of the Poincaré inequality, see [3, Proposition
5.1.3]. The second one, namely the ultracontractivity of the semi-group, is a consequence of
the Sobolev inequality (see [3, Theorem 6.3.1]). The last one can be established thanks to the
Bakry-Emery calculus (see [3, Section 1.16] for an introduction), by showing that LS satisfies
a curvature estimate, as we now detail. We would like to compare |∇Ptϕ|2 and Pt(ϕ

2). A
seminal idea of the Bakry-Emery calculus is that quantities of the form Θ(Ptϕ) and PtΘ(ϕ),
where Θ is some operator can be linked through the interpolation Pt−sΘ(Psϕ), s ∈ [0, t], so
that Θ(Ptϕ) − PtΘ(ϕ) =

∫ t
0
∂s (Pt−sΘ(Psϕ)) ds. When differentiating with respect to s, we

obtain quantities of the form −2Pt−sΓΘ(Psϕ) for some operator ΓΘ, which is of a form similar
to the interpolation (Θ being replaced by ΓΘ).

More precisely, when Θ(ϕ) = ϕ2, then ΓΘ is the usual carré-du-champ operator, and when
Θ(ϕ) = |∇ϕ|2 we end up with

Γ∇,S(ϕ) =
1

2
LS
(
|∇ϕ|2

)
−∇ϕ · ∇LSϕ ,

for ϕ ∈ C∞(TD). Writing [ϕ, ψ] = ϕψ − ψϕ, we compute

Γ∇,S(ϕ) =
D∑
i=1

(ΓS(∂xiϕ) + ∂xiϕ[∂xi , LS]ϕ)

>
D∑
i=1

[
β−1e−β‖S‖∞|∇∂xiϕ|2 − β−1eβ‖S‖∞|∇∂xi(V − S)||∇ϕ||∂xiϕ|

−β|∂xiS|eβ‖S‖∞|∂xiϕ||∇ (V − S) · ∇ϕ+
1

β
∆ϕ|

]
> −c|∇ϕ|2

for some c > 0 which is uniform over S ∈ BC0 . Now, following [42, Lemma 4], we want to
consider the interpolation between α(t)|∇Ptϕ|2 + (Ptϕ)2 and α(0)Pt|∇ϕ|2 + Pt(ϕ

2) for some
α with α(0) = 0 < α(t). For fixed ϕ ∈ C∞(TD), x ∈ TD and t > 0, we set for all s ∈ [0, t]

Ψ(s) = α(s)P S
t−s|∇P S

s ϕ|2(x) + eβC0P S
t−s
(
P S
s ϕ
)2

(x)

with α(s) = (1− exp(−2ct))/c, so that

∂sΨ(s) = P S
t−s
(
−2α(s)Γ∇,S + α′(s)|∇ · |2 − 2eβC0ΓS

) (
P S
s ϕ
)

(x)

6 (2α(s)c+ α′(s)− 2)P S
t−s|∇P S

s ϕ|2(x) = 0 .

In particular,

α(t)|∇P S
t ϕ|2(x) 6 Ψ(t) 6 Ψ(0) = eβC0P S

t ϕ
2(x) 6 eβC0‖ϕ‖2

∞

which yields the desired estimate.

Lemma 10. There exists C3 > 0 such that for all S ∈ BC0, the operator RS defined for all
ϕ ∈ C∞(TD) by

RSϕ = −
∫ ∞

0

P S
t Πϕdt

satisfies LSRS = RSLS = Π and, for all ϕ ∈ C∞(TD),

‖RSϕ‖∞ + ‖∇RSϕ‖∞ + ‖∆RSϕ‖∞ 6 C3‖ϕ‖∞. (26)
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Proof. We follow the proof of [9, Section 5.2 and Lemma 5.1]. First, from Lemma 9 (and using
the fact that ‖P S

t ϕ‖∞ 6 ‖ϕ‖∞ for all t > 0),∫ ∞
0

‖P S
t Πϕ‖∞dt 6

∫ 1

0

‖Πϕ‖∞dt+

∫ ∞
1

‖P S
t Πϕ‖∞dt

6 2‖ϕ‖∞ + C2

∫ ∞
1

‖P S
t−1Πϕ‖L2(µ)dt

6 2‖ϕ‖∞ + C2

∫ ∞
1

e−(t−1)/C2‖Πϕ‖L2(µ)dt

6 2(1 + C2
2)‖ϕ‖∞ ,

and similarly, using the fact that ‖∇P S
t Πϕ‖∞ = ‖∇P1P

S
t−1Πϕ‖∞ ≤ C2‖P S

t−1Πφ‖∞ for t > 1,∫ ∞
0

‖∇P S
t Πϕ‖∞dt 6

∫ 1

0

C2√
t
‖Πϕ‖∞dt+ C2

∫ ∞
1

‖P S
t−1Πϕ‖∞dt

6 C2

(
4 + 2(1 + C2

2)
)
‖ϕ‖∞ .

In particular RSϕ and ∇RSϕ are well defined in L∞(TD) for ϕ ∈ C∞(TD). Moreover, using
the fact that, from Lemma 9, ‖P S

t Πϕ‖∞ 6 C2e
−(t−1)/C2‖Πϕ‖L2(µ) → 0 as t→ +∞,

LSRSϕ = −
∫ ∞

0

LSP
S
t Πϕdt

= −
∫ ∞

0

∂t
(
P S
t Πϕ

)
dt = Πϕ .

The case of RSLS is similar: since µ is invariant for LS, LSΠ = LS = ΠLS, and thus P S
t ΠLS =

P S
t LSΠ = ∂t(P

S
t Πϕ) for all t > 0.

As a consequence,

|∆RSϕ| 6 eβC0 |eβS∆RSϕ| 6 eβC0
(
‖eβS∇(V − S) · ∇RSϕ‖∞ + ‖Πϕ‖∞

)
6 C3‖ϕ‖∞

for some C3 > 0 uniform over S ∈ BC0 , which yields the desired result.

Lemma 11. There exist C4 > 0 such that for all S1, S2 ∈ BC0 and ϕ ∈ C∞(TD),

‖RS1ϕ−RS2ϕ‖∞ + ‖∇RS1ϕ−∇RS2ϕ‖∞ 6 C4‖∇S1 −∇S2‖∞‖ϕ‖∞.

Proof. From RSLS = Π,

(RS1 −RS2)LS1 +RS2 (LS1 − LS2) = 0.

Multiplying this equality by RS1 on the right, and using that RSΠ = RS, we get for all
ϕ ∈ C∞(TD),

(RS1 −RS2)ϕ = RS2 (LS2 − LS1)RS1ϕ .

