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Topology of the Stokes phenomenon

P. P. Boalch

ABSTRACT. Several intrinsic topological ways to encode connections on vector
bundles on smooth complex algebraic curves will be described. In particu-
lar the notion of Stokes decompositions will be formalised, as a convenient
intermediate category between the Stokes filtrations and the Stokes local sys-
tems/wild monodromy representations. The main result establishes a new
simple characterisation of the Stokes decompositions.
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“The subject ought to be one of pure mathematics, for it is in honour
of ABEL, and most of my work refers to applications of mathematics.
There is one thing I thought might perhaps do.... The subject is the
discontinuity of arbitrary constants that appear as multipliers of
semi-convergent series...”

G.G. Stokes, Cambridge, 23/4/1902
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1. Introduction

1.1. Systems of meromorphic linear differential equations on the complex plane
have been studied for centuries, and, more generally, algebraic connections on vector
bundles on smooth complex algebraic curves are extremely basic objects.

The Riemann—Hilbert correspondence [28,41] says that the special class of con-
nections with regular singularities (moderate growth/Fuchsian type) are classified
by their local system of solutions, i.e. by their monodromy representations (upon
choosing a basepoint). If one sets this up carefully (as in [28]) it is an equivalence
of categories—this might sound exotic but it really is just a very convenient way to
express precisely the fact that the topological data (the local system/fundamental
group representation) encodes the algebraic differential equations. In particular it
implies the more familiar fact that two connections are isomorphic if and only if
their monodromy representations are conjugate.
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For more general connections, those with irregular singularities, the situation
is unfortunately much less widely understood in the mathematics community. The
basic question is to describe the data that one needs to add to the local system to
encode such connections. The fact of the matter is that this can indeed be done,
and there are several different approaches, all of which are equivalent, but not in
a trivial way. A basic difficulty is to recognise the intrinsic geometric structures
that appear—one needs to be able to see through the explicit coordinate dependent
computations prevalent (and essential) in the development of the subject. In the
regular singular case this was done a long time ago and underlies the definition of
the fundamental group and the notion of local system (locally constant sheaf of
complex vector spaces).

The aim of this article is to describe intrinsically, as simply as possible, three
different approaches to the extra “topology at infinity” that arises in the case of
irregular connections: 1) Stokes filtrations, 2) Stokes decompositions/gradings, and
3) Stokes local systems, or wild monodromy representations. We will then give
a new direct proof (building on an idea of Malgrange) that they are equivalent.
The reader will see that the situation is somewhat analogous to Hodge structures,
which may be described equivalently in terms of the Hodge filtration or the Hodge
decomposition.

The impetus came from studying a simple class of examples (in [23]) and then
trying understand directly the equivalence of 1) and 3) in general: it turns out that
this becomes much simpler if one first formalises the category 2) of Stokes graded
local systems, and then establishes two equivalences 1) ¢~ 2) -~ 3), as will be
done here.

The rest of this introduction will give a sketch, deferring full definitions to
later sections. Some of the recent motivating questions (construction of wild char-
acter varieties, the nonlinear local systems that they form, the relative Riemann—
Hilbert—Birkhoff maps, the link to Drinfeld—Jimbo quantum groups, and the TQFT
approach to meromorphic connections) are reviewed in [11,16,22,24]. In partic-
ular the wild character varieties (moduli spaces of Stokes local systems) give the
simplest description of the differentiable manifolds underlying a somewhat vast
collection of complete hyperkéhler manifolds, the nonabelian Hodge spaces (see
[22] Defn. 7). In a different complex structure they are algebraically completely
integrable Hamiltonian systems, some key examples of which arise as finite gap
solutions of integrable hierarchies, such as KAV [34]. On the other hand, as noted
in [11], an initial impetus for these questions came from Dubrovin’s classification
of semisimple Frobenius manifolds in terms of Stokes data.

1.2. One completely general approach involves adding filtrations (flags indexed
by certain ordered sets) on sectors at each pole, the Stokes filtrations. The exact
types of filtrations that occur, and how they may jump, can be axiomatised yielding
an equivalence of categories [29,44]|, generalising the Riemann—Hilbert correspon-
dence. The filtrations encode the exponential growth rates of solutions as one goes
towards a pole. (The approach in §6 below is very close to op. cit., but slightly sim-
pler since we index the filtrations by finite totally ordered sets.) A consequence of
this is that there is a canonically defined (continuous) graded local system on a small
punctured disk around each pole: the associated graded of the Stokes filtrations.
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This is an intrinsic way to describe the formal classification (of Fabry—Hukuhara—
Turrittin—Levelt): for example two connections germs are formally isomorphic (over
C((2))) if and only if their graded local systems are isomorphic.

The revolutionary idea of Stokes [57] was that it is sometimes better to start
at infinity, at the pole, and work from there towards the interior of the curve. He
used this idea to give a spectacular computation of the position of the fringes of
rainbows (the zeros of the Airy function) far more efficiently than summing the
Taylor series at zero. Mathematically a key idea appearing here is that:

a) the connection canonically determines a finite number of “singular direc-
tions” at each pole, and

b) the choice of any formal solution of the connection at a pole uniquely de-
termines a preferred actual solution, on any sector at the pole not containing a
singular direction.

Stokes only worked this out in a few examples (related to the Airy and Bessel
equations), but the idea is correct and is now a general theorem (multisummation
of formal solutions of linear differential equations [4]). It also holds more generally
in many non-linear situations when one does a formal simplification [35,47].

The import of this to the problem of describing the category of connections
topologically, is the following;:

Away from the singular directions there is a preferred/canonical
(1.1) way to glue the graded local system to the local system of
solutions of the connection.

In particular in these sectors there is a preferred grading, the Stokes grading or
Stokes decomposition (not just a filtration) of the local system of solutions. One
can axiomatise the gradings that occur and their possible discontinuities across
the singular directions, and again prove an equivalence, between connections and
Stokes graded local systems.

The Stokes gradings split the Stokes filtrations wherever they are both defined,
and this actually characterises them:

THEOREM 1.1 (Splitting). For any Stokes filtered local system there is a unique
Stokes graded local system (with the same underlying local system) such that the
gradings split the filtrations wherever both are defined.

This statement looks to be new. See §1.3 and Thm. 11.3 for more details,
and Prop. 12.2 for the simplest case, with just one level. Note that usually one
gets preferred gradings by having fixed asymptotics (i.e. splitting the Stokes filtra-
tions) on a large enough sector (or a nested sequence of such sectors), whereas the
characterisation here is different.

On the other hand one can axiomatise the local systems that occur when the
graded local system is actually glued to the local system of solutions. One way
to formalise this is to boldly puncture the underlying curve ¥° near each singular
direction at each singular point, to yield a new curve 3 C °. The idea underlying
these tangential punctures is already in Stokes’ paper—see §A.4 for more on this.
The Stokes gluing (1.1) then yields a local system on X, the Stokes local system
[18,25], equal to the graded local system on a halo (small punctured disk) near
each pole, and to the local system of solutions away from the halos. The Stokes
local systems can be axiomatised and again one gets an equivalence of categories
(it is very close to the category of Stokes graded local systems).



TOPOLOGY OF THE STOKES PHENOMENON 59

The resulting equivalence between Stokes filtrations and Stokes local systems
could be viewed as an intrinsic global version of the main theorem of Loday-Richaud
[42] (no longer needing the choice of a marking/formal normal form, or any discus-
sion of nonabelian cocycles) which in turn refines the main result (Thm. 3.4.1) of
Babbitt—Varadarajan [3] and is essentially equivalent to results of Jurkat in [6,40].

Thus in summary this gives three topological descriptions of the category of
connections: as Stokes filtered local systems, Stokes graded local systems or as
Stokes local systems. Combined, they give a multi-faceted answer to the ques-
tion “What is a Stokes structure?”, much as a Hodge structure has two different
descriptions.

Whereas the Deligne-Malgrange approach to Stokes filtrations is easily seen to
be intrinsic (once one realises the exponential local system has an intrinsic defini-
tion, as in [25] Rmk 3), the other approaches are less well developed, so we are
taking the opportunity here to describe them intrinsically, thus giving a topological
approach to the version of the Stokes phenomenon actually discovered by Stokes
(hence the title of this article).

In turn these three approaches give three different approaches to the wild char-
acter varieties: just as moduli spaces of local systems form an interesting class of
varieties (the character varieties), moduli spaces of Stokes local systems form the
wild character varieties. Due to the three descriptions, each wild character variety
solves three different moduli problems: it is also a moduli space of Stokes filtered
local systems, and a moduli space of Stokes graded local systems (cf. e.g. the
examples in [23,53]).

This is very useful in practice since the description in terms of Stokes local
systems yields an explicit presentation of the wild character variety as a quotient

(1.2) Homs(I1, G) /H, II=11,(%, 8)

of an affine variety Homg(II, G) (the space of Stokes representations, or wild mon-
odromy representations), by a reductive group H. This enables the use of standard
geometric invariant theory to construct the wild character variety algebraically
[13,18,25]. The possibility of such a presentation is not evident if one starts from
the Stokes filtration viewpoint. Further, earlier approaches use a different type of
framing called a “marking”, and in general this does not lead to reductive groups—
see [3] Theorem 2.3.1, or [2] p.98. (So in essence we have rejigged things in order
to be able to carry out this construction.) This is a direct generalisation of the
standard presentation of the (tame) character variety in the form

(1.3) Hom(m (£°,b), G)/G.

A major preoccupation has been to generalise geometric properties of the spaces
(1.3) to the spaces (1.2), such as: 1) symplectic/Poisson structures [10,11,13,
18,25,36,58] (the spaces (1.2) have algebraic Poisson structures with symplectic
leaves given by fixing the isomorphism classes of the graded local systems at each
pole), 2) hyperkéhler metrics and special Lagrangian fibrations [7,52] (sufficiently
generic symplectic leaves are complete hyperkahler manifolds, becoming meromor-
phic Hitchin systems in special complex structures), and 3) wild mapping class
group actions [12,18,45] (upon deforming the underlying wild Riemann surface
the spaces (1.2) form a local system of Poisson varieties, and the monodromy of
this is the wild mapping class group action on (1.2)).
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1.3. Summary of main result. In brief the logic of Thm. 1.1 is as follows.

1) The Stokes graded local systems involve adding gradings to a local system
on sectors at each puncture. This involves data n,I,©, A, <; where:

e 1 is the rank of the local systems,

e [ is a finite covering of the circle of directions at each pole (used to index the
gradings),

e O an integer for each component of I (the dimensions of the graded pieces),

e A is a finite set of directions at each puncture, where the gradings may jump,

e <, (the Stokes arrows) is a partial order of I; for each d € A that will be used to
control the possible relative positions of the gradings across each direction in A.

