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First and Second Order Necessary Optimality
Conditions for Controlled Stochastic Evolution
Equations with Control and State Constraints

Hélene Frankowska * and Qi Liif

Abstract

The purpose of this paper is to establish first and second order necessary optimality con-
ditions for optimal control problems of stochastic evolution equations with control and state
constraints. The control acts both in the drift and diffusion terms and the control region is
a nonempty closed subset of a separable Hilbert space. We employ some classical set-valued
analysis tools and theories of the transposition solution of vector-valued backward stochastic
evolution equations and the relaxed-transposition solution of operator-valued backward stochas-
tic evolution equations to derive these optimality conditions. The correction part of the second
order adjoint equation, which does not appear in the first order optimality condition, plays a
fundamental role in the second order optimality condition.

Key words: Stochastic optimal control, necessary optimality conditions, set-valued analysis.
AMS subject classifications: Primary 93E20; Secondary 60H15.

1. Introduction

Let T > 0 and (2, F,F,P) a complete filtered probability space with the cadlag (right continuous
with left limits) filtration F = {F;}yc[o,77, on which a cylindrical Brownian motion {W(#)}c(o,7)
taking values in a separable Hilbert space V is defined. Let H be a separable Hilbert space and
A be an unbounded linear operator generating a contractive Cop-semigroup {S(t)}+>0 on H. For a
nonempty closed subset U of a separable Hilbert space H; define

w2 {u(): 10,7) = U | ul) € L0, T3 Hy) }
and consider the following controlled stochastic evolution equation (SEE for short):

{ dz(t) = (Az(t) + a(t, z(t),u(t)))dt + b(t, z(t),u(t))dW(t) in (0,T7, (1.1)
z(0) =vy € H, '

where u € U?. A process z(-) = z(-;v0,u) € LA(;C([0,T); H)) is called a mild solution of (1.1) if
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o(t) = u0+/5t s)als, 2(s), u ds+/St $)b(s, 2(s), u(s))dW (s), P-as., ¥t €[0,T].
Many controlled stochastic partial differential equations, such as controlled stochastic wave /heat /-
Schrodinger equations, can be regarded as a special case of the system (1.1).

Let V be a nonempty closed subset of H, and h : Q x H - R, ¢/ : H =R (j = 0,--- ,n).
Define a Mayer type cost functional J(-) (for the control system (1.1)) as

J (u(-), o) = Eh(2(T)) (1.2)

ith the stat traint
W THe stane constratn Eg®(x(t)) <0, forallte[0,T], (1.3)

and the initial-final states constraints

weV, Eg@(T)<0, j=1,---,n. (1.4)
The set of admissible controls at the initial datum 1y is given by
us = {u € U? | the corresponding solution z(-) of (1.1) satisfies (1.3) and (1.4)}
and the one of admissible trajectory-control pairs by
Poad 2 {(a:(),u()) | w e Uy for some vy € V}.
Remark 1.1. Here U5 depends on the choice of vy. Different vy may give different U.5.

Under the usual assumptions, (1.1) has exactly one (mild) solution z(-, ) with initial value
vy € V, which is called an admissible state.
We pose the optimal control problem for the system (1.1) as follows:

Problem (OP) Find (v, u(-)) € V x U such that

T, a(-)) = inf  T(wo,ul)). (1.5)

(Vo,u(~))€V><Z/{ayg

In(1.5), u(-) is said to be an optimal control and Z(-) the corresponding optimal state. (Z(-), u(-))
is called an optimal pair and (vg, Z(+), u(-)) is called an optimal triple.

Our purpose is to establish first and second order necessary optimality conditions for Problem
(OP).

We could also consider a more general Bolza-type cost functional

7)) = E[ | Rt a(t),ut)dt + h(a(T))].

However, it is well known that such optimal control problem can be reduced to Problem (OP)
by considering an extended control system:

da(t) = (Az(t) + a(t, z(t),u(t)))dt + b(t, z(t),u(t))dW (¢) in (0,T],
di(t) = h(t, z(t), u(t))dt in [0, 77, (1.6)
z(0)=wvpe H, z(0)=
with the Mayer type cost functional
I (u(-),n0) = h(x(T)) + Z(T),

under constraints



E¢®(x(t)) <0, foralltc[0,T], €V, E¢x(T) <0, j=1,--,n.

It is one of the important issues in optimal control theory to establish necessary optimality
conditions for optimal controls, which is useful for characterizing optimal controls or solving the
optimal control problems numerically. Since the seminal work [34], necessary optimality conditions
are studied extensively for different kinds of control systems. We refer the readers to [15, 17, 19,
23, 38, 40, 41] and the rich references therein for the first and second order necessary optimality
conditions for systems governed by ordinary differential equations, by partial differential equations
and by stochastic differential equations.

It is natural to seek to extend the theory of necessary optimality conditions to those infinite
dimensional SEEs. The main motivation is to study the optimal control of systems governed by
stochastic partial differential equations, which are useful models for many processes in natural
sciences (see [5, 22] and the rich references therein).

We refer to [3] for a pioneering work on first order necessary optimality condition (Pontryagin-
type maximum principle) and subsequent extensions [19, 37, 42] and so on. Nevertheless, for a long
time, almost all of the works on the necessary conditions for optimal controls of infinite dimensional
SEEs addressed only the case that the diffusion term does NOT depend on the control variable
(i.e., the function b(-,-, ) in (1.1) is independent of u). As far as we know, the stochastic maximum
principle for general infinite dimensional nonlinear stochastic systems with control-dependent diffu-
sion coeflicients and possibly nonconvex control domains had been a long standing problem till the
very recent papers ([10, 18, 29, 30, 31]). In these papers first order necessary optimality conditions
for controlled SEEs are established by several authors with no constraint on the state. Further,
in [27, 28], some second order necessary optimality conditions for controlled SEEs are obtained,
provided that there is no constraint on the state and U is convex. As far as we know, there are
no results on first or second order necessary optimality conditions for controlled SEEs with state
constraints and for a nonconvex set U.

Compared with [10, 18, 27, 28, 29, 30, 31], the main novelty of the present work is in employing
some sharp tools of set-valued analysis with the following advantages:

e only one adjoint equation is needed to get a first order necessary optimality condition even
when the diffusion term is control dependent and U is nonconvex;

e two second order necessary optimality conditions are obtained by using two adjoint equations;
e state constraints are presented.

The rest of this paper is organized as follows: in Section 2, we introduce some notations and
assumptions and recall some concepts and results from the set-valued analysis to be used in this
paper; Section 3 is devoted to establishing first order necessary optimality conditions; at last, in
Section 4, we obtain two integral-type second order necessary optimality conditions.

2. Preliminaries

2.1. Notations and assumptions

Let X be a Banach space. For each t € [0,7] and r € [1,00), denote by L (€2; X) the Banach
space of all (strongly) F;-measurable random variables £ :  — X such that E|¢|% < oo, with the

norm [£|z (0.x) 2 (E|§]§()1/T. Write Dp([0,T]; L"(€2; X)) for the Banach space of all X-valued,
rth power integrable F-adapted processes ¢(-) such that ¢ : [0,T] — Lz (Q; X) is cadlag, with
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the norm [(-)| py(jo,77;L7(Q:x)) = SUPre[o,1] (E|<p(t)|7"X)1/T. Write Cr([0,T7; L™(2; X)) for the Banach
space of all X-valued, F-adapted processes ¢(-) such that ¢ : [0,7] — L% (£%; X) is continuous,
with the norm inherited from Dy([0,T]; L"(2; X)).

Denote by D([0,T]; X) the Banach space of all X-valued cadlag functions ¢(-) such that
supyefo7] 9 (t)|x < 0o, with the norm || p(jory;x) = supejo,r) 19(t)x; by L§(Q D([0,T]; X)) the
Banach space of all X-valued F-adapted cadlag processes ¢(-) such that E( supyeo,r] [ (t) |X)2 < 00,

1
with the norm \@]L%(Q;D([QT};X)) = [E(SUPte[o,T] ]cp(t)|X)2] 2; by LA(;C([0,T); X)) the space of all

F-adapted continuous processes ¢(-) such that E( supyepo,7 [0(t)| X)2 < 00, with the norm inherited
from LZ(Q; D([0,7T); X)); by LA(; BV ([0,T]; X)) the Banach space of all X-valued, F-adapted
processes ¢(-) whose sample paths have bounded variation, P-a.s., such that E |g0(~,w)]2BV[O 7 <

+o0, with the norm (E\@(-,wﬂsz[O’T])%; and by L2(€%; BVp([0,T]; X)) the space of processes
¢ € LA(Q; BV ([0,T); X)) satisfying (0) = 0, with the norm inherited from LZ(Q; BV ([0,7]; X)).
For any ¢ € L&(Q; BVo([0,T); X)), one can find a ¢ € L&(Q; BV ([0, T); X)) N L&(Q; D([0,T); X))
such that ¢ = ¢ for a.e. (t,w) € [0,T] x Q. Hence, in this paper, without loss of generality, any
¢ € LA(; BVy([0,77]; X)) can be considered as an element in L2(£2; D([0,T]; X)).

Fix any 1,72 € [1,00]. Put
1

T
LD L™(0,T; X)) = {gp (0,T) x Q0 — X ’ (") is F-adapted and E(/ |<p(t)|§dt) Es oo},
0

T 2
L0, T;L™(Q; X)) = {cp (0, T)x Q=X ’ ©(+) is F-adapted and / (E|<p(t) %) dt < oo}.
0

Clearly, the above two sets are Banach spaces with the following norms respectively

r_ 1

1) Lm @iz (0,15x)) £ [E</OT ’¢(t)|§?dt>6} "

and
9 1

o0z 2 [ [ EoORa)7]™.

If 1y = 72, we simply write Ly (0,7; X) for the above spaces. As usual, if there is no danger of
confusion, we omit the w (€ §2) argument in the notations of functions and operators.

Let H be a separable Hilbert space and A be an unbounded linear operator (with the domain
D(A)) on H, which generates a contractive Cp-semigroup {S(t)}+>0 on H. It is well known that
D(A) is a Hilbert space with the usual graph norm. By A*, we denote the adjoint operator of A,
which generates the adjoint Cp-semigroup {S*(t) }+>0. Denote by Lo the space of all Hilbert-Schmidt
operators from V' to H, which is a Hilbert space with the canonical norm.

Throughout this paper, we use C' to denote a generic constant, which may change from line to
line.

Let us introduce the following condition:

(AS1)a(-,+, ) : [0,T]xHxH1 xQ — H and b(-,-,-,-) : [0,T]x Hx H; xQ — Lo are two maps such
that: i) For any (z,u) € H x Hy, a(-,z,u, ) : [0,T] x Q@ = H and b(-,z,u,-) : [0,T] x Q@ — Lo are
B([0,T]) x F measurable and F-adapted; ii) For any (t,x,w) € [0,T] x HxQ, a(t,z,-,w) : H — H
and b(t,x,-,w) : Hy — Lo are continuous, and

la(t, z1,u,w)—a(t,xo, u,w)|g + |b(t, z1,u,w)—b(t, v2, u,w)|z, <Clx1 — T2|H,

Y (t, x1, 2z, u,w) € [0,T] x Hx H x Hy x €, (2.1)
la(t,0,u,w)|g + |b(t,0,u,w)|z, < C, Y (t,u,w) € [0,T] x Hy x .
4



We have the following result:

Lemma 2.1. Let (AS1) hold. Then the equation (1.1) admits a unique mild solution. Furthermore,
for some C' >0 and all vy € H,

[zl L2 o:m)) < C(1+ |volm).

The proof of Lemma 2.1 can be found in [7, Chapter 7].

2.2. Set-valued analysis

For readers’ convenience, we collect some basic facts from set-valued analysis. More information
can be found in [2].
Let Z (resp. Z) be a Banach (resp. separable Banach) space with the norm | - |z (resp. |- |3).

Denote by Z* (resp. Z*) the dual space of Z (resp. Z). For any subset K C Z, denote by intk
and clK the interior and closure of IC, respectively. K is called a cone if az € K for every a > 0
and z € K. Define the distance between a point z € Z and K as

dist (z,K) 2 inf |y — 2|7
yeK
and the metric projection of z onto K as
A .
i(z) ={ye K ||y — x|z =dist (2,K)}.

Definition 2.1. For z € K, the Clarke tangent cone Cic(z) to K at z is

dist
C/C(Z)é{UEZ lim ist (y +ev, K) :o}.
e—0tT ye,y—z 5
and the adjacent cone T(2) to K at z is
dist K
T (2) 2 {v ez | lm $LEEOK) 0}.
e—07t €

Cr(z) is a closed convex cone in Z and Cx(z) C Ti(z). When K is convex, Cx(z) = T2(z) =
c{a(z — 2)|la>0, 2 € K}.

Definition 2.2. For z € K and v € T{(z), the second order adjacent subset to K at (z,v) is defined

by . 2
dist h
TG0 2 {nez| tm & letevte "C):o}.

e—0t €

The dual cone of the Clarke tangent cone Cx(z), denoted by Ni(z), is called the normal cone
of IC at z, i.e.,

Nie(z) = {ee z*

(€ v) g0z <0, Vv € C;C(z)}.

Definition 2.3. Let (£,X) be a measurable space, and F : Z ~» Z be a set-valued map. For any
€€, F(§) is called the value of F at . The domain of F is Dom (F) 2 {€€e=| F(&) #0}. F s

called measurable if F~(B) 2 {Ee€E|F)NB#0} eX for any B € B(Z), where B(Z) is the
Borel o-algebra on Z.



Lemma 2.2. [16, Lemma 2.7] Suppose that (2,3, p) is a complete finite measure space, p > 1 and
K is a closed nonempty subset of Z. Put

K2 {p() € IPE S, 1 Z) | p(&) €K, p-ae. € €E}. (2.2)

Then for any o(-) € K, the set-valued map T4((-)): € ~ TE(p(€)) and C(()) : € ~ Cel(€))
are Y-measurable, and

{v() € LP(E,3, 115 Z) | v(€) € TR(¢(€)), p-a.e. £ €E} C T (p(:)),
{v() € LP(E,3, 115 2) | v(€) € C(p(€)), p-a.e. £ € E} C Cxlp(:)).

The following result provides a criteria for the measurability of set-valued maps.

Lemma 2.3. [2, Theorem 8.1.4] Let (Z,%, 1) be a complete o-finite measure space and F be a
set-valued map from = to Z with nonempty closed images. Then F' is measurable if and only if the
graph of F belongs to ¥ @ B(Z )

Definition 2.4. We call a map ¢ : (Q, F) ~ Z a set-valued random variable if it is measurable.
We call a map ¥ : [0, T|xQ ~ Z a measurable set-valued stochastic process if ¥ is B([0,T]) ®@F -
measurable.
We say that a measurable set-valued stochastic process U is F-adapted if Y(t,-) is Fy-measurable
for all t € [0,T].

Let
GE{BeB(0,T)®F| B cF, Vtel0,T]} (2.3)

where By 2 {w € Q| (t,w) € B} is the t-section of B. Obviously, G is a sub-o-algebra of
B([0,T])®F. Denote by m the Lebesgue measure on [0, 7]. The measure space ([0,7]xQ, G, mxP)
may be incomplete. Let us give a completed version of it.

Let G be the collection of B C [0, T]x 2 for which there exist By, By € G such that B C B C By
and (mxP)(Bz\B1) = 0. One can define a function i on G as ji(B) = [mxP|(B;) for any B € G. By
Proposition 1.5.1 in [6], the measure space ([0, 7] x Q, G, 1) is a completion of ([0,7] x Q, G, m x P).

Define

L3(0,T; Hl)é{y [0, T)xQ— Hy|y(-) is g—measurable,/
[0,T]x$2

[y(s,w) iy dfi(s, w) <oc |,
Zj;’g 2 {u [0, T)xQ — Hy | () is G-measurable, u(t) € U, Ji-a.e., the corresponding
solution z(-) of (1.1) satisfies (1.3) and (1.4)}.
Clearly, 4% C U"S and L2(0,T; Hy) C L£2(0,T; Hy).
Let 2=10,7] x Q, p = and Z = H;. From Lemma 2.2, we deduce the following result.
Corollary 2.1. For any u(-) € ﬁ;’g, Cu(u(-)) : [0,T] x Q ~ Hy is G-measurable and

{v € L3(0,T; Hy) ) | v(t) € Culu(t)), p-a.e.} C Caug (u(+)). (2.4)
The next result concerns the completion of a measure space, which is a corollary of Proposition
1.5.1 in [6].