Thus, from (26),

‖ (RS1 −RS2)ϕ‖∞ + ‖∇RS1ϕ−∇RS2ϕ‖∞
6 C3‖ (LS2 − LS1)RS1ϕ‖∞
6 C3‖eβS2∇(S1 − S2) · ∇RS1ϕ‖∞ + C3‖(1− eβ(S2−S1))LS1RS1ϕ‖∞
6 C3e

βC0‖∇(S1 − S2)‖∞‖∇RS1ϕ‖∞ + C3e
2βC0‖S2 − S1‖∞‖LS1RS1ϕ‖∞ .
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Conclusion follows from (26). Indeed, notice that S1−S2 is a continuous function with integral
zero, so that there exist x ∈ TD such that (S1 − S2)(x) = 0, and then for all y ∈ TD

|(S1 − S2)(y)| 6 |x− y|‖∇(S1 − S2)‖∞

so that ‖S1 − S2‖∞ 6
√
D‖∇S1 −∇S2‖∞.

Lemma 12. There exists C5 > 0 such that for all k > 1 and ϕ ∈ C∞(TD)

‖RAtk
ϕ−RAtk−1

ϕ‖∞ 6
C5

k
‖ϕ‖∞.

Proof. From Lemma 6, At ∈ BC0 for all t > 0, so that Lemma 11 applies. It remains to obtain
a bound on ‖∇Atk −∇Atk−1

‖∞. In this proof, to simplify the notation, we write θk = θνtk and
Fk = Fνtk . Denoting by

m :=

∫ tk+1

tk
δ(Qs,Zs)e

βAs(Zs)ds∫ tk+1

tk
eβAs(Zs)ds

and p :=

∫ tk+1

tk
eβAs(Zs)ds∫ tk+1

0
eβAs(Zs)ds

,

it holds that

νtk+1
= (1− p)νtk + pm.

In particular, for some c, c′ > 0, for all z ∈ Td and k ∈ N,

|θk+1(z)− θk(z)| =
p

1 + λ

∣∣∣∣∫
(q,y)∈Tp×Td

K(z, y)(dm(q, y)− dνtk(q, y))

∣∣∣∣ 6 cp 6
c′

k
,

where we used that As ∈ BC0 for all s ∈ [0, tk+1]. The same argument also works for the
derivatives of θνt , for Fνt and its derivatives, so that for any multi-index α ∈ Nd, there exists
a constant Cα such that for all k > 1,

‖∂αFk+1 − ∂αFk‖∞ + ‖∂αθk+1 − ∂αθk‖∞ 6
Cα
k
.

Now, from the Euler equations satisfied by Atk and Atk+1
, we get

∇ ·
(
θk∇

(
Atk − Atk+1

))
= ∇ ·

(
∇Atk+1

(θk+1 − θk)
)
−∇ · (θk+1Fk+1 − θkFk) . (27)

Multiplying this equation by Atk−Atk+1
, integrating and using Lemma 6 and the lower bound

on θk, we get ∫
Td
|∇
(
Atk − Atk+1

)
(z)|2dz 6

c

k2

for some c > 0. Next, differentiating (27), multiplying it by derivatives of Atk − Atk+1
,

integrating and using by induction the previous estimates, we obtain in fact that∫
Td
|∇∂α

(
Atk − Atk+1

)
(z)|2dz 6

cα
k2

for some cα > 0 for all α ∈ Nd, and Sobolev embeddings then yield the conclusion.
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3.3 Proof of the main results

In this section we denote ν(ϕ) =
∫
TD ϕdν the expectation of an observable ϕ with respect to

a probability measure ν.

Proof of Proposition 7. In the following, we use the same notation C for various constants.
For all t > 0 and ϕ ∈ C∞

(
TD
)
,

νt(ϕ)− µ(ϕ) =
1

τ(t)

∫ t

0

e−βAs(Zs)Πϕ(Xs)ds

=
1

τ(t)

∫ t

0

e−βAs(Zs)LAsRAsϕ(Xs)ds .

To alleviate notations, write ϕ̃s = RAsϕ. For k ∈ N and t ∈ [tk, tk+1), from (5) by Itô’s
formula,

ϕ̃t(Xt)− ϕ̃tk(Xtk) =

∫ t

tk

e−βAs(Zs)LAsϕ̃s(Xs)ds+

√
2

β

∫ t

tk

∇ϕ̃s(Xs)dBs ,

so that

τ(t) (νt(ϕ)− µ(ϕ)) =

∫ t

0

e−βAs(Zs)LAsϕ̃s(Xs)ds = ϕ̃t(Xt)− ϕ̃0(X0) (28)

+
∑

0<tk6t

(
ϕ̃tk−1

(Xtk)− ϕ̃tk(Xtk)
)
−
√

2

β

∫ t

0

∇ϕ̃s(Xs)dBs .

Recall that, from Lemma 6, there exists C > 0 such that almost surely τ(t) > t/C for all
t > 0. Together with Lemma 12, we get that there exists C > 0 such that, almost surely, for
all t > 0 and ϕ ∈ C∞

(
TD
)
,

1

τ(t)

(
|ϕ̃t(Xt)− ϕ̃0(X0)|+

∑
0<tk<t

|ϕ̃tk(Xtk)− ϕ̃tk−1
(Xtk)|

)
6
C ln(1 + t)

t
‖ϕ‖∞ . (29)

Moreover, applying Itô’s isometry,

E

(∣∣∣∣∫ t

0

∇ϕ̃s(Xs)dBs

∣∣∣∣2
)

= E
(∫ t

0

|∇ϕ̃s(Xs)|2 ds

)
6 tC2

3‖ϕ‖2
∞ ,

where we used (26). As a consequence, there exists C > 0 such that

E
(
|νt(ϕ)− µ(ϕ)|2

)
6

C

t
‖ϕ‖2

∞ (30)

for all t > 0 and ϕ ∈ C∞
(
TD
)
. As in the proof of [7, Lemma 5.1], this implies the almost sure

weak convergence of νt to µ as follows. Indeed, for all r > 0, the Borel-Cantelli Lemma yields
the almost sure convergence of νexp(nr)(ϕ) toward µ(ϕ) as n→ +∞, n ∈ N, so that

P
(
∀k ∈ N∗, νexp(n/k)(ϕ) −→

n→+∞
µ(ϕ)

)
= 1 . (31)
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Moreover, using the almost sure bounds t/C 6 τ(t) 6 Ct and ‖ exp(−βAs)‖∞ 6 C for some
C > 0, we get that there exists C,C ′ > 0 such that for all t > s > 0,

|νt(ϕ)− νs(ϕ)| 6 C

(∣∣∣∣ 1

τ(t)
− 1

τ(s)

∣∣∣∣ s+
|t− s|
τ(t)

)
‖ϕ‖∞

6 C

(
|τ(t)− τ(s)|s
τ(t)τ(s)

+
|t− s|
τ(t)

)
‖ϕ‖∞

6 C ′
|t− s|
t
‖ϕ‖∞ .

As a consequence, for all ϕ ∈ C∞
(
TD
)
, t 7→ νexp(t)(ϕ) is almost surely C ′‖ϕ‖∞-Lipschitz, and

in particular

P
(
∀k ∈ N∗,∀t > 0, |νexp(t)(ϕ)− νexp(btkc/k)(ϕ)| 6 C ′‖ϕ‖∞

k

)
= 1 . (32)