2) Similarly the Stokes filtered local systems involve adding filtrations on sectors

at each puncture. This involves data n, I,0,S, <4 where n, I, © are as above and:
e S is a finite set of directions at each puncture, where the filtrations may jump,
e <, (the exponential dominance orderings) is a total order of I for each direction
d ¢ S (continuous provided d does not cross S). They will be used to index the
filtrations and to control the possible relative positions of the filtrations across each
direction in S.

3) The notion of irregular class will be recalled in §5. The key point is that
it canonically determines both types of data: (n,I,0,A,<,) and (n,I,0,S, <4).
(Also any algebraic connection on the curve canonically determines an irregular
class at each puncture.) Thus one can consider Stokes graded local systems and
Stokes filtered local systems with the given irregular class. The main result then
says that for each Stokes filtered local system of type (n,I,0,S,<4), there is a
unique Stokes grading of type (n, I, ©, A, <;) (on the same underlying local system)
that splits the Stokes filtration wherever both are defined.

This result is simple in the rank two cases studied classically (second order
equations): the Stokes filtrations are then given by a line (the subdominant solu-
tions) in a rank two local system, and across S such lines are transverse and make
up the Stokes grading. See [23] for a recent exposition—as shown there even in
such examples the resulting different descriptions of the wild character variety are
interesting, for example relating the Euler continuant polynomials to the multiratio
of tuples of points on the Riemann sphere. The simplest of the examples in [23]
will be used as a running example to illustrate some of the basic constructions,
although it doesn’t exhibit the complexity of the general set-up.

1.4. Further background/other approaches. The history is long and com-
plicated and would require a book to put it all in its proper context. Note that
most authors work entirely in one point of view. Nonetheless here is a brief attempt
to better document the various discoveries leading to the wonderful fact that the
category of connections on smooth curves has a precise topological description (or
more precisely, several). Cf. also [32,51,59] and references therein.

1) Similar presentations to (1.2) were first found by Birkhoff [8,9] for generic
connections of any rank. This work really started the subject of constructing in-
variants of irregular connections. It was extended from the generic case to the
general case in [6,40], using the 1976 version of [55]. Their approach also involves
preferred bases on sectors. It is similar but not quite the same as the Stokes ap-
proach used here. An intrinsic form of their results will be discussed in a sequel to
the present paper. Whereas Stokes filtrations arise as one goes towards a pole, and
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Stokes gradings arise if one starts at a pole, Birkhoff analysed what happens when
one goes around a pole.

2) The Malgrange—Sibuya cohomological approach [43,54] (cf. [3,42,55]) looks
to have been the first general classification of germs of marked connections, and
so it traditionally acts as a hub to pass between different viewpoints (or as solid
ground on which to establish other viewpoints).

The term Stokes structure first appeared in [54]. As emphasised above, the
message of [29,44] is that it is sometimes better to think in terms of filtrations
(early examples of which are the subdominant solutions in [53]), and the message
of [57] (and [8,42,47]) is that it is sometimes better to think in terms of gradings,
or wild monodromy.

3) The Stokes approach goes back to Stokes’ paper [57]. Its extension to
generic connections of arbitrary rank is essentially the story explained in [5] (this is
similar to [8,9], but solved the Birkhoff wall-crossing problem, of central importance
in isomonodromy). It appears in many works on isomonodromy and the Painlevé
equations such as [11,37,39]. The general case appears (in slightly different forms)
in Martinet—Ramis [47] and Loday-Richaud [42] (and the links to work of Ecalle and
others on multisummation are explained there—pioneering work of E.Borel, Watson
and Dingle underlies this approach). These provided much inspiration and the main
result above (Thm. 1.1) resulted from trying to understand intrinsically the main
theorem of [42] (describing the Malgrange—Sibuya non-abelian cohomology space
in terms of Stokes groups).

1.5. Generalisations. Some extensions to be discussed in detail elsewhere
are as follows.

1) In modern applications of these results, such as isomonodromy /wall-crossing
or 2d gauge theory (wild non-abelian Hodge theory on curves), a slightly bigger
category than the category of connections on curves is used, involving particular
extensions across the punctures (and compatible parabolic structures/filtrations,
cf. [7,17,22]). Topologically this involves upgrading each graded piece of the
graded local system to be R-filtered. This was understood in the tame case in [56]
(R-filtered local systems) and is not essentially different in the wild case (R-filtered
Stokes local systems), once one understands how to superpose the tame story on
the wild story. The bijective Riemann—Hilbert—Birkhoff correspondence of [11] Cor.
4.9 is an example of this.

2) The work [12,13,15,18,25] involves the extension of Stokes data to the case
of connections on principal G-bundles for other algebraic groups beyond GL,,(C),
mainly from the viewpoint of Stokes local systems. It requires some familiarity
with root systems/Lie theory. The original aim was to write the present article at
that level of generality but the simple uniqueness statement of Thm. 1.1 did not
seem to be known even for GL,(C), so a separate (simpler) presentation of this
case seemed justified.

3) Of course having a clear picture of how the linear case works, suggests how
to phrase the nonlinear Stokes phenomenon (this is already remarked in [47]).
More pointedly the version for general principal G-bundles suggests directly how
the nonlinear case should work, since it amounts to replacing G by an automor-
phism group of a variety. One of the main points of [25] was to understand the
definition of Z-graded G-local systems, as an action of a certain local system T of
infinite dimensional tori (its fibres are isomorphic to the exponential torus of [47]).
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Thus in the nonlinear case a Stokes graded local system will involve a nonlinear
local system V with a preferred locally constant torus action in sectors at infinity.
Generically one would expect this torus to have dense orbits, so the fibres of V
on sectors will have dense tori in them. For the local systems formed by the wild
character varieties (cf. [11,18]), one expects to be able to write down these tori
explicitly, analogously to the well known explicit description of the (tame) nonlin-
ear monodromy (this question was raised in [48]). In some examples such tori are
evident by combining the complex WKB viewpoint [60] and the TQFT approach
to meromorphic connections (initiated in [11,13] (beware section 6 of this is not in
the 2002 arXiv version) and completed in [15,18,25]): Each generic Stokes graph
([60] p.271) corresponds to dividing the surface into pieces, and approximating the
connection by the Airy equation in each piece. Translating to the TQFT approach,
this amounts to fusing together several copies of the fission space B corresponding
to the Airy equation. But the fission space of the Airy equation is just a copy of
C*, and fusion means taking the product of such spaces, yielding a torus (C*)" (see
the end of [20] for the pictures explaining this).

1.6. Layout of the article. To orient the reader, §2 gives a short (one page)
summary of the data canonically attached to a connection that is going to be studied
here. The subsequent sections then recall basic notions, related to linear algebra
83 (gradings, filtrations, splittings, relative position) and to local systems/covers
84. Next §5 recalls the notion of an irregular class (in the general linear case)
and the resulting notion of irregular curve/wild Riemann surface (i.e. a curve
with some marked points, each equipped with an irregular class). The core of the
article consists of §§6,7,8 that define Stokes filtered local systems, Stokes graded
local systems and Stokes local systems, respectively. Some basic properties are
then established leading up to the proof of Thm. 1.1 in §12. Next §13 reviews
the implications of this for the wild character varieties, and explains the resulting
notion of wild nonabelian periods/wild Wilson loops. For completeness Apx. A
summarises the analytic results (presented as black boxes) needed to attach such
topological data to a connection. In the final section some of the basic ideas used
by Stokes to get to this picture are sketched.

Note that the word “Stokes” will often be used to indicate possible disconti-
nuity: whereas a graded local system is continuous, the graded pieces of a “Stokes
graded local system” may have discontinuities at the singular directions, and simi-
larly the filtered pieces of a “Stokes filtered local system” may have discontinuities

FIGURE 1. Example Stokes diagram, see §5.6.
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at the oscillating directions. This is in the spirit of [57]. It is worth emphasising
that there are thus two types of discontinuity that occur, in general in different di-
rections. (On the other hand a Stokes local system has no discontinuities, although
it lives on the surface obtained by removing the tangential punctures and is only
graded in the halos.)

2. Summary of some data canonically determined by a connection

Let ¥ be a smooth compact complex algebraic curve, a C X a finite subset,
and ¥° = ¥\ a. Let 7 : ¥ — ¥ be the real oriented blow up of ¥ at a and let
9 =n"1(a). Thus d = U.ca 9a is a collection of circles, and a point d € d, is a real
oriented direction in the tangent space 7,3 at a € a C X. There is a canonically
defined covering space Z — 9, the exponential local system (see §5.1 below).

Suppose (F, V) is a connection on an algebraic vector bundle on 3°. Then the
following data are canonically defined:

1) The local system V' = Ker(V?") of analytic solutions. It is a locally constant
sheaf of finite dimensional complex vector spaces on %°, and we extend it to X in
the obvious way.

2) An irregular class © : Z — N. This will be recalled in detail below—in
brief it amounts to choosing the exponential factors plus their multiplicities at each
marked point. The exponential factors will be viewed as a finite covering space
I—0.

3) The singular directions A C 9 and the Stokes (oscillating) directions S C 9.
They are both finite sets.

4) A total ordering of the finite set Iy (the fibre of I — 0 at d) for any non-
oscillating direction d € 9\ S. This is the natural dominance ordering of the
exponential factors.

5) For any d € 9\ S, a filtration of V by the finite set I, the Stokes filtrations.

6) For any d € 0\ A, a grading of V; by the finite set I, the Stokes decompo-
sitions or Stokes gradings.

7) An I-graded local system V° — 0 of the same rank as V, the formal local
system (beware it is not a grading of V).

8) For any d € 9\ A, a linear isomorphism ® : V) — V, the gluing maps.

9) For any d € A, two unipotent automorphisms: g4 € GL(Vy), the wild
monodromy automorphism, and S; € GL(V})) the Stokes automorph1sm

10) A local system V — 3, the Stokes local system, where ¥ C Sis the auxiliary
surface obtained by removing a tangential puncture e(d) € X° near each d € A.

These data have lots of properties not mentioned here and are not independent
(in particular the wild monodromy and the Stokes automorphism are essentially
the same thing). Various subsets of these data can be (and have been) precisely
axiomatised to encode the category of connections. Our basic aim is to describe
this story and the relations between these data. Note this list is not comprehensive
(although any other data will be a function of the data here)—the sequel will discuss
the Birkhoff gradings.