Lemma 2.4. Let (,%,p) be a o-finite measure space with the completion (E,i,ﬁ), and f be
a Y-measurable function from = to Z. Then there exists a X-measurable function g such that

1(g(&) # (&) =



Due to Lemma 2.4, in what follows, we omit ~ to simplify notation.

Lemma 2.5. Let H be a separable Hilbert space. A set-valued stochastic process F : [0,T] xQ ~ H
is B([0,T]) ® F-measurable and F-adapted if and only if F is G-measurable.

Proof. Since H is separable it has an orthonormal basis {ex}?° ;. Denote by I'y the projection

operator from H to Hk = span {ex}. Let Fy(-) <F ek>H. From [21, p. 96], we know that the
set-valued stochastic process F}, : [0,T] x Q ~ R is B(]0,7]) ® F-measurable and F—adapted if and

only if F} is G-measurable. Then Lemma 2.5 follows from the fact that F(- Z Fi.(")eg. ]

Next, we recall the notion of measurable selection for a set-valued map.

Definition 2.5. Let (E,%) be a measurable space and 7 a complete separable metric space. Let F
be a set-valued map from = to Z. A measurable map f : = — Z is called a measurable selection of

Fif f(€) € F(&) forall € € E.

A result concerning the measurable selection is given below.

Lemma 2.6. [2, Theorem 8.1.3] Let 7 be a complete separable metric space, (2,%) a measurable
space, and F : = ~» Z a measurable set-valued map with nonempty closed values. Then there exists
a measurable selection of F.

The following result is a special case of [2, Corollary 8.2.13].

Lemma 2.7. Suppose that (2,3, 1) is a complete o -finite measure space, K is a closed nonempty
subset in Z and ¢(-) is a X-measurable map from to Z. Then the projection map § ~ i (p(§)) is
Y-measurable. If Mic(p(&)) # O for all £ € =, then there exists a Y-measurable, Z-valued selection

() such that [(€) — p(€); = dist (9(€), K), u-a.c.

At last, let us recall some results concerning convex cones.

Definition 2.6. For a cone K in Z, the convez closed cone K~ = {£ € Z*|{(z) <0 for all z € K}
is called the dual cone of K.

m
Lemma 2.8. [16, Lemma 2.4] Let m € N. Let Ky, - -+ , Ky, be convez cones in Z and ﬂ intkC; # 0.

Then for any convex cone Kg such that g ﬂ ( ﬁ ICj> # (), we have ( ﬁ ICj)_ = Zm:le_
j=1 j=0 §=0

Definition 2.7. We call K a nonempty closed polyhedron in Z if for some n € N, {z],--- , 2%} C
Z*\ {0} and {b1,--- ,b,} CR,

A ~ .
K={yeZ|l (yj,y)3+b;<0,Vji=1,--,n}

Lemma 2.9. [16, Lemma 2. 5] Let Z be a Hilbert space. Let K be a nonempty closed polyhedron
in 7. Then, for any 0 # € € 7 such that supye,c@, Y) 7 < 400, this supremum is attained at some

y € OK. Furthermore, £ € Z]EITL Rty,, where

n(@) 2 {j e {1, ,n}y )5+ b =0}

and A
Rfy; = {ayj|a > 0}.

7



Lemma 2.10. Let My, M, ..., M, be nonempty convex subsets of Z such that M; is open for all
je{l,---,n}. Then

MoNnMN...0NM, =0 (25)
if and only if there are 2,27, - , 2z, € Z*, not vanishing simultaneously, such that
2o +21+--+2,=0, zleI}\go zo(2) + zleI}\gl 2i(z)+ -+ zlerjl\f[n zh(2) >0 (2.6)

Furthermore, if (2.6) holds true and for some j € {0,...,n} there is a nonempty cone Kj C Z and
zj € Z such that zj + Kj C Mj, then —z5 € /C;.

Proof of the above lemma can be found in [13].

3. First order necessary conditions

This section is devoted to establishing a first order necessary optimality condition for Problem
(OP). Let us first impose the following assumptions:

(AS2) For a.e. (t,w) € [0,T] x Q, the functions a(t,-,-,w): H x H — H and b(t,-, ,w) :
HxHy — Ly are differentiable, and (a;(t, z,u,w), ay(t, z,u,w)) and (by(t, x,u,w), b, (t,z,u,w)) are
uniformly continuous with respect to x € H and uw € U. For any p > 1, there exists a nonnegative
n € LA(0,T;R) such that for a.e. (t,w) € [0,T] x Q and for all z € H and u € H,

la(t, 0, u,w)|g + |b(t,0,u,w)|c, < Cn(t,w) + |ulm),
‘ax(tyxvuaw)|£(H)+‘au(tax7va)|£(H1;H)+‘bI(t7x7u7w)’£(H;£2)+‘bu(tvx7uvw)‘E(Hl;[b) < C.

(AS3) The functional h(-,w) : H — R is differentiable, P-a.s., and there exists an n € L%_-T (Q)
such that for any xz, £ € H,

h(z,0)| < Cn(w)* + JzlF),  |ha(0,w)mr < Cn(w), P-as.,
|he(z,w) — he(Z,w)|g < Clz — 2|y, P-as.

(AS4) For j =0,--- ,n, the functional ¢ : H — R is differentiable, and for any x, ¥ € H,
97 (2)] < CL+[2lh),  |gi(x) = g2(®)|u < Clo — &|m.

Remark 3.1. (AS2) is a condition about the regularity of a and b. It is used to compute the
Taylor expansion of the cost functional with respect to the control w. The Fréchet differentiability
can be relazed if one assume that the semigroup {S(t)}4>0 has some smoothing effect. In this paper,
we purpose to present the key idea in a simple way and do not consider this case.

Remark 3.2. Typical examples fulfill (AS3) and (AS4) are quadratic functional. For instance,
h(z,w) = n(w)? + |z|% and ¢/ (x) = |z|% —1 (j=0,-- ,n) forx € H.

Let ® be a set-valued stochastic process satisfying
1. ®is B([0,T]) ® F-measurable and F-adapted,;
2. for a.e. (t,w) € [0,T] x , ®(t,w) is a nonempty closed convex cone in Hy;

3. ®(t,w) C Th(a(t,w)), for ae. (t,w) € [0,T] x €.



Let
To(@) 2 {u(.) € L2(0, T Hy) |u(t,w) € (t,w), ae. (t,w) € [0,T] x Q}

Clearly, To(u) is a closed convex cone in L(0,T; Hy). Since 0 € To(%), To(%) is nonempty. By
Lemma 2.2, we can choose ®(¢,w) = Cy(u(t,w)). However, in general, there may exist a ®(¢,w) as
above such that Cy (u(t,w)) C ®(t,w) C TH(u(t,w)).
For ¢ equal to a, b, f, g or h, write
p1lt] = @a(t, 2(1), u(t),  @2[t] = pult, 2(t),u(t)).
Consider the following linearized stochastic control system:
{dxl(t) = (Az1(t) + a1 [tz (¢) + az[tlui () dt + (by[t]w1 () + bo[t]us (¢))dW (t) in (0,T],

21(0) = vy (3.1)

It is a classical result that, under (AS1), for any u; € To(u) and v1 € TH(Zo), (3.1) admits a
unique solution z1(+) € L&(;C([0,T); H)) (e.g.[7, Chapter 6]).
By Lemma 2.2, T (@) C T}, (@). For any e > 0, choose v{ € H and v¢ € L£(0,T; Hy) such that
Y5 éDoJrauf eV, w2 i+ e €U

and v — vy in H and v© — uy in L2(0,T; Hy) as e — 0.

Let 2°(-) be the solution of (1.1) corresponding to the control u°(-) and the initial datum v, and

put A 5ac () — &Tl(-).

0x°() =2°(-) —z(),  ri() . (3:2)
We have the following results:
Lemma 3.1. If (AS1)—(AS2) hold, then for p > 2,
|21 g 0mimm @iy < C(Ivaln + utl sz 0.y (3.3)
|02%| Lee (0,110 (0,11)) = O(€), (3.4)
e lim, | 0 (3.5)
m |7 0 . . = U. .
[y e o,ie(5m))

Proof of Lemma 3.1 is provided in Appendix A.

Next, we give a result which is very useful to get the first order pointwise necessary condition.

Lemma 3.2. Let u(-) € U, and F : [0,T] x Q — H; be an F-adapted process such that

T
E/ (F(t), 0(t)) g, dt <0, V() € Cyro (il-)).
0

ad
Then, for a.e. (t,w) € [0,T] x Q, (F(t,w),v)y, <0, Vv e CCyu(t,w)).
Proof of Lemma 3.2 is postponed to Appendix C.
Lemma 3.3. For each bounded linear functional A on L2(%;C([0,T]; H)), there exists a process
Y € L&(Q; BVy([0,T); H)) such that

T
Az()) = ]E/O (=(t), dv (), ¥ 2() € L@ C([0, T]; H)), (3.6)

and
’A’LH%(Q;C([O,T];H))* = |¢’L§(Q;BV([0,T];H))- (3.7)

9



Proof of Lemma 3.3 is given in Appendix D.

Let Ti (%) be a nonempty closed convex cone contained in T (7). Put

{xl )e LA(Q; C([0,T); H)) | 1(-) solves (3.1) withuy € To(u) and vy € Tic(70)},  (3.8)

Io(i”) £ {t € [0, T] | E¢°(2(1)) = 0}, (3.9)
2{16{1 - n}|Eg/(2(T)) = 0},

= {2() € LA(0([0,T); H)) | E(g2(2(t)), 2(t)),, < 0, V t € To(2) }, (3.10)
gg;) = {z<-> € L C(0, T H)) | E(d(2(T)), (), <0}, VieZ(@),  (311)
G2 N Gl (3.12)

JEZL(T)
Gl (T) = {¢ € L3,(% H) | E<g§;(i’(T)),C>H <0}, jeI(z), (3.13)
Gy (T ﬂ Gy (3.14)

JEL(Z

My 2 {2() € LAH(Q; C([0, T]; H)) | E(ho(2(T)), 2(T))u < 0},

and
H(T) £ {= € L, (% H) | E(hs(&(T)), 2)ir < 0}
Since Tp () and Tk (%) are nonempty convex cones, X1y is a nonempty convex cone in Lg(€;
c([0,T]; H)).
If Zo(z) = 0 (resp. Z(x) = 0), we set Q? = LE(;,C([0,T); H)) (resp. Gy = La(Q; C([0,TY;
H))). If he(2(T)) = 0, P-a.s., then H 1y = 0 and Hy(T) = 0.
Define a map I' : LE(Q; C([0,T); H)) — L% - (Q; H) as

Q

[(z) = 2(T), VYz(-) e L(Q;C([0,T]; H)). (3.15)
Denote by I'* the adjoint operator of I'. Clearly, I' is surjective. From (3.11) to (3.14), we see that
Gy (1) =T(G),  jeZ@, Gu(T)=T(Gw). (3.16)

If g?l) and G(1) are nonempty, then

G0y = {=() € LH( @ C((0,T): H)) | E (ga(2(1), (1)) < 0, Yt € To(2)},

and Gy = {2(-) € LE(Q: C([0,T]; H)) | B {gi(&(T)), 2(T)),, <0, ¥ j € T(z)}.

Lemma 3.4. g(l) is an open convex cone in L($;C([0,T); H)).
Proof. Clearly, g?l) is a cone. It is sufficient to prove that it is open.
Let z(-) € Q?l). Since Z(-) € L2(Q;C([0,T]; H)), Zo(Z) is a compact subset of [0,7]. This,

together with the fact that E (g,(Z(-)), 2(+))y is continuous with respect to ¢, implies that there
exists a constant p > 0 such that

E(go(2(t), () < —p, ¥t € To(a).
10



Let

5= P .
292(2(-))|Lee (0,712 (02, 11))
Then for any 1 € L(Q; C([0,T]; H)) with |’77HL]§(Q;C([O,T];H)) <4,

E (g2 (@), 2(0) +0(0) g < =5, Vi€ T(@).

This proves that z € intQ?l). OJ

Now we introduce the first order adjoint equation for (3.1):

{ dy(t) = —(A*y(t) + ar[t]*y(t) + bi [{]*Y (t))dt + doo(t) + Y (£)dW () in [0,T), (3.17)
y(T) = yr, ’

where yr € L%, (; H) and ¢ € Lg(Q; BVo ([0, T]; H)).

Since neither the usual natural filtration condition nor the quasi-left continuity is assumed for
the filtration F in this paper, one cannot apply the existence results for mild or weak solution of
infinite dimensional BSEEs (e.g. [20, 32]) to obtain the well-posedness of the equation (3.17). Thus,
we use the notion of transposition solution here. To this end, consider the following (forward) SEE:

dg(s) = (Ag(s) + fi(s))ds + fa(s)dW (s) in (¢, 17,
¢(t) =,
where ¢ € [0,T], f1 € Ly(t, T; L*(% H)), f2 € L§(t,T; L2), n € L%, (Q; H) (See [7, Chapter 6] for

the well-posedness of (3.18) in the sense of mild solution). We now introduce the following notion.

Definition 3.1. We call (y(-),Y (-)) € Dg([0,T]; L*>(; H)) x L2(0,T; L2) a transposition solution
of (3.17) if for any t € [0,T), f1(-) € Li(t, T; L*(Q; H)), fa(-) € LE(t,T;Ls), n € LQ}-t(Q;H) and
the corresponding solution ¢ € Li(S;C([t, T]; H)) to the equation (3.18), we have

T
E(H(T), y(T)) ; + E/t (6(s), ar[s]"y(s) + buls]"Y (s))) yds

(3.18)

T . T (3.19)
=B u(®),+E [ (510.90) s +E [ (R Y 0)gds +E [ (6. 006)

Lemma 3.5. Assume that (AS1)-(AS2) hold and v € L(Q; BVy([0,T); H)). Then the equation
(3.17) admits a unique transposition solution (y,Y) € Dr([0,T]; L*(Q; H)) x L(0,T; L2).

If » = 0 and W (-) is a one dimensional Brownian motion, Lemma 3.5 is proved in [29, Chapter
3]. The proof for the case 1) # 0 is similar. We only give a sketch in Appendix E.
Define the Hamiltonian

=

H(t, z,u,p,q,w) = (p,a(t, z,u,w))y + (¢, b(t, z,u,w)) z, » (3.20)

where (¢, 2,u,p,q,w) € [0,T] x H x Hy x H X L9 x Q.
Now we state a first order necessary optimality condition in the integral form.

Theorem 3.1. Let (AS1)—(AS4) hold and (z(-),u(-), ) be an optimal triple for Problem (OP).
If E|lg2(z(t)|lg # 0 for any t € Lo(Z), then there exist \g € {0,1}, A\; > 0 for j € Z(z) and

(NS (gg)) with ¥(0) = 0 satisfying

Ao + Z Aj + 0l 2y 0,1y # 05 (3.21)
JEL(Z)
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such that the correspondmg tmnsposition solution (y(),Y()) of the first order adjoint equation

(3.17) with y(T') = —Aoha( Z \jgl(Z(T)) verifies that
JEZ(Z)
T
E(y(0),v) i +E/O (Hu[t], v(t)) g, dt <0, Vv € Tx(), Vu()€ Ta(a), (3.22)

where H,,[t] = H, (¢, z(t), u(t), y(t), Y (t),w). In addition, if g?l) N Xy NGay # 0, the above holds
with )\0 =1.

Remark 3.3. If u takes an isolated point of U in a positive measure set of [0,T] x Q, then (3.22)
does not give us any information about the optimal control at these point since ar these points,
v(t,w) =0 forv(:) € Te(u). This is a drawback of Theorem 3.1. In handle such case, one should
employ the spike variation technique. The cost is that one should use two adjoint equations. More
details can be found in [29, 30, 31].

