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Electrochemical activation of halogen bonding
Claire Fave and Bernd Schöllhorn
Abstract

In the past, noncovalent interactions have been extensively
studied by electrochemical methods. In this context, halogen
bonding (XB) has been a long-time overlooked item in the
toolbox of supramolecular chemistry. The article is treating
electrochemical activation of XB in solution and at the solid–
liquid interface. Key principles and recent work on the use of
electrochemistry as a tool for detecting and controlling XB are
reported. Different types of redox-switching XB are identified in
the context of molecular recognition and detection. First evi-
dence for XB promoted electron transfer reactions involving the
activation of covalent bonds represents a completely new and
emerging domain, ripe for exploration.
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Introduction
Halogen bonding (XB), an attractive interaction between
a halogen atom acting as an electrophilic species (called
XB donor) and a Lewis base (called XB acceptor)
(Figure 1), is nowadays fully recognized by the scientific
community as an important noncovalent interaction and
an interesting tool for applications either in crystal engi-
neering or materials science but also for (bio)supramo-
lecular chemistry in solution and at the liquidesolid
interface. [1,2] In 2013, the term ‘halogen bonding’ was
officially defined by International union of pure and

applied chemistry (IUPAC) [3], stressing its comple-
mentarity with hydrogen bonding (HB), and is well
documented in the solid state [4e9]. This is not the case
for systems in homogeneous solution or at the electrode
surface despite the interest of emerging applications in
molecular recognition, anion sensing and transport, me-
dicinal chemistry, and organocatalysis. [1,2], [10e12]
Most published studies of XB in solution rely on spec-
troscopic techniques such as ultraviolet-visible (UV-vis),
infrared (IR), Raman, and nuclear magnetic resonance
(NMR) spectroscopy [10]. In the seventies, dielectric
polarization measurements were conducted for the char-
acterization of organohalides in organic solvents allowing
for a distinction of the observed XB from other noncova-

lent interactions [13]. Surprisingly, and despite their low
cost and relatively simple implementation, electro-
chemical methods remained absent until 2014 [14]. The
challenge to explore the electrochemical activation of XB
for molecular recognition in solution and in surface
confined systems is, in our view, a new and attractive topic,
and some questions have only recently been addressed.
Tuning the strength of a redox active XB donor via a
reversible electrochemical reaction should change its af-
finity toward XB acceptors and vice versa (Figures 1 and 3).
Such type of redox switching is of great interest because

the electrochemical probing and controlling of XB will
help to better understand the corresponding supramo-
lecular properties and reactivity in complex systems such
as liquid electrolytes involving multiple competing
noncovalent interactions. The present article reports on
the most recent studies in this field.
Redox switching of XB acceptors: reductive
XB activation
In aprotic solvents, quinones can be reversibly reduced
in two sequential one-electron transfer (ET) steps
[15,16] generating the corresponding anion radical
(semiquinone radical) and dianion, with a consequently
significant increase of the respective Lewis base
strength. The influence of HB donors and Lewis acids
on the electrochemical behavior of quinones has been

extensively studied in the past [17e21]. The observed
shifts of the quinone reduction potentials were attrib-
uted to the stabilization of the corresponding anions
because of their association with HB donors (in the
absence of proton transfer reactions) and Lewis acids
(eg. alkali and earth-alkali metal cations) [22,23]. An
analogous behavior has been demonstrated recently for
p-quinones such as tetrachloroquinone (TCQ, Figure 2)
or dichlorodicyanoquinone (DDQ, Figure 2), validating
for the first time the concept that the strength of XB can
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Figure 1

a) Schematic representation of halogen bonding. (b) Electrochemical switching of redox-active XB acceptors and XB donors in the presence of iodo-
perfluorocarbons and halide anions, respectively. XB, halogen bonding; HB, hydrogen bonding.
be controlled by the redox switching of the Lewis basic
XB acceptor (Figures 2 and 3) [14]. Cyclic voltammetry
(CV) was thus identified as an analytical technique well

adapted to probe and control XB interactions in liquid
electrolytes. Iodo-perfluorocarbons (I-Rf) induced high
standard potential shifts exclusively of the second TCQ
reduction wave (corresponding to the TCQ dianion
formation) of up to 140 mV in polar electrolytes, such as
acetonitrile containing 0.1 M of tetrabutylammonium
hexafluorophosphate (TBAPF6) as the supporting
electrolyte salt. A stoichiometry of 1:1 was deduced from
Job plots, and binding enhancements (ratio of the
equilibrium constants K3/K2 of the respective XB com-
plexes, Figure 3) of up to 103 could be determined by