3. Linear algebra

3.1. Gradings. Let V be a finite dimensional complex vector space and let I
be a set. A grading T of V by I is the choice of a subspace I'; = T'(¢) C V for each
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1 € I so that there is a direct sum decomposition

vV =pr(Q.

icl

Some of the I'(¢) are allowed to be the zero subspace, so I could be much bigger
than the dimension of V. An I-graded vector space is a pair (V,T).

The multiplicity (or dimension vector) of a grading is the element © € N’ with
components O(i) = dim(T';). In other words it is the map © : I — N;i — dim(T;).
Given (V,T') an index i € I is active if T'; is nonzero, i.e. O(i) # 0.

Let Aut(V,I') C Aut(V) = GL(V) denote the group of graded automorphisms,
i.e. g € GL(V) such that g(T';) =T, for all i € I.

A grading is full or toral if dim(T’;) < 1 for all 4, so that Aut(V,T) is a torus.
A basis {e;} of V determines a full grading by taking I'; to be the line Ce; C V.
Conversely a full grading determines a basis up to the action of a torus (the choice
of a basis of each one dimensional subspace I;).

Sometimes (if V' just has one grading) the graded pieces will be written V(i) =
V; =T;. Then V is said to be an I-graded vector space, and GrAut(V) C GL(V)
will denote the group of graded automorphisms.

3.2. Filtrations. Now suppose the set I is given a total ordering <. An I-
filtered vector space is a pair (V, F') where V is a complex vector space and F is a
filtration of V indexed by I, i.e. a collection of subspaces F; C V for each i € [
such that if ¢ < j then F; C Fj. We will sometimes write F'(<4) =3, _, Fj, and
F(i) = F;. Here j < i means that j < ¢ and j # ¢ (with this understood the order is
determined equivalently by the binary relation < or <). A map between I-filtered
vector spaces (V, F), (W, G) is a linear map ¢ : V' — W such that ¢(F;) C G; for
all i € I.

The associated graded vector space of (V, F) is the I-graded vector space with
graded pieces Gr;(V, F) := F'(i)/F (<), i.e. it is the external direct sum

Gr(V,F) =@ Gry(V,F),  Gr;(V,F):=F(i)/F(<i).
I

A map ¢ : (V,F) — (W,G) of I-filtered vector spaces induces a map Gr(y) :
Gr(V,F) — Gr(W,G) of graded vector spaces. By definition the multiplicity (or
dimension vector) © : I — N of a filtered vector space is that of its associated
graded. Thus given (V, F') then ¢ € I will be said to be active if Gr;(F') is nonzero.

Recall that a flag (of subspaces of V) is a nested collection of distinct subspaces
0=VycWVicVacC: - Vpy C V=1V for some k. It is full if dim(V;) = i. Thus
an [-filtration consists of the choice of a flag plus the choice of a labelling of the
subspaces by elements of I. If the dimension vector (and the ordering of T) is fixed
then there is unique labelling, so choosing a filtration with a given dimension vector
is the same as choosing a flag (with the subspaces of the right dimensions).

Since [ is ordered, an I-grading I" of V' determines a filtration F = F(I', <) of

V' defined by:
Fi =T ®).
k<i

This is the “associated filtration” determined by the ordering.
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3.3. Splittings. A splitting of an I-filtered vector space (V, F) is the choice
of an I-grading T' of V such that F' equals the associated filtration F (T, <).

It will be useful to think of splittings in terms of isomorphisms with the associ-
ated graded, as follows. Let (V) F') be an I-filtered vector space. Let F denote the
associated filtration of Gr(V, F) so that F; = ., Gr;(V, F). Clearly the filtration
F has a preferred splitting, so we can canonically identify its associated graded with
Gr(V, F).

LEMMA 3.1. Giving a splitting of (V, F) is the same as giving an isomorphism
® : (Gr(V, F),F)—(V, F)
of filtered vector spaces such that the associated graded map
Gr(®) : Gr(V, F) — Gr(V, F)
is the identity, i.e. the map Gri(F)gFi — Gr;(F) is the identity for each i € I.

Proof.  Straightforward. Given such ®, the splitting is given by I'; = ®(Gr;(V, F)).
Conversely, given a splitting, the map I'; — F; — Gr;(V, F) is an isomorphism and
its inverse gives the i-component of ®. O

This will be crucial to define the wild monodromy automorphism determined
by a pair of compatible gradings, and motivate the notion of Stokes local system.

3.4. Wild monodromy—Relative positions of pairs of gradings. Given
two bases of a vector space V (indexed by the same set) it is obvious that there
is a unique automorphism of V taking one basis to the other. However if only
the underlying gradings are given (and not the bases themselves) then in general
there is not a preferred automorphism taking one grading to the other. However
it turns out that, for a special class of pairs of gradings, there is indeed a pre-
ferred automorphism taking one grading to the other (uniquely determined by the
gradings).

Suppose [ is a set and V is a vector space. Two [-gradings I'y,I's of V are
compatible if there is some ordering < of I such that the associated filtrations are
equal:

(3.1) F(I1, <) = F(Ty, <).

Thus this common filtration is split by both gradings. Note this implies both
gradings have the same dimension vector. Also note that if I'y,I's are compatible,
then there may well be several different orderings for which their filtrations are
equal. The aim here is to show there is a preferred automorphism relating any two
compatible gradings.

Indeed if F' denotes the common filtration (3.1) then Lemma 3.1 implies there
are distinguished linear isomorphisms

q)l,q)g : GI‘(‘/,F) -V
determined by the splittings 'y, 'y respectively, so there is a preferred automor-
phism
g = g(Fl,F2) = (I)Q o <I>1_1 S GL(V)

taking I'; to I's, the wild monodromy. Of course since the gradings are given, it
is simpler to work with the inverse ¥; := @;1, which is just the natural graded



66 PHILIP BOALCH

isomorphism
U, (V,Ty) — Gr(V,F),  sothat g=U;"00;.

An analysis of the set of splittings of a given filtration enables to see it is independent
of the choice of F'. Fix an ordering < of I and an [-filtration F' of V. Let © be
its dimension vector. Let G be the set of all I-gradings of V' of dimension ©, and
let Splits(F') C G be the set of all I-gradings that split F, i.e. the gradings I" such
that F(I',<) = F.

The group G = GL(V) acts transitively on G, so G is a homogeneous space.
Given a basepoint I'y € G then the map G — G;g — ¢(I'1) identifies G = G/H
where H = GrAut(V,T'y) C G.

In this way the subset Splits(F#') C G corresponds to the subset P/H C G/H
where P = P(F) = Aut(V, F) C G is the group of filtered automorphisms (i.e. the
parabolic subgroup fixing the flag underlying F).

Now the quotient P — P/H has a natural slice: the unipotent radical U =
U(F) = Rad,(P) C P is the maximal unipotent normal subgroup of P, and it has
the property that the product map U x H — P is an isomorphism of varieties (P
is isomorphic as a group to the semidirect product HxU)!. Thus the above map
G — @ restricts to an isomorphism U(F) 22 Splits(F'), mapping U isomorphically
onto Splits(F).

More intrinsically this shows that Splits(F’) is a torsor (principal homogeneous
space) for U(F)—the natural action of U(F) on Splits(F') is free and transitive.
In particular for any two elements I'1,I'y € Splits(F') there is a unique element
g =¢g(I'1,Ty) € U(F) such that g(T'1) = T's (it equals the wild monodromy as that
has this property). This element g € GL(V) is in fact uniquely determined by the
pair I'1,I's and does not depend on the choice of filtration F' that they both split:

LemMMA 3.2. If T'1,Ts are two compatible gradings then there is a preferred
unipotent element g = g(T'1,T2) € GL(V) taking Ty to T'a, the wild monodromy
automorphism. It is the unique element g € GL(V) such that g(T'1) = Ty and
Gr(g) =1 € GrAut(Gr(V, F)), for any filtration F split by both gradings.

Proof. It just remains to show that if the gradings give the same filtration for
two different orderings then the wild monodromy elements are the same: Let Fi, Fy
be the two filtrations (for two different orderings), and suppose

'y, Ty € Splits,, := Splits(Fy) N Splits(F).

The result then follows from the fact that Splits,, is a torsor for the group U(F;)N
U(F3), which is the unipotent radical of P(Fy) N P(Fy). O

Note in general (in the non-toral case) the wild monodromy is not the only
unipotent element taking one grading to the other. In practice extra choices are
often made to give bases—the discussion here shows in general that the resulting
automorphism only depends on the gradings. The following easy lemma will be
useful.

LEMMA 3.3. Suppose I'y,T's are compatible I-gradings of V' with wild mon-
odromy g = g(T'1,T2) € GL(V). If v € T'1(i) NTa(i) for some i € I then g(v) = v.

1In concrete terms, choosing suitable bases, P is a block upper triangular subgroup of G, H
is the block diagonal subgroup of P, and U is the subgroup of P with an identity matrix in each
diagonal block.
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Proof. It is clear that ¥;(v) = ¥a(v), so the result follows. O

ExaMPLE 3.4. If dim(V) = #I = 2 and G is the set of full I-gradings of V,
then G is just the space of injective maps I" : I — P(V), since any two distinct lines
in V are linearly independent. In other words it is the space of pairs of distinct
points of the sphere P(V), labelled by I. If I = {1,z} then two gradings I'1, Ty
are compatible if and only if either I';(1) = TI'y(1) or T'1(z) = I'a(x). If F is the
filtration determined by I'y with the ordering 1 < =z, then the filtration is just
F(1) =T4(1) C F(x) = V. Thus Splits(F’) is the space of maps I' : I < P(V) such
that T'(1) = F'(1). This amounts to the choice of a point

I'(z) e P(V)\{F(1)}
of the affine line given by the sphere punctured at F'(1). Thus
Splits(F) = P(V) \ {F(1)} = A".
It is a torsor for the group U(F) = {(} 1)} 2= Al

3.5. Median gradings. If 'y, I'; are two compatible I-gradings of V let g =
9(T9,T1) € GL(V) be the wild monodromy relating them, so that I'y = g(Ty).
Since g is unipotent it has a unique unipotent square root /g € GL(V') and so the
median grading

Iy /2 :=/g(Lo)

is well defined. Of course \/g = g(I'o,I'1/2) = g(I'12,'1). More generally there is
a canonically defined path of gradings {I'; | t € [0,1]} connecting 'y to I'; given
by I'; := g:(I'y) where g = exp(tX) for the unique nilpotent logarithm X of g.

In the example above with dim(V') = 2, the median grading between two points
of G(F) = A is just the midpoint of the real line segment in A! between them.

This appears classically as the way to get real bases/gradings of a real differ-
ential equation (cf. [33] p.8, [47] p.358). The main statement boils down to the
following. Suppose [ is a set, Vg is a real vector space and V = C ® Vg is its
complexification.