The almost sure convergence of νt(ϕ) to µ(ϕ) for a given ϕ then follows from{
νt(ϕ) −→

t→+∞
µ(ϕ)

}
=

⋂
k∈N∗

{
lim sup
t→∞

|νexp(t) − µ(ϕ)| 6 C ′‖ϕ‖∞
k

}
⊃

⋂
k∈N∗

({
sup
t>0
|νexp(t)(ϕ)− νexp(btkc/k)(ϕ)| 6 C ′‖ϕ‖∞

k

}
∩
{
νexp(btkc/k) −→

t→+∞
µ(ϕ)

})
,

the last event having probability 1 from (31) and (32). Considering a sequence (ϕk)k∈N of
C∞
(
TD
)

functions that is dense in C
(
TD
)
, we get that

P
(
νt(ϕk) −→

t→+∞
µ(ϕk) ∀k ∈ N

)
= 1 ,

so that almost surely νt converges weakly to µ as t → +∞. This concludes the proof of
Proposition 7, hence of Theorem 2.

Proof of Theorem 3. The first claim of the theorem has already been established in the proof
of Proposition 7, see (30). Fix ϕ ∈ C∞

(
TD
)
. We have seen in the proof of Proposition 7 (see

(28) and (29)) that, denoting ϕ̃s = RAsϕ,

νt(ϕ)− µ(ϕ) = εt −
1

τ(t)

√
2

β

∫ t

0

∇ϕ̃s(Xs)dBs

for some εt such that almost surely |εt| 6 C ln(1 + t)/t for all t > 0 for some C > 0. The
martingale part having zero expectation, the bias is bounded as

|E(νt(ϕ)− µ(ϕ))|2 = |E(εt)|2 6
C2 ln2(1 + t)

t2
= o

t→+∞

(
1

t

)
.

In other words, the asymptotic mean-square error is only due to the asymptotic variance,
which is itself only due to the martingale part of νt(ϕ)− µ(ϕ).
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Remark that, as a corollary of Theorem 2, ‖At − A∗‖∞ → 0 almost surely. Together with
the uniform bounds of Lemma 6 and the weak convergence of νt to µ, we get that

t

τ(t)
=

t−
√
t

τ(t)
+ o

t→+∞
(1) =

1

τ(t)

∫ t

√
t

e−βA∗(Zs)eβA∗(Zs)ds+ o
t→+∞

(1)

=
1

τ(t)

∫ t

√
t

e−βAs(Zs)eβA∗(Zs)ds+ o
t→+∞

(1)

=
1

τ(t)

∫ t

0

e−βAs(Zs)eβA∗(Zs)ds+ o
t→+∞

(1)

−→
t→+∞

µ
(
eβA∗◦ξ

)
=: κ

almost surely. As a consequence,

tE
(
|νt(ϕ)− µ(ϕ)|2

)
=

2t

β
E

(
1

τ 2(t)

∣∣∣∣∫ t

0

∇ϕ̃s(Xs)dBs

∣∣∣∣2
)

+ o
t→+∞

(1)

=
2κ2

βt
E

(∣∣∣∣∫ t

0

∇ϕ̃s(Xs)dBs

∣∣∣∣2
)

+ o
t→+∞

(1)

=
2κ2

βt

∫ t

0

E
(
|∇ϕ̃s(Xs)|2

)
ds+ o

t→+∞
(1) .

From Lemma 11, ‖∇ϕ̃s−∇RA∗ϕ‖∞ 6 C4‖∇As−∇A∗‖∞‖ϕ‖∞, which together with Theorem 2
and (26) yields

tE
(
|νt(ϕ)− µ(ϕ)|2

)
=

2κ2

βt

∫ t

0

E
(
|∇RA∗ϕ(Xs)|2

)
ds+ o

t→+∞
(1)

=
2κ2

βt
E
(∫ t

0

|∇RA∗ϕ(Xs)|2 e−β(As(Zs)−A∗(Zs))ds

)
+ o

t→+∞
(1)

=
2κ

β
E
(
νt
(
|∇RA∗ϕ|

2 eβA∗◦ξ
))

+ o
t→+∞

(1)

−→
t→+∞

2κ

β
µ
(
|∇RA∗ϕ|

2 eβA∗◦ξ
)
.

In other words, the asymptotic variance is

2

β
µ
(
eβA∗◦ξ |∇ψ|2

)
µ
(
eβA∗◦ξ

)
where ψ = RA∗ϕ solves LA∗ψ = Πϕ, which reads(

1

β
∆−∇ (V − A∗ ◦ ξ)∇

)
ψ = e−βA∗◦ξΠϕ .

It remains to see that we get the same formula for the asymptotic variance of
√
t (ν∗t (ϕ)− µ(ϕ)).

The computations are similar, so we only sketch the main points. Denoting τ∗(t) =
∫ t

0
exp(−βA∗(Z∗s ))ds,

as in Proposition 7,

τ∗(t) (ν∗t (ϕ)− µ(ϕ)) =

∫ t

0

e−βA∗(Z
∗
s )Πϕ(X∗s )ds

=

∫ t

0

e−βA∗(Z
∗
s )LA∗RA∗ϕ(X∗s )ds

= RA∗ϕ(X∗t )−RA∗ϕ(X∗0 )−
√

2

β

∫ t

0

∇RA∗ϕ(Xs)dBs .
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Again, from the almost sure bound τ∗(t) > t/C for some C > 0, Itô’s isometry and the bounds
on RA∗ϕ given by (26), we get that there exists C > 0 such that for all t > 0 and ϕ ∈ C(TD),

E
(
|ν∗t (ϕ)− µ (ϕ)|2

)
6

C

t
‖ϕ‖2

∞ .

The proof that this implies the almost sure weak convergence of ν∗t to µ is similar to the end
of the proof of Proposition 7. As a corollary,

t

τ∗(t)
= ν∗t

(
eβA∗◦ξ

)
−→
t→+∞

κ .

Finally,

tE
(
|νt(ϕ)− µ(ϕ)|2

)
=

2t

β
E

(
1

τ 2
∗ (t)

∣∣∣∣∫ t

0

∇RA∗ϕ(X∗s )dBs

∣∣∣∣2
)

+ o
t→+∞

(1)

=
2κ2

βt
E

(∣∣∣∣∫ t

0

∇RA∗ϕ(X∗s )dBs

∣∣∣∣2
)

+ o
t→+∞

(1)

=
2κ2

βt

∫ t

0

E
(
|∇RA∗ϕ(X∗s )|2

)
ds+ o

t→+∞
(1)

=
2κ2

βt
E
(
τ∗(t)ν

∗
t

(
|∇RA∗ϕ|

2 eβA∗◦ξ
))

ds+ o
t→+∞

(1)

−→
t→+∞

2κ

β
µ
(
|∇RA∗ϕ|

2 eβA∗◦ξ
)
.