simulation and fitting of the voltammograms to the
experimental results. Competition experiments
involving two different Lewis bases (dianionic quinone
and chloride) were conducted evidencing reversible
equilibra between the formed XB complexes and
allowing for the indirect determination of affinity con-
stants between the involved nonelectroactive species
(halide anions and I-Rf).
Redox switching of XB donors
Two different ways to electrochemically switch XB donors
have been described in recent literature (Figure 2). In the
first case, the donor strength is increased upon oxidation
of a neutral or cationic redox center, thus activating XB. In
a second case, cationic XB donors are reduced involving
XBdeactivation. Both switchingmodes have been applied

to selective anion detection, an important issue in
analytical chemistry [24,25].

Oxidative XB activation
Iodinated tetrathiafulvalene (TTF) and ferrocene (Fc)
derivatives have been used as redox moieties for XB
activation upon electrochemical oxidation. In general,
the XB-donor strength of organohalides increases with
the size and polarizability of the halogen atom
(I > Br >> Cl >> F) and the presence of electron
withdrawing groups. Iodo-alkynes and iodo-
perfluorocarbons are known to be particularly strong
XB donors. Besides these neutral compounds, more

recently, it has been proven by NMR spectroscopy that
cationic halogenated compounds (halo-imidazolium and
triazolium derivatives) [26,27] also possess strong XB-
donor properties. The use of positively charged re-
ceptors that benefit from a Coulombic attraction to
anions is recognized as a promising general strategy for
anion recognition. Electrochemical oxidation represents
a well-adapted tool for conveniently generating positive
charges in molecular systems under ambient conditions.
Since 1995, electrocrystallization was used to prepare
various solid-state donor-acceptor complexes based on
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Figure 2

Classification of the redox probes used for electrochemical XB activation/deactivation. XB, halogen bonding; TCQ, tetrachloroquinone; TTF, tetrathia-
fulvalene; Fc, ferrocene; DDQ, dichlorodicyanoquinone CE, counter electrode; WE, working electrode; RE, reference electrode; TCNQ, tetracyanoqui-
none; PV, phenylviologen.
charge-assisted XB involving iodo-tetrathiafulvalene (I-
TTF) derivatives [28]. Recently, the XB-donor strength
of iodinated TTF derivatives (I-TTF and IMe3-TTF,

Figures 2 and 3) has been electrochemically modulated
and controlled in DMF solution [29,30]. A significant
binding enhancement to Cl� upon oxidation of I-TTF
(‘XB OFF’) to I-TTFþ (‘XB ON’) was observed and
attributed to the strong inductive effect of the gener-
ated positive charge polarizing the C-I bond. The sig-
nificant contribution of XB to the observed stabilization
of I-TTFþ was proven, and other noncovalent in-
teractions such as HB or p-anion interactions could be
excluded. First spectroelectrochemical measurements
in the Uv-vis range along with Time-dependent density

functional theory (TD-DFT) calculations confirmed XB
formation upon generation of the cation radical.
Depending on the nature of the anion (Cl�, Br�, TfO�),
oxidation potential shift values in the range of 0e50 mV
have been observed and affinity constants of up to
425 M�1 could be determined for the XB adducts,

corresponding to a binding force of around �12
to �15 kJ mol�1. Moreover, competition between I-
TTF1þ and other XB donors (iodo-perfluorocarbons) as
well as HB donors (alcohols, water) for the recognition
of Cl� allowed for the quantitative comparison of the
relative donor strength. This competitive approach is an
interesting electroanalytical tool for probing noncova-
lent XB and HB interactions in solution. Thanks to the
second oxidation step affording, the more electrophilic
dication I-TTF2þ, it was possible to detect XB even in
protic media (water/DMF and ethanol/DMF mixtures).