LEMMA 3.5. If T,y are compatible I-gradings of V' such that T'g =Ty, then
[y /o is real.

Proof.  Write g = g(I'g,I'1),s = \/g. Note I'g = gLy = gI'y and Ty = ¢~ 'y,
so by uniqueness g = g~ !, so that g = exp(X) for a unique nilpotent X such that
X = —X. Thus s = exp(X/2) satisfies 3 = s~! and the result follows:

Ly = 5Ty =s'T'1 =s gy = Ty/o.
O

3.6. Bounding the wild monodromy. Suppose I is a set equipped with a
partial order <. Thus < is a subset of I x I satisfying various axioms. The pair
(I,<) can be viewed as a quiver where a relation ¢ < j corresponds to an arrow
1 < j. The choice of < can be used to restrict the wild monodromy, as follows.

Recall that a total order < on [ is said to “extend the partial order <7, if < is
a subset of < (they are both subsets of I x I).
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DEFINITION 3.6. The wild monodromy of a pair of compatible I-gradings I'1, I's
of V is “bounded by <”, or “satisfies the Stokes conditions”, if the associated
filtrations

(32) F(ly, <) =F([I2,<)
are equal, for any total order < extending <.
REMARK 3.7. For example if < is empty this just means that I'y = T's.

The Stokes condition can be reformulated in terms of Stokes groups as follows.
For k = 1,2 let Stox C GL(V) be the connected unipotent group with Lie algebra

(3.3) Lie(Stox) = @ Hom(I'(5), T'x(i)) C End(V).

i<j
Note Lie(Stog) is the space of representations of the quiver (I,<) on (V,T)2.
Consider the set Grlsojs = {g € GL(V) ’ g(T'1(7)) = T'y(4) for all ¢ € T} of graded
isomorphisms from (V,T'1,) to (V,T5).

LEMMA 3.8. The following conditions are equivalent:
1) Grlso1a NSto; # @, 2) Grlsoja NStos # &,
3) g(Fl,Fg) S StOl, 4) g(Fl,Fg) S StOQ,
5) The gradings T'1, Ty satisfy the Stokes conditions determined by <.
If so, Sto; = Stog and both sets 1),2) contain exactly one point g(T'1,T'y) € GL(V).

Proof. If T'; is fixed then any other I-grading I's of V' (with the same dimen-
sions as I'y) can be specified by choosing an element g € GL(V) and defining
[y(i) = g(T'1(4)). Then g € Grlsojs. Moreover the two Stokes groups in GL(V)
determined by the two gradings are then conjugate by g: Stoy = g o Stoj og~".
Now suppose we fix both gradings and assume g € Grlsojs. Then it is immediate
that g € Sto; if and only if g € Stop = gSto; g~1, proving 1) and 2) are equiv-
alent. Moreover if g € Sto; then clearly Sto, = gSto; g~ = Sto; . If moreover
g1 € Grlso;a NSto; then g71g; € Sto; NAut(V,T'1) = {1} so g1 = g. This shows
the last statement holds and establishes the equivalence with 3,4). Finally to see
1-4) are equivalent to 5) observe that the Stokes group is the unipotent radical of
the intersection of the parabolic subgroups preserving F(I'1, <), as < varies. O

3.7. Stokes conditions on pairs of filtrations. The above discussion will
be used to control the jumps of the Stokes gradings across A. The jumps of the
Stokes filtrations across S are controlled as follows.

Let I be a set equipped with two orders <, <o. Write Iy = (I, <1),Is = (I, <3)
for the corresponding ordered sets. Fix a complex vector space V and let F} be an
I, -filtration of V', and let F5 be an Is-filtration of V', both with the same dimension
vector © : [ — N.

DEFINITION 3.9. The pair of filtrations (F, F») “satisfy the Stokes conditions”
if there is an I-grading I' of V' of dimension © such that

(34) F ZF(F,<1) and Iy :.F(F, <2).
2The general fact used here is that if V is I-graded then a partial order < on I determines a

unipotent subgroup Stox of GL(V') whose Lie algebra is the space of representations of the quiver
(I,<)on V.
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The notion of relative position of pairs of flags has been much studied (cf. [31]
p.116) and one can show that the Stokes conditions above are the same as fixing the
relative position of the pair of flags to be that determined by the pair of orderings
(although, beyond the toral case, not every possible relative position will arise in
the Stokes setting).

4. Topological basics

4.1. Local systems, transport, monodromy. Recall that if M is a con-
nected topological manifold then a local system of sets I on M is a locally constant
sheaf of sets, and that this is the same thing as (the sections of) a covering space
I — M. Given an open cover of M then I can be described in terms of constant
clutching maps.

A local system of vector spaces is a local system V' — M for which the fibres
are vector spaces and this structure is preserved (the clutching maps are constant
linear isomorphisms).

Given a local system V' — M then a path v in M from p to ¢ determines an
isomorphism

py=p():Vp =V
between the corresponding fibres, the parallel transport map. (It is defined since
the path has a unique lift to the covering once the initial point in V}, is specified.)
Homotopic paths give the same map. In particular if a basepoint b € M is fixed
then the monodromy representation

p:m(M,b) = Aut(V3)

is defined by transporting points of the fibre Vj, around loops. Two local systems
V, V' are isomorphic if and only if there is an isomorphism V;, = V} intertwining
their monodromy representations.

If V is a local system of rank n vector spaces then a framing of V at b € M is
a basis of the fibre of V' at b, i.e. an isomorphism ¢ : C* — V;. Given a framing,

the monodromy representation can be viewed as taking values in GL,,(C).

4.2. Graded local systems. If I — M is a fixed covering space, then an
“I-graded local system” (of vector spaces) is a local system V' — M of vector spaces
together with a pointwise grading

Vo = BV (0)
iel,
of the fibres of V' by the fibres of I, such that the grading is locally constant, i.e.

Pv(Vp(i)) = Vq(pv(i))

for any path ~ from p to ¢ (where p,(i) € I is the parallel transport of ¢ € I,).
This is the same thing as a local system on the covering space I, but viewed from
M.

4.3. Real oriented blow-ups and tangential basepoints. If ¥ is a smooth
complex algebraic curve and a € ¥, the real oriented blow-up of ¥ at a is the surface
with boundary

I DY
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obtained by replacing the point a by the circle
0 = (T.X\ {0})/R>o

of real oriented directions emanating from a. Here T;,X is the tangent space. Thus
7 restricts to an isomorphism 3\ 9 = 3° := X\ {a} onto the punctured surface.
A useful construction is the following: If V' — 3° is a local system of n-
dimensional vector spaces and d € d, then there is a well defined complex vector
space Vy of dimension n, the “fibre of V' at the tangential basepoint d”. One ap-
proach is to note that the inclusion 3° — ¥ is a homotopy equivalence so restricting
local systems on X to ¥° gives an equivalence of categories. (AIE/ covering of 3°
extends uniquely to X.) In this way local systems on X° and on X will henceforth
be viewed as the same thing. Then V, is the fibre of V — S at the tangential
basepoint d € 0 C 3. More concretely Vy is the space of sections of V' on germs of
open sectors (in X°) at a containing the direction d (cf. [30] p.85, [44] p.386).

4.4. Extended intervals/sectors. Suppose a € Yand 7: ¥ — X is the real
oriented blow-up at a, and 9 is the circle 77%(a) C . This section will set up
notation for universal covers d of @ and intrinsically extending a local system on 0
to a sector/interval in 9.

1) The notion of angle is well defined so there is an intrinsic action of R on 0.
Thus if d € 0 and « € R then d + « are well-defined points of 0.

2) The choice of a point d € 9 determines a universal covering d of d, namely
the homotopy classes of paths starting at d. It comes equipped with a covering
map d—0 (taking a path to its endpoint) and with a point ded lying over d (i.e.
the trivial path).

Now, for positive «, 8 € R define Secty(—a, 8) to be the interval (d Q d+5)

d in the universal cover determined by d. Similarly Sectqg[—a, 8) = [d — «, d+ B)
etc. If U C 9 is an interval, define

(4.1) Secty (— U Sectq(—
deU

3) For any positive «, 8 € R, a local system V' — 9 canonically determines a
local system V> Secty(—a, B), and Vy = ‘7(;. It is defined as the pullback of V'
along the (étale) map Sectq(—c, 8) — 0. For small «, § this is just the restriction
to (d — a,d+ B) C 0. There is a canonical bijection between V; and the space of
sections of V on Sectq(—a, 8) for any «a, § (taking a section to its value in ‘N/C-lv =Vy).

5. Irregular classes and associated topological data

Fix a C ¥ as in §2. Let S — X be the real oriented blow-up, with boundary
0 (a finite set of circles), cf. §4.3. The aim of this section is to recall the notion
of irregular class (from [25]) and to show (following mainly [6,29,42,44,47]) that
this determines the following (topological) data:
1) an integer n (the rank),
2) a finite cover I — 0,
3) a dimension vector for I, i.e. amap O : I — N5 constant on each component
circle, such that »;,; ©(i) = n for all d € 0,
3) two finite sets A,S C 9
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4) A total order <4 of I for each d € 9\ S (constant as d moves in each
component of this set)

5) A partial order <4 of I for each singular direction d € A, the Stokes arrows.

This data alone will be sufficient to define the topological data classifying con-
nections in the next three sections, so the topologically minded reader could (in the
first instance) skip the following discussion and jump to §6.

5.1. Exponential local system. The exponential local system is a natural
covering space (local system of sets) m : Z — 9. To simplify notation suppose
a = {a} is just one point so 9 is a single circle (the extension to multiple points is
immediate). If z is a local coordinate on ¥ vanishing at a then local sections of Z
over open subsets of 0 are functions that may be written as finite sums of the form

(5.1) q= Zaiz_ki

where a; € C, and k; € Qs¢. An intrinsic (coordinate independent) construction
of 7 is given in [25] Rmk 3 (in which case sections of Z are certain equivalence
classes of functions, but that will make no difference in the use of these functions
below). Thus Z is the disjoint union of a vast collection of circles (g), each of
which is a finite cover of 9. A local function ¢ determines the circle {g) by analytic
continuation around @. Thus algebraically (g) encodes the Galois orbit of ¢q. Let
Ram(g) denote the degree of the cover 7 : (g) — O (the lowest common multiple of
the denominators of the k; present in the expression for ¢). The slope of (g) is the
largest k; occuring in (5.1). The tame circle is the circle (0) C Z. The functions ¢
occur as the exponents of the exponential factors e? that occur in local solutions of
meromorphic differential equations (hence the name “exponential local system”).
An isomorphic local system dZ (whose sections are one-forms) was used in [29,44].