4 Consistency of the tensor approximation

This section is devoted to the proof of Propositions 1 and 4 and Theorem 5. In all this
section, Assumption 1 holds and we write θ = θν , F = Fν , J = Jν for some fixed ν ∈
P(Tp × Td). Recall that F, θ ∈ C∞(Td), that θ is a positive probability density on Td, and

that the minimizers of J in H are exactly the minimizers of J̃ in H, where for all f ∈ H,

J̃ (f) =

∫
Td
|F (z)−∇f(z)|2θ(z)dz ,

the link between J and J̃ begin given by (13).
Since θ is bounded from above and below by positive constants, the weighted spaces

L2(Td; θ) and H1(Td; θ) are equal to the flat spaces L2(Td; dz) and H1(Td; dz). We endow
H (whose definition is given in (6), with the norm

‖f‖ =

√
(1 + λ)

∫
Td
|∇f(z)|2θ(z)dz,

which is indeed a norm, equivalent to the usual H1 norm from the Poincaré-Wirtinger inequal-
ity: there exists C > 0 such that for all f ∈ H,∫

Td
f 2(z)θ(z)dz 6 ‖θ‖∞

∫
Td
f 2(z)dz

6 C‖θ‖∞
∫
Td
|∇f(z)|2dz

6 C‖θ‖∞‖θ−1‖∞
∫
Td
|∇f(z)|2θ(z)dz.
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The scalar product associated with ‖ · ‖ is denoted by 〈·〉. The choice of such a norm is
motivated by the fact that, denoting by J ′ the differential of J , then for all f, g ∈ H,

J (f) = J (0) + J ′(0) · f + ‖f‖2

J ′(f) · g = J ′(0) · g + 2〈f, g〉 .

Proposition 1 is then a direct consequence of the strict convexity of J . The unique minimizer
f∗ of J over H being a minimizer of J̃ , it satisfies J̃ ′(f∗) = 0, which reads

∀g ∈ H ,

∫
F (z) · ∇g(z)θ(z)dz =

∫
∇f∗(z) · ∇g(z)θ(z)dz

Moreover, using that J ′(f∗) = 0, we get that J ′(0) · g = −2〈f∗, g〉 for all g ∈ H and then
J (0) = J (f∗)− J ′(0) · f∗ − ‖f∗‖2 = J (f∗) + ‖f∗‖2. As a consequence, for all g ∈ H,

J (g) = J (0) + J ′(0) · g + ‖g‖2 = J (f∗) + ‖f∗ − g‖2 . (33)

Proof of Proposition 4. Let f ∈ H and i ∈ J1, dK. If J (f) = inf{J (f + g) , g ∈ Σi} then the
result is correct since 0 ∈ Σi is a minimizer over Σi. Suppose now that 0 is not a minimizer,
i.e. that J (f) > inf{J (f + g) , g ∈ Σi} and consider a minimizing sequence (g(l))l∈N in Σi

such that J
(
f + g(l)

)
converges to inf{J (f + g) , g ∈ Σi} as l goes to infinity. For l large

enough, J
(
f + g(l)

)
< J (f) so that g(l) 6= 0, and thus up to an extraction we suppose that

g(l) 6= 0 for all l ∈ N. Moreover the sequence is bounded in H1 and thus, up to the extraction
of a subsequence, we suppose that it weakly converges in H1 to some g∗ ∈ H. The function
H 3 g 7→ J (f + g) being convex on H, it is weakly lower semi-continuous, so that

J (g∗) 6 inf
g∈Σi
J (f + g) .

For all l ∈ N, there exist r
(l)
1 , · · · , r

(l)
d ∈ H1(T) such that g(l) =

⊗d
j=1 r

(l)
j . Since g(l) 6= 0, we

can normalize the r
(l)
j ’s so that ‖r(l)

j ‖L2(T) = 1 for all j 6= i and l ∈ N. As a consequence, up to
the extraction of a subsequence, for all 1 ≤ j 6= i ≤ d, there exists r∗j ∈ L2(T) such that the

sequence (r
(l)
j )l∈N weakly converges to r∗j in L2(T). Now, since the sequence g(l) is bounded in

H and

‖∇g(l)‖2
L2(Td) =

d∑
j=1

‖∂zjr
(l)
j ‖2

L2(T)

∏
h6=j

‖r(l)
h ‖

2
L2(T),

we get that the sequence (r
(l)
i )l∈N is bounded in H1(T) (since

∫
T r

(l)
i = 0 for all l ∈ N). Thus,

up to the extraction of another subsequence, the sequence (r
(l)
i )l∈N weakly converges in H1(T)

to some r∗i ∈ H1(T) such that
∫
T r
∗
i = 0. From [32, Lemma 2], (g(l))l∈N converges in the

distributional sense to
⊗d

j=1 r
∗
j . Thus, g∗ =

⊗d
j=1 r

∗
j and since g∗ 6= 0, this implies that for all

1 ≤ j ≤ d, r∗j 6= 0. Finally, since

‖∇g∗‖2
L2(Td) =

d∑
j=1

‖∂zjr∗j‖2
L2(T)

∏
h6=j

‖r∗h‖2
L2(T)

is a finite quantity, this implies that for all 1 ≤ j 6= i ≤ d,

‖∂zjr∗j‖L2(T) ≤
‖∇g∗‖2

L2(Td)∏
h6=j ‖r∗h‖2

L2(T)

< +∞,

and thus r∗j ∈ H1(T). This implies that g∗ ∈ Σi and yields the desired result.
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Remark 13. The problem would be ill-posed if we were to try and minimize J (f + g−
∫
Td g)

over all g ∈ Σ := {r1 ⊗ · · · ⊗ rd, rj ∈ H1(T) for all 1 ≤ j ≤ d}. This is the reason why we
introduced the condition that one of the rj’s has zero mean. Indeed, consider the situation where
d = 2, f = 0 and F (z) = (a′(z1), b′(z2)) for some smooth functions a, b : T → R with zero
mean. Then, the minimum of J over H is 0, and only attained at f ∗(z1, z2) = a(z1) + b(z2),
which is not of the form g−

∫
Td g for some g ∈ Σ. Nevertheless, the sequence (g(l))l∈N∗ defined

by: for all l ∈ N∗, g(l) = r
(l)
1 r

(l)
2 with

r
(l)
1 (z1) = 1 +

a(z1)

l
, r

(l)
2 (z2) = l + b(z2)

is a minimizing sequence. Indeed, the sequence
(
g(l) −

∫
Td g

(l)
)
l∈N∗ weakly converges to f ∗. In

other words, the set
{
g −

∫
Td g, g ∈ Σ

}
is not weakly closed in H.

Proposition 4 proves that all the iterations of Algorithm 2 are well-defined. In the following,
we consider a sequence (fn)n∈N given by the latter and gn = fn+1− fn for n ∈ N. The general
idea of the proof of Theorem 5 is that, if the sequence (fn)n∈N converges to some f∞ in H,
it holds that J ′(f∞) · g = 0 for all g ∈ ∪di=1Σi, and a density argument enables to conclude.
Nevertheless, remark that Σi is not a vector space and that its elements all have null integral,
so that one should be careful. In the following, we essentially adapt the arguments of [12].

