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Space as an Invention of
Active Agents
Alexander V. Terekhov* and J. Kevin O’Regan

Laboratoire Psychologie de Perception, CNRS, University Paris Descartes, Paris, France

The question of the nature of space around us has occupied thinkers since the dawn
of humanity, with scientists and philosophers today implicitly assuming that space is
something that exists objectively. Here, we show that this does not have to be the
case: the notion of space could emerge when biological organisms seek an economic
representation of their sensorimotor flow. The emergence of spatial notions does not
necessitate the existence of real physical space, but only requires the presence of
sensorimotor invariants called “compensable” sensory changes.We showmathematically
and then in simulations that naive agents making no assumptions about the existence of
space are able to learn these invariants and to build the abstract notion that physicists
call rigid displacement, independent of what is being displaced. Rigid displacements
may underly perception of space as an unchanging medium within which objects are
described by their relative positions. Our findings suggest that the question of the nature
of space, currently exclusive to philosophy and physics, should also be addressed from
the standpoint of neuroscience and artificial intelligence.

Keywords: sensorimotor contingencies, space perception, naive agent, concepts development, compensable
transformation, geometry, artificial intelligence and robotics

1. INTRODUCTION

Howdowe know that there is space around us?Our brains sit inside the dark bony cavities formed by
the skull, with myriads of sensorimotor signals coming in and going out. From this immense flow
of spikes, our brains conclude that there is such thing as space, filled with such things as objects,
and that there is such thing as body – a special type of object which brains have most control over.
Taking this “tabula rasa” approach, it is not clear what constitutes space as something discoverable
in the sensory information, or, in other words, how space manifests itself to a naive agent that has
no information other than its undifferentiated sensory inputs and motor outputs.

Poincaré (1905) was among the first to recognize this problem and to attempt its mathematical
formalization. He suggested that space can manifest itself through what he called “compensable
changes”: such changes in the world, which the agent can nullify by its own action. For example,
consider standing in front of a red ball. The light reflected from the ball is projected into the retina
where it creates excitation of the sensory cells. If now the ball displaces 1m away the input to the
retina becomes different fromwhat it was before. Yet, you canmake the input to be the same as before
if you walk 1m in the same direction as the ball. It is through this ability to nullify the changes in the
environment that we learn about space (Poincaré, 1905). This approach was further developed by
Nicod (1929), who showed, among other things, that temporal sequences can be used to determine
the topology of space. After Nicod, this line of research was for long time discontinued, until it
was reinitiated in the field of artificial intelligence and robotics (Kuipers, 1978; Pierce and Kuipers,
1997). Nowadays, a whole body of work has accumulated describing how robotic agents can build
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models of themselves and their environments (Kaplan and
Oudeyer, 2004; Klyubin et al., 2004, 2005; Gloye et al., 2005; Bon-
gard et al., 2006;Hersch et al., 2008;Hoffmann et al., 2010;Gordon
and Ahissar, 2011; Sigaud et al., 2011; Koos et al., 2013). However,
the question of the acquisition of the spatial concepts as something
independent of particular sensory coding remains rather poorly
studied [however, see Philipona et al. (2003), Roschin et al. (2011),
and Laflaquiere et al. (2012)].

In the current paper, we show how a naive agent can acquire
spatial notions in the formof internalized (or “sensible,” cf., Nicod,
1929) rigid displacements.We show that being equippedwith such
notions the agent can solve spatial tasks that would be unsolvable
in the metric of the original sensory inputs. Moreover, we show
that notions indistinguishable from internalized rigid displace-
ments can be built by an agent inhabiting a spaceless universe. We
thus suggest that the notion of space we possess is a construct of
our perceptual system, based on certain sensorimotor invariants,
which, however, do not necessitate the objective existance of
space.1

2. ILLUSTRATION OF PRINCIPLE

To illustrate the principle, consider first the sensory universe or
“Merkwelt” (cf von Uexküll, 1957) of the one-dimensional agent
in Figure 1. Note that in the present work, we are attempting a
proof of concept showing that an agent interacting with the world
could adduce the notion of space. For this reason, we will be
assuming that the agent is equipped with sufficient memory and

1While the present article concerns the notion of space, it would be extremely
interesting to attempt a similar approach for the emergence of the notion of time.
However at present we have no clear idea of how to do this. In the present article we
have attempted to reduce assumptions about time to a minimum.

computational resources to perform the necessary manipulation
of the sensorimotor information.