5.2. Irregular classes. An irregular class is a map (a dimension vector) © :
7 — N, assigning an integer to each component of Z, equal to zero for all but a
finite number of circles. (Thus © is constant on each component circle, so amounts
to a map my(Z) — N.) The rank of an irregular class is the integer

(5.2) n=1k(©) =) 0O(@)eN

€Ly

for any d € 9. (If 0 has several components then © should be such that the rank is
the same for d in any component.)

A finite subcover is a subset I C Z such that = : I — 0 is a finite cover. An
irregular class determines a finite subcover, the active exponents I = ©71(Nyq).
Thus an irregular class is a finite subcover plus a positive integer for each component
(we will often omit to write the integers and say that I is an irregular class).

Any Z-graded local system V — 0 of vector spaces has an irregular class (tak-
ing the dimensions of the graded pieces). It will thus follow that any connection
determines an irregular class (the associated graded of its Stokes filtration is an
Z-graded local system).

Given irregular classes I1,I> then there are well-defined irregular classes Iy,
End(l), I1 ® I, Hom(I1,15) = Iz ® IY. In brief if V, — 0 is any Ii-graded
local system for k = 1,2 then these are the irregular classes of V}Y, End(V;), Vi ®
Vo, Hom(V7, Va) respectively. For example (¢)¥ = (—¢) and (¢1) ® (g2) may be
computed by writing ¢; = > a;t’,ga = . b;t" where t" = 27! for some integer
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r > 1 and then considering the Galois closed list q;(C%t) + g2(¢t) of sums of the
various Galois conjugates, where ¢ = exp(2mi/r).
The levels of a class I are the nonzero slopes of the component circles of End([).

5.3. Irregular curves/wild Riemann surfaces. A rank n (bare) irregular
curve is a triple 3 = (X,a,0) where X is a smooth compact complex algebraic
curve, a C X is a finite set and © is a rank n irregular class (for each point of a).
¥ is tame if © is tame (i.e. only involves the tame circle with multiplicity n at
each marked point). Thus, specifying a rank n tame curve is the same as choosing
a curve with marked points.

If ¥° = ¥\ a then any algebraic connection (F, V) — ¥° determines an irregular
curve (¥,a,0) taking the irregular classes at each marked point. Similarly any
meromorphic connection on a vector bundle on ¥ determines an irregular curve,
taking its polar divisor and irregular classes.

An irreqular type is similar to an irregular class but involves an ordering of the
active exponents (the component circles in I'). Thus an irregular type determines an
irregular class by forgetting the ordering. One can then define non-bare (dressed)
irregular curves, involving irregular types, and an ordering of the points a (cf. [18]
Rmk 10.6, [25] §4).

5.4. Stokes directions and exponential dominance orderings. By look-
ing at the exponential growth rates, there is a partial ordering <, (exponential
dominance) on each fibre of Z, as follows. Suppose d € 0 and qi1,q2 € Zy are
distinct then (by definition)

q1 <d q2
if exp(q1 — g2) is flat (has zero asymptotic expansion) on some open sectorial neigh-
bourhood of d. As usual i <; j means i <4 j or i = j. Given an irregular class
© with active exponents I then <4 restricts to a partial order on the fibre I; of I.
Since [ is a finite cover, this is actually a total order for all but a finite number of
points S C 9, the Stokes directions (or oscillating directions) of the class ©. Thus
if d € 9\ S then I is totally ordered by <.

5.5. Singular directions and Stokes arrows. The points of maximal decay
form a subset O C T consisting of the points where the functions e? have maximal
decay, as ¢ moves in (g). (Sometimes they will be called p.o.m.s or apples.) Each
circle {g) has a finite number of apples, except the tame circle which has none.
The Stokes arrows are the pairs (¢1,q2) € Z X Z such that 7(q1) = 7(g2) (so they
are both in the same fibre of 7) and ¢; — g2 € T is a point of maximal decay. In
this case write ¢; <4 ¢2, where d = 7(q1). It is viewed as an arrow from g¢o to ¢;.
This defines a partial order on each fibre Z; and exponential dominance refines it
(if g1 <a g2 then ¢1 <4 g2).

Given an irregular class © with active exponents I then there are only a finite
number of Stokes arrows in I x I. They correspond to the points of maximal decay
of the class End(I). The Stokes arrows lie over a finite set A C 0, the singular
directions (or anti-Stokes directions). The corresponding Stokes quiver at d € A
is the quiver with nodes I; and arrows <g4. As in (3.3) the Stokes arrows then
determine the Stokes groups

Stog = Sto, € GL(V}))

for any I-graded local system V° — 0. The following lemma will be useful later.
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LEMMA 5.1. Suppose d € A and i,j € Iy are such that i <4 j. Then there is
an open subset U C 0 with d € U such that i <. j for alle € U.

Proof. This follows as d is a point of maximal decay for the continuous function
e?i—49 U

5.6. Simple example. Consider Weber’s equation 3" = (22/4 + \)y where

A € C (the equation for the parabolic cylinder functions) and the correspond-

ing connection V =d — A, A = (wz/(z)i—s-)\ (1)) dx. This has just one singularity, at

z = oco. Thus ¥ = P!, ¥° = C and ¥ is a closed disk with boundary circle 0

(the radial compactification of C). A short computation, or a glance at [1] §19.8,

shows the formal solutions at co involve the mul-

tivalued functions fi = exp(qs)z™ /2 where

A q+ = +2%/4. The exponential factors exp(qs)

/ here are the main contributors to the behaviour of

solutions near x = oo, and their dominance is en-

coded in the Stokes diagram in the figure. (Such a

diagram for the Airy equation appeared in Stokes’

original paper [57] and was reproduced in [25].)

v From this we see immediately the oscillating di-

rections S C 0 are the four directions with argu-

ment 7/4 + kmw /2 (where the dominance changes),

and the singular directions A C 0 are the real and

imaginary axes (where the ratio of dominances is

largest). In general such diagrams are difficult to

define/draw precisely (especially in the multi-level case), but we can define the cir-

cles that appear, as a finite cover 7 : I — 9, and then view the Stokes diagram as

a (non-intrinsic) projection of I to the plane. In this example I = (g4) L (q_) — 0,

with each circle (g4 ) a trivial degree one cover. The apples (points of maximal de-

cay) are the four points of I that project to the four marked points on the diagram.

They lie over the singular directions A C 9. There are four Stokes arrows, one over

each point d € A, from the point of maximal growth to the point of maximal decay

in I; = 7—1(d). (Fig. 1 arises for I = Ui’(awﬂ), from the generic reading of the A,
diagram, the triangle, related to Painlevé 4 [14].)

Stokes diagram of
the Weber equation

5.7. Ramis exponential tori. Another topological object attached to an
irregular class © is the local system T — O of Ramis exponential tori, defined as
follows. The character lattice X*(T) C Z — 9 of T is the local system of finite
rank lattices (free Z-modules) generated by the active exponents I C Z, so that
X*(T)g = (Ig)z C Zg. Then T is the local system of tori with this character lattice,
so that Ty = Hom(X*(T)4, C*). Note that if V? — 9 is an I-graded local system of
vector spaces with dimension ©, then V? can be viewed as graded by X*(T). This
means there is a faithful action of T on VY, i.e. an injective map T — GL(V?) of
local systems of groups. (These tori appear in the differential Galois group of the
corresponding connections.)

6. Stokes filtered local systems

Recall that an irregular class © : T — N determines the data n, I, S, <4.
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A Stokes filtration F of type © on a local system V — S of complex vector
spaces is the data of an Ig-filtration Fy of V; of dimension ©, for each d € 9\ S,
such that:

SF1) The Fy are locally constant as d varies in 0 without crossing S,
SF2) The Stokes condition (3.4) holds across each d € S.

To be precise, in 2) the filtrations on the left and right of d € S are trans-
ported to the fibre V; to get into the exact situation of (3.4). Thus in other words
condition 2) says that there exists a local grading inducing the filtrations (i.e. a
local splitting across d): there is a grading ' of the local system V (by sub-local
systems) throughout a small neighbourhood U of d in 9, such that F. = F(T, <)
for all e € U \ {d}. The condition 1) means parallel transport along any path in
0\ S relates the filtrations.

_ DEFINITION 6.1. A Stokes filtered local system is a triple (V, ©, F') where V' —
Y is a local system of vector spaces, O is an irregular class (of the same rank as V)
and F' is a Stokes filtration on V of type O.

REMARK 6.2 (Robustness). Note that the definition is robust in the sense that
if a finite number of points is added to S (and the filtrations Fy; are not specified
at these points), then nothing is changed since SF2) implies F' is continuous across
the missing points, and thus determined by neighbouring filtrations.

Two Stokes filtered local systems V; = (V;,©;, ) for i = 1,2 are isomorphic
if ®1 = ©5 and there is an isomorphism ¢ : V3 — V5 of local systems relating the
Stokes filtrations.

To define more general morphisms first note that if (V, O, F) is a Stokes filtered
local system and d € 9\ S and i € Z, then one can define

(6.1) Fu(i)y= Y Fa(j) CVa

J€la | j<ai

Clearly if ¢ <4 j then Fy(i) C Fy(j). Thus V; can be viewed as filtered by the
poset Z; and not just by the ordered set Iy. A morphism V; — Vs of Stokes filtered
local systems is a morphism ¢ : V3 — V5 of local systems that restricts to a map of
Z-filtered vector spaces (¢(F1(i)) C F3(i) for all i € Zy), for all d € 9\ (S1 USy).

Ifv = (V,0,F) is a Stokes filtered local system, define a global section of V to
be

v e H'(V,S) := {v e HY(V, %) | v(d) € F4(0) for all d € 9\ S}

ie. it is a global section of V such that v(d) € F4(0) := Fy4((0)) for all points
d € 9\'S. Said differently, using the Stokes filtrations, define a section of V' to
have “moderate growth” in the direction d € 0 if v(e) € F,(0) for all non-Stokes
direction e in some open neighbourhood of d. Then HO(V, f]) is just the space of
sections of V' that have moderate growth everywhere. It will become clear later
(Prop. 12.7) that V has no global sections unless the tame circle (0) is active in the
irregular class at each marked point.
The dual Stokes filtered local system VV is defined as (VV,0V, FV) where

F)(q) = Fa(<—q)* C V',
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and the tensor product V; ® Vs is (V1 ® Va2, ©1 ® O9, F') where

Fa(q) = Z Fi(q1) ® Fj(q2)

9=q1+q2

for generic d (but this is sufficient by Rmk 6.2). Thus one can define Hom(Vy, V)
= V> ® V) and observe that a morphism V; — Vs is the same thing as a global
section of this Stokes filtered local system.