Lemma 14. For all g ∈ ∪di=1Σi and n ∈ N,

|J ′(fn) · g| 6 6‖g‖
d−1∑
j=0

‖gn+j‖.

Proof. Let i ∈ J1, dK be such that g ∈ Σi. Let ni ∈ Jn, n + d − 1K be such that gni ∈ Σi. We
bound, first,

|J ′(fn) · g| 6 |J ′(fni) · g|+ 2 |〈g, fni − fn〉| .

The second term of the right hand side is bounded by 2‖g‖
∑ni−1

j=n ‖gj‖. To deal with the first
one, note that, even though gni is a minimizer of J (fni + ·) over Σi, it is not necessarily true
that J ′(fni +gni) ·g = 0, since Σi is not a vector space. We follow the proof of [12, Proposition
3.3]. By convexity of

t ∈ R 7→ ψ(t) := J (fni + g + t(gni − g)) ,

and since t = 0 minimizes ψ(t), we get

ψ′(0) 6 ψ(1)− ψ(0) 6 0,

which reads

J ′ (fni + g) · g > J ′ (fni + g) · gni .

Hence,

−J ′(fni) · g = −J ′(fni + g) · g + 2‖g‖2

6 −J ′(fni + g) · gni + 2‖g‖2

6 −J ′(fni + gni) · gni + 2〈gni , gni − g〉+ 2‖g‖2.
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Now, 1 being a minimizer over R of t 7→ J (fni + tgni), J ′(fni + gni) · gni = 0, so that

−J ′(fni) · g 6 2
(
‖gni‖2 + ‖g‖‖gni‖+ ‖g‖2

)
.

When applied to g̃ = ±‖gni‖g/‖g‖, this inequality yields

|J ′(fni) · g| 6 6‖g‖‖gni‖,

which concludes the proof.

Proposition 15. Let f∗ be the unique minimizer of J over H. Then

‖fn − f∗‖ −→
n→∞

0.

Proof. As in the previous proof,

0 = J ′(fn + gn) · gn = 2(1 + λ)

∫
∇gn · (∇fn+1 − F )θ = 0

for all n ∈ N, so that,

J (fn)− J (fn+1) = J (fn+1 − gn)− J (fn+1) = ‖gn‖2. (34)

In particular, since (J (fn))n>0 is a decreasing sequence bounded from below,∑
n>0

‖gn‖2 <∞. (35)

Together with Lemma 14 and the fact J ′(f∗) = 0, this implies that for all g ∈ Span
(
∪di=1Σi

)
,

2〈f∗ − fn, g〉 = J ′(f∗) · g − J ′(fn) · g −→
n→∞

0.

Now, for all r1, · · · , rd ∈ C∞(T), denoting by h :=
⊗

ri ∈ C∞(Td) (note that we do not have
necessarily that

∫
Td h = 0), we can write

h−
∫
Td
h =

d∑
j=1

(
rj −

∫
T
rj

)(∏
l<j

∫
T
rl

)∏
l>j

rl ,

which proves that h−
∫
Td h ∈ Span

(
∪di=1Σi

)
. As a consequence,

(1 + λ)

∫
Td
θ∇(f∗ − fn) · ∇h = 〈f∗ − fn, h−

∫
Td
h〉 −→

n→∞
0 ,

As a consequence, the limit f∞ of any convergent (in the weak sense in H) subsequence of
(fn)n∈N necessarily satisfies that ∫

Td
θ∇(f∗ − f∞) · ∇h = 0,

for any tensor product function h =
⊗

ri, with ri ∈ C∞(T) for all 1 ≤ i ≤ d. By [12,
Lemma 2.1], this implies that f∞ = f∗. On the other hand, since (‖fn‖)n∈N is bounded, all its
subsequences admits weak convergent subsequences, and the fact they all have the same limit
f∗ proves that the whole sequence (fn)n∈N weakly converges in H to f∗. In particular

〈f∗ − fn, f∗〉 −→
n→∞

0. (36)
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Thus, it only remains to prove that (〈f∗ − fn, fn〉)n∈N also converges to zero as n goes to
infinity to obtain the strong convergence of the sequence (fn)n∈N to f∗ in H. From Lemma 14,

2|〈f∗ − fn, fn〉| = |J ′(fn) · fn|

6
n∑
k=0

|J ′(fn) · gk|

6 6

(
n−1∑
k=0

‖gk‖

)
n+d−1∑
j=n

‖gj‖

6 6

√√√√ndan

∞∑
k=0

‖gk‖2.

with an =
∑n+d−1

j=n ‖gj‖2. Using (35), since
∑

n∈N an ≤ d
∑

n∈N ‖gn‖2 < ∞, there exists an
extracted subsequence (nk)k>1 such that (nkank)k≥1 converges to 0 as k goes to infinity. As
a consequence, (〈f∗ − fnk , fnk〉)k≥1 goes to zero as k → ∞, and thus so does (‖fnk − f∗‖)k≥1

by (36). Finally, from (33), the sequence (‖fn − f∗‖)n∈N is non-increasing, so that the whole
sequence goes to zero. Hence the result.

5 Discussion and variations

For the sake of clarity, the TABF algorithm defined in Section 2.3 has been kept relatively
simple, and there is obviously room for many variations or fine-tuning. We list here a few of
them.

5.1 Extended ABF

Consider general reaction coordinates ξ : TD →M whereM is a submanifold of Rd or Td. In
the Extended ABF (EABF) algorithm introduced in [38] (see also [39, 21]), the state space is
extended to TD ×M with the addition of auxiliary variables (or fictitious particles) z ∈ M,
and the potential V on TD is extended to a potential Ṽ on TD ×M as

Ṽ (q, z) = V (x) +
1

2σ2
(distM (ξ(q), z))2 , ∀(q, z) ∈ TD ×M,

for some small parameter σ > 0, where distM stands for the distance on M. The reaction
coordinates on the extended space are then defined by ξ̃(q, z) = z, which means the framework
considered in the present paper is general for the EABF algorithm. If (Q,Z) is distributed
according to µṼ ,β, the law of Z is obtained from the law of ξ(Q) through a Gaussian convolution
of variance σ2/β. There are several practical advantages to EABF:

� In the potential Ṽ , in the case where distM is an Euclidean distance, the zi’s for i ∈ J1, dK
appear in separate terms of a sum, they are not directly coupled. As a consequence, in the
EABF case, µA,β should be, in some sense, closer to the product of its marginal (namely,
at equilibrium, the Zi’s should be closer to be independent) than in the non-extended
ABF case. In [21], this was a crucial point since the density µA,β was approximated by a
tensor product. But even in our case where the approximation as a sum of tensor product
is made at the level of A, we can expect this form of Ṽ to improve the approximation.
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� After convolution, the so-called mean-force ∇zA is smoother than the initial mean force
in the non-extended ABF case. Since it varies less, its estimation is expected to be
easier.