Assume (though this is not known to the agent’s brain) that its
body is composed of a single photoreceptive sensor that can move
laterally inside its body using a “muscle” (Figure 1A). Assume a
one-dimensional environment as in Figure 1B, and assume first
that it is static. If the agent were to perform scanning actions
with the muscle and were to plot photoreceptor output against
the photoreceptor’s actual physical position, it would obtain a
plot such as Figure 1D. But it cannot do this because it has no
notion, let alone any measure, of physical position, and only has
knowledge of proprioception. The agent can only plot photore-
ceptor output against proprioception, and so obtains a distorted
plot as in Figure 1F. This “sensorimotor contingency” (MacKay,
1962; O’Regan and Noë, 2001) is all that the agent knows about.
It does not know anything about the structure of its body and
sensor, let alone that there is such a thing as space in which it is
immersed. Indeed, the agent does not need such notions to under-
stand its world, since its world is completely accounted for by its
knowledge of the sensorimotor contingency it has established by
scanning.

But now suppose that the environment can move relative to the
agent, for example, taking Figures 1B,B′. The previously plotted
sensorimotor contingency will no longer apply, and a different
plot will be obtained (e.g., Figure 1F′). The agent goes from being
able to completely predict the effects of its scanning actions on its
sensory input, to no longer being able to do so.

However, there is a notable fact which applies. Although the
agent does not know this, physicists looking from outside the
agent would note that if the displacement relative to the envi-
ronment is not too large, there will be some overlap between
the physical locations scanned before and after the displace-
ment. In this overlapping region, the sensor occupies the same

FIGURE 1 | Algorithm of space acquisition illustrated with a simplified agent. The agent (A) has the form of a tray, inside which a photoreceptor s moves with
the help of a muscle, scanning the environment (B) composed of scattered light sources. The length of the muscle is linked to the output of the proprioceptive cell p
in a systematic, but unknown way. The output of the photoreceptor depends on its position x in real space (D). The agent learns the sensorimotor contingency
(F) linking p and s. After a rigid displacement of the agent, or a corresponding displacement of the environment from (B) to (B′), the output of the photoreceptor
changes from (D) to (D′) and a new sensorimotor contingency (F′) is established. For a sufficiently small rigid displacement, the outputs of the photoreceptor will
overlap before and after the displacement. The agent makes a record of the corresponding proprioceptive values between the sensorimotor contingency (F,F′)
(arrows from a, b, c to a′, b′, c′) and constructs the function p′ =φ(p) [(H), bold line]. Different functions φ [thin lines in (H)] correspond to different rigid
displacements. If the agent faces a different environment (C) and makes a rigid displacement equivalent to its displacement to (C′), the outputs of the photoreceptor
change from (E) to (E′) and the corresponding sensorimotor contingency changes from (G) to (G′). Yet, because of the existence of space, the same function φ links
(G) to (G′). The tests in Figures 3–6 show that the functions φ constitute the basis of spatial knowledge. Reproduced with permission from Terekhov and O’Regan
(2014) © 2016 IEEE.
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positions relative to the environment as it occupied before the
displacement occurred. Since sensory input depends only on
the position of the photoreceptor relative to the environment,
the agent will thus discover that for these positions the sensory
input from the photoreceptor will be the same as before the
displacement.

Registering such a coincidence is not uncommon for an agent
with a single photoreceptor, but the same would happen for an
agent with numerous receptors. For such a more complicated
agent, the coincidence would be extremely noteworthy.

In an attempt to better “understand” its environment, the agent
will thus naturallymake a catalog of these coincidences (cf. arrows
in Figures 1F,F′), and so establish a function φ linking the values
of proprioception observed before a change to the corresponding
values of proprioception after the change. Such a function for all
values of proprioception is shown in Figure 1H.

Assume that over time, the environment displaces rigidly to
various extents, with the agent located initially at various posi-
tions. Furthermore, assume that such displacements can happen
for entirely different environments (e.g., Figure 1C). Since the
sensorimotor contingencies themselves depend on all these fac-
tors, it might be expected that different functions φ would have
to be cataloged for all these different cases. Yet, it is a remarkable
fact that the set of functions φ is much simpler: for a given
displacement of the environment, the agent will discover the same
functions φ, even when this displacement starts from different
initial positions, and even when the environment is different.

We shall see below that this remarkable simplicity of the func-
tions φ provides the agent with the notion of space. But, first let us
see where the simplicity derives from.