Remark 3.4. In Theorem 3.1, we assume that E|g2(Z(t))|g # 0 for any t € Io(z). This can be
verified by many concrete g°. For example, let ¢°(n) = |n|3;, — 1 for anyn € H. Ift € Zo(Z), then
E|Z(t)|% = 1. Therefore, E|g2(z(t))|n = 2E|Z(t)|n # 0.

Proof of Theorem 8.1. We first claim that
X1y NGy NGay NHy = 0. (3.23)
If this is not the case, then there would exist Z1(-) € (1) N g?l) N G(1y such that
E (he(z(T)),Z:1(T)) < 0. (3.24)

Let 1 € Ti () be the initial datum and @;(-) € Te(a(-)) the control corresponding to Z1(-). Let
u€ € H with |pf| = o(¢) and n°(-) € L(0,T; Hy) with 7| 22(0,7:1,) = 0(€) be such that

e & 2

vi=gt+emn+pf eV, () =al) Fein () +n°(-) € U

Let 2°(-) be the solution of the control system (1.1) with the initial datum 1{j and the control u®(-).
Since Z1(-) € g?l), we know that E<g2(§:(')),:ﬁ1(-)>H is continuous with respect to t. This,

together with the compactness of Z°(Z), implies that there exists pg > 0 such that
E <g2(i(t)),5z1(t)>H < —po for every t € T°(z).
Moreover, there exists § > 0 (independent of ¢ € Z°()) such that
E@%i@ﬂfﬂQh{<—%%Vse@—5J+6Mﬂ&ThmdteT%@.
By Lemma 3.1, there is an g9 > 0 such that for every e € [0, g¢],

Eg’(2%(s)) = Eg(2(s)) + B (g2((5)), 21(5))  + 0(e)

< eE (9:(%(5)), 21(5)) i + 0(€) (3.25)
<f%<o Vse(t—06,t+6)N[0,T], teI'a).
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Since 7¢ 2 [0, 7T\ Usezoz) (t — 6,¢ + &) is compact, there exist p1 > 0 and £, > 0 such that for any
€€ [0,61],
Eg(z°(t)) = Eg(z(t)) + B (9:(z(1)), 21 () g + 0(€)
€)

< —p1+€E (g2(Z(¢)), Z1(t)) g + of (3.26)
<—%<0, Vit eIy

By (3.25) and (3.26), 2°(-) satisfies the state constraint (1.3) for ¢ < min{eg,e1}.

Since Z1(T) € Gn)(T), E(g2(Z(T)), Z1(T))u < 0 for every j € Z(Z). Similar to the proof of
(3.26), for every sufficiently small €, 2°(-) satisfies the final state constraint (1.4), and (z°(-),u°(-)) €
Paq. Following (3.24), there exists pa > 0 such that for all sufficiently small ¢,

Eh(z*(T)) = Eh(Z(T)) + €E (he(Z(T)), £1(T)) ; + 0(¢)
< ER(z(T)) — ep2 + o(e) < Eh(z(T)),
contradicting the optimality of (Z(-),@(-)). This completes the proof of (3.23).

To finish the proof, we consider three different cases.

Case 1: Q?l) NXq) = 0.
Noting that g?l) is nonempty, open and convex, and X{) is nonempty and convex, by the Hahn-

Banach separation theorem and Lemma 3.3, there exists a nonzero ¥(-) € L2(Q; BVy([0,T]; H))
such that

T T
sup B [ (a(0). 400}y < _inf B [ (0. 400}

ZEX,
ZEQ?U Z2et(1)

Since g?l) and X{1) are cones,

T T
0= sup B [ (:(0).av(0)y = inf B [ (x(0).0(0)-

Zeg?l) 2€X<1)
Therefore, 1) € (Q(Ol))_ and —1) € (X(l))_. Consequently, for all z1(-) € &y,

T
B[ {a@).du(t) > 0 (3.27)
0

Furthermore, it follows from the definition of the transposition solution to (3.17) that for every x;
solving (3.1) with u; € Te(u) and vy € T (Zo),

E <y(T)7 xl(T»H - <y(0)7 V1>H

T
= /0 (<y(t)7 artlz1 () g + (W(1), aztlur (t)) g — (ar[t]"y(t), 21 (1)) p — (01 [t]"Y (), z1(t))
T
Y (8), itz (8)) o, + (Y (£), b [t]u1(t))£2) dt+E /O (1 (t), dip(t)) (3.28)

T T
=B [ (.l @) + 0 baltlu (), e+ B [ 100 av)
Set Ao =0, \; =0, j € Z(z) and y(T) = 0. Then, (3.21) holds and (3.22) follows from (3.27) and
(3.28).
Case 2: Q?l) N X # () and Q?l) NXyyNGa) = 0.
If G(1) = 0, we claim that for each j € Z(Z), there exists A\; > 0 such that
13



Z Aj >0, > Ngh@(m) =o. (3.29)

jEL(x JEL(Z)

Indeed, if there is a jo € Z(z) such that ¢i°(Z(T)) = 0, then we can take Aj, = 1 and A\; = 0 for all
Jj € Z(z) \ {jo}. In this context, (3.29) hold.
If g2.(z(T)) # 0 for all j € Z(Z), then le) # () for all j € Z(7) since T is surjective (recall (3.11)

for the definition of G/, ). From (3.16), we find that G/,,(T) # 0 for all j € Z(2). On the other
hand, since G1) = ez le) = 0, by (3.16), we get that G1)(T) = Njezz) gl)(T) = (). Then
one can find a jy € Z(Z) and a subset Z;, C Z(z) \ {jo} such that mjteO g(jl)(T) # () and

JOﬂ(ﬂgJ )

J€Lj,
By the Hahn-Banach separation theorem, there exists a nonzero & € L%_-T(Q; H) such that
sup E(fan>H < inf ) E<§777>H
neg(TLjo) neﬂjezjo gfl)(T)
Noting that g{l)(T) (j € Z(z)) is a cone, £ € (5;1’%))_ and —¢ € (ﬂ;ez 9(1)( ))”. By Lemma
2.8, & = X\jyg2 (%(T)) for some \j, > 0. Further, for every j € Z,,, there exists A; > 0 such that

—£=)_ Ngh(&(T)). Let Aj =0 for j € Z(2) \ (Tj, U {jo}), we get (3.29).
J€Lj,
By taking A\g = 0, ¢ = 0 and y(T") = 0, we have (3.21) and the condition (3.22) holds trivially
with (y,Y) = 0.
If Gy # (0, then F(g ) NG(T) = (). By the Hahn-Banach theorem, there exists a
nonzero §€L]_-T(Q H) such that

sup <§7 > inf <€7 /B>H

aeF(g?1)0X<1)) 56 W (T)
Since both F(g?l) N X(1)) and G(1)(T) are cones,

0= sup E({a)y=_inf E({PB)
aEF(g&)ﬁX(l)) " BEQ(U(T) "
Therefore, £ € (I(G? o N Xa ) and =€ € (Gay(T)) .
By Lemma 2.8, for each j € Z(Z), there exists A\; > 0 such that
Z A>0, == ) Ngl((T))
jeT(z JEL(Z)
Since 0 > E (£,T'(2)) 4 for all z € Q’?l) N A1), we have that I'*(£) € (g?l) N X)) . By Lemma 2.8,

there exists 1 € (Q(Ol)) with ¢ (0) = 0 such that T'"*(§) — ¢ € (/'\,’(1))_. Thus, for all z(-) € X{y),

T
0> E (£ 2(T)), — /0 (=(8), dib() (3.30)
Let A\g = 0. Since & # 0, (3.21) holds. Set y(T' Z \igh(z . By (3.28) and (3.30), w
JEL(Z)

obtain (3.22).

Case 3: g?l) N X(l) N g(l) # (.
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In this case, it holds that F(g?l) NX1)) NGy (T) # 0. By (3.23),
E (he(2(T)),2(T)) g > 0, Vz(-) € G4y N X1y NGy

This yields that
is yields tha E (h.(z(T)),¢)y >0, V(€ F(g?n N X(l)) NG (T).

Consequently, —h.(2(T)) € [F(g&) N X(l)) n g(l)(T)]i

By Lemma 2.8,

[T(90y) N &) N Gy(T)] = [T(G0y N Xw)] ™ + (G (1))
Then, for each j € Z(Z), there exists A; > 0 such that

€2 Y Ng(E(T) € (Guy(T))

JeL(z)
and that . _
—ha(Z(T)) = > Ngh(2(T)) € [T(G0) N X))~
JEL(Z)
Therefore,

F*(— he(2(T)) — > Ajgﬁf;(f?(T))) € (90N X))~ = (Ghy) ™ + (X))~

JeL(@)
Let ¢ € (g?l))‘ with ¢(0) = 0 be such that

I (= ha(a(D) = Y Agh(@(D)) = € (X))

JEL(%)

Set Ao =1 and y(T') = —hz(2(T)) — > )\jg%(a’:(T)). Then, (3.21) holds and for all z € Xy,

J€L(z)
' T
0> ~E(ha(2(T)), (D) r = D, NE(gL(@(T)), (1)), — E/ (), dp) - (331)
JEZ() °
Combining (3.31) with (3.28), we obtain (3.22). This completes the proof of Theorem 3.1. O

Let ®(t,w) = Cy(u(t,w)), for a.e. (t,w) € [0,T] x Q and Ty() = Cy(). From Theorem 3.1
and Lemma 3.2, it is easy to obtain the following pointwise first order necessary condition.

Theorem 3.2. Let (AS1)—(AS4) hold and (z(-),u(-), ) be an optimal triple for Problem (OP)
such that E|gQ(z(t))|g # 0 for any t € I°(x). Then for (y,Y) as in Theorem 3.1,

y(0) € My(p), Hy[t] € Ny(a(t)), a.e. t €[0,T], P-a.s. (3.32)

Remark 3.5. If both the control set U and the initial state constraint set V are convex, then Ng(a)
and ./\/'g(io) are simply the normal cones of convexr analysis.

Remark 3.6. Let

H(t,z,u,w) = H(t, z,u,y(t),Y(t),w) — 3 (P()b(t, 2(t), u(t),w), b(t, Z(t), u(t),w)) ,
+%<P(t) (b(t, 2, u,w) = b(t, T(t), a(t), w)), b(t, x, u,w) — b(t, Z(t), A(t),w)) 1,
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where P(-) is the first element of the solution of the second order adjoint process with respect to
(z(-),u(-), o) (defined by (4.1) in Section 4). If there is no state constraint, the stochastic maximum
principle (e.g. [29, 30]) says that, if (Z(-),u(-), ) is an optimal triple, then

H(t, z(t),u(t)) = mea[}(’;’{(t,a_c(t),v), a.e. t€0,T], P-a.s. (3.33)
This implies that
(Hy(t,w),v) g, <0, VoveCly(u(t,w)), ae. (t,w)€[0,T] x Q,

i.e., the second condition in (3.32) holds. However, to derive (3.33), one has to assume that a, b
and h are C? with respect to the variable x. Therefore, in practice, under some usual structural
assumptions on U, it is more convenient to use the condition (3.32) directly.

As for the deterministic optimal control problems with state constraints, we call the first order
necessary condition (3.22) normal if the Lagrange multiplier Ay # 0. By Theorem 3.1, this is the
case when X(1) N g?l) NGa # (). Let us give some conditions to guarantee it. To this end, we first
introduce the following equation:

{ dji(t) = = (A*§(t) + ar[]*5(t) + ba[]*Y (1) + a(t))ds + Y ()dW () in [0, ), (3.34)

y(T) =0,

where a(-) € L4(0,T; H). The equation (3.34) is a special case of (3.17), where dy(-) = a(-)ds.
Let us make the following assumptions:

(AAS1) a(-) = 0 whenever a;(-)*y[-] + b1[-]*Y(-) = 0.
(AAS2) Cy(u(t,w)) = Hy, for a.e. (t,w) € [0,T] x Q.
(AAS3) There is a 8(+) € Cp([0,T]; L?(2; H)) such that

{E<92(93(t)),ﬂ(t)>H <0, VteI'(z),
E (g4(2(T)), (1)), <0, ¥j € Z(z).

Remark 3.7. (AAS1) is a condition about the unique continuation for the solution of (3.34).
It means that if a1[-]*g(-) + b1[-]*Y (:) = 0, then the nonhomogeneous term «(-) must be zero. A
sufficient condition for (AAS1) is that a1[-|* is injective and b1[-]* = 0.

Remark 3.8. (AAS2) means that To(u) = L2(0,T; Hy). This, together with (AAS1), guarantees
that the solution set of (3.1) is rich enough for us to choose one belonging to g?l) NGay- (AAS2)
holds for some trivial cases. For example, U = Hy or u(t,w) € intU, P-a.s. for a.e. t € [0,T].
Note that we put state constraints (1.3) and (1.4) in the control problem. Hence, even for U = Hy,
the optimal control problem is not trivial. We believe that for some concrete control problem, both
(AAS1) and (AAS2) can be dropped. A possible way to do it is to follow the idea in the proof
of Proposition 3.3 in [12]. The detailed analysis is beyond the scope of this paper and will be
investigated in future work.

Remark 3.9. From the definition of Xy, g?l) and Gy, it is clear that (AAS3) is necessary for
Xy N g&) NGay # 0.

Proposition 3.1. Let (AS1)-(AS4) and (AAS1)-(AAS3) hold. Then X1)N Q?l) NGay # 0.
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Proof. We divide the proof into two steps.
Step 1. It follows from (AAS2) that Te(u) = L2(0,T;Hy). Define a map II : To(u) —
L4(0,T; H) in the following way:
() () = 21(:),

where z1(-) is the solution of (3.1) for some u1(-) € Ta(w).

We claim that
¢ Clal tha I1(Te(@)) is dense in LE(0,T; H). (3.35)

Let us prove (3.35) by a contradiction argument. Without loss of generality, we assume that
v1 = 0. If (3.35) was false, then there would exist a nonzero By(-) € L2(0,T; H) such that for any
u1() € To(a),

E/T (x1(t), Bo(t)) ;dt = 0. (3.36)
0

Let a = . By the definition of the transposition solution of (3.34), we have that for any u;(-) €
To(u),

T T T ~
0=E /0 (21(8), fo(t)) ,dt =E /O (ur(£), as(t) §(1)) . ds + /0 (ur(6),ba() V(1)) b (3.37)

This, together with the choice of uy(-), implies that ai[-]*5(-) + b1 []*Y (-) = 0 for a.e. t € [0,T]. By
(AAS1), we see o = 0 in L2(0,T; H), a contradiction. Consequently, (3.35) holds.

Step 2. Since Z°(z) is compact, by (AAS3), one can find a B(-) € Cp([0, T]; L?(2; H)) such
that, there are ¢y > 0 and My > 0 so that

E(g2(2(1), 8(8) y < =20, 192 (@O)rz, @) < Mo, ¥t € I°(2),
E (g2(2(T)), B(T)) jy < =0, |92(@(TD))l1z, (o) < Mo, V3 € ().

It follows from (3.35) that for every k € N, there is u; ; € To(u) such that the corresponding
solution zy 1 = II(uy 1) satisfies that

(3.38)

1
[T16 — Blrzorm) < %

Consequently, there is a subsequence {uyx; }32; of {u1x}72; such that
jlggo w1k, (t) = B(t) in LF, (4 H),  for ae. t €[0,7]. (3.39)
Since both z1,(-) and () belong to Cr([0,T]; L*(€%; H)), we get from (3.39) that
]lgglo 21k,(-) = B(-) in Cg([0,T7; L*(; H)).
Hence, there exists N € N such that
1 () = BNz (@umy < 2%0 for all ¢ € [0, T].
This, together with (AAS3) and (3.38), implies that

E (g2(2(1), 21()) ;= E(g2(2(1)),21(t) = B(1)) y + E(g2(2(1)), B(1))

€0 0/~
< My x — — T
< My x oM, gg < 0, Vit eI (x)
and ) . )
E(g3(z(T)),21(T)); = E(g2(z(T)),21(T) — B(T)) ; + E(g2(z(T)), B(T))
€0 . _
< My X —— — I(z).
< 0X2M0 go < 0, VjeZ(zx)
This completes the proof. ]
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4. Second order necessary conditions
In this section, we establish second order necessary conditions for the optimal triple of Problem
(OP). In addition to (AS1)—(AS4), we impose the following:

(AS5) For a.e. (t,w) € [0,T] x Q, the operators a(t,,-,w): H x H — H and b(t,-, ,w) :
H x Hy — Lo are C%, and azy(t, 2, u,w) and byy(t, z,u,w) are uniformly continuous with respect
tox € H and u € Hy, and

|axm(t7x7u7w)|£(H><H;H) + |azu(t7x7u7w)|[,(H><H1;H) + ’a”uu(tal‘au7w)‘£(H1><H1;H)
+‘ba}af(tax7u7w)’£(H><H;£2) + ’bxu(tvxauaw)‘ﬁ(HXng[:g) + |buu(t7w7u’w)‘ﬂ(Hlel;LQ) S C7
V (z,u) € H x Hj.