That being said, the tensorized ABF introduced above can also be straightforwardly extended
to a general ABF framework, without extended coordinates.

5.2 Non-periodic reaction coordinates

In general, M may be different from Td. If it has boundaries, for instance if M = [0, 1]d,
the definition of the algorithm is the same except that the diffusion (5) is reflected at the
boundaries of M. The proof of well-posedness and convergence of the tensor algorithm, i.e.
Theorem 5, is unchanged. The proof of the long-time convergence of the idealized algorithm,
i.e. Theorem 2, is similar up to technical considerations in particular to take into account
boundary conditions in Section 3.2.

Moreover,M may not be compact, for instanceM = Rd, with U satisfying suitable growth
conditions at infinity. Since the Lebesgue measure has not a finite mass, a confining biasing
potential has to be added to the adaptive biasing potential, see [35, Section 1.2], in which case
the law of ξ(Xt) is not supposed to converge to a uniform law (flat histogram) but to a target
unimodal law on Rd. Extending our long-time convergence results to this case would lead to
additional theoretical difficulties and is out of the scope of the present work.

5.3 Real implementation

The algorithm really implemented for the numerical experiments in Section 6 differs from the
theoretical Algorithm 3 in the following points:

1. Time and space are discretized. The SDE (5) is replaced by an Euler-Maruyama scheme
with some time step δt and the time integral in (8) is replaced by a discrete sum with a
time step ∆t (not necessarily small; it can be of the order of the decorrelation length of
the process (Qt, Zt)t>0). The one-dimensional functions in the tensor terms are restricted
to be continuous piecewise linear, determined by their value on a discrete grid with q ∈ N∗
points, so that solving (19) amount to solve a q × q linear system. In particular, the
discrete space interpolation plays a role similar to the regularization kernel K which is
no more necessary, hence is discarded.

2. In fact, it is not necessary to re-weight the occupation distribution, namely (8) can be
replaced by νt = 1/t

∫ t
0
δ(Qs,Zs)ds. In that case, νt is expected to converge to µV−Ã∗,β

for some Ã∗ instead of µV,β but the conditional law of Q given Z = z is the same for
these two laws. Since the free energy only depends on these conditional laws, At is still
expected to converge to Ã∗, that should be close to the true free energy in a sense similar
to (12). This is clear in the mean-field limit of the algorithm, where no regularization is
needed so that Ã∗ = A (see [35]). It is more difficult to establish for the self-interacting
ABF process, but in parallel of the present paper it has been done in [8]. We tried
numerically both cases, and the results were similar. The results presented in Section 6
are obtained with the full (non reweighted) occupation distribution.

3. Instead of a single particle, in practice, several replicas of the process (5) are simulated
in parallel. Denoting N the number of replicas and (Qi

t, Z
i
t)t>0 the ith replica, i ∈ J1, NK,
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the total empirical distribution of the system is

ν̃N,t =
1

Nbt/∆tc

N∑
i=1

bt/∆tc∑
k=1

δ(Qik∆t,Z
i
k∆t)

. (37)

The replicas all use the same bias At obtained from this empirical distribution by mini-
mizing Jν̃N,t at times t = tk = kTup.

4. It is possible to use the tensor approximation only as a correction of the classical ABF,
or more precisely of the Generalized ABF (GABF) algorithm proposed in [51] where the
bias is just a sum of one-dimensional functions. Namely, for all time t > 0, for j ∈ J1, dK,
let

αj,t(zj) =

∫
Tp×Td

∂ykV (q, y)K(yj, zj)dνt(q, y)

βj,t(zj) =

∫
Tp×Td

K(yj, zj)dνt(q, y) .

These functions can be recorded on d one-dimensional grids and are easily updated
on the fly. Denoting γt,j(zj) = 1βj,t(zj)>sαj,t(zj)/βj,t(zj) for some burn-in time s > 0,
let At,j(zj) =

∫ zj
0
γt,j(z)dz if the jth reaction coordinate zj lies in R and At,j(zj) =∫ zj

0
γt,j(u)du−zj

∫ 1

0
γt,j(u)du if zj lies in T (so that, in both cases, ∂zjAt,j is the Helmoltz

projection in L2(dzj) of γt,j). Then, at time t, in the dynamics (5), use the bias∇zAt with

At(z) =
∑d

j=1Atk,j(zj) + fm(z) where fm is a tensor approximation obtained through

Algorithm 2 of the minimizer of H 3 f 7→ Jνtk (f −
∑d

j=1 Atk,j), where tk = sup{tk′ <
t, k′ ∈ N} is the last update time.

5.4 Some limitations and perspectives

A practical limitation observed in the algorithm is the following. Recall that d is too large
to keep in memory the empirical measure on a grid by simply recording how many times
each d-dimensional cell has been visited by the process, as in the classical ABF algorithm.
Instead, the sequence (Zk∆t,∇zV (Qk∆t, Zk∆t))k∈N is kept in memory for some ∆t > 0, and
thus computing an expectation with respect to νt has a numerical cost proportional to t.
Such integrals are computed when solving the one-dimension equations (19), which have to
be solved repeatedly at each addition of a tensor term to the bias. As t grows, the update
of the bias gets numerically more expensive. We list here some possible directions to address
this question. The analysis of these variations is beyond the reach of the present work.

1. At the beginning of Algorithm 2, a clustering or quantization algorithm (see [47]) can
be used to reduce the memory (Zk∆t,∇zV (Qk∆t, Zk∆t))k∈J1,tn/∆tK to fewer points.

2. Another way to deal with this problem would be to use a fixed small size for the memory.
For instance, at an update time tk, the empirical measure used to define Jν̄tk could be

ν̄tk =

(∫ tk

tk−l

e−βAs(Zs)ds

)−1 ∫ tk

tk−l

δ(Qs,Zs)e
−βAs(Zs)ds

for some small l ∈ N∗, say l = 1. In that case, in order to expect a long-time convergence
of the bias, following classical stochastic algorithms, we would define the new bias as
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Atk = Atk−1
+ γkfk where fk is (a tensor approximation of) a minimizer over H of

H 3 f 7→ Jνtk (Atk +f) and (γk)k∈N is a positive sequence with γk → 0 and
∑k

l=1 γl →∞
as k →∞.

3. A third way to deal with the memory management as time increases could be to use a
stochastic gradient descent when solving the one-dimensional partial differential equa-
tion (19). In other words, when optimizing ri for some 1 ≤ i ≤ d, instead of computing
averages over all steps l ∈ J1, tk/∆tK, only use an approximation of νtk by picking a ran-
dom (and comparatively small) set of steps among J1, tk/∆tK. Then only an estimation
of the gradient of H1(T) 3 ri 7→ Jtk(f +

⊗d
j=1 rj) is computed, which is exactly the

settings of the stochastic gradient descent.

4. Finally, since integrals with respect to the occupation measure are computed at each
step of the Alternating Least Square (ALS) method, the cost can be reduced by using
more sophisticated tensor approximation algorithms [46, 29, 25].