Each function φ links proprioceptive values before an environ-
mental change to proprioceptive values after the change, in such
a way that for the linked values the outputs of the photoreceptor

match before and after the change. Seen from outside the agent,
the physicist would know that this situation will occur if the
agent’s photoreceptor occupies the same position relative to the
environment before and after the environmental change. And this
will happen if (1) the environment makes a rigid displacement,
and if (2) the agent’s photoreceptor makes a rigid displacement
equal to the rigid displacement of the environment. Thus, physicists
looking at the agent would know that the functions φ actually
measure, in proprioceptive coordinates, rigid physical displace-
ments of the environment relative to the agent (or vice versa)
(see Section 6).

Let us stress again that a priori there was no reason at all why
the φ functions for different starting points should be the same
for a given displacement, and the same for all environments. But
now, we can understand why the set of functions φ is so simple: it
is because a defining property of rigid displacements is that they
are independent of their starting points, and independent of the
properties of what is being displaced.

The functions φ can thus be seen as perceptual constructs
equivalent to physical rigid displacements, or one could say, fol-
lowing Nicod (1929), that they are sensible rigid displacements,
where sensible refers to the fact that they are defined within the
Merkwelt of the agent.

3. RESULTS

To illustrate that these sensible rigid displacements or func-
tions φ really have the properties of real physical rigid displace-
ments, we will use computer simulations with the more com-
plex two-dimensional agent described in Figure 2. The details
of the simulation are presented in the Methods (section 5). In
Formalization (section 6), we show that the demonstration applies
to an arbitrarily complicated agent, with certain restrictions.
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FIGURE 2 | The tray-like two-dimensional agent. (A) The agent inhabits a plane where it can perform uncontrolled hops (or equivalently, the environment can
shift through unknown distances), resulting in the translation of the agent’s body in an unknown direction through an unknown distance. Outside of the agent’s plane
there is an environment made of light sources. The agent can sense the light sources with nine photoreceptors placed on its mobile retina (B), which can translate
with the help of muscles, and whose position is sensed by eight pressure-sensitive proprioceptive cells scattered over the agent’s body. As the retina performs the
scanning motion (C), the proprioceptors take values lying in a two-dimensional proprioceptive manifold inside the eight-dimensional space of the possible
proprioceptive outputs. This manifold can be unfolded into a plane. (D) An example environment and the output of one photoreceptor over this unfolding as the
agent performs scanning movements of the retina. This unfolding will be used hereafter in order to illustrate the outputs of the photoreceptors as the agent performs
scanning movements of the retina.
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In Figure 3, the two-dimensional simulated agent is first shown
an environment that makes a certain displacement (or the agent
makes an equivalent hop relative to the environment). The agent
is then shown two other instances of the same displacement,
but with two completely different environments. Even though
in each case, the sensory experiences of the agent are differ-
ent, and even though they change in different ways, the Figure
shows that the same function φ can be used to account for these
changes. This is what is to be expected from a notion of rigid
displacement, which should not depend on the content of what
is displaced.

Figure 4 shows further that, once equipped with the notion
of sensible rigid displacement, the agent is well on its way
toward understanding space. In particular, sensible rigid dis-
placements endow the agent with the percept of space as an
unchanging medium, which implies being able to distinguish
between the sensory changes caused by the proper movements
of the agent from those reflecting the deformation of the envi-
ronment. Figure 4 shows how the simulated agent is able to
distinguish between the two despite the fact that in the sensory
input a rigid shift may look like a deformation (Figure 4C),
while deformations may seem just like a minor displacement
(Figure 4B).

Figure 5 shows that the agent can define the notion of relative
position of A with respect to B. This notion is more abstract
than displacement, as there exist numerous paths leading from
B to A, while relative position is independent of the choice of a
particular path. The notion of relative position allows the agent
to “understand” that it is at the same “somewhere” independently
of how it got there. To define the notion of relative position, the
agentmust be able to take different combinations of displacements
having the same origin and destination, and consider them as
equivalent.

4. DISCUSSION

We have shown that, without assuming a priori the existence
of space, the agent invents the notions of sensible displacement,
unchanging medium and relative position. These notions allow
the agent to conceive of its environment in a way that we can
assimilate to possessing the notion of space. The agent can now
separate the properties of its sensed environment into prop-
erties a physicist would call spatial (position, orientation) and
non-spatial (shape, color, etc). These are the properties whose
changes the agent respectively can and cannot account for in terms
of sensible rigid displacements. Several further points should
be mentioned.