(AS6) The functional h(-,w): H — R is C?, P-a.s., and for any v, & € H,
|hao (2, W) (s mr) £ O, |hae(2,w) = hao(T, W) | c(axmr) < ClT — ZH.
(AST) For j =0,1,--- ,n, the functional ¢’(-) : H — R is C?, and for any x, ¥ € H,
\giz(%wﬂc(HxH;R) <C, \gix(%w) - gix(faw)\L(HxH;R) <Clz - 7|g.

(AS8) The optimal control u € U*.

In what follows, U* is viewed as a subset of L{(0,T;Hy) in the definitions of T}, (@) and
703 (a, v).

(AS9) (2, Fr,P) is separable.

Remark 4.1. Similar to (AS2), (AS5) is used to compute the Taylor expansion of the cost
functional with respect to the control u. On the other hand, typical examples fulfill (AS6) and
(AS7) are quadratic functional. For instance, h(z,w) = n(w)? + |z|% and ¢’(z) = |z|% — 1
(7=0,---,n) forze H.

Remark 4.2. If U is bounded and the optimal control exists, then (AST) holds.

Remark 4.3. Recall that (0, Fr,P) is separable if there exists a countable family D C Fr such
that, for any e >0 and B € Fp one can find By € D with P((B\ B1) U (B1\ B)) < e. Probability
space enjoying such kind of property is called a standard probability space. Except some artificial

examples, almost all frequently used probability spaces are standard ones(e.g. [36]). From [4, Section
138.4], if (AS9) holds, then L'z (Q) (1 <p < o0) is separable.

Consider the following £(H )-valued BSEE*:

{dP:—(A*+J*)Pdt—P(A+J)dt—K*PKdt—(K*Q+QK)dt+th+QdW(t) U AT

P(T) = Pr,

where F' € Lg(0,T; L*(Q; L(H))), Pr € L% (9 L(H)), J € Lg(0,T; L=(Q; L(H))) and K €
Li(0,T; L°(Q; L(H; L2))). In (4.1), the unknown (or solution) is a pair (P, Q).

*Throughout this paper, for any operator-valued process (resp. random variable) R, we denote by R* its
pointwisely dual operator-valued process (resp. random variable), e.g., if R € Lz'(0,T;L"(Q;L(H))), then
R* € L' (0,75 L™ (; L(H))), and HRHLgl (0,T;L72 (QL(H))) — ||R*||L]§1 (0,T5L72 (QL(H)))*
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Let us first recall the definition of the relaxed transposition solution of (4.1). To this end,
consider two SEESs:

{ d1(s) = [(A+ J)¢1(s) + fi(s)]ds + (Ki(s) + fi(s))dW(s) in (¢,T], (4.2)

$1(t) =& '

and { dpo(s) = [(A + J)pa(s) + fg(s)]ds + (K¢2(S) + fg(s))dW(s) in (¢, 7], (4.3)
Pa(t) = &o.

Here t € [0,T), &1,& € L (% H), f1, f> € L2(t,T; LY(Q; H)) and fi, fo € LE(t, T; LY(; L2)).
Write
P[0, T
2 { ‘ P(-,-) € L(L3(0, T; LM H)), L2(0,T; L3 (Q; H))), P(t,w) € L(H) for a.e.
(t,w)€[0,T)xQ, and for every te[0,T] and £ € Lk (Q; H), P(-,-)¢ € Dg([t, T); L3 (% H))
and [P0l 4oy < Ol @ |

and

Q[o, T 2 { (Q('), @(')) ‘ For any t € [0,7], both Q) and Q" are bounded linear operators
from L (4 H) x L3(t, T; L*(Q; H)) x L3(t, T; LY(Q; La)) to LE(t, T; L3 (2 L2))
and Q(t) (07 0, )* = @(t) (07 0, )}

In what follows, for P € P[0, T], we write |P|pp ] for [P ( Simi-

£(L2(0,7;4(Q;H)), L2(0.T;L3 (H)))
larly, for (Q('), @(')) € Q[0,T], we put

1(QY,QY) g1 = 1(QV, Q")

’) ’c(L;t (O3 ) x L3 (6,T5LA (5 H)) x L3 (6 T3 LA (@5£2) LA (LTS LS (9£2)) )

Definition 4.1. We call (P(-), (Q" ,QC ))) € P[0,T] x Q[0,T] a relazed transposition solution of
(4.1) if for every t € [0,T), &1,& € L%, (% H), fi(), fo() € LR(t,T5 LY(Q; H)) and fi(), () €
LA(t, T; LY(Q; L2)), the following is satzsﬁed

E(Pré1(T), ¢ —E/ (F(s)¢1(s), d2(s)) ,d

T
—E(P()61,6), + E / (P()F1(s), ba(s)) s + E / (P()61(5), fols)) , ds "
t 4.4

T ~ A
VR / (P(s) ), fa(s)) o, ds + E /t (P(s)fi(5), K (5)6a(5) + fols)) g, ds
T
+E/t <f1(3)7Q(t (£2>f27f2)(8)>£2d5+E/t <Q(t)(§1,f~1,f1)(8),f2(8)>£2d8.

Here, ¢1(-) and ¢a(-) solve (4.2) and (4.3), respectively.

Lemma 4.1. Let (AASQ) hold. Then the equation (4.1) admits a unique relaxed transposition
solution (P(-),(QV), Q1)) € P[0,T] x Q[0,T]. Furthermore,

|Plpio.m) + ’( ),QV )apm < C(|F|L1 0,T; L2(L(H)) T |PT|L2 (Q L(H )))
19



The proof is almost the same as the one of [29, Theorem 6'1]; The only difference is that one
should replace the inner product of H by L5 for terms involving f; and fo. Hence we omit it.

For ¢ equal to a or b, let

P11 [t] = prx(t7 j(t)a fL(t)), 3012[75] = Qoxu(ta f(t)a ’fL(t)), ¥22 [t] = quu(ta j(t)’ ﬂ(t))

For v € T%(Zo), w1 € T£{4 (u), ra € TS(Q) (Zo,v1) and ug € Tligf) (t,u1), consider the following
second order variational equation:

dl‘z(t) = |:Ax2 (t) + al[ﬂ.tg(t) + ag[t]UQ(t) + %au [t] ($1(t), 331(25)) + alg[t] (l’l(t), w1 (t))
+%a22[t] (u1(t), ul(t))] dt + [bl [t]z2(t) + ba[t]ua(t) + %bn[t] (z1(t), z1(1)) (45)
bialt) (w1 (1), i () + %zm[t] (w1 (0) (1)) | W 1) in (0,77,

.TQ(O) = 9,

where x1(-) is the solution of the first order variational equation (3.1) (for uq(-) and 14 as above).
Further, from (AS5), we know that a11[t](z1(¢),z1(t)) € H. So do the other terms such as
b11 [t] (.Tl (t), xl(t)) .

By the definition of the second order adjacent tangent, for any € > 0, there exist v5 € H and
u5(+) € Lg(0,T; Hy) such that

A A
Ve = g +evy + €25 €V, uf () = al-) 4+ eur (-) + 2us(-) e Ut
and
lim v5 = vy in H, hm u§ = ug in LE(0,T; Hy).
e—0t e—0

Denote by z°(-) the solution of (1.1) corresponding to the control u®(:) and the initial datum

V5. Put 527 2 () - 30, () A 0z () —exq(-) — 52332(-)‘

2
€
We have the following result.

Lemma 4.2. Suppose that (AS1), (AS2) and (AS5) hold. Then, forvi,ve,v5€ H anduy(-), ua(-),
u§(+) € LE(0,T; Hy) as above, we have
2l ge 0,520y < C(Jvalm + |oalfr + Twa|Zago 7,y + U2l 2070,)
and
lim ’7"2‘L°° o,m;22(;H)) = 0. (4.6)

e—0t

Proof of Lemma 4.2 is provided in Appendix B.

Put
Y(z,u) = {(xl(-),ul(-),yl) c CF([O,T];L4(Q;H)) X T£,4( ) X Tv yo)‘ 1(+) solves (3.1), (4.7)
z1(-) € ClQ?l) NeclGq) and E(g2(2(T)), z1(T))g <0,V j € Z(2)}
and define the critical cone
2(z,1) = {(@1(), w1 (), »1) € V(@,@)| Elhy (2(T)), 21(T))is = 0}. (48)
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For a fixed (z1(-),u1(-), 1) € Z(Z, 1), let W(p, v1) and M (@, u1) be convex subsets of Tf;@)(ﬂg, V1)
b(2) .
and Ty ;" (4, u1), respectively. Put

X2y (w1, u1) {wg € Lg(C([0,T); H))| z2(-) is the solution of (4.5) corresponding

(4.9)
to some (v, uz) € W(g,v1) X M(,u1)}.
Let
’ 10z, 21) = {t € 7%(2)| E(g3(@ (), 1 (1)) = 0},
I(z,21) £ {j € Z(z)| E{gh(2(T)), 1(T))r = 0},
79(Z) 2 {t€10,T]| 3 {sk}r2; C [0,T] such that klirgo sp=1t, Bg®(z(s1)) <0, (4.10)
E<g2(a?(sk)),ac1(sk)> >0,Vk=12,--- },
2
@ |E<QZE )_ >H‘ ’ te Tg(i'),
e(t) = E g‘)ff_(l))<o ‘ 9°(x( ’H (4.11)
E(g2(%(s)),1(s)) ;>0
0, otherwise,
Gl (1) = {z e L2(Q; C(0, T7; H))‘ for all t € I°(, 21), )

Egg(2(1)), 2()) 1 + 1IE(QQI(J?’(U)M(lt)a z1(t) g +e(t) < 0}7

(o) 2 { =€ 130 C(00, T); 1) [BUGA(R(T)), 2(T) 1+ 5 Bled (2(T)aa(T), 1 (T)) <0},

>

Ga)(21) () Gy (), (4.13)

jeﬂ(i‘,Il)
and

Moy (1) 2 o) € L O(0, T )| EGha (7)), 2T + 5 Elhaa (@71 (T), 1 (T < 0},
(4.14)

Remark 4.4. If 21 € g?l), then 1°(z,z1) = (. Consequently, Q?Q)(xl) = L2(;C([0,T); H)). In
addition, if there exists § > 0 such that

E(g:(2(s)),21(s)) gy <0, Vs € (t—6,t+8)N[0,T], t € I°(x),
then e(t) = 0 for any t € 1°(Z,x1). In this case,
Gl (a1) = {z(-) e L2(9;C([0,T); H)) ‘ For all t € I(z, z1),
1
E (92(2(1)), 2(1)) 5y + 5B (92 (F )1 (8), 21.(8)) 5y < 0}-
Remark 4.5. Let z; € Q?l) and zy € g&)(xl). Then for every t € 1°(z,x1) C Z%Z), we have

1
E{g2(@(1), 21(1)) i < 0 and By (3()), 22(0) 1 + 5B g (F(1))w1(), 21.(1)) 11 + €(t) < 0. Therefore,
1
(g2 (1)), 21() + 22(8)) i + 5B (F(1)21(1), 21 (D) + e(t) <0,
which implies that z1 + 2o € Q?Q) (x1). Consequently, g?l) + g?z) (x1) C Q?Q) (x1). Similarly, if
®(t,w) = Cy(u(t,w)), then we can prove that Xy + Xy (z1,u1) C Xg)(21,u1).
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Let (y,Y), ¥ and \j, j € Z() be defined as in the proof of Theorem 3.1 in the case when X(;)N
g?l) NGy # 0 (See (3.8), (3.10) and (3.12) for the definitions of X(y), g?l) and Gy, respectively),

where y(T) = —h, (2(T)) = Y Ngh(x(T)).
R JEL(Z)
Let (P(-),(QY, Q1)) be the relaxed transposition solution of the equation (4.1) in which Pr,
J(-), K(-) and F(-) are given by
Pr = —hge(2(1)), Jt)=alt], K(t)=blt],
A N
F(t) = —Hyp[t] = —Hau (¢, 2(2), u(t), y(t), Y (t),w).
We have the following result.

Theorem 4.1. Suppose that (AS1)—(AS9) hold and that X(l)ﬁggl) NGy # O for an optimal triple
(z(-),a(-), %) of Problem (OP). If X(z)(x1,u1) NGy (1) N Gia)(x1) # O, then for any w(-) €
X(g)h(m,ul) N clg&) (z1) N clGoy(w1) with the corresponding vo € W(o,v1) and ua(-) € M(u,u1),
we have

(W(0),va)n + 5 PO )+ Y E(Ngd(#(T), (1)),
J€L(z)

T
+IE/O <<Hu[t], uz(t)) y, + %<Huu[t]u1(t)v ur(t))y, + %<bz[t]*P(t)b2 [tJur (t), w1 (t)) (4.15)
+((Hoult] + a2[t]"P(t) + ba[t] P(t)b1[t]) 21 (£), ua (1)) py,

T
+%<(@(0) + Q) (0, as[t]us (t), bg[t]ul(t)),bg[t]ul(t)>£2>dt + E/O (ma(t),dep(t)) y <0,

where

A

Huu[t] Huu(t,f(t),ﬁ(t),y(t),Y(t),w), ku[t] - ku(t7i'(t)7a(t)7y(t)aY(t)7w)'

Remark 4.6. Similar to Theorem 3.1, if u takes an isolated point of U in a positive measure set
of [0,T] x Q, then (4.15) does not give us any information about the optimal control at these point
since ar these points. This is a drawback of Theorem 4.1. As the first order necessary condition,
one may use the spike variation technique. However, in such case, one has to use four adjoint
equations. A detailed analysis of this is beyond of the scope of this paper.

Remark 4.7. In Theorem 4.1, we take \g = 1 and (y,Y), ¢ and N\j, j € I(Z) as in Theorem
T
3.1. Accordingly, the terms Z E<Ajg%(i(T)),x2(T)>H and E/ (xo(t),dyp(t))y; appear. By
j€L(@) 0
doing so, our second order condition is valid for any normal multiplier appearing in the first order
conditions.

In Theorem 4.1 we assumed that X (w1,u1) N g&) (z1) N Gy(xz1) # 0. Tt seems that this
condition is not easy to verify. Let us give a result concerning this below.

Proposition 4.1. Assume that there is (x1,u1,v1) € Z(Z,u) such that the function e(-) defined
by (4.11) is bounded on 1°(Z,z1), and that Te(z)(ﬂo,yl) and T:{f)(ﬂ,ul) are nonempty. If X1y N
g?l) NGay # 0 (with Tc(%) and Te(u) being replaced by Ci (7o) and Cya(t), respectively), then
Koy (w1, u1) N Gy (1) N Gay (1) # 0.
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Proof. If X1y N g?l) NGay # 0 (with Ti(%) and Te(u) being replaced by Cic(7) and Cy(u),
respectively), then there exists #1(-) € X(;) N g?l) NGy with the initial datum 21 € C(79) and the
control 4y (+) € Cpa(uw).
Since T, ,2(2)(50, v1) and T:{(f) (u,v) are nonempty, they contain some nonempty convex subsets
WH(g,v1) and M!(1,uy), respectively.
Put _ A _ 1, _ A _ 1/
W(tp, v1) = Cx (o) + W (o, 1), M(a,ur) = Cpa(u) + M (u, uq).