A second possible limitation is the following. Note that, as the number of reaction coor-
dinates increases, we can expect that, at some point, the biasing scheme becomes unefficient.
Indeed, by flattening the energy landscape, we replace the initial sampling problem (that
was mainly restricted to low-energy regions, which form a low-dimensional manifold) by the
sampling of the uniform measure on some hypercube, which is not so easy. In some sense,
following the definitions of [34], at some point, energy barriers are replaced by entropic ones
(which means that, in the exploration of the space, what takes time is not crossing high energy
areas but visiting all areas in a relatively high dimensional space). Moreover, the variance of
the estimator (3) increases due to the exponential weights. As a consequence, as d increases, a
partial biasing with Vbias,t = θAt ◦ ξ for some θ ∈ (0, 1) may be more appropriate than the full
biasing (i.e. θ = 1). At the biased equilibrium, if At = A is the true free energy, the marginal
law of the reactions coordinates is thus µ(1−θ)A,β, i.e. the temperature is increased. Then the
choice of θ such that this measure satisfies a Poincaré inequality with minimal constant (which
means the corresponding overdamped Langevin process mixes the fastest) may not be θ = 1,
see e.g. [20].

5.5 Other possible simple variations

1. From the biased trajectory (Qt, Zt)t>0 provided by the TABF algorithm, in order to
compute expectations with respect to the target Gibbs measure µ = µV,β, an alternative
to the reweighting step (3) is the following. Remark that only the Z variable is biased, so
that for all z ∈ Td, the conditional expectations

∫
Tp f(q, z)µ(q, z)dq/

∫
Tp µ(q, z)dq can be

estimated without re-weighting. On the other hand, the marginal law of Z is estimated
by exp(−βATtot)/

∫
Td exp(−βATtot(z))dz.

2. The bias update period Tup and the number m of tensor products added at each update
in Algorithm 3, instead of having fixed values, could be adaptively chosen. For instance,
the bias could be updated when the histogram of the reaction coordinates have reached
some stability, and m could be the lowest integer n ∈ N such that Jν(Atk + fn−d) −
Jν(Atk + fn) 6 ε for some threshold ε > 0.

3. A time-dependent weight in the definition (8) of νt (or, in practice, in (37) for ν̃N,t) can
be added in such a way that old samples have less influence than new ones since they
are more biased toward the initial distribution.
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4. The regularization kernel K and parameter λ may depend on time. Indeed, as time
goes, the size of the sample increases. Since the problem of minimizing Jνt is in practice
solved on a finite dimension space, for a time large enough the regularization is actually
not necessary anymore and the minimization problem with K(z, y) = δz(y) and λ = 0
is well-posed.

5. For k ∈ N+, denote by J λ
k the function given by (11) for some λ > 0 with ν = νtk .

Rather than setting Atk to be the minimizer of J λ
k , we can set it to be Atk−1

+ f where
f is the minimizer of

H 3 f 7→ J 0
k

(
Atk−1

+ f
)

+ λ

∫
Td
|∇zf(z)|2dz , (38)

the difference being that Atk−1
does not appear in the last regularization term any more.

Note that, when λ = 0, there is no difference. When λ > 0, the theoretical results of
Section 4, i.e. the well-posedness of the tensor approximation, can be straightforwardly
adapted. The long-time behaviour study of Section 3 should be similar, although a bit
more troublesome since Atk would not depend only on the empirical distribution ηtk but
also on the previous bias Atk−1

. On the other hand, remark that 0 is a minimizer of
(38) if and only if Atk is a minimizer of J 0

k . As a consequence, the long-time limit of
At should be the minimizer of Jµ with λ = 0 which, in view of (12), advocates for this
alternative form of cost function.

6. Since the bias is stored in memory in a tensor form, it is possible to use at some times
a compression algorithm (see [18]) to reduce the number of tensor terms, if needed.

6 Numerical experiments

Let us fix some details and parameters that will hold for the different examples below. In this
section, the modifications discussed in Section 5.3 are enforced.

The one-dimensional functions rn,j are stored for all n ∈ N and 1 ≤ j ≤ d on a discrete

grid with M = 30 points, so that the minimization of functions of the form
⊗d

j=1 rj 7→
Jνt(f +

⊗d
j=1 rj) is restricted to tensor products of one-dimensional continuous piecewise

linear functions on this grid, and the Euler-Lagrange equations (19) are replaced by M ×M
linear systems. This discretization replaces the regularization by a kernel K, which is no more
necessary. The process (5) is discretized with a time-step δt = 25.10−5, while the time integral
in the empirical measure νt defined in (8) is discretized with a time-step ∆t = 20δt. In other
words, the reaction coordinates and the associated local mean forces are recorded in memory
only every 20 steps of the Euler scheme. Moreover, N independent replicas of the processes
are run in parallel and the occupation measure used to defined the bias is ν̃N,t given by (37).
The update times tk of the bias are fixed at tk = kT , with T a multiple of ∆t and the number
of tensor terms gn added at each update time is fixed with value m.

6.1 A low dimensional example

We start to test the method on a toy model, with N = 30 replicas, a bias update period of
T = 100∆t, a regularization parameter λ = 10−5, and m = 8 tensor products added at each
update. The reaction coordinates are Euclidean coordinates, more precisely ξ(x) = (x1, x2),
so that we don’t introduce any additional extended coordinate.
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The dimensions are D = 3, d = 2, particles start at (0, 0, 0) and

V (x1, x2, x3) = − sin(3x1) sin(x2) cos(x3 − 1) + cos(3x2 + 2)(0.5 + cos(x3 − 2))

+ 2 sin(2x1 + 0.5) cos(x3)− 5 cos(x1) cos(x2) cos(x3 + 1) .

This potential has the following properties: it is not a tensor product and yields a metastable
process but, since V (x1, x2, x3) = ψ(x1, x2) cos(x3 + ϕ(x1, x2)) for some functions ψ and ϕ,
there is no metastability in the orthogonal space for fixed x1, x2.

The results are given in Figures 1 and 2 (for β = 1) and 3 and 4 (for β = 5). In both
cases, the theoretical free energy is successfully computed and the histograms of the reaction
coordinates is eventually flat. This is a bit slower with the inverse temperature β = 5, since
the initial metastability is very strong. As can be seen in Figure 4, at that temperature and
in the same times, a non-biased process is stuck in its initial well.

Figure 1: For β = 1, left and middle: estimated free energy respectively at t = 1 and t = 30.
Right: theoretical free energy.

Figure 2: For β = 1, cumulated histograms of the reaction coordinates at t = 30 respectively
for the TABF algorithm (left) and a non-biased process (right).

6.2 Polymer ring in solvent

We now consider a system inspired from [1]. The system is constituted of two types of particles,
solvent particles, and polymer particles. The polymer particles interact through a potential
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Figure 3: For β = 5, left and middle: estimated free energy respectively at t = 10 and t = 100.
Right: theoretical free energy.