The method that the agent uses to “invent” its notion of space
involves defining φ functions from matching sensory signals. As
is the case for temporal coincidence, this can be understood as a
strategy of associating causes that lead to the same consequences
(Markram et al., 2011). This is a productive learning strategy in
general and is easily implementable in neural hardware.

Note, however, that constructing sensible rigid displacements
on the basis of matches is only possible if sensory changes caused
by modifications in the environment can be compensated (i.e.,
equalized or canceled) by the agent’s own action. The conditions

for this to be possible are (1) that the agent be able to act,2
and (2) that appropriate compensatory changes can occur in the
environment. The agent’s own actions are thus crucial for the
acquisition of the notion of space. Of course, if the agent knows
in advance that there is space, it may be able to reconstruct it
without acting. But if the agent has limited action capacities, it
will not invent space “correctly.” In particular, the simple two-
dimensional agent we have considered has a retina that can trans-
late, but cannot rotate. This agent will therefore classify relative
position, but not orientation, as being a spatial property. Evi-
dence from biology also shows the importance of action in the
acquisition of spatial notions: an example is the classic result
of Held and Hein (1963).

In addition to action, sufficient richness of the environment is
essential for an agent to discover space. If for example displace-
ment in a certain direction has no sensory consequences, or if
they are ambiguous, then the agent will be unable to learn the
corresponding sensible rigid displacements. Again this is coherent
with biology, where it has been shown (Blakemore and Cooper,
1970) that kittens raised in visual environments composed of
vertical stripes are blind to displacements of horizontally aligned
objects and vice versa.

Another point worth mentioning is the fact that sensible rigid
displacements are nothing but abstract constructs – they do not
imply that something really moves: if the agent inhabited a differ-
ent physical universe but where the sensorimotor regularities were
the same, then it would develop the same construct of sensible
rigid displacement. For example in Audio Agent (section 7), we
describe an agent whose world consists only of sounds, but that
develops sensible rigid displacements in pitch analogous to the
spatial constructs of the agent in Figure 1.

A final point concerns the statistical approaches often used
up to now to understand brain functioning (Zhaoping, 2006;
Ganguli and Sompolinsky, 2012). Such approaches use statistical
correlations to compress the data observed in sensory and motor
activity. It is possible that these approaches may be adapted to
capture the “algebraic” notion of mutual compensability between
environment changes and an agent’s actions that is instantiated by
the functions φ and that is essential for understanding the essence
of space.

In conclusion, the three-dimensional space we perceive could
be nothing but a construct, which simplifies the representation
of information provided by our limited senses in response to
our limited actions. In reality space – if it exists – may have
a higher number of dimensions, most of which we perceive as
non-spatial properties because of our inability to perform corre-
sponding compensatory movements. Or, conversely, there may
in fact be no physical space: our impression that space exists
may be nothing but a gross oversimplification generated by our

2In the particular case of our agent the action involves moving the sensor within the
agent’s body. This ensures that the agent has a reliable measure of the motion that
it is producing, with, in particular, a one-to-one relation between muscle changes
and physical changes. Our algorithm would have to be improved in order to allow
cases where the agentmoved its body using, for example, legs whose repeated action
creates motion, since here there is no longer a one-to-one link between leg muscle
command and physical change in space.
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perceptual systems, with the real world only being very approxi-
mately describable as a collection of “objects” moving through an
“unchanging medium.”

5. METHODS

5.1. Agent
The two-dimensional agent from Figure 2 was simulated to illus-
trate the acquisition of spatial knowledge. The agent has a square
body in a form of a tray, within which a square retina translates.
We choose the measurement units so that the retina movements
are confined to a unit square. The position x, y of the retina is
registered by proprioceptors scattered over the body surface and
having outputs

pj = exp

{
−
(dpj )

2

(σ
p
j )

2

}
,

where dpj is the distance between the center of the retina and the
location of the j-th proprioceptor, and σ

p
j is its acuity.

The retina is coveredwith photoreceptors,measuring the inten-
sity of the light coming from Nℓ spot light sources located in a
plane above the agent. The response of j-th photoreceptor is

sj =
Nℓ∑
i=1

Ii exp
{
−
(dsij)2

(σs
j )

2

}
,

where dsij is the distance between the projection of the i-th light
source onto the plane of the agent and the j-th photoreceptor; Ii is
the intensity of the i-th light source, and σs

j is the acuity of the j-th
photoreceptor.