It follows from Lemma 2.4 in [11] that W(pg,v1) C TE(Z)(DO,Ul) and M(a,u;) C Tflf)(ﬂ,ul).
Moreover, for every s € W (g, v1), tiz € M*(t,u1) and § > 0, we have 601 + s € W(p, v1) and
oty + ug € M(ﬂ,ul).

Fixing 6 > 0 and letting x5 5(-)(resp. Z2) be the solution of (4.5) corresponding to 01y + i
(resp. o) and 0Uq + U (resp. Us2), we have 9 5(-) = 0&1(-) + T2(-). It follows from Lemma 4.2 that

‘52'2’%50(0,T;L2(Q;H) < C(’ﬁﬂ%{ + ‘ﬁ1’i§(07T;H) + ’aQ‘%]%(O,T;H))'
Since 1(-) € &) N Q?l) NGqy, and Z°(z) and 1°(z, 1) are compact sets, for all sufficiently large 4,

E (o (2(0)), 225(0)) g + 5B (haa(F(0)1(6), 210} 1 + (1)

= OF (o (a(0)), 1.(0)) 1 + B (e (2(0)), 22(0)) 1 + 5B (e (2(0))1 (6, 21 (6) g + )

<0, vt e 1%z, 31),
and for every j € I(Z, #1), and all § sufficiently large
- 1 o
E(92(2(T)),225(T)) yy + 5B (932(@(T)) 21 (T), 21(T))

= 0E (g3.(2(T)), &1(T)) ;; + E(g2((T)),21(T)) y + %E (92(Z(T))z1(T), 21(T)) ; < 0.
Therefore, when § is large enough, x25(-) € Xz)(1,u1) N Gy (1) N Gg)(x1). This yields that
Xo) (w1, u1) N Gy (1) N Gay (1) # 0 O
Proof of Theorem 4.1. If I°(z, z1) = ), then g&) (z1) = LA(; C([0,T); H)). Hence,

Koy (1, u1) N Gy (1) N Gay (1) = Koy (@1, u1) N Gy (1)

In such case, without loss of generality, we can ignore the constraint (1.3) and put ¢y = 0. Thus,
we only need to consider the case 19(z, 1) # 0.

The proof is divided into five steps. In the first four steps, we deal with the special case when
72() € Xy (w1, u1) N 9(02) (1) N G2)(z1). Then, in the last step, we handle the general case.

Step 1: Since xa(-) € X{9)(w1,u1) N g&) (1) NG(2)(w1), z2(+) is a solution of the equation (4.5)
corresponding to some (v2,uz) € W(Zo, 1p) x M(@,u;) such that

E (go(z(t)),z2(t)) ; + %E (g (T(t))m1(t),21(t)), +e(t) <0, Vel (z,z)

E(Qi(i(T))a@(T»HJr%E (92(@(T))21(T),21(T)),; <0, ¥ j €Lz ).

Let u° € H and n°(+) € L3(0,T; Hy) be such that

and

A
17| = o(e?), V5 =To+ev +elva4 s €V,

A
Loy = 0(€%),  ut() = al) +eur() +*ua() +0°() € U,
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Denote by z¢(-) the solution of (1.1) corresponding to v§ and u°(-). By (AS1)-(AS7) and Lemma

4.2, for any t € [0,T], we have
Eg’(2°(t)) = Bg’(Z(t)) + eE (g2(2(1)), 21 () ;y + €°E (g2(Z()), 22(8)) w1
2 .16
t5E (Gou(@(®)21 (1), 21(1)) 4y + 0(?).

Step 2: Fix an arbitrary ¢ € I(Z,z;). In this step, we prove that there exist §(f) > 0 and
a(t) > 0 such that

Eg®(2°(s)) <0, Vse (t—6(F),t+5#)N[0,T], Ve €[0,at)]. (4.17)
If (4.17) is false, then for any ¢ € N, we can find e, € [0,1/¢] and sy € (t — 1/¢,£+1/£) N[0, T]

h that
sHeh tha Eg° (25 (s¢)) > 0. (4.18)

We consider two different cases.
Case 1.1. There exists a subsequence {s;, }7°, of {s¢}72 satisfying

Eg°(Z(sg,)) <0 and E(g2(z Z(sg,)) z1(se,)) gy > 0, VE=1,2,--- . (4.19)
By (4.16),
EgO (2% (s1,)
|E(g0(5(s0,)), 1 (s0,)) |
AE ¢°(2(s¢,))

= 22 (B (0 (50,)), wa(56,)) y + 5 (2 (2(50,))1(56,), 21 (56,)) 5~

(zk) E<gm( (sék))’xl(sﬁk)>]{)2
=) 20z (ss,)) |

Since t € 1°(z, 1) and z2(-) € g&) (x1), there exists pg > 0 such that

E (g2(2(1)), 22(t)) 5 + E<gm( (D)z1(8), 21(8)) y + () < —po-

Therefore, when k is large enough,

_l’_

)+ Eg(@(se)) (1 +

E (g E(se)). 21 (0)) o I* __po
4|E9 ka)ﬂ 2’

which, together with (4.19), implies that Eg°(z° (s4,)) < 0, provided that k is large enough. This
contradicts (4.18).

Case 1.2: There is no subsequence of {s,}7°, such that (4.19) holds.
Under this circumstance,

Eg’(z(s¢)) =0 or E <gg(:fz(8g)),:c1(8g)>H < 0 for all sufficiently large /.
If s ¢ I°(z), we have Eg°(Z(s)) < 0. Thus, E(g2(Z(s()),z1(s¢)),; < 0. On the other hand, if
sy € I°(z), then Eg®(#(s¢)) = 0. Since z1(-) € le?l), E <gg(:€(54)),x1(55)>H < 0. In both cases,
Eg°(Z(s)) + B (92(2(s¢)), x1(s¢) )y < 0. (4.20)
Noting that e(t) > 0 for all t € [0, T] and 1°(z, 1) is compact, there exists pz > 0 such that

E<g2(a‘:(t)),z2(t)>H + %E <g2$(:f(t)):n1(t),a:1(t)>H < —po, Vtel'(z,z).

E <ga: S%))? $2(8€k)>H+%E <ggz(j(sﬁk))x1(sfk)v xl(sfk»[{“—

Since sy — £ and € I(Z, z1), when £ is large enough,

E <gg(f(85)),w2(54)>H + %]E <92x(i‘(8g))$1(85), x1(88)> < _%
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Then, by (4.16) and (4.20), for any sufficiently large ¢,
2
_ € _
Eg® (2% (s0)) < €7 (92(T(s0)), w2(50)) gy + 5 E (9a(@(50))w1(50), 21(50)) y + 0(e)
2
gsﬁ(—’i%r olep )> <0,
2 64
which also contradicts (4.18). This proves (4.17).

Step 3: In this step, we prove that (z°(-),u®(:)) € Pauq, provided that ¢ is sufficiently small.
By the compactness of I°(Z, 1), we can find {t,})’ C I°(Z,21) (N € N) such that

N
(Z,x1) U ), te + 5(755))
Let &1 2 min{a(t;), £ =1,2,...,N}. Then we have that
Eg’(2°(s)) <0, Vse U te—0(te),te + 3(t)) N[0, T, Ve € [0,e1]. (4.21)

Let Z§ 2 70(z) \ Uévzl(tg — 3(te), tg + 6(t)). Since I is compact, we can find 6 > 0 and p3 > 0
(independent of t) such that

E(g2(z(s)),21(s)),; < —p3, Vs€(t—0,t+0)N[0,T], teIf.
This, together with (4.16), implies that there exists €5 > 0 such that
Eg®(z°(s)) <0, Vse (t—06,t+6)N[0,T], Yt €IS, Ve €[0,es]. (4.22)

Clearly,

N

7(2) < [{Jte = ott),te + 8t | | U (¢ = b,¢+ ).
=1 tezg

Let dg > 0 be small enough such that

=

@) c | (t—ao,t+5o)c[

(te — 8(te), te + 6 (L)) }U[U ]

te70(z) =1 teZs
Put eg = min{e1,e2}. It follows from (4.22) that
Eg?(2°(s)) <0, Vs€ (t—20p,t+0)N[0,T], VteI(z), Ve € [0,e). (4.23)

Set zccé[o,T]\[ U (t—ao,two)]

teZ0(z)

From the compactness of Z° and the continuity if Eg®(z(-)) with respect to ¢, we know that there

exists > (0 such that
pa Eg®(Z(t)) < —ps, VteI«

This, together with (4.16), implies that for all sufficiently small € > 0,

Eg’(2(t)) <0, VteIe (4.24)
Combining (4.23) and (4.24), we conclude that x°(-) satisfies the constraint (1.3), provided that e
is small enough.

By a similar argument, we can show that when ¢ is small enough, z°(-) satisfies the constraint
(1.4). This proves that (z°(-),u®(+)) € Pad, provided that ¢ is sufficiently small.

Step 4: By the optimality of (Z(-),u(-)) and the equality E (h,(Z(T)),z1(T)) = 0, we have
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0 < lim EMe(D) — ER(z(T))

e—0t+ g2

o 2
= B (1), a2(T) g+ 3B e E(D)ar (1), (1) + i 250 (4.29)

_ 1 _
= E (hs(2(T)), 22(T) gy + E (haa(@(T))21(T), 21(T)) gy -
From the definition of the transposition solution of the equation (3.17), we get that
E(y(T), z2(T))

T
= (9(0):v2) g | ((0(0): caltun®) 5 (0 s Fan(®).r(6) -+ 0(0) anaf 0. w0)
5 (u(0) @l (), () g + V(0 bltlea(t)) g, + 5 (VO buldea 0,00, (4:26)

T
+ Y1), brz[t)(z1(t), wa (t))) o, + % (Y'(2), bao[t](u1 (1), ur(t))) , )dt + E/O (a(t), dip(t)) g -
This, together with the choice of y(7'), implies that
E (he(2(T)), 22(T))
T
= = (W(0), )y — D> N (gh(@(T)),a(T)) —E/ (2(t), dip(t)) g
jeT(@) 0

1

T
—E/O <<y(t),a2[t]U2(t)>H+§<y(t),an[t](ml(t),931(75))>H+<y(t)7am[t](fﬁl(t),U1(t))>H (4.27)
1

J% {y (@), az2[t](ur (1), ur (1)) gy + (Y (2), ba[t]ua(t)) 2, + 5 (Y (@), bua[t)(21(2), 21.(2)))

V(). biall (1 (0) w1 ()., + 5 (V(0), baalt) (s (0), e (1) , )t

T T
=~ (O) 2y B [ (wa(t), b0 — B [ (L e,
T
5B [ (Ealoa(0). 1 () 4 2l (0.0 () Bl s (0) 00 (0}, )

By the definition of the relaxed transposition solution of (4.1), we have that

E(P(T)a(T), z1(T)) g

T
= (P(0)vy, 1)y + E/O (2(P(t)z1(t), az[tlur (t)) i + 2 (P(t)ba [tz (t), b2[tlui (L)) £,

+ (P(O)ba[t]ur (£), ba[tlua (1)) £, + (@ + Q) (0, ag[tlua (1), ba[t]ur (1)), baltlua (1))
- <Hxx[t]x1 (t), 1 (t»H )dt'
This, together with (4.27) and (4.25), implies (4.15).
Step 5: In this step, we handle the case when x3(+) € X(g)(21,u1) N clg&) (z1) N clGg)(21)-
Let #2(-) € X{g)(w1,u1) N clg&)(xl) N clG)(z1) with the corresponding 2o € W(, 1) and
Ga(-) € M(u,uq). For 6 € (0,1), put

(4.28)

2§ = (1 —0)xy + 0y,

Noting that W (7, v1) and M (@, u1) are convex, z§ is the solution of the equation (4.5) with the
initial datum
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1/20 é (1 — 0)7/2 + 0 € W(ﬂo, I/l)
and the control 0

A A —
uy(-) = (1 — Q)ua(-) + Oaa(-) € M(a,uq).
Then, it is easy to show that

lim a5 = @5 in LE(; C(([0,T]; H)).

Furthermore, since Z5(-) € 9?2) (z1) N G2)(21), we have 23(-) € g (:cl) N G)(z1) for 6 # 0. From
Step 1, we deduce that

(W(0), )+ 3 (PO, i+ Y Bl (3(1)), 24(1)

. 1 JE€L(Z)
+8 [ (<Hu[t1,u8<t>>Hl+§<meu1<t>,u1<>> 5 (Bl PO [fur (1) 1 (1))
+((Hpult] + a2[t]" P(t) + ba[t]" P(t)ba[t] )21 (¢ ),U1(t)>H1

T
+§<(©<°>+@<°’) (0, asft]un (£), balt)us (1)), bolt]un (1), )+ B /0 (1), d (1)), <0

Letting 6§ — 0 in the above inequality, we obtain (4.15). This completes the proof of Theorem
4.1. O

Remark 4.8. The second order necessary condition is only valid for Y(z,u) (recall (4.7) for the
definition) being nonempty. If Gy (T) # 0, U = Hy, (3.1) is exactly controllable and there are no
state constraints, then Y(Z,u) # (). However, to enjoy the exact controllability property, one needs
some restrictive conditions (e.g.[24, 25, 26]).

Next, we give another second order necessary condition.

Theorem 4.2. Suppose that (AS1)-(AS9) hold and (z(-),u(-), ) be an optimal triple of Prob-
lem (OP). Let ®(t,w) = Cy(u(t,w)). Assume that E|g2(Z(t))|lg # O for all t € I°(x). Let
(w1,u1,11) € Y(Z,4) and suppose that e(-) (defined by (4.11)) is bounded on 1°(Z, z1). Let W(iy, 1)
C T5(2)(a7;0,u1) and M(u,u1) C Tbbl(f)(ﬂ,ul) be convex. Then there exist \g € {0,1}, A\; > 0 for
all j € I(_) and ¢ € (G 01))_ such that the solution (y,Y) of (3.17) with yr = —Xohz(Z(T)) —
Z \;jgl(z(T)) and Z(z) replaced by 1(&,x1) satisfies the first order condition (3.32), and for any

JEL(2)
r2(+) € Xg)(w1,u1) with the corresponding va € W(io,v1) and uz(-) € M(u,u1), the second order

necessary condition (4.15) holds true, where (P() Q('), Q) is the relazed transposition solution of

Proof. If either W(iy, v1) or M(ﬂ,ul) is empty, then by Theorem 3.2, we get the desired result.
Therefore, in the rest of the proof, we assume that these two sets are nonempty. Put

W(fo,l/l) éCv(i‘o)+W(.i'0,V1), ./W(ﬁ,ul) B( ) —|—M(u ul)

where

To(@) £ {u e LA(0,T: Hy) | u(t,w) € Cy(at,w)) ae. in [0,T] x Q).
By Lemma 2.2, To(a) C Cya(w). Thus, by Lemma 2.4 from [17], M (i, uy) C Tflgf)(a,ul).

We divide the rest of the proof into two steps. In Step 1, we handle the case when I°(z, 1) = 0.
In Step 2, we deal with the case when I9(z, 1) # 0.
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Step 1. If I°(Z,71) = (), then g&)(ml) = L4(;C([0,T]; H)) and

Koy (1, u1) N Gy (1) N Gay (1) = Koy (@1, u1) N Gay (1)
Fix (z1(:),u1(-),11) € Z(Z,u) (recall (4.8) for the definition of Z(z,u)). Consider the following
two different cases:

Case 1.1: I(z,21) = 0.
In this context,
E(he(2(T)),21(T)m =0,  E(gl(z(T)),a1(T))u <0, VjeI(x).

Then for any vy € W(Do, V1), ug € Mv(ﬂ,ul) and € > 0, there exist v € H and v* € L(0,T; Hy)
such that

1>

V¥ |n = 0(52)= V5 = o +ev + 521/2 +1v5f eV
and A
”Ua‘LfF*(O,T;Hl) = 0(52), ut =u+eu + 6%2 +0° e Ut
Let 2°(-) be the solution of the control system (1.1) with the initial datum {5 and the control u®(-).

Put

1
(T) £ /O (1 = 0)hae (2(T) + 052°(T'))df.