The definition used by Deligne and Malgrange is easily seen to be equivalent
to this (this amounts to recognising, as in §10.1 below, that filtrations of V; by
T, for d € S are canonically determined too). Thus (the global version of) their
Riemann—Hilbert-Birkhoff correspondence says that:

THEOREM 6.3. The category of Stokes filtered local systems is equivalent to the
category of algebraic connections (E, V) on vector bundles on 3°.

This was conjectured by Deligne [29] and proved by Malgrange [44] (using the
earlier Malgrange—Sibuya cohomological classification). As remarked in [46] p.57,
this is essentially equivalent to the statement of Jurkat [40]—this equivalence will
be discussed in the sequel. The definition of the Stokes filtration of a connection
will be discussed in Apx. A.

6.1. Returning to the simple example of §5.6,
the Stokes filtrations (in this example) amount to
recording the lines in V' spanned by the subdom-
inant (or recessive) solutions on each sector 9\ S.
Intrinsically the filtrations are indexed by the com- g
ponents of I\ 7~ 1(S) (totally ordered over each
sector by the dominance of the exponential fac-
tors). Since V is trivial this amounts to specifying
four one dimensional subspaces Lg, L1, Lo, Ly C
H°(V) = C? where L is the line of solutions
which are recessive at co when arg(z) = kw/2.
The Stokes condition (3.4) means that L; # L;4q S with S ¢ 8 marked
for all i (indices modulo 4).

7. Stokes graded local systems

Recall that an irregular class © : Z — N determines the data n, I, A, <4.
A Stokes grading T’ of type © of a local system V' — X is the data of an
I4-grading T'y of V; of dimension O, for each d € 9\ A, such that:

SG1) The I'; are locally constant as d varies in 9 without crossing A,
SG2) The Stokes condition (3.2) holds across each d € A.

To be precise, in 2) the gradings on the left and right of d € A are transported
to the fibre V to get into the exact situation of (3.2).

DEFINITION 7.1. A Stokes graded local system is a triple (V, ©,T") where V' — s
is a local system of vector spaces, O is an irregular class (of the same rank as V)
and I is a Stokes grading on V of type O.
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Again the definition is robust, by Rmk 3.7.

Note that if d € A and L, R € 0 are points just to the left and right of d, then
there are two distinguished isomorphisms Vi — Vg: one given by the transport of
the local system V', and the other given by the graded isomorphism (wild transport)

(7.1) (Vi,Tr) = (Va, Tr)-25(Vy, TR) = (V,TR)

where the first and third isomorphisms come from the local system structure of V,
and g = g(T',Tg) is the wild monodromy. This leads to the Stokes local system
(59).

The terms Stokes grading or Stokes decomposition will be used interchangeably.
If d € A then the fibre V; can be given the median grading of the fibres to either
side (cf. §9), yielding a preferred decomposition of each tangential fibre of V.

The global sections of a Stokes graded local system V = (V,0,T') are the
sections of the underlying local system V' that go into the piece graded by the tame
circle (0) in each singular sector:

(7.2) H'V, %) = {v e H'(V,D) | v(d) € T4(0) for all d € 9\ A}.

A morphism V; — V5 is a morphism ¢ : V3 — V5 of local systems that restricts
to a map of Zy-graded vector spaces (o(I'k(i)) C T'2(i) for all i € Z,), for all
de 8\(A1 UAQ)

The dual Stokes graded local system VV is defined as (VV,0VY,T"V) where

1

= @ Tui)| vy,
i€la\(~a)

and the tensor product V; ® Vs is (V1 ® V2,01 ® O4,T') where

Ta(@) = P Tila) ®Ti(g)
q=q1+q2

for generic d (but this is sufficient by robustness). Thus one can define Hom(Vy, V)
=V, ® V) and observe that a morphism V; — V, is the same thing as a global
section of this Stokes graded local system.

7.1. Returning to the simple example of §5.6,
a Stokes grading of type I = (g_) U (g+) amounts
to specifying a direct sum decomposition of V' on
each sector of 9\ A. Intrinsically the Stokes grad-
ings are indexed by the components of I\ 7~ 1(A). g
Thus (away from S) this amounts to choosing two
complementary one dimensional subspaces of V|
that we call the “subdominant” and “dominant”
solutions. In this example the Stokes conditions
(3.2) say that at each point d € A the lines of
“subdominant” solutions on each side match up.
Consequently any “dominant” solution may jump $ with A C & marked
at d, by the addition of a “subdominant” solution.
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8. Stokes local systems

Asin §7, recall that an irregular class © : Z — N determines the datan, I, A, <.
Also for d € A the Stokes arrows <, determine the Stokes group Stog C GL(V))
for any I;-graded vector space VY, as in (3.3).

Two slightly different definitions of a Stokes local system will be given, the first
with explicit gluing maps.

Suppose V' — Y is a rank n local system of complex vector spaces and V° — 9
is an I-graded local system of dimension ©. Thus on 0 there are two local systems,
V0 and the restriction of V.

A gluing map ® is an isomorphism of vector spaces ®4 : V) = V; for each
d € 0\ A, which is locally constant as d varies in 0 without crossing A. Thus it is
a section of the local system Iso(V?, V) C Hom(V?, V) over 9\ A.

A gluing map determines an automorphism S; € GL(VY) for each d € A, as
the composition of the isomorphisms

(8.1) VO LyR oy, 2y, To e 3,y

where L/R denotes fibres just to the left /right of d, the maps 1,5 are the transport
of V9 and 3 is the transport of V. (More precisely L means the positive side of d).
A gluing map is Stokes if Sy € Stoy for all d € A.

DEFINITION 8.1. A “Stokes local system with gluing maps” is a four-tuple
(V, V% ©,®) where V — X is a local system of vector spaces, © is an irregular class
(of the same rank as V), V? — 9 is an I-graded local system of dimension ©, and
® is a Stokes gluing map.

Note that the gluing map ® is Stokes if and only if (V,©,T") is a Stokes graded
local system, where I' is the set of gradings defined by I'y(i) = ®4(V,2(i)) for all
i € I;,d € 0\ A. This defines a functor to Stokes graded local systems, and it will
be seen below that it is an equivalence.

The wild monodromy at d € A of a Stokes local system with gluing maps is
the automorphism gg € GL(V}) glven by the composition of the isomorphisms:

(8.2) Vd—>VL—>VL—>VR4VR—>Vd

where L/R denotes fibres just to the left/right of d, the maps 1,5 are the transport
of V and 3 is the transport of V°. Clearly g4 is conjugate to Sy, but acts on a
different space.

By definition the global sections of V = (V,V? &, ©) are pairs (v,v°) where
v € HY(V,S) and vy € H°(V°(0), ), which map to each other under the gluing
maps (at each point d € &\ A). This is the same as giving just v € H(V, ) such
that v(d) is fixed by gq for all d € A, and ®,'(v(d)) € V(0) for all d € 9\ A.
However it follows from Lemma 3.3 that the first condition is redundant and so

(8.3)  H'(V,D)={ve H'(V,Z) | v(d) € ®a(V,(0)) for all d € O\ A}.

To motivate the second approach, note that the graded local system V° — 9
is the same as giving a graded local system on each halo (a germ of a punctured
disk around each puncture). Thus there are two local systems on each halo: V°
and the restriction of V. The gluing maps glue them together, away from each
singular direction. One can picture this by putting VY on a second copy of the
halo, above the first one (with V on it), and then gluing the two copies, away from
the singular directions (leading to a small tunnel over each singular direction). The
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second version appears by removing the base of each tunnel, and then pushing this
picture flat (yielding a surface with tangential punctures).

Said differently for the second version just restrict V' to the complement of the
halos, so the gluing maps amount to a way to glue V° to V across each component
of the outer boundary of each halo, away from the singular directions. This is the
most convenient description in practice. It leads to the idea of fission [15], that the
structure group is broken (to the group of graded automorphisms) at the boundary
of ¥, as illustrated in the picture on the title page. (Here the I-graded local system
is identified with a local system on I — H in the usual way, and the cover I is glued
to the interior of the curve—in other words a Stokes local system is thus the same
as a sort of generalised local system on the surface in the picture, where the ranks
jump as the surface bifurcates. The tangential punctures are not drawn but should
be there). R

Define the halos H C ¥ as a small tubular neighbourhood of 9, so H is a union
of annuli. Let & be the boundary of H in the interior of ¥. The cover I — 9
extends to a cover I — H. Choose a smooth bijection e : & — & preserving the
order of the points. Thus if the irregular class © and thus A C 0 is given, then the
auxiliary surface:

Y =3(0) =S\ e(A)

is well defined, removing the tangential punctures e(d) from Sforde A IfdeA

let 4 be the small positive loop in 3 based at d that goes across H, around e(d)
and back to d.

DEFINITION 8.2. A Stokes local system is a pair (V, ©) where © is an irregular
class and V is a local system of vector spaces on i(@), equipped with an /-grading
over H (of dimension ©), such that the monodromy Sy := p(7yq4) is in Stog C GL(Vy)
for each d € A.

The element Sy = p(y4) € Stog C GL(V,) is the Stokes automorphism. The
equivalence of the two approaches is straightforward, whence S, is identified with
that defined in (8.1). This is the specialisation to general linear groups of the
definition in [18,25].

Note that an I-graded local system of dimension © is the same thing as an
Z-graded local system of dimension © (all the other components of Z grade the
trivial rank zero sublocal system).

If vV = (V,0) is a Stokes local system then a section of V is a section of V that
takes values in V(0) over each halo (the graded piece indexed by the tame circle).
A morphism of Stokes local systems V; — Vs is a map of local systems on
¥(01)NX(O2) that restricts to a map of Z-graded local systems over H. In particular
two Stokes local systems are isomorphic if and only if their irregular classes are equal
and their underlying local systems V1, V, are isomorphic.

Note on terminology: The “wild monodromy” and “Stokes automorphism”
are essentially the same thing—mnamely the monodromy of the Stokes local system
around a small positive loop around a tangential puncture. In this paper the term
“Stokes automorphism” will be used if the loop is based in the halo, and the term
“wild monodromy” will be used if the loop is based outside the halo (in the interior
of the curve). For example g4 € GL(V;) and Sq € GL(V)). Note however that
these equal if one starts with a Stokes graded local system (see Lemma 9.1).