For the simulations presented in the paper we deliberately
distributed the eight proprioceptors over the agent’s body in a

non-uniform way so as to ensure a certain amount of distortion
of the image in Figures 3–5. Their acuities σp

j was set to 0.3 for all
receptors. The positions of the nine photoreceptors were drawn
randomly from a square with sides of length 0.3. The acuity of the
receptors σs

j took random values between 0.03 and 0.3. Due to the
retinal mobility the agent’s “field of view” was a 1.0× 1.0 square
centered at what we call the agent’s position.

5.2. Learning Functions φφφ
The agent was placed into the environment with 200 light sources
distributed randomly in 3× 3 square, centered at the agent’s initial
position (see Figure 6). The agent scanned the environment by
moving the retina inside the body and tabulating the tuples of
proprioceptive and photoreceptive inputs ⟨pk, sk⟩. The agent then
jumped to a new position, which was within a 1.8× 1.8 square
centered at its initial position, and again scanned the environment
and tabulated the tuples ⟨p′k, s

′
k⟩. The agent then looked for the co-

occurrences sk = s′k′ and put the corresponding proprioceptive
inputs into pairs ⟨pk, p

′
k′⟩. The function φ was then defined as the

set of all such pairs.
Exclusively for the sake of code optimization when “scanning”

the environment the retina moved over a regular 201× 201 grid.
The outputs of the photoreceptors were considered as matching if
for every photoreceptor the difference of the outputs before and
after the jump was less than 0.005. The corresponding values of
proprioception before and after the jump were taken to form the
function φ. If the value of every proprioceptor in one pair differed
by less than 0.01 from the value of proprioceptor in the other pair,
then one of the pairs was discarded. The destination points of the
agent’s jumps also belonged to a regular grid centered at the agent’s
initial position and having a step size of 0.02. In total, we obtained
8281 different functions φ.
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FIGURE 3 | The notion of sensible rigid displacements. Seemingly different changes in sensory input will be associated if they correspond to the same
displacement in real physical space. The 2D agent is presented with a reference displacement of the environment (B), which it scans before and after the
displacement. The output of one of the photoreceptors over the unfolded proprioceptive manifold (Figure 2C) is presented in (A). Then the agent is presented with
test displacements (C) from different initial positions and for different environments. Even though the test displacements may strongly alter the shape of the
reference, the agent succeeds in associating test and reference if they correspond to the same physical displacement (D). This ability of the agent provides the basis
of the notion of displacement independent of the environment.
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FIGURE 5 | The notion of relative position, independent of the connecting path. The 2D agent can construct the notion of relative position of a destination
point with respect to an origin by associating all possible paths connecting the origin to the destination. The agent was presented with a reference single-segment
path. Then it was returned to the origin and moved along two-, three-, or four-segment paths with possibly different destination points at a distance in the range
[−0.15, 0.15] from the destination of the reference path; all points were chosen on the same straight line (A). The surrounding environment was altered at every path
presentation in order to ensure that the agent calculated the displacement instead of comparing the view at the destination points. The agent successfully associated
together paths which arrived close to the original destination point. This association was more accurate for the 2-segment path, and became weaker as the number
of path segments increased (B). This can be explained by accumulation of the integration error.

It must be emphasized here that though we used only rigid
displacements of the environment for learning the φ functions,
the result would have been essentially the same if arbitrary
deformations of the environment were allowed. For instance,
in our pilot simulations, we allowed the environment to shift
and then deform along one of the axes, and then computed
the corresponding φ functions. We found that the φ functions
for such non-rigid changes of the environment contained less
than 3% of what a pure rigid displacement would contain and
depended heavily upon the particular environment used. Thus,
introducing a simple criterion, like retaining only those φ func-
tions with a certain number of points, and running the sim-
ulations for both rigid and non-rigid changes would produce
essentially the same functions φ as running the simulations for
rigid displacements only.

5.3. Sensible Rigid Displacement
The agent was facing 40 light sources distributed uniformly along
a circle with 0.1 radius. The center of the circle was chosen
randomly within a 1.0× 1.0 square centered at the agent. In the
reference displacement, all stars moved as a whole to a new
random position, which was also within a 1.0× 1.0 square. The
agent determined the function φ corresponding to the reference
displacement. Then the agent was shown one of four objects
shown in Figure 3: the same circle, a square (composed of 40
lights), a triangle (39 lights), or a star (40 lights). The square and
triangle had sides of length 0.2, and the star had a ray length 0.3.
The objects underwent a random test displacement with initial
and final positions within a 1.0× 1.0 square. In order to save
simulation time, we only considered displacements which differed
from the reference by no more than 0.1 for each axis. The agent
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photoreceptor outputs before (the origin of the arrow) and after the jump (the
end of the arrow). (D) illustrates the meaning of the function φ, which is the
field of the proprioceptive changes necessary to compensate changes in
photoreceptors induced by the rigid motion (jump).