Figure 4: For β = 5, cumulated histograms of the reaction coordinates at t = 100 respectively
for the TABF algorithm (left) and a non-biased process (right).

made precise below to form a ring. The reaction coordinates are the bond lengths between
consecutive polymer particles. This gives a large dimensional problem, for which the total
dimension and the number of reaction coordinates are easily prescribed, and moreover where
the reaction coordinates should exhibit some correlations (if it wasn’t the case, then the TABF
algorithm would not give different results than GABF [51]).

In a two-dimensional periodic box, we consider D/2 = 100 particles among which d (labeled
from 1 to d) form a polymer and the others are solvent particles. The length of the box is
L =

√
D/2, to ensure a concentration independent from D. Each pair of particles that involves

at least one solvent particle interacts through the purely repulsive WCA pair potential, which
is the Lennard-Jones potential truncated at its minimum, namely

VWCA(r) = ε1r6r0

(
1 +

(σ
r

)12

−
(σ
r

)6
)

where r denotes the distance between the two particles, ε = 1, σ = 0.5 and r0 = 21/6σ.
Each pair of consecutive particles in the polymer ring (where the dth and first particles are
considered to be consecutive, closing the loop) interacts through a double well potential

VDW (r) = h

(
1− (2r − 2r1 − ω)2

ω2

)2

,
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where r1 = r0, ω = 1 and h = 3. The minimum of VDW is attained at r = r1 (compact state)
and r = r1 + w (stretched state). Finally, each triplet of consecutive particles in the polymer
also interacts through the angle θ they form with the potential

VA(θ) =
1

2
(cos(θ)− cos(θd))

2

with an equilibrium angle θd = π(1 − 2/d) that ensures that the total angular potential is
minimized when the polymer particles form a regular polygon.

There are d reaction coordinates, which are the distances between two consecutive polymer
particles. Following Section 5.1, the interaction between an extended reaction coordinate z
and the corresponding distance r in the system is given via the extended potential

VE(z, r) =
1

2δ

(
z − r − r1

w

)2

for δ = 0.01. The scaling ensures that the minimum of VE(z, r) + VDW (r) is attained at
z = (r − r1)/w ∈ {0, 1}. Moreover, in line with Section 5.2, the extended variable is confined
in [ξmin, ξmax]

d by orthogonal reflection at the boundary, with ξmin = −0.2 and ξmax = 1.2.

Figure 5: The slow motions of the system are the transitions of each bond between two
consecutive particles of the polymer from its compact state to its stretched state.

The total energy of the (extended) system is thus, for (q, z) ∈ (LT)D × [ξmin, ξmax]
d,

V (q, z) =

D/2∑
i=d+1

∑
j<i

VWCA (|qi − qj|) +
d∑
i=1

VE (zi, |q̃i+1 − qi|)

+
d∑
i=1

VDW (|qi − q̃i+1|) +
d−1∑
i=1

VA

(
arccos

(
q̃i+1 − qi
|q̃i+1 − qi|

· q̃i+2 − q̃i−1

|q̃i+2 − q̃i+1|

))
,

where q̃i = qi for all i ∈ J1, dK and q̃d+j = qj for j = 1, 2. Initially, the polymer is in a compact
state, i.e. the distances between two consecutive of its particles are at distance r1, the angles
are θd and all the extended variables (zi)i∈J1,dK are at 0. For this model, we use the variant
described in point 4 of Section 5.3 namely, following the GABF algorithm, we keep in memory
one dimensional free energies on a grid and we use the tensor approximation as a correction
of this initial guess. There are N = 50 replicas, the update period, regularization parameter,
and inverse temperature are respectively T = 104∆t, λ = 0.05 and β = 1, and at each update,
m = 4d tensor products are added.
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The free energy is expected to be close to a sum of one-dimensional double well potentials,
with minima attained at points close to 0 and 1. Nevertheless the angular force should favor
configurations where the consecutive distances in the polymer are close. This fact cannot be
grasped by the GABF algorithm alone, for which reaction coordinates are treated indepen-
dently one from the others.

The results are presented in Figure 6 for d = 3 and Figures 7 and 8 for d = 5. In Figure 6,
we see that indeed the one-dimensional free energies recovered by the GABF algorithm have
two wells approximately at 0 and 1, and that the non-independent part of the free energy has
the following effect: when z3 = 0, the well (0, 0) is favored, when z3 = 1 the same goes for
(1, 1), and when z3 is intermediate the landscape is flatter and the two wells {z1 = z2 = x}
with x ∈ {0, 1} are favored with respect to the wells (0, 1) and (1, 0). The result is similar
in Figure 7, even though the quality of the estimation is lower for z3 = z4 = z5 = 0.5, which
is to be expected as this lies in a very low probability area (since 0.5 is the saddle point of
the two well potential). This shows that the TABF algorithm is able to recover non-trivial
dependency structures between reaction coordinates.

For d = 5, the free energy is eventually approximated with 140 tensor terms (7 updates,
adding 20 terms each), which means 5 × 140 = 700 one-dimensional functions have been
stored, each represented by M = 30 numbers. This is orders of magnitude below the cost
305 = 2, 43 × 107 required to store a 5-dimensional function on a grid of the same precision.
Moreover, since the total number of time steps of the simulation is of order 106, most of the
points of the 5-dimensional grid have never been visited during the whole simulation, so we
would’nt have any estimation of the free energy with a classical ABF algorithm.

We investigate further the quality of the tensor approximation by computing the evolution
of the square error on the free energy as a function of the number of tensor terms. To this
aim, first, using the same data as in Figure 7, in Figure 9 we plot ‖Am−Amf‖2

2 with mf = 140
where Am is the approximation obtained with the m first tensor terms constructed by the
algorithm (the GABF one-dimensional free energies are not taken into account). We see a
fast decay at m ∈ {0, 20, 60}, which corresponds to different update times (recall 20 terms
are added at each update), and thus to different empirical distributions and different GABF
estimations. This makes this figure difficult to interpret. For this reason, second, in order to
focus only on the tensor approximation step without the adaptive bias process or the GABF
one-dimensional free energies, we consider N = 50 independent long standard (non-biased)
trajectories with 5.106 time steps followed by a unique tensor approximation of the free energy
with Algorithm 2. Denoting again by Am the approximation obtained with m tensor terms, we
plot ‖Am−Amf‖2

2 with mf = 200. The result, displayed in Figure 10, shows a fast convergence.
More quantitatively, we observe that the relative error ‖Am − Amf‖2

2/‖Amf‖2
2 is below 20%

with m = 19, below 10% with m = 53 and below 1% with m = 123.
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Figure 6: For d = 3, up: estimated free energy as a function of (z1, z2) when z3 is, respectively,
0 (left) 0.5 (middle) and 1 (right). Middle: idem but without the independent, one-dimensional
parts given by the GABF algorithm. Bottom: one-dimensional potential given by the GABF
algorithm for z1 (left) z2 (middle) and their sum (right).
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