By Lemma 4.2, there is p < 0 such that for each j € Z(z) and all sufficiently small & > 0,
Byl (o*(T) = B (5(7)) + eB{gl@(T)). o1(T)) s + 2Bl 0(T)), oo}
B, (D) (T). 21 (D) + of)
= e (g (2(T)), 21(T)) it + €Bgi (2(T)), 25(T))

B9, (2(T)ar(T), 21(T) 1 + 0(2)) < 2p < 0

and, for each j ¢ Z(z), E¢’(2°(T)) = E¢/ (z(T)) + O(e) < p + O(e). Consequently, (z(-),u°(-)) €
Pod-
Direct computations yield

where 0x(T) 62°(T)
1 b3

o5 = E(5 (M @m) ™ ) (BT (1), (D) ).

Similar to the proof of Lemma 4.2, we can show that li%{r p5 = 0. Therefore,
e—
€(.)) — (- 1
o< i T — T@()

lim S = E((ha(a(1)),22(T) g + 5 ha(@(T)ar (D)1 (T)) y ). (4:29)

28



It follows from the definition of the transposition solution of (3.17) that

— B (y(0). 1)y + E /OT(<y<t>,a2[t H+§<y nlfl (0. 1:(1))
+Hy(0), 0z ( 1), + 5 (0 alt) 1 (0 11 (1) (4.30)
+ (Y (), bo[t]u —i—%(Y(t bllt(xl ,21(t))) g,
+ (Y (), baalt ( )>£2+ (Y (8), b lt) (w1 (1), w1 (1)) ) 1, ) .

By the definition of the relaxed transposition solution of (4.1), we have
E(P(T)21(T),21(T))
=E(PO)vi,v1)y +E /OT (2 (P(t)z1(t), az[tlui(t)) g + 2 (P(t)b1[tlx1(t), ba[tlur (t)) 4
+ (P(O)batler (1), boltlus (1)) gy = (Eea (D21 (8), 21 (8)) 5 )t

T ~
+E / (Q(0, agu, byur ) (t) + Q(0, aguy, byur ) (t), ba(t)ua (1)) . dt.
0

(4.31)

Let Ao =1, A; =0 for all j € Z(z) and ¢ = 0. It follows from (4.29)—(4.31) that

T
0> E(y(0). 12}y + ZE (PO 1)y + 5 [ [ (0. aaltua) y+ V0). bl .,

+% ( (y(t), ana[t] (ur(t),ur(t)) )y + (Y (8), boa[t] (ur (t), ur (2)) ) o, + (P (£)a[t]us (2), b2 [t]ul(t)>H>
<y a12 (:cl(t),ul (t))>H +<Y(t),b12[t] ($1(t),’u,1(t))>£2
+(az[t]" P(t )961(75),Ul(ﬂ)gﬁ<b2[t]*P(t)bl[t]$1(t)7U1(t)>H1]dt

T ~
+%E /0 (QO)(
= E(y(0), 1)y + 3E (PO, 1)
T 1
+E /0 (BRI 20 g+ (Bl (P 1) a (6)) 5 (0ol POl (1), 1)) )l
T
+E/0 ((Hgu(t) + alt]* P(t) + bo[t]* P(t)b1[t]) y(2), ul(t)>Hl dt

+

0, azur, b )(t) + Q)(0, agv, byur ) (¢), ba[t]unr (£)) . dt

RPN
+5E /O (Q(0, ag[tur, ba[t]ur)(t) + QN(0, ag[t)ur, ba[tlur ) (£), ba[tlur (£)) . dt.

Case 1.2: 1(Z,21) # 0.
First, we claim that 0

52(1‘1) N H(g)(xl) N QQ(xl,ul) =

Indeed, if (4.32) was false, then there would exist vy € W(i, v1) and ug(-) € M (i, u;) such that
for some p < 0, the corresponding solution xs(-) of (4.5) satisfies

E(g)(2(T)),22(T))  + 3B (B(T))a1 (T), 1 (1)) < 2, ¥ € 1@, )
29
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and
E(hs (2(T)), 22(T)) s + $E{has (B(T))21 (T), 21(T)) < 2.

Let v € H and v* € L#(0,T; Hy) be such that

A
V% |5 = o(e?), VEE g tev + el FrF eV

and
4

0 oy = 0(€%),  ut() = al) +eur() + *ua (") +v°() e Ut

Let 2°(-) be the solution of the control system (1.1) with the initial datum 1{j and the control u®(-).
Similar to Case 1.1, one can prove that for every j ¢ I(Z,z1) and for all ¢ > 0 small enough,
Eg’ (2°(T)) < 0. Meanwhile, by Lemma 4.2, for any j € I(Z, x1), and for all sufficiently small & > 0,

Byl (2°(T)) = Bg? (2(T)) + B{gi(#(T)), 21(T))  + 2B (g (a(T)), 2(T))
g2 ,
+SB(gl, (B(T)a (T), 21(T))  + ofe?)
= & (B (D), 2(T)) y + 3B (T (T), 21 (T))  +

<62,0<0.

This proves that (z°(-),u®(+)) € Pag.
On the other hand, for all sufficiently small € > 0,

Eh(2*(T)) = Eh(2(T)) + eB{ho((T)), 21(T)) j; + 2B (2(T)), @2(T))

2
S By (E(D) (1), 21T + 0f)

0 2
)

ofe2
= Eh(f<T>>+62(E<h (@), 2201+ 2B e (BT (1), 1 (1)) + 257
< Eh(z(T)) + &%p < Eh(z(T)).
This contradicts the optimality of (Z(-),u(-), 7). Hence, (4.32) holds.

);
Next, we consider two subcases (recall (4.9), (4.13) and (4.14) for the definitions of X{q) (71, u1),
9(2)(:101) and H(g)(l’l))

Case 1.2.1. 7‘[(2)(.%'1) N 9(2) (1‘1) =+ 0.

Under these circumstances, I'(H2)(21)) N T(G)(x1)) # 0. Since I'(H(9)(21)) NT(G2) (1)) N
F(X(Q) (z1, ul)) = (), by the Hahn-Banach separation theorem, we can find a nonzero £ € LQFT(Q; H)

such that
sup <§7 ) inf <£7 5>H
a€L(H(2) (1)) (G(ay (21)) BGF(X@)(th))
By Lemma 2.9, there exists
ap € cl(T y(21) mF = cIl'(H(g)(z1)) ﬂ ( ﬂ Il (€27 (21(T))))
JEN(Z,1)
such that
E(¢, a0)n = sup E(€, a)n
a€l'(H2)(z1))NT(G(2) (1))
Put

_ A _ o Lo i
To(z,21) = {j € (@, 21)| E(g(2(T), a0}y + 3E(ghs (#(T))a1(T), 21(T)) , = 0.
By Lemma 2.9, for every j € Io(z, z1), there exists A\; > 0 such that
E=Xha(BT)+ > Ngh(®(T)), (4.33)

.]EHO (i»zl)
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where \g = 0 if E{h,(Z(T)), a0) g + %E(hm(fi’(T))ajl(T),:Bl(T)>H < 0. Then (4.33) yields

E<§7ao>H:—%(A0E<hm(f(T))ﬂ?1(T)axl(T)>H+ > Aﬂ(ﬂ?@(f(T))xl(T),xl(T)>H)-

jeﬂo(i,ml)
Setting )
y(T) = =Xohe(®(T)) = > Ngh(x(T))
jeﬂo(i‘,xl)
and .
P(T) = =Xoheo(B(T) = Y Ajgla(@(T))
jEHo(i‘,wl)

we find that for any z2(T) € T'(Xg)(z1,u1)),
1
SE(P(D)zi(T), 21(T)) 1

:_%<A0E<h$$(E(T))x1(T)7xl(T»H+ > /\J‘E@?;x(f(T))xl(T),-’L‘l(T)>H>
j€lo(Z,x1)

=E(& a0)n < EY(T), z2(T)) 1
This, together with (4.30) and (4.31), implies (4.15).
Case 1.2.2. T'(Hg)(x1)) NT(G2) (1)) = 0.
For simplicity of notations, we put g" () = h(-), I = {n+1}Ul(z, 21) and g”“( 1) = Hy (1)
If there exists j € I such that I‘(gé) (a:l)) (0, then gx( (T)) =0, P-a.s. and

E(Qix(i(T)):m(T),:cl(TD > 0. (4.34)
Let A; =1 and Ay = 0 for k € I\ {j}. Then gl (2(T)) + > Mgh(a(T)) = 0. Let y(T) =0
kel\{j}

and P(T) = —gl.(z(T)). It is easy to see that (y(-),Y(-)) = (0,0), H(:) = 0, Hy,[] = 0 and by
(4.34), E(P(T)x1(T),z1(T)) g < 0. Then, by the definition of the relaxed transposition solution of
(4.1), (4.15) holds and it is reduced to

E(P(0)vr, 1)1 +E / (bl P(0)baltles (), 1 (1) 5 4 2{(aal2] PO) 4 bl P[] 2 1), en (1)),
QY + Q) (0, as[t]us (¢), bQ[t]ul(t))abZ[t]ul(t»ﬁJdt <0

If F(Q{Q) (J;l)) # () for all j € I, then one can find jo € I and a subset I' C T with jo ¢ IY such
that
N T (Ghyen) #0, () TGy 1)) (TG (1) = 0.
JeI0 JEIO
By the Hahn-Banach separation theorem, there exists a nonzero & € LQfT(Q; H) such that
s E(€a)p<  inf  E(EB)m

aEg(Q’jO)(ml) Beﬁjelogq(ﬂ ’J>(331)

By Lemma 2.9, we can find ag € cIl'(G/ (2) 5 (x1)) and By € Njer ch(gé) (z1)) such that

E, ap)p = sup E{ a)p < inf E(¢, B)n = E(, Bo)u- (4.35)

aer(ggg) (z1)) BEN; 10T (Gl (1))
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It follows from Lemma 2.9 that there exists Aj, > 0 such that £ = A\, ¢2°(%(T)) and

0= B{gl (3(T)), a0) y + 3E(gis @1 (1), 21(T)) . (436)

Denote by I' the set of all indices j € I? satisfying

. 1 o
0 = E(gz(2(T)); 20) g + 5E(G20(F(T))x1(T), 21(T)) - (4.37)
Then, by Lemma 2.9 once more, for each j € I', there exists A\; > 0 such that

—&=—)\jog?(z Z \jg2(z(T (4.38)

jell
Combing (4.35)—(4.38), we obtain that
0< )‘joE<gi()x(i'(T >H + Z gxx {f 1(T>,$1(T)>H.
jer
Let y(T) = 0 and P(T) = —=Ajog2%(2(T)) = 3 jen g4« (#(T)). Then
Applying the same argument as before, we obtain (4.15) with ¢ = 0.

Step 2. In this step, we deal with the case that I°(z, z1) # 0.

From E|g,(Z(t))|g # 0 for any t € Z%z) and e(-) (recall (4.11) for the definition of e()) is
bounded on I°(z, 1), we get that —g,(Z(-)) € g?l) and —0g,(Z(+)) € 9?2) (x1) when § (> 0) is large
enough. Thus, g?l) # () and 9?2) (x1) # 0.

Let x2(-) € X(9)(w1,u1) and (y(+),Y(-)) be the transposition solution to (3.17). We deduce from
(4.26) that

E <y(T>7 xQ(T»H

T T
:E@mw@H+EA<mm@me+EA<mﬁwmmmw

T
+;E/O ((Hao[t]l1(t), 21() r + 2 (Hou[tlz1 (), ur (1)) g, + (Huu[tJua (£), wa (1)) py, ) dt-

If ggg) (z1) = 0 for some j; € I, then g2 (Z(T)) = 0, P-a.s. and E(gls(z(T))x1(T), z1(T)) 5 > 0.
Therefore, by setting P(-) =0, Aj;, =1 and A\; =0 for all j; # j € I, we get (y(-),Y(-)) = (0,0)
P(T) = —g22(2(T)), E(P(T)21(T),21(T)) ;y < 0 and
T
E/ (oo [f1 (1), 21 (8)) 5y dt = 0.
0

These facts, together with (4.28), imply (4.15).
Next, assume that %) (1) # 0 for every j € I. We claim that

Xpoy (1, u) (G (1) () ( A (m1)> = 0. (4.39)

jel

X(Q)(:cl,ul)ﬂg&)(xl)ﬂ< N g(jg)(fb“l)) =0,

]EH(E},])l)

Indeed, if
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then (4.39) holds. Otherwise, for any

T2 € X9)(71,u1) ﬂg&)(m) ﬂ ( ﬂ ggQ)(fm)),
jeﬂ(f,rl)
from (4.14) and (4.25), we see that xa & Hg)(z1) = g?;)rl(acl). This also yields (4.39).
It follows from Lemma 2.10 that there exist z*, 2} € L($;,C([0,T); H))* for all j € I, which do
not vanish simultaneously, such that for x* = — (x* + Z x;‘),
jel
inf K (z)+ inf z(z)+ inf  z7(z) > 0. (4.40)
z€X<2>(x1,u1) zeg(oz)(xl) el Zeg{m(xl)
If ¢2(Z(T)) = 0 for some j € I, then gg'Q)(xl) = L2(Q;C([0,T]; H)). This, together with (4.40),
yields z7 = 0.
For each j € I with ¢%(Z(T)) # 0, put
A o
R; = {zr € L3, (% H) | E (¢}((T)), 21),, <0 }. (4.41)
Then Rj is a closed convex cone and (R;)™ = R g4 (z(T)).
Let T be given by (3.15). It is easy to show that
I Y(R)) + %) (x1) C %) (x1) for every j el
and that T"!(R;) is a cone. Hence, by (4.40), -z} € (P7Y(R;)) . Noting that T' is surjective, by

the well known result of convex analysis, (I"}(R;))” =T* (R;) (see for instance [1, Corollary 22,

p. 144] applied to the closed convex cone R; and the set-valued map I'"! whose graph is a closed
subspace of L%T(Q; H) x LZ(;C([0,T); H))). Therefore,

—x; = T*(\;g2(z(T))) for some \; > 0.

If x;‘ = 0, then we put A\; = 0. By normalizing, we may assume that Ao € {0,1}.
Since the map I' is surjective, we have that

sup  (—a})(2) = sup E(Ngh(Z(T)),T(2)), = sup  ENgl(@(T)),2(T))
26952)@1) zEQgQ)(zl) zTeé'é?’])(zl)

By the definition of Q’é)(xl), for any 7 € T with gﬁ;(i‘(T)) # 0,

sup  E(Ngl(2(T)), o) i = —%E (92 (@(T))a1 (T), 21(T)) -
zTGSQ(?’J)(xl)

From (4.40) (by setting dyp = —z*), we deduce that

T 1 .
sup  (—k")(w2) +  sup E/ (a(t), dp () —5E Y (Nighe(@(D)a1(T), 21(T)) y < 0.
T2EX(9)(71,0) aeg&)(m) 0 jel

(4.42)
Recalling Remark 4.5 for the inclusions g?l) + Q?Q)(:cl) C g&)(xl) and Xy + Xg)(21,u1) C
X9)(w1,u1), we get from (4.42) that dip € (g?l))— and —k* € (X(1))~.
Put y(T) = — Z)\jgi(a’:(T)) and let (y(-),Y(-)) be the solution to (3.17) with Z(z) replaced
Jjel
by I(Z,z1). Let P(T) = —Xohee(Z(T)) and (P(-),Q), Q1)) be the relaxed solution of (4.1). By
(4.42), for every xa(-) € X{(9)(T, 71),
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T
R / (wa(8), dib(8)) y — S Bl (3(T)), 22(T)) i

Jjel

1 T
+§E<P(T)x1(T), z1(T))g + sup / (a(t),dyp(t)) g < 0.
aeg&)(m) 0

From the above inequality, using (4.26) and (4.28), we complete the proof. O

A. Proof of Lemma 3.1

We first recall the following result. Its proof can be found in [7, Chapter 7].