determined the functions ∼
φ for each of the tests and computed

the distance between φ and ∼
φ as

ρ(φ,
∼
φ ) =

∑
k′ ,̃k′:pk=p̃̃k

∥p′k′ − p̃′k̃′∥, (1)

where ||·|| is a euclidean distance in the proprioception space. The
agent identified two displacements as the same if the error was
below a threshold which was chosen so that 90% of displacements
of size less than 0.005 were considered identical. The procedure
was repeated 1,000 times.

5.4. Unchanging Medium
The agent was facing 40 light sources distributed uniformly over
a circle with radius 0.1. The center of the circle was chosen
randomly in a 0.4× 0.4 square centered at the agent. The agent
scanned the environment and tabulated the tuples ⟨pk, sk⟩. Then
the agent made a jump to a random point located in a 0.6× 0.6
square and simultaneously the circle was randomly stretched or
shrunk by up to 50% along a fixed axis. Only those jump destina-
tions were considered for which the agent could “see” the entire
circle. The agent scanned the environment again and tabulated
new tuples ⟨p′k, s

′
k⟩. The agent then searched for a functionφwhich

gave the best fit of the photoreceptors after the jump based on

their values before the jump. In particular, the following error was
computed:

ε =

Nk∑
k=1

∥sk − s′k′∥,

where k′ was such that φ(pk) = p′k′ . If the error was below the
threshold, the agent assumed that the environment did not change
during the jump. The threshold value of the error was chosen in
such a way that the agent answered correctly in 90% of cases when
the deformation of the circle was below 0.5%. Figure 2 shows the
result of simulations computed on the basis of 10,000 repetitions
of the test.

5.5. Relative Position
The agent was facing an environment filled with 200 light sources
with random locations and intensities. It was displaced from its
original position to the destination point, which had coordinates
(0.6, 0.6) relative to the agent’s initial position. The agent deter-
mined the reference function φref, which gave the best account
of the displacement-induced changes of the photoreceptor out-
puts. Then the environment was replaced with a new randomly
generated environment, and the agent was moved along a path
composed of several segments. At every intermediate point along
the path, the agent determined the function φj accounting for
the changes in photoreceptor values. The agent then computed
the composition function φcomp =φn ◦ · · · ◦φ1, where n is the
number of path segments. For any two functions φ and ∼

φ defined
by sets of pairs ⟨pk, p

′
k′⟩ and ⟨p̃k̃, p̃

′
k̃′⟩ the composition ∼

φ ◦ φ was
defined as a set of pairs ⟨pk, p̃

′
k̃′⟩, such that p′k′ = p̃k̃. The distance

between φref and φcomp was computed using formula 1. The test
and reference paths were assumed to correspond to the same rela-
tive position if the distancewas below the same threshold as for the
sensible rigid displacements. The procedure was repeated 1,000
times for two-, three-, and four-segment paths. Each intermediate
point of the path was within the 0.9× 0.9 square centered at the
original position. In order to reduce simulation time the final
points of all paths lay on the same line and were not more than
0.1 away from the origin.

6. FORMALIZATION

Here, we consider a general agent immersed in real physical space.
Later, we will abandon the assumption of the existence of physcial
space and give the conditions for the emergence of perceptual
“space-like” constructs independently of whether they correspond
to any real physical space.

Let s be the vector of the agent’s exteroceptor outputs. The
exteroceptors are connected to a body, assumed to be rigid, whose
position and orientation is described by a spatial coordinate
defined by the vector x. For every environment E , the outputs of
the exteroceptors are defined by a function

s = σE (x). (2)

We assume that this function has the property that if the envi-
ronment E makes a rigidmotion and becomes E ′, then there exists
a rigid transformation T of entire space such that

s′ = σE′(x) = σE (T(x)). (3)
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Proprioception p reports the position of the exteroceptors in
the agent’s body. For a given position of the agent X we assume
there is a function πX such that

p = πX (x). (4)

Again, the function πX has the property that the agent’s dis-
placement to a position X ′ can be accounted for by the rigid
transformation T of entire space:

p′ = πX ′(x) = πX (T (x)). (5)

Assuming that proprioception unambigously defines the posi-
tion of the exteroceptors in space

x = π−1
X (p)

and
s =

(
σE ◦ π−1

X

)
(p)

where the function
(
σE ◦ π−1

X
)

is the sensorimotor contingency
learned by the agent for every position X of itself and of the
environment E .