The redox properties of Fc have been exploited in a
similar way for the electrochemical detection of anions
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Figure 3

CVs were recorded on a glassy carbon electrode in a solution of 0.1 M TBAPF6 in acetonitrile at a scan rate 0.1 V s−1. (a) CVs of TCQ (0.5 mM) in the
presence of IC6F13 (0, 0.5, 5, 25 and 50 mM); titration curves; corresponding Square Scheme. (b) CVs of I-TTF (0.25 mM) in the presence of chloride (0,
0.25, 1, 2.5, 5, 10, 25, and 50 mM); titration curves; corresponding Square Scheme. (c) Table of affinity constant ratios (Ki+1/Ki) for XB-donor/XB-acceptor
couples. XB, halogen bonding; CV, cyclic voltammetry; TCQ, tetrachloroquinone; TTF, tetrathiafulvalene; TBAPF6, tetrabutylammonium hexa-
fluorophosphate; DDQ, dichlorodicyanoquinone; SCE, saturated calomel electrode; TBAX, tetrabutylammonium X (X= anion).
in solution. Beer and colleagues have prepared several
Fc derivatives bearing two iodo-triazoles or cationic
iodo-triazolium units (Figure 2). Some of these

bidentate XB donors showed interesting anion receptor
properties, suggesting a significant contribution of XB.
In CV and square wave voltammetry (SWV) measure-
ments, standard potential shifts of the ferrocenyl
probes were observed in the presence of various
anions, in particular halides (Fc-1, Figure 2) [31] and
azide (Fc-2, Figure 2) [32]. In all cases, the respective
affinity constants (Ka) of the iron (II) (Fc) containing
XB donors could be determined by 1H NMR which
was not possible for the activated paramagnetic iron
(III) complexes (ferricinium). Thus, electrochemical

techniques have not been used yet to quantify, via
titration experiments and fitting to an appropriate
model, the affinity constants for the activated re-
ceptors. However, when comparing the potential shift
values of analogs XB (iodinated triazoliums) and HB
receptors, XB proved to be equivalent or even stronger
in the investigated liquid electrolytes. A tri-ferrocenyl-
bis(iodotriazole) (Fc-3, Figure 2), conceived by the

group of Molina, showed two reversible oxidation steps
involving a two-electron and a one-electron transfer
and proved to be remarkably selective toward oxo-
anions, affecting either the oxidation potential of the
second ET (sulfate, acetate) or of both (dihy-
drogenophosphate and hydrogenopyrophosphate),
whereas halides and nitrate showed no effect [33].
Electrochemical activation of Fc-based XB donors
could also be performed in up to 10% of water-
containing solvent mixtures [31]. Recently, a tetraio-
dinated monocationic [2]-Rotaxane bearing a ferro-

cenyl moiety as an interlocked host molecule showed
weak perturbation of the voltammetric signal (in a
acetone/acetonitrile/water mixture) but still selective
recognition of bromide versus chloride or linear thio-
cyanate [34].
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Reductive XB deactivation
N,N0-disubstituted viologens constitute an important
class of redox mediators widely applied in catalysis and
the elaboration of supramolecular complexes [24].
Iodinated dicationic viologen derivatives were used as
potent XB donors in the thermodynamically stable redox
state. Reduction to the cation radical or the neutral state
proved to significantly decrease the respective XB-donor
strength. Based on this principle, reversible reduction of
a diquat bis-iodotriazole derivative (I-Diquat, Figure 2)
was used for the electrochemical sensing of halide anions

[35]. A comparative study of different noncovalent in-
teractions between cationic N-phenylviologens and ha-
lides was performed (I-PV, Figure 2) [36]. XB
contributed to a stabilization of the initially dicationic
redox state of the iodo-tetrafluorophenyl viologen de-
rivative in the presence of chloride and bromide,
although the role of other competing noncovalent in-
teractions (HB, ion pairing and peanion interactions) is
not fully understood. CV allowed the quantification of
the overall affinity of halide anions toward N-phenyl-
viologens depending on their redox state. Local probing

of the various interactions was possible, thanks to NMR
spectroscopy of the diamagnetic phenyl viologen
dications.
Figure 4

Interfacial redox switching and XB promoted electron transfer. (a) Scheme of
mograms of the electroactive I2-TTF containing SAM in the presence of incre
assisted EC between halocarbons (R–X) and a redox-active Lewis Base (LB
oxidized halogenated dye in a solar cell. SAM, self-assembled monolayer; XB
Interfacial redox switching of halogen
bonding
Noncovalent interactions play an important role in
interfacial supramolecular electrochemistry [37].
Recently, the concept of electrochemical XB activation
has been transferred onto the electrode surface via the
immobilization of diiodinated TTF dithiolane de-
rivatives in form of self-assembled monolayers (SAMs)
on gold surface. Thus electrochemically driven interfa-
cial charge-assisted halogen bonding between redox-
active SAMs and halide anions has been explored for
the first time [38]. The XB-donor properties of the
surface adsorbates (I2-TTF, Figure 4A) were activated