Lemma A.l. Assume that (AS1) holds. Then, for any vy € H, p > 1 and u(-) € LE(; L*(0,T;

Hy)), the equation (1.1) admits a unique solution x(-) € C]F([O T); LP(Q2; H)), and for any t € [0,T],
sup E(|x(s)\%> < CE yoyp / la(s,0,u(s |Hds / |b(s, 0, u(s |£2ds> } (A1)
s€[0,¢]

Moreover, if & is the solution of (1.1) corresponding to (i, @) € H x Lh(Q; L?(0,T; Hy)), then, for
any t € (0,77,

ya
2

sup E(|x(s) - gz(s)yf;,) < CE [\VO — it + (/Ot lu(s) — ﬂ(s)ﬁhds) } (A.2)

s€[0,t]
Proof of Lemma 8.1. From (3.1) and Lemma A.1 we deduce that

<|x1()|p> <C’EUV1‘I) /a2 slui (s |Hds /|b2 slui (s |£2ds)
< CE[nl + ( /O\ul(t)Hldt> |

s E(in0f) < B[l + ([ (0, )

p
2

|

This implies that

o
2

|

Since lim vf =v; in H, lim uj(-) = ui(-) in LE(Q; L*(0,T; Hy)),

e—0t e—0t

which yields (3.3).

it follows from (A.2) that

sup E(|02*(0)l}; ) < CE(Flvsly + ( /0 ' lews (6)3, s )

t€[0,T]

D
2

> = O(eP).

This implies (3.4).
Let

1
as(t) 2 /0 au(t, Z(t) + 0627 (t), a(t) + eus (£))db,




Then, §z°(-) is the solution of the following SEE:

{ déz® (t) = (Adz (t)+a5 (t)oa® (t) +eas(t)us (t))dt + (b5 (t)6x® () +eby(t)ui(t))dW (¢) in (0,T],
62°(0) = ev§,

and r§(-) solves

(dri(t) = [Ari() + a5 ()5 (1) + (a5 — arlt]) @a(t) + 5(0) (ui(0) — wa (1))
+(@5(0) — azlf))ua(®)] @t + [B5 (05 (1) + (B5(0) = balt)) 2 (2)
() (5 () — w () + (B5(8) — baft])ur (6)] WV (1) in (0,7],

r{(0) = vi — 1.

(A.3)

For any sequence {sj} ° , of positive numbers satisfying hm ngj = 0, we can find a subsequence
{Jr}32, C N such that

lim sup [0z (t)|g — 0, P-as.,
k=00 tel0,7]

lim sjk]ul (t)|m, =0, P-a.s. for a.e. t € [0,7].
k—ro0

Hence, .
‘(&?(J - al(-))xl(-)‘H — 0 in measure, as j — 00.

From (AS2), we see that

kli)n;o ‘(dijk (t) — a1[t])x ‘H 0, P-a.s. for a.e. t € [0,7].

Then, it follows from Lebesgue’s dominated convergence theorem that
T
lim E / (@ (t) — ax[t])z1 (t) 2, dt = 0. (A.4)
J]—00 0

A similar argument implies that

jlgroloE[(/oT\(agj(t) —az[t])ul(t)\fth)% +( OT\(l;ij(t) —bl[t])ml(t)}izdt)g .
) 5
+(/OT\(6§J‘(75) —bg[t])ul(t)@dtﬂ —0.

On the other hand,

tim B[ 18050 - m@)a) o+ ([ 5060 - u) )]

r . 9 5

< cjlggoza(/ 7 () — ul(t)|H1dt) 0.
Therefore, by Lemma A.1 and (A.3)—(A.5), we obtain that
Jlggotes[%%E(lr (t )!’}{)
<ChmIE Vl kB + / |(a’(t) — a1 [t]) 2(t) +a5 (¢ )(uij(t)—ul(t))+(a;j(t)—az[t])ul(t)\Hdt)p

+ / (57 (1) = blt]) 1 (6)+ B9 () (™ () —a (1)) + (55 (6) — belt)a ()%, ) *] = 0.
0
Since the sequence {e;}32, is arbitrary, the proof is complete. O
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B. Proof of Lemma 4.2
Proof. By Lemma 3.1 (applied with p = 4), we obtain
T 2
s E(ln0lh) < CE [l + | )], (B.1)

By (4.5), (B.1) and Hoélder’s inequality, we have that

up. E(!xz(t)l?q)

T 2
<CE [|y2@{+ ( /O |2as[tlus () +an [1] (21(£), 21(t)) +2a1[t] (21(t), ws(t)) + aza ] (uat), u(t)) \Hdt)
T
+/0 |2ba[tJua (t) + bi1 [t] (z1(t), z1(t)) + 2b12[t] (21(2), ur(t)) + boz[t] (w1 (t), ur(¢)) y%th}

T T T
< OB (wali [ @l s [ n@lhyae) + sup (sl + B @S [ ()
T

T
< CB(jwafy + il + [ lua(Ofat+ [ fur(o)fy ).

Let A (L
aj, (t) = / (1 = 0)ay,(t,z(t) + 0525 (t), u(t) + Oou(t))do,
0

(1= O)ap(t, () + 052°(£), a(t) + O5uZ (£))do),

(1 O)aua(t, 2(t) + 062°(£), a(t) + 05uF (£))d0,

~ A 1

O / (1 = O)bua (£, 2(£) + 0525 (), a(t) + 05uF (£))do,
0

B, (1) 2 / 1(1 — O)bgu(t, T(t) + 0625 (1), A(t) + 05 (t))do,
0

Then, 6z solves

462 (1) = [ A2 (t) + ar )62 (1) + aslt)ouc (1) + au( )(5956(15) 525 (1)
1285, (1) (2% (1), 6us(t)) + @5, (¢ )((5u (t) )|t
+[b1[t]5x5(t) + ba[t]0us (t) + b5, (¢ )( 25(t)) (B.2)
2B (1) (50 (), 80 (1)) + B (1) (G )]dW in (0,71,

52°(0) = evy + %5,
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Consequently, r§ solves

ars () ={ A1) + an 15 (0) + aalr) (u5(0) — wa(0) + [ (1) (22, 210)
L anf (). ))} + 250 (20 0y e 0).m ()]
e (M7 10) ~ ol (0, 0)]
+{nlir 5O+ b00-100) o 20y e w,m @) B
(25550 (2O ) (0, 0 (0)]
+[b52(1) (5 ua(t))—2b22[t](u1(t),u1(t))]}dW(t) in (0,7,
r5(0) = v3 — 12

Since u5(-) converges to ua(-) in LF(O T Hl) we have

EllrélJrIE / ‘ag us(t) — uo(t)) dt + hm E / ‘bQ us(t ) =0. (B4
By Holder’s inequality,
IE(/OT ‘éil(t) (&i(t)’ 5xi(t)> B %an[t] (e1(8), 21(8) ‘Hdt>2
<on( [ fan@ (P02 0) Lo, 0) )
on /T‘ (510 — ;au[t])(ai(t)’th))‘i,dt}
+CELES[1(1)pT]’ —m(ﬂ‘j{(t:g}]’éx ) j{+t€s[1(1)%]\$1(t)\?{>] B
€
<l s [P )] [ [ [aia - 50 HW\ZHX,{HJW\Z&)T”

w{E(t:;a%]\“! o], )] B |

lim v5 =y in H, lim u$(-) = ug(+) in LE(0,T; Hy),

e—0+ e—=07F

H  ejo,1] ﬂ '

Since

by Lemma A.1,
T 2
sup E(|5x€(t)\‘}{> < C’IE[|51/1 gL+ (/ leur (1) +52u§(t)ﬁ{dt) ] — 0(Y).
te[0,7) 0
As the proof of (3.5) in Lemma 3.1, we obtain that
4

azl(t)‘H ~0.

e—=0% ¢ef0,7)

For any sequence {¢; };’il of positive numbers converging to 0 as j — 0o, one can show that
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Qg (, () + 002 (), u(-) + 00u™(-)) — a11[-] — 0, in measure, as j — oo. (B.6)

Since

1
ay(t) — %all[t] = /0 (1 = 0) (awa(t, 2(t) 4+ 052 (), u(t) + 06u™ (t)) — a11[t])db,

it follows from (B.5), (B.6) and the Lebesgue dominated convergence theorem that
T

lim E( /

J—00 0

B[ Paso (P02 0) i 0,0, ar)

dxfi(t) 0xc (t)) 1

st () 8, —iall[t](ml(t),xl(t))’Hdt)Q:0. (B.7)

Since,

£ £
< cE( /0 ' (2@3(75)(5””:“), ‘”‘Z(t)) RICTORTIO) ‘Zdt)
<0 s (572000 & [ s~ gout] 5 )
) 1 T . 1
+0 o (B2 —ai0], ) (& [ [P0, )
+O sup. (nyl(t)\jgf(xa /OT ]‘5"‘6}” — () ;dt>é.
Similar to the proof of (B.7), we have that
T O NIRRT

Similarly,

agh(t) (&Z(t), MZ(t)) - %azz[t] (u(t), ur(t)) ‘Hdt>2

< im IE(/OT ‘ (&‘;Jé(t) - %@2”]) <6u€j (t)’ Susi (t)) ‘Zdt)

Jj—00 <€j Ej
) T susi(t 2 ousi(t)|2
Ry I T SR T R
J J
Thousi(t) )4 | e, 1 2
<ClmE 55 (1) — ~agslt ’ dt
=& /0 ‘ g lm a5 (t) 2@22[] L(Hyx Hy;Hy)

J]—00

T
+C lim E/O lejus (O], (]ul(t) +ejuy (1)]5 + ]ul(t)]%h)dt = 0.

Similar to the above argument, we obtain

T, _ i i

lim B /O bﬁ(t)(é gj“), d Ej(t)) _ %bn[t] (21(8), 21 (1)) ;dt:(), (B.10)
T, __ x&i uti

Jim B [ [0 (° E]@, ’ gj“)) bl (a0 ()| de =0, (B.11)
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and
2
dt = 0. (B.12)

Lo

T u€i ui
am B [ [0 (M2, 220 Dl a0, ()

€j &j
By Lemma A.1, and using (B.3), (B.4) and (B.7)-(B.12),

lim sup E|ry’ ()3 = 0.
I ¢e0,T)

The desired result follows from the fact that the sequence {e;}52, is arbitrary. O]

C. Proof of Lemma 3.2

Proof of Lemma 3.2. We borrow some idea from [39]. The proof is divided into three steps.
Step 1. For any 0(-) € Cyvo(u(+)), we know that #(-) € L&(0,T; Hy). By Lemma 2.4, there
ad

exists a G-measurable function v(-) on [0,7] x © such that 0(s,w) = v(s,w), p-a.e. Therefore,

/[OT] Q|17(s,w) - U(s,w)ﬁ{ldﬁ(s,w) =0 (C.1)
T x
and
OB = | o)y dise) = [ i)l dits.w) < oo
[0, 7% [0,T]xQ

Since o(-) € Cgug (a(-)), we have

1

lim S inf (E/OT y@(t)+s@(t)—a(t)ﬁ,ldt>§:o.

—t,e—0t € aeﬁl’g
a

This, together with (C.1), implies that

lim L inf (E/OT ]@(t)—l—ev(t)—ﬂ(t)ﬁ{ldt)%

—=u,e—0tF € ﬁeﬁl’g
a

1 r 3
< lim - inf (E/ [0(t) 4+ ev(t) — ﬂ(t)ﬁ{ldt) =0,
0

O—u,e—0t € aezj”g
a

(C.2)

For any u € Zj:fl C L2(0,T; H;), by Lemma 2.4, there exists a G-measurable function u(-) on
[0,T] x Q such that u(s,w) = u(s,w), g-a.e. Hence,

/ li(s, ) — u(s,0) %, dfi(s, w) = 0. (C.3)
[0,T]x2

Consequently, u € U9. This, together with (C.2) and (C.3), implies that

1

lim L inf (E/OT y@(zt)+gv(t)—u(t)ﬁ,lc@5

t—u,e—01 € ugu;’S

< lim L oinf (E/OTy@(t)+eu(t)—a(t)ﬁ,ldt) = 0.

—a,e—0T € 11617’3
a

[ I

Therefore, v(-) € Cyvo(u(-)) and

ad
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/[O,T} xQ<F(t’ w), 0(t,w)) g, di(t, w)

T
B /[o,T}xsz<F(t’w)’U(t’w)>H1d”(t’“)_E/o (F(t), v(t)) , dt <0.

Step 2. In this step, we prove that the set
A £ {(tw) € [0,T] x Q| (F(t),0)
We achieve this goal by showing that

AL ={(t,w) €[0,T) x Q| Fv e Cu(a(t), (F(t),v), >0}eg.

3

For k € N, let
Bux 2 {(t,w) €[0.7)x Q| 3v e Cualt)), (F(t),v), >

| =

Clearly, 0o
AS = Bas-
k=1

g <0, Yvecly(at)} eg.

(C.8)

By Corollary 2.1 the set-valued map Cy(a(-)) : [0, T] x Q ~» Hy is G-measurable. It follows from

Lemma 2.3 that
{(t,w,v) € [0,T] x Q x Hi| v e Cylu(t,w))} € G B(H).
By the assumption on F'(-), we have that

[(t.0.0) € 0.T] x Q@ x H| (F(1).v), > % veCylaltw)} € Go B,

Define a set-valued map Ag(+,-) : [0,7] x Q ~ H; as

Ak(t,w) é {U € Hl‘ <F(t),U>H1 > %7

ve CU(a(t,w))}, (t,w) € [0,T] x .

(C.9)

It follows from Lemma 2.3 and (C.9) that Ay is G-measurable. Then Buy = A (H)) € G. This,

together with (C.8), implies (C.7). Consequently, we have (C.6).

Step 3. In this step we prove that u(Az) =T.
For k, m=1,2,---, let

yAN
B(0,m) 2 {v € Hil[v]m, <m}

and

Bakm = {(t,w) € [0,7] x Q ) Jv e Cu(at)) N B(0,m), st. (F(t),v)y

A= U Bakm:

k>1m>1

1

It is clear that

Similar to the proof of By € §, one can show that By i.m € G.

| =

Now we only need to prove that [(Bygm) = 0 for every k, m > 1. Let us do this by a

contradiction argument.

Suppose that there exist & and m such that (B k,m) > 0. Define the set-valued map Thm .

B km ~ Hi by

Thm (4, ) 2 {u € Cu(a(t)) N BO,m) | (F(t),v) >

3

| =

1
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Obviously, T*™(t,w) is closed-valued. Similar to (C.9),
{(t,w,v) € [0,7] x Q x H1’ v € Cyla(t,w)) N B(0,m), (F(t),0)y, > i} e GwB(H,). (C.10)

This, together with Lemma 2.3, implies that Tkm is G-measurable. Then by Lemma 2.6 there
exists a G-measurable selection vkm( -) on By k.m, i€,

VPt w) € TR (tw) C [Cu(u(t)) N B(0,m)], V(t,w) € Bam.
By Lemma 2.2,
{v(") € L£2(0,T; Hy) ’ v(t) € Cy(u(t)), prae.} C ngg (u(+)).

Let %™ (-) £ oh™()xg, (). Then

- ke 1 .
u{(t,w) e [0,T] ‘ (F(),55™(1)) . > %} > i(Bagsm) > 0. (C.11)
Therefore 1
/ / (t,w), 5™ (t, w >H dp(t,w) > —(Bggm) > 0. (C.12)
[0, k:

On the other hand, by Corollary 2.1, one has v*™(-) € Ty C Civo (u(+)). Tt follows from (C.5) that
ad

/[0 7] /sz (F(t,w), 057 (t,w)) y, dii(t,w) <0,

which contradicts to (C.12). Therefore, fi(Bgxm) = 0. Consequently, fi(AS) = 0. Since A € g,
there exists a G-measurable set & satisfying AS C &; and u(A%) = u(Ez) = 0. Thus, £ C Az and
[m x P|(S) = T. This completes the proof. O

D. Proof of Lemma 3.3

The case that H is finite dimensional was studied in [17]. The proof for the general case is similar.
We give it here for the sake of completeness.