When the agent or the environmentmoves, a new sensorimotor
contingency is established

s′ =
(
σE′ ◦ π−1

X ′

)
(p′) =

(
σE ◦ T ◦ T −1 ◦ π−1

X

)
(p′).

The agent learns the functionφ linking the values p and p′ such
that s= s′, or(

σE ◦ π−1
X

)
(p) =

(
σE ◦ T ◦ T −1 ◦ π−1

X

)
(p′).

The function φ is not always defined uniquely since the map-
ping σE can be non-invertible. It can be inverted in the domain
of its arguments if the environment is sufficiently rich, i.e., if the
vector of exteroceptor outputs is different at every position of the
exteroceptors within the range admitted by the proprioceptors. In
this case

φ = πX ◦ T ◦ T−1 ◦ π−1
X . (6)

It can be seen from the expression for the function φ that it
simply gives a proprioceptive account of the relative rigid displace-
ment T ◦T−1 of the environment and the agent. The functions
φ are thus the agent’s extensible rigid displacements, which are
associated with the environment’s rigid motion from E to E ′ and
the agent’s rigid motion from X to X ′. As is clear from equation
6, the function φ only depends on the transformations T and
T . In physical space, these transformations depend only on the
displacements themselves and are independent of the initial posi-
tions of the agent and the environment, and of the content of the
environment. Moreover, since the transformations T and T form
Lie groups, the functionsφ also inherit some group properties. For
any two φ functions,

φ1 = πX ◦ T ◦ T−1
1 ◦ π−1

X and φ2 = πX ◦ T2 ◦ T−1
2 ◦ π−1

X .

there exists a function φ3 such that

φ1◦φ2 = πX ◦T1◦T−1
1 ◦T2◦T−1

2 ◦π−1
X = πX ◦T3◦T−1

3 ◦π−1
X = φ3

whereT 3 andT3 are transformations describing the total displace-
ments of agent and of the environment, for which T3 ◦ T−1

3 =

T1 ◦ T−1
1 ◦ T2 ◦ T−1

2 .
The functions φ do not form a group. This is because they

are defined only on a subset of proprioceptive values, for which
the exteroceptor outputs overlap before and after the shift. It may
happen that the domain of definition of the function φ3 is larger
than that of φ1 ◦φ2 and hence the composition φ1 ◦φ2 is not one
of the functions φ.

Up until this point we have assumed the existence of real
physical space. Now, we would like to abandon this assumption,
and only retain the conditions which allow the construction of the
function φ. This gives us a list of requirements for the existence
of “space-like” constructs. (1) There must be a variable x and
functions σE and πX such that the outputs of the extero- and
proprioceptors can be described by the equations (2) and (4),
and the function π must be invertible. The agent must be able to
“act,” i.e., induce changes in the variable x. (2) Moreover, there
must exist (and be sufficiently often) changes of the environment
E →E ′ and/or of the agentX →X ′ such that the equations (3) and
(5) hold. The corresponding transformations T and/or T must be
applicable to all environments E and external states of the agent
X , and they must form a group with respect to the composition
operator.

Note that the requirement (2) does not presume that there are
no other types of changes of the environment and/or of the agent.
The agent will identify only the changes possessing such a prop-
erty as sensible rigid displacements and will obtain the functions φ
that correspond to them.

Also note again that here we do not assume the existence of
space. We only make certain assumptions regarding the structure
of the sensory inputs that the agent can receive.

The agent presented in Figure 2 of the main text will only
recognize translations as the spatial changes, because it can only
translate its retina, and hence for this agent the variable x only
includes the position of the retina in space, not its orientation.

One can imagine an agent that can stretch its retina in addition
to translations and rotations. For such an agent, the variable x
will include position, orientation, and stretching of the retina.
If this agent can stretch its entire body, or if the environment
has a tendency for such deformations, then stretching will be
classified as a sensible rigid displacement similarly to translations
and rotations.

One can also imagine an agent whose sensory inputs do not
depend on physical spatial properties, but satisfy the requirements
described above. Such an agent will develop a false notion of
space, where it is not present. The description of such an agent is
given below.