by electrochemical switching their oxidation state. A
particularly high and selective binding enhancement of
565 (ratio of affinity constants for the two TTF oxida-
tion states) upon oxidation of the SAM toward chloride
anions was estimated from electrochemical simulation,
suggesting a significant surface chelate effect of the
assembled 2D material. Strong evidence is provided for
a significant contribution of XB as the dominant
noncovalent interaction in the investigated system. A
high sensitivity (limit of detection = 6∙10ˉ6 M) was
determined for chloride detection which is a promising

finding considering a potential application of the
selective interfacial anion detection on a SAM (left) and cyclic voltam-
asing chloride concentrations (right). (b) Proposed mechanism for XB
). (c) Postulated mechanism of XB promoted regeneration of a photo-
, halogen bonding; TTF, tetrathiafulvalene; EC, electrochemical-chemical.
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concept for future development of novel selective
anion sensors, capture/release systems, or molecular
electronics.
XB promoted ET reactions
The group of Rosokha described halogen bond-assisted
ETreactions of aliphatic bromo-substituted electrophiles
[39,40]. The isolation of halogen-bonded prereactive
complexes between aliphatic organobromides and Lewis
bases (phenylene diamine and iodide) at low tempera-
ture and the kinetics of a subsequent ETare consistent
with an inner-sphere mechanism involving strongly
coupled redox centers (Figure 4B). Electronic coupling of

XB donor and XB acceptor within the prereactive com-
plex was suggested. Up to date, we are aware of only one
example exploiting this potentiality for the regeneration
of a photo-oxidized halogenated dye via iodide oxidation,
thus impacting the open-circuit voltage of a solar cell
(Figure 4C) [41]. Parlane et al [42] used X-ray absorption
spectroscopy to directly detect interfacial XB between a
homologous soluble halide species (Cl�) and the acti-
vated dye cation demonstrating that these interactions
occur after electron injection into TiO2.
Conclusions and perspectives
Most of the work on the electrochemical investigation of
XB has been published during the past 5 years, and
many potentialities in this domain are still to be
explored. However, the fundamental concept of elec-
trochemical XB activation/deactivation for molecular

recognition and detection is now well established.
Several reversible redox probes have been used,
covering the activation of XB donors (TTF, Fc) and XB
acceptors (quinones) as well as the deactivation of XB
donors (viologen cations). Examples of electrochemical
deactivation of XB acceptors for XB are not described
yet. The possibility of reversible switching between
three different redox states (0/�1/�2) represents a
decisive advantage for detecting a wide panel of analy-
tes. It is noteworthy that besides some first conclusive
results, there is still an important lack of spectroelec-

trochemical measurements.

Recognition of neutral Lewis bases [43], instead of
anions, involving redox-active XB donors would also be
an important and challenging issue. It is likely that the
design of tailored oligo-dentate receptors will be
required eventually benefitting from the cooperative
interplay of multiple complementary noncovalent in-
teractions. Another issue, already approached in some of
the above cited examples, is the attempt to promote the
high potential of XB to complement HB in the selective

recognition and sensing of biologically and industrially
relevant anions under aqueous conditions. Besides se-
lective detection, also the specific capture/release of
anions should be considered for biomedical applications
in particular. The principle of redox switching of XB has
been successfully transferred from solution onto an
electrode surface. This approach opens the way for the
development of new electrochemical sensors or sponge
captors for depollution applications.

Finally, we believe that XB promoted ET reactions
involving the activation of covalent bonds represents a
completely new domain for exploration. Evidence for

prereactive XB complexes in the dissociative reduction
of C-X bonds involving an inner-sphere ETstep provides
a new perspective on electrochemical reduction of
organic halides in general [44]. At the same time, it
seems to be a pivotal question paving the way, not only
to a better mechanistic understanding of other halogen
involving electrochemical-chemical (EC) or electro-
chemical-chemical-electrochemical (ECE) [45]
mechanisms but also helping to identify new electro-
chemically assisted catalytic reactions. In the first
encouraging example concerning solar cells, it has been

shown challenging but possible to experimentally prove
how weak XB interactions can affect interfacial ET
reactions.

In conclusion, we strongly believe that XB should be
considered as a powerful tool in molecular electro-
chemistry at a similar level as complementary HB. The
stronger directionality of XB should be an important
advantage for the conception of supramolecular systems
and property prediction. Furthermore, future work in
this domain should be accompanied more often by

molecular modeling as a computational tool for
confirming, optimizing and predicting structure/prop-
erty relationships.
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