Proof of Lemma 3.3. Obviously, LZ(Q;C([0,T]; H)) is a linear subspace of L2(%; D([0,T); H)).
For a given A € LZ(Q;C([0,T]; H))*, by the Hahn-Banach theorem, there is an extension A €
L2(S; D([0,T); H))* such that

|A‘L2(QD (o)) = M rzscqo,my;m) (D.1)

and Re() =A@(),  Va() e LAQ;C([0,T); H)). (D.2)

Recall that {e;}?2, is an orthonormal basis of H and T}, the projective operator from H to
H, = span{ex}. Let Ay, = ATy and Kk = 1~\Fk. Clearly,
Ay € LE(;C([0, TT; Hy))* = LE(2; C([0, T]; R))*,
Ry € LA(Q; D([0,T); Hy))* = LA(©; D([0, T); R))*,
and ~

A () = n}gnooZAk ), Va() € Li( D((0, T); H)). (D.3)

For each k € N, from the proof of [9, Theorem 65, p. 254], we deduce that, there exist two
R-valued processes ¢; (-) and ¢; (-) of bounded variations such that ¢} (-) is optional and purely
discontinuous, v, (-) is predictable with v, (0) = 0,
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~ 2
Arl?2 0 , *:IE/ dla, (t +/ dt(t D.4
Rz ungommy = B Al | ol (D.4)

and, for any z(-) € LA(; D([0,T]; H)),

A ) = T_ . T * .
RGO =E( [ D@0+ [ newato) (D.5)

where x_(+) is the predictable modification of z(-), which equals z(-) when z(-) € LZ(Q; C([0,T]; H)).
Define two H-valued processes ¥ () and 1~ (-) as follows:

::§jw;0km df(dzz}ngokk
Aﬁx< H—Z/Im By ()
AH§< ), i (1) EZA Py (6)doi (1)

and (

D.5) that

Then

and

It follows from (D.3)

Ax()) =/(0T1<$(t)7d¢_(t)>H+/ ((t),dy™(O)u, Va() € Ly D([0,T]; H)).  (D.6)

[0,7)

This, together with the arbitrariness of x(-) € L&(Q; D([0,T); H)), implies that ¢ (-) and ¢~ (-)
are functions of bounded variation and

2
LS —M/@ﬁw MH+[ d (0) | D7)
Put ¢* 2 ™ + T, By (D.2), we have

T
Ma() =B [ (el O, V) € @ CQO.T)H))
Letting 1 = ¢* —1*(0), we obtain (3.6). (3.7) follows from (3.6). O

E. Proof of Lemma 3.5

Before proving Lemma 3.5, we first recall the following Riesz-type Representation Theorem (See
[26, Corollary 2.3 and Remark 2.4]).

Lemma E.1. Fix t; and to satisfying 0 < to < t1 <T. Assume that Y is a reflexive Banach space.
Then, for any r,s € [1,00), it holds that

(Lg (b2, 01 L3 (4 P))* = Lf (f2, t15 L7 (23 V7)),

where
, {s/(s—l), if s #1, , {r/(r—l), if r #1,

r =
00 if s=1; 00 ifr=1.

Next, we recall the following result.
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Lemma E.2. [29, Lemma 2.5] Assume that fi € L3(0,T;H) and fo € L4(0,T;H). Then there

exists a decreasing sequence {€,}5°; of positive numbers such that lim e, =0, and
n—oo

1 t+en
lim /t E(F1(D), fo () mdr = BUA®), o), ae. £ €[0T, (E.1)

Proof of Lemma 3.5. 1t suffices to consider a particular case for (3.17):

{ dy(t) = —A*y(t)dt + f(t)dt + dib(t) + Y (£)dW (t) in [0,T), (E2)

y(T) = yr,
where yr € L (5 H) and f(1) € LL(0,T; L*(; H)). The general case follows from the well-
posedness of (E 2) and the standard fixed point technique.

We divide the proof into several steps. Since the proof is very similar to that of [29, Theorem
3.1], we give below only a sketch.

Step 1. For any ¢ € [1,T], let us define a linear functional § (depending on t) on the Banach
space LL(t, T; L?(S; H)) x L&(t,T; L2) % L2 .(Q; H) as follows:
T T
g(fl()v.fé()an) _E<¢(T)ayT>H_E/t <¢(S),f(8)>HdS—E/t <¢(8)7d¢(8)>H7 (E?})
¥ (f1(), f2(),m) € Li(t, T; L35 H)) x Li(t, T; £2) < L, (% H),

where ¢(-) € L2(Q; C([t, T); H)) is the mild solution of the equation (3.18). It is an easy matter to
show that § is a bounded linear functional. By Lemma E.1, there exists a triple

(y' (), Y'(), &) € L (¢, T; L* (% H)) x Li(t, T; L2) x L%, (% H)

such that T T
BOT)r)y —E [ (009 £(5)) s = [ (60). 00 |
T T (E.4
= E/t (f1(9),4"(s)) d8+E/t (fo(5),Y'(s)), ds + E(n, "),
It is clear that ¢7 = yp. Furthermore,
t-Yt-too.z.Xg.Xg.
(W7 C)s YT (), ) pee 0,712 (b))} L2(1, T3 H) X L2 () E5)

<C(|f()| L(6T;L2(QH)) +|yT|L2 (:H) +|7/’\L2(QBV(0TH))) vte[rT].

Step 2. Note that (y(-),Y!(-)) obtained in Step 1 may depend on t. Now we show the time
consistency of (y'(-), Y!(+)), that is, for any t; and ty satisfying 0 < to < t; < T, it holds that

(th(s,w),Y”(s,w)) = (ytl(s,w),Ytl(s,w)), a.e. (s,w) € [t1,T] x Q, (E.6)

for a suitable choice of the 1, f1 and fo in (3.18). In fact, for any fixed o1(-) € L (41, T L*(S%; H))
and go(-) € L2(t1,T; L2), we choose first t = t1, n =0, fi(-) = 01(-) and fa(-) = g2(-) in (3.18).
From (E.4), we get that

T T
E(6™(T),yr),, — E / (661, 1(5)) yts — B | (61(5). b))
h (E.7)

T
:E/t (01(s), >Hd8+E/ (02(s),Y" (s >£ds
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Next, we choose t = t2, 1 = 0, fi(-) = X, 77(-)e1(-) and fa(-) = xp¢;,7)(-)02(+) in (3.18). It follows
from (E.4) that

T T
E(6" (T), yr),, —E/ (66), F)gs =B [ (61(0). d0(o)),
f (E.8)

T
:E/t (e1(s), >Hds+IE/ (02(5),Y"™(s >Eds

Combining (E.7) and (E.8), we get

T T
E/ (o1(s), 4" (s) — y'*(s)) yds + E/t (02(s), Y (s) = Y"(s)) . ds = 0,

t1

Vgl(‘) € L]%‘(tl,T; LQ(Q;H)), QQ(‘) € L]%(tl,T; ,CQ)
This yields the desired equality (E.6).

Put y(t,w) =y (t,w), Y(t,w) =Y (t,w), V (t,w) € [r,T] x . (E.9)
From (E.6), we see that
(y'(s,w),Y'(s,w)) = (y(s,w), Y (s,w)), a.e. (s,w) € [t,T] x Q. (E.10)
Combining (E.4) and (E.10), we deduce that
T
By —E [ {906) 7)) s~ [ (906) (5D

(E.11)

:E(n,§t>H+E/t (f1(s), >Hds+IE/ (fa(s) > ds,

Y (1), f2(),m) € Lh(t, T; L*(Q; H)) x LE(t, T; L2) x L%, (Q; H).

Step 3. We show in this step that ¢! has a cadlag modification. The detail is lengthy and very
similar to Step 3 in the proof of [29, Theorem 3.1], and hence we omit it here.
First of all, we claim that, for each ¢ € [0, 7],

E(S" (T~ t)yr - / " St (s — 1) f(s)ds / "8t (s — Hdu(s) | F)=¢. Pas (.12)

To prove this, we note that for any n € L (Q H), fi =0 and fo = 0, the corresponding solution
of (3.18) is given by ¢(s) = S(s —t)n for s E [t,T]. Hence, by (E.11), we obtain that

T

T
E(S(T—t)n, yr) ,,—E{n, &)y = /t (S(s— 1), f(5)) ,ds+E / (S(s — Oy, dib(s)),,.  (E13)
Noting that
]E<S(T - t)nv yT>H = E<77¢ S*(T - t)yT>H = E<777 E(S*(T - t)yT | ]:t)>Ha

E/tT<S(s—t)17,f(s)>Hd3—E<n, /tT S*(s—t)f(s)ds>H—E<n,E</tTS*(5—t)f(s)ds ‘ }—t>>H’
nd

E [ (S(s = O dw(s)), = E(, / "5 (s 0iu), = E(nE( / "5 - 0avts) | 7))

by (E.13), we conclude that for every n € LZE(Q; H),
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E(n.B(S"(T ~ thyr - /tT S* (s — ) f(s)ds /tT §°(s —dv(s) | F) ) =0, (B14)

Clearly, (E.12) follows from (E.14) immediately.
In the rest of this step, we show that the process

(E(s-om- [ se-omon| 7)),

has a cadlag modification.
Recall that for any A € p(A), the bounded operator Ay (resp. A3) generates a Cp-group

{SA(t) }ier (vesp. {S3(t)}ier) on H.
For each t € [0, 7], put

& S E(Si(T - tyr - / " S35 — 1) (s)ds — / " S35 — (s | 7) (E.15)

and t T
B0 £ S50~ [ Si s = [ Sl 0ane). (E.16)
t
We claim that {®,(¢)} is an H-valued F-martingale. In fact, for any 71,79 € [0,T] with 7 < 79, it
follows from (E.15) and (E.16) that

E(®x(72) | Fry)
~ E(S}(n) / S5(5) f(s)ds /0 CS3(s)d(s) | 7 )

T ) )
=E|E(SX(T)yr— Si(S)f(S)dS = [ SX(8)dv(s)|Fr, )= [ Sx(s)f(s)ds— [ SX(s)dv(s)|Fr

T2

~B(si(Tr - | Sy e)ds - / S | 7

= S3E(S(T ~ m)ur - /TT S5(s — 1) f(s)ds — /TT S3(s — m)du(s) | 7, )

- /0 S5(5)f(s)ds — /0 S5(s)dip(s)

_ S(m)E] /0 " 53(s) 7 (s)ds — /O " S3(s)du(s)
= X,\(Tl), P—a.s.,

as desired.
Now, since {X)(t)}o<t<r is an H-valued F-martingale, it enjoys a cadlag modification, and
hence so does the following process

{8 o<i<r = {SA / S3(s)f(s)ds + /0 t Sf\(s)dw(s)ds”

0<t<T

Here we have used the fact that {S%(t)}er is a Co-group on H. We still use {& }o<i<7 to stand
for its cadlag modification.
From (E.12) and (E.15), it follows that

)\li)m [ §A‘L°° (0,T;L2(S%H))

— lim (E(S* yr —/ S (s — - (s)ds—/T S (s — -))dib(s) ’ F)
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(E.17)
Lo (0,T3L2 (0 H))

—E(Sﬁ(T—o)yT—/Ts:(s— ds—/ S3(s = Jau(s) | F)

< lim [S*(T = )yr — S5(T = Jyr|

A—00 Lge(0,T3L%(;H))
+ lim ‘/ S*(s—+) ds—/ Sy(s—-)f(s)ds
A—oo | ). Lg2 (0,751 (4 H))
T
wam | [ st - [ si6-avs) L

Let us prove the right hand side of (E.17) equals zero. First, we prove

lim |S*(T = yr — S3(T = Jyr

A—00

= 0. (E.18)
Lge (O,T;L2(Q;H))

By the property of Yosida approximations, we deduce that for any o € H, it holds that
lim |S™(T — o — SX(T — “)a|pec(o,7;0) = 0
A—00

and that " "

|S*(T = Yyr — SX(T = Jyr|, < Clyr|u.

Thus, by Lebesgue’s dominated convergence, we obtain (E.18).
Similarly, we can prove that

T T
lim ] / S*(s — ) f(s)ds — / S35 = sy = (E.19)
and
Algglo]/ S* (s — )du(s / S5 =0y (F.20)

By (E.17), (E.18), (E.19) and (E.20), we obtain that hm hm € = Emlrge o120y = 0
A—00
Recalling that &, € Dg([0,T]; L?(Q2; H)), we deduce that { enjoys a cadldg modification.
Step 4. In this step, we show that, for a.e. ¢ € [0,T],

¢ =y(t), P-as. (E.21)
Choosing t = t2, fi(-) =0, fa(-) =0 and n = (t; — t2)v in (3.18), utilizing (E.11), we obtain that

E(S(T — t2)(t1 — t2)v, yr); — E((t1 — t2)7, "),

T T
— E/ (S(1 —ta)(t1 — t2)y, (7)) ydT + IE/ (S(r = ta)(tr — ta)y, dib(7)) (E.22)

to to
Choosing t = t2, f1(7,w) = X[ts,4,)(T)¥(w), f2(-) = 0 and n = 0 in (3.18), utilizing (E.11) again, we
find that

T
B( [ S0 = shxgun(shdsur),
2

t1 T t1
:IE/ < S(T — s)vds, f(T dT—i-E/ S(r—t1) S(t —S)Vd37f(7')> dr
o Vi f te T (B.23)

+E /ttl <[ S(1 — s)yds, dy(t /tT (1 —t1) /:1 S(t1 — s)vds, dw(T)>H

2 2 1 2

+E / () adr.

t2



It follows from (E.22) and (E.23) that

E(v, &%)

- tli@ /t:1E< 7y(7')>HdT+E<S(T—t2)%yT>H—tlit2E< tZTS(T—T)X[tNl](T)»ydT, yT>H
B /:<S(T —t)y, f(T)udr + o i e /: < t: S(r =), f(T)>HdT (E.24)
i tQE/tIT <S(r —t1) : S(t1 — s)vyds, f(T)>HdT — E/:<S(T — to)y, dib(T)) i
+t1itzE/t:1</t:S(T—3)%d¢(7)>H+tlitQE/tlT<S(T—t1)/t:IS(t1—s)fyds,dz/;(r)>H,

Now we analyze the terms in the right hand side of (E.24). First, it is easy to show that

1 t1 T
li E S(s—t d
t1*1>?21+0 t1 —to /t2 < to (s =), f(T)>H !

Ll (E.25)
— = L%, (9 H).
hy i b0 t1 — tQE/tQ < i S(r =), dw(T)>H 0 vy €Ly, (& H)
Further, T
t1£g1+0 t1 — t2E< to S(T B T)X[tQ’tl](T)fydT’ yT>H E.26
e (5.26)
- tlggl‘i‘o t — t2E< s ST = rhdr, yT>H =B(S(T =) v, yr)
Utilizing the semigroup property of {S(¢)}+>0, we have
1 T t1
t1£?21+0 t1 — tQE[/t; <S(T B tl) to S(tl B S)VdS’ f(T)>HdT
T t1
+/ <5’(T —1t1) S(t1 — s)vyds, dw(7)> } (E.27)
t1 [ H
T T
=K <S(Tt2)’y,f(T)>HdT+E/ <S(Tft2)’y,d¢)(7)>H.
to to
From (E.24), (E.25), (E.26) and (E.27), we arrive at
: 1 h to 2
 Jim P— /t2 E(y, y(r))udr =E(v,£?),, Vy €Ly, (GH), t2€[0,T). (E.28)
Now, by (E.28), we conclude that, for a.e. t2 € (0,7)
: 1 g to to to
R W /t2 E(£™ — y(ta), y(7)) dr = E(™ — y(t2),£) ;- (E.29)

By Lemma E.2, we can find a monotonic sequence {e,}2°; of positive numbers with lim e, =0,

n—oo
such that

1 taten
lim / E<§t2 - y(tg),y(T)>Hd7' = E<§t2—y(t2),y(t2)>H, a.e. tg € [O,T). (E.?)O)

n—oo g, Ji,
By (E.29)-(E.30), we arrive at
(€ — y(t2), %) = B(E"” = y(ta) y(t2))r,  ace. 12 €[0,T]. (E31)

By (E.31), we find that E|¢ — y(tg)ﬁ{ =0 for t3 € [0, 7] a.e., which implies (E.21).
This completes the proof of Lemma 3.5.
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