7. AUDIO AGENT

Here, we show that an agent can develop incorrect spatial knowl-
edge, i.e., that does not correspond to physical space, if the con-
ditions presented in the previous section are satisfied. The agent,
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FIGURE 7 | A simple audio agent. The agent (A) consists of a rod attached to a support, oscillating in response to the acoustic waves (B). The agent measures the
intensity of this oscillation with an “exteroceptor” s. By exercising its muscle the agent can change the stiffness of the spring at the support and thus the
eigenfrequency f of the rod, measured with the proprioceptor p. For an acoustic wave generated by a single note (A) the exteroceptor response s depends on the
eigenfrequency f as shown in (D). However, the agent measures the proprioceptive response p and not the eigenfrequency, and so only has access to the
sensorimotor contingency (F). The change of the note from (B) to (B′) results in a shift in the characteristics (D) to (D′) and in the establishment of a new
sensorimotor contingency (F′). The agent can learn the functions φ (H) by taking note of the coincidences in the exteroceptor output s. If a pair of notes is played
(C,C′) with the dependencies (E,E′), new sensorimotor contingencies are obtained by the agent (G,G′), yet the same functions φ link them together. Reproduced
with permission from Terekhov and O’Regan (2014) © 2016 IEEE.

inspired by Jean Nicod, inhabits the world of sounds (Figure 7).
Its environment is a continuously lasting sine wave, or a chord
(Figure 7A). The agent consists of a hair-cell, which oscillates
in response to the acoustic waves (Figure 7B). The amplitude of
this oscillation is measured by an exteroceptor s. The response is
maximal if the frequency f of one of the sine waves coincides with
the eigenfrequency of the hair-cell.

The agent can “scan” the environment by changing the stiffness
at the cell’s attachment point and thus its eigenfrequency, which
is measured by the proprioceptor p. For the environment B, the
dependency between the amplitude and the cell’s eigenfrequency
has the shape illustrated in Figure 7D. We assume that for
any other note (like B′), the dependency between the ampli-
tude and the cell’s eigenfrequency remains the same, but shifted
(Figure 7D′).

The agent does not know these facts. It only knows the depen-
dency between exteroception s and proprioception p, which con-
stitutes the sensorimotor contingency (Figure 7F) corresponding
to the environment B. For a new note (B′), a new sensorimotor
contingency F′ is established. Yet, as before, the agent notices that
the outputs of the exteroceptor s coincide for certain values of p.
It makes note of these coincidences and defines the functions φ
corresponding to all changes of the notes (Figure 7H).

The same procedure applies if the agent faces a chord of two (C
and C′) ormore notes. Instead of changes in the pitch of a note, we
nowhave transposition of thewhole chord. The agent can discover
that the same set of functions φ works for notes and for chords.

Although this agent is unable to move in space and although it
only perceives continuous sound waves, it can nevertheless build
the basic notions of space. However, these notions are “incorrect,”
in the sense that they do not correspond to actual physical space,
but to the set of note pitches. The sensible rigid displacements
for this agent correspond to transpositions of the chords. The
unchanging medium is the musical scale, and the relative position
of one chord with respect to an identical but transposed chord is

just the interval throughwhich the chord has been transposed. For
such an agent, a musical piece is somehow similar to what a silent
film is for us: it is a sequence of objects (notes), appearing, moving
around (changing pitch), and disappearing.

Using the formalism introduced above, we can say that for
this agent, the spatial variable is frequency, f. For any given envi-
ronment E , which in this case is constituted by simultaneously
played notes, the output of the exteroceptor s depends only on
the eigenfrequency of the hair-cell, which can be measured using
the same variable f. This means that the function σE (f ) exists.
The rigid shift of the environment E to E ′, which is the chord
transposition, results just in frequency scaling: σE′ (f )=σE (kf ).
Evidently, these transformations form a group. Proprioception p
signals the stiffness of the hair-cell, which is functionally related
to its eigenfrequency, and hence the invertible function π(f ) also
exists. As our auditory agent is unable to perform anything sim-
ilar to rigid displacements, the function π does not depend on
anything equivalent to the state X of our original simple agent
(Figure 1).

The existence of the functions σE (f ) and π(f ) fulfills the
requirement (1) from the previous section. We can assume that
music being played is just a piano exercise and hence the chords
are often followed by their transposed versions. In this case there
exist (and are sufficiently often) changes of the environment
E →E ′, which correspond to a simple shift of all played notes by
the same musical interval. These shifts evidently form a group,
and hence the requirement (2) is also fulfilled. The fulfilment of
these two requirements suffices for the existence of sensible rigid
displacements and thus for basic spatial knowledge, described
above.
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