TOPOLOGY OF THE STOKES PHENOMENON 79

8.1. Returning to the simple example of §5.6, a Stokes local system of type
I = {g-)U{q4) is a local system V on the auxiliary surface 3, graded by I over
the halo (the shaded area in the figure). Given d € A the fibre V, is graded by
I; and so the Stokes arrow between the two points of I; determines the Stokes
group (§ %) € GL(V4), where the star corresponds to maps along the arrow. The
monodromy of V around a small loop (based at d) around the tangential punc-
ture e(d), should be in this Stokes group. Choosing a basepoint b € 9 and suit-
able loops in Y based at b then yields the formal monodromy h € GrAut(Vy)
(the monodromy of V around 9) and Stokes automorphisms Si, S3, S3, 54 (in al-
ternating unipotent groups) satisfying the monodromy relation hS4S35257 = 1.

REMARK 8.3. Here are more details on how
to see the two versions are equivalent. Choose a
retraction of H 2 [0, 1] x 0 onto 0 (dragging e(d)
along a path A4 to d). Consider the intermediate
category of four-tuples (V,V° & ©) where VO is
now defined on all of H, and the gluing maps are
defined on all of H except on the paths (cilia) Ay
for d € A. Such objects restrict to give a Stokes
local system with gluing maps in the obvious way,
yielding an equivalence. On the other hand the
restriction of V' to the complement of H really does

now glue to V° on &'\ e(A), defining a Stokes local and Stokes arrows drawn
system V| yielding an equivalence.

S with Stokes diagram

REMARK 8.4. 1) An alternative version (cf.

[19] Apx. B) is to glue the halo H = 0 x [0, 1] on the other side of 9, and then
the tangential punctures are made at A C 9. This is homotopy equivalent to the
presentation above. In practice it is not important exactly where the tangential
punctures are, provided they are in the right order (cf. also the version in [18] with
non-crossing cilia drawn to keep them in order, which can be pulled tight whenever
convenient—this perhaps best reflects the desired picture especially when the curve
etc moves).

2) Perhaps the simplest approach is to just glue a second copy of 9 onto 9 away
from the singular directions A C 9. One can prove the resulting (non-Hausdorff)
space has the desired fundamental group [38], and then view V as a local system
on it.

9. Stokes local systems and Stokes graded local systems

A Stokes local system with gluing maps (V, VY, ®, ©) determines a Stokes grad-
ing I', by taking the image of the graded local system under the gluing maps:

La(i) = @a(Vy (1))

for all d € 9\ A,i € I;. Conversely given a Stokes graded local system (V,0,T)
it is easy to construct a Stokes local system (with gluing maps) mapping to it as
above: If d € A then transport the gradings on either side of d to V; and define I'y
to be the median grading (of V) determined by these gradings from either side, as
in §3.5. Then, for any d € 9, define V' to be the graded vector space (Vz,I'y). The
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spaces V) form the fibres of a graded local system V° — 9: for any path in 9\ A
this is clear. On the other hand for a small path across some d € A use the “wild
transport” (7.1). Similarly for a path ending at d € A, for example:

r ,F
(Vi,Tr) = (Va,Tp) Y8 (v, 1).

This defines the graded local system VY, and by construction it comes with gluing
maps (the identity) ®4: V) — V, for all d € 9\ A.

To show this is an equivalence of categories it remains to check fully faithfulness,
which is left as an exercise. (Using the internal hom it is enough to show the map
between spaces of global sections is bijective, and this is immediate, comparing
(7.2) and (8.3).)

LEMMA 9.1. Suppose (V, V9 ®,0) is the Stokes local system with gluing maps
of a Stokes graded local system (V,T',0) as constructed above. Then the wild mon-
odromy equals the Stokes automorphism as an element of GL(Vy) for any d € A.

Proof. Recall that V) is the space Vj equipped with the median grading I,
so the statement makes sense. There are three gradings 'y, ', 'y in V3. Then
ga = g(I'r,T'r), and the definition of S, says that Sq = g(I'r,,T'q) 0 g(T'q,I'r) =

(\/g_d)2 = Ya- O

10. Operations on Stokes filtered local systems

10.1. Intermediate filtrations. Suppose (V,0, F) is a Stokes filtered local
system indexed by I. If d € J is a Stokes direction for I then the dominance ordering
of I; is only a partial order. Nonetheless for each i € I; a subspace Fy(i) C Vy
can be defined as follows. Let F (i), Fr(7) be the corresponding steps of the Stokes
filtrations, just on the left and right of d respectively. Transport them to d (using
the local system structure of V'), to obtain subspaces F,/r(i) C Vg, and define the
intermediate filtration:

(10.1) Fy(i) := Fp(i) N Fg(i).

These subspaces have the property that if ¢ <4 j then Fy(i) C F4(j). Note that
the partial order <4 is the intersection of the adjacent orders on either side of d.

LEmMMA 10.1. Ifd € S,i € Iy and T is any local splitting of F' across d, then
Fy(i) equals the filtration associated to the grading T' by the partial order <4:

Fa(i) = F(T, <a) (i) :=Ta(i) ® @ Tu(j

j<ai

Proof. Fix d € S and i € I;. Then i determines a partition of I; into five
subsets:
Iy=1 Ul __ Ul Ul Ul

where I_ = {i} and for example I, _ is the subset of elements of I that are greater
than ¢ on the left and less than 7 on the right of d. Thus the choice of any local
splitting determines a decomposition Vg =V, @V__@V_  ®V,_ @ V- (summing
over the corresponding indices). By construction F, = V__ & V_, @ V_, Fp =
V_o_®Vi_@V_ and F4(i) = V__@®V_, so the claim follows: Fy(i) = F(i)NFr(7).
|
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Thus one can just as well incorporate the data of the filtration of every fibre V,
(not just away from the Stokes directions) in this slightly generalised sense (since
I, is only partially ordered, they are not quite filtrations in the usual sense). As
shown above this “extra data” is canonically determined by the Stokes filtration.

10.2. Associated graded local system. Suppose (V,0, F) is a Stokes fil-
tered local system with active exponents I. For each d € O one can consider
the associated graded vector space Gr(Vy, Fy). Even though the filtrations will in
general jump discontinuously at Stokes directions, these graded vector spaces fit
together in a canonical way as the fibres of a graded local system:

LEMMA 10.2. Given a Stokes filtration F on a local system V — 0 indexed by
I C Z, then there is a canonically determined I-graded local system, Gr(V, F') — 0,
the associated graded, with fibres the associated graded vector spaces Gr(Vg, Fy).

Proof. Away from Stokes directions this is immediate since the Stokes filtrations
are locally constant. Suppose d is a Stokes direction. In the notation of the proof
of Lemma 10.1 the piece of Gr(Vy, Fy) with index i € I is Fy(i)/Fq(<i) at d, and
on the left the corresponding graded piece is Fp(i)/Fp(<i). Given a local grading
then Fy(<i) = V__ and Fr(<i) = V__ @ V_,. It follows that the natural inclu-
sion map Fy(i) = Fr(i) N Fr(i) — Fr(i) maps Fy(<i) into Fr(<i), and induces
an isomorphism Fy(4)/Fy(<i) = F(¢)/FL(<%) on the quotients. Similarly going
to the right of d. This provides the gluing maps to define the graded local system. [

In the simple example of §§5.6,6.1, the associated graded V° = Gr(V,F) —
0 is isomorphic to the local system whose solutions are the two functions fy =

exp(ge )z ~1/2 appearing in the formal solutions at co. The monodromy of V' (the
formal monodromy) is thus —(diag(¢,#71)) where ¢t = exp(27i)). A nice exercise
shows this amounts to taking the cross-ratio of the four lines Ly, ..., Ly C C? (see
[23] Lem. 11).

11. Stokes filtrations from Stokes gradings

A Stokes graded local system (V,©,T") determines a Stokes filtered local system
(V,0, F) by taking the associated filtrations, using the dominance orderings. In
detail this goes as follows. For any d € 9\ S we need to define an I-filtration Fy
of V;. There are two cases:

1) If d & A then F; = F(T', <4) is the filtration associated to the grading using
the dominance ordering of 1.

2) If d € A then transport the two gradings on either side, to V; and then take
their associated filtrations. The Stokes condition ensures these two filtrations are
equal, since the order <4 extends the partial order <4, by Lemma 5.1.

To show this is a Stokes filtration first note that Lemma 5.1 implies the follow-
ing:

COROLLARY 11.1 (Malleability). Suppose (V,0,T') — 0 is a Stokes graded local
system and d € ANS. Let I'p,I'r be the gradings just to the left and right of d

and let Fy, Fr be the corresponding associated filtrations. Transport all this to Vy.
Then both gradings split both filtrations.

Proof. By Lem. 5.1 the orders <p, <p from either side extend the partial order
< 4. Thus the result follows immediately from the Stokes conditions at d for I'y,, I'g.
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LEMMA 11.2. (V,©,F) is a Stokes filtered local system.

Proof. For any d € S we need to check the two filtrations on either side of d
satisfy the Stokes condition. Firstly if d ¢ A then this is clear, since then I'y gives
the desired splitting. Secondly if d € A, then the transport of the grading on either
side will split both filtrations, by Corollary 11.1. O

This defines a functor ¢ from Stokes graded local systems to Stokes filtered
local systems. It is fully faithful and surjective so is an equivalence of categories (it
is surjective and not just essentially surjective). Surjectivity follows from the main
theorem:

THEOREM 11.3. Any Stokes filtered local system (V,0,F) admits a unique
Stokes grading ', such that F' is the Stokes filtration associated to T':

(V,0,F) =¢(V,0,T).
This will be proved in the next section, and fully faithfulness in §12.4.

REMARK 11.4. Note that a Stokes graded local system thus determines a graded
local system in two ways: as the associated graded of the associated filtrations, or
via the converse construction in §9. The fact they are canonically isomorphic is left
as an exercise.

11.1. In the simple example of §§5.6,6.1,7.1, Thm. 11.3 holds since the Stokes
gradings are then given by the two adjacent subdominant solutions: I'; = L;_1 ® L;
(indices modulo 4). Indeed, the fact the Stokes gradings split the Stokes filtrations
implies the “subdominant” line in each Stokes grading equals the subdominant line
in the Stokes filtration. Then the fact the Stokes gradings are continuous across
each oscillating direction S C 0 implies the “dominant” lines in each Stokes grading
are also determined. The general case is trickier.

12. Canonical splittings

For the existence of such splittings, the approach here fleshes out a sketch
of Malgrange [32] p.73, composing one level splittings (this statement can be ob-
tained in several other ways, e.g. via multisummation). This is then upgraded to
give the uniqueness statement in Thm. 1.1 too, which looks to be new. The idea of
decomposing by the levels reflects the Gevrey asymptotics [49,50], and was previ-
ously used in the algebraic construction of the general (multi-level) wild character
varieties [18,25], nesting the one-level fission spaces.

12.1. Facts about Stokes groups etc. This section collects some facts
about Stokes groups and their relation to splittings and the splitting groups Ag.
Similar statements are in [6], [47] p.362, [42] (some terminology comes from the G
version in [12,18]).

Let (V,0, F) be a Stokes filtered local system with active exponents I — 0.
Let VO = Gr(V, F) — 0 be the associated I-graded local system.

Let Stog C GL(V)?) be the Stokes group, determined by the Stokes arrows <4
as in (3.3). It is trivial unless d € A.
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Similarly define the splitting group Aq C GL(VY) to be the unipotent group
with Lie algebra determined by the dominance (partial) order <4. This is maximal
if d ¢S, and if d € S it is the intersection of the two adjacent (maximal) groups.
The set Splits; C Iso(V}?, Vi) of splittings of (Vy, Fy) is a torsor for Ag.

More generally for o, 8 € R let Splits;(—a, ) C Splits; be the (possibly
empty) set of gradings that split the Stokes filtrations throughout Secty(—a;, 3) (re-
calling the conventions from §4.4 for ramified intervals). If nonempty, this is a torsor
for the group Ag(—a, 8) C Ay (defined by transporting to d all the splitting groups
over Secty(—a, ) and then intersecting them). Similarly for closed/half-closed in-
tervals etc (if a closed interval ends on a Stokes direction then the intermediate
filtration there is included).

Now suppose [ just has one level k. Then S = A + 7/2k = S+ 7/k, and this
leads to a clear dictionary between the Stokes groups and the splitting groups, as
follows. All this follows directly from the definitions of Stog and A.

First some basic terminology: 1) a singular sector U C 0 is an open interval
bounded by consecutive singular directions, 2) a half-period d is a sequence of
consecutive singular directions turning in a positive sense, consisting of the singular
directions under some (possibly ramified) sector of the form Sectq[0,7/k), 3) the
supersector U of any singular sector U is the sector U = Secty(—m/2k,/2k)
(recalling (4.1)). Note U is bounded by Stokes directions and that the underlying
singular directions make up a half-period. 4) If d = (dy, ..., d;) is a half-period, let
do=d; —n/k € A and let 6(d) := (do + d1)/2 + 7/2k be the bisecting direction of
d (it is not a Stokes direction).

The “restrictions” of I,V,V? to Secty(—a, ) (as in 3 of §4.4) are trivial so it
makes sense to compare the partial orders <4, <4 (and thus the Stokes groups and
the splitting groups) defined at different points in such ramified sectors (using the
transport in the sector).

The key fact is that <4 is extended by <. if e € Sectq(—n/2k,nw/2k). This
implies

Stog C Ac for all e € Sectq(—m/2k, 7/2k).

Moreover any relation ¢ <g4 j corresponds uniquely to a relation ¢ <. j for a unique
e € Secty(—m/2k,w/2k). This implies, for any d € 9, that Ay is directly spanned
by the Stokes groups Sto. for e € Sectq(—mn/2k, w/2k):

Ag = {Sto, | e € Secta(—m/2k,/2k) )*

Recall ([26] §14) that a group is “directly spanned” by a collection of subgroups if
the product map (in any fixed order) is an isomorphism (of spaces not necessarily
of groups). For example the Stokes groups in any half-period d directly span a full
unipotent group (the unipotent radical of a parabolic) Stoq := <Stod | de d>69
GL(Vy) (a))- It follows that Agq) = Stoq .

More generally if o+ < 7 /k then Ag[—a, f] is directly spanned by the Stokes
groups in Sectq (B — 7/2k, 7/2k — ):

(121) Agl~a,fl= ()  Ae={Stos | f € Secta(8 — m/2k,m/2k — a) ) .

e€Secty[—a,f]

Conversely if d € A let d* denote the half-period of singular directions in
Sectq[0,7w/k) and let d— be the half-period of singular directions in Secty(—/k, 0]
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(the two half-periods ending on d). Then
(12.2) Stog = Stog- NStog+ = Ag(—7/2k,7/2k).

12.2. Preferred splittings in the one level case. If d ¢ A then (12.2)
still holds, and now says that A4(—m/2k,7/2k) = {1}. If U is the singular sector
containing d this is the same as saying A4(U) = {1}, where U is the supersector.
Note that d +7/2k are not Stokes directions—since they differ by 7 /k their (total)
dominance orderings are opposite, and this is the reason the splitting group is trivial.
This implies there is at most one splitting on U. A key point is that there is exactly
one:

PropoOSITION 12.1. If (V,0, F) has just one level k_and U C 0 is a singular
sector then there is a unique splitting on the supersector U = Secty (—mn /2k, 7 /2k).
Equivalently if d € 9\ A then Splits,(—m/2k, 7 /2k) consists of exactly one point.

Proof. A direct proof is in [44] Lemme 5.1 (see also [5]). The result also follows
for general reasons: From the opposite filtrations at d £+ 7/2k it is easy to see what
the grading must be. Then one needs to check this grading splits the intermediate
filtrations. However the Bruhat decomposition implies the intermediate filtrations
are uniquely determined by the filtrations at the ends (since the permutations at
the Stokes directions give a length preserving decomposition of the order reversing
permutation), cf. e.g. [31] p.106 (az). O

Thus given a singular sector U there is a unique splitting on U. Let Py €
Splits(U) be the restriction of this splitting to U. These yield a Stokes grading,
and it is unique:

PROPOSITION 12.2. Suppose (V, 0, F) is a Stokes filtered local system indezxed
by I, and I has just one level. Then there is unique Stokes graded local system
(V,0,T) that is compatible with F.

Proof. Let k denote the level, and let V° — O be the associated graded. For
each singular sector U let ®r; € Splits(U) C Isoy(V?, V) be the preferred splitting,
from Prop. 12.1. To check that the Stokes conditions hold, note that if d € A and
Uy, Uy are the adjacent singular sectors then Uy NUsy = Secty(—m/2k, w/2k). Thus
both splittings work on this intersection so they are related by an element of the
splitting group Agq(—m/2k,7/2k). By (12.2) this group equals Stog, so the Stokes
conditions hold.

Now to prove uniqueness, let Uy be a singular sector and let Uy, Us, ..., U1 =
U_; be the others, in a positive sense (indices modulo m). Let d; be the negative
edge of U; so U; = Sect(d;,d;+1). Suppose ®; is a splitting on U; for each 7, and
they satisfy the Stokes conditions. We will show that ®( extends to a splitting on
all of U 0, SO ®q is the restriction of the unique splitting there.

Write d = dy, e = dy so Uy = Sect(d, e) and Tj‘o = Sect(d—w/2k,e+7/2k). Let
T1,...,Tr = €+ 7/2k be the Stokes directions in [e, e + m/2k], turning in a positive
sense from Up. It follows that 7._1 = d + 7/2k. We will show inductively that @
extends to a splitting on (d,7;) for j = 1,...,7. If j = 1 then there is nothing to
do (since splittings always extend up to the next Stokes direction). Now assume
®, extends to a splitting on (d, 7;) for some j < r. The aim is to show ®( extends
across 7; to a splitting on (d, 7;41). Observe the following: R

1) there is a splitting on (d, 7j41) (e.g. the unique splitting on Uy).
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2) there is some index d; € [0,7;) such that ®; is a splitting in some (small)
neighbourhood of 7; (by Cor. 11.1, since 7; will be in the closure of some U;).
Let d* be the set of singular directions in the sector [e,7._1), so d; € d* and let
Stot = (Stos ] f € dH)®. By hypothesis ®; = &S for some S € Sto™.

3) by definition d* C (d, 7—1) = (d,d + 7/2k) so that (12.1) implies

Sto* C Ald,d + 7/2k] = Ald, 7r_1] = Ald, 7,.)

where the last equality follows since A only changes at Stokes directions. In par-
ticular since A[d, 7,) C A[d, 7;) this implies that (.S is a splitting on (d, 7;) (since
D is), and so (S is in fact a splitting on all of (d, 7j41) (as it equals the splitting
®; across 7;). Thus since S € Ald,7.) C A(d, 7j41) it follows that ®g itself is a
splitting on (d, 7j41), completing the inductive step.

Thus, by induction, ®¢ is a splitting on (d, 7). Similarly going in the neg-
ative direction, ®q is a splitting on all of Uy, and so equals the unique splitting
there. Repeating on each singular sector yields the desired uniqueness statement. [J

12.3. Preparation for the induction. In order to get the proof to work
cleanly a slightly more general context is needed, which will now be made explicit
so as to clarify the logic.

Natural quotients. If k is a positive rational number, let Z# C Z be the
sublocal system of exponents of slope < k, and let Z(k) = Z/Z* be the quotient
local system. Thus sections of Z(k) can be represented by functions that can be
expressed as finite sums of the form ¢ = " a;z! for rational numbers I; > k (where
x = 27! for a local coordinate z). In turn if I — 9 is a finite subcover, let

J=1I(k)=1/T".
This means that two local sections of I are identified if their difference has slope
< k. Note that the maps I — J and J — 0 are both finite covering maps, so there
is a factorisation
I—J—>»0
of the cover I — 0. Such covers J = I(k) — 0 will be called “natural quotients”.
If I > k one can repeat and define K = J(I) = J/Z' = I(l), so that

I—-J—K—0.

Partitions of the fibres. Given a nested cover 7 : I — J — 9 (as above) then
I can be viewed as “graded” or partitioned by J. Namely each fibre Iy of I is
partitioned into “parts” 7~!(j), indexed by j € Jy (for any d € 9).

Canonical factorisation and fission tree. Thus for any natural quotient
7 : I — 0 (such that 7 is not an isomorphism) there is a minimal rational number
k € Q such that the map I — I(k) is not an isomorphism. Iterating, it follows that
any finite subcover I — 0 has a canonical factorisation

(12.3) I — I(ky) = I(ks) — -+ = I(ky—1) — I(k,)— 0

where each k; is minimal so that the map I(k;_1) — I(k;) is not an isomorphism.
The numbers k1 < ks - -+ < k, are the levels (i.e. the adjoint slopes) of I. In particu-
lar the sequence of degrees of the covers I(k;) — 0 is strictly decreasing. Sometimes
this nested sequence of covers (12.3) will be called the “three-dimensional fission
tree” of I. (It is a quite remarkable topological object canonically associated to any
algebraic connection.) If I is unramified then each map I(k) — 0 is a trivial finite
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cover, and then the three-dimensional fission tree is just the product of the circle
0 with the (two-dimensional) fission tree attached to I (the rooted tree described
in [14] Apx. C). Indeed if we quotient by the action rotating the circle a tree be-
comes visible: if a coordinate is chosen, I/9 can be identified with a finite subset
{q1,.--,qn} of 2C[z] (or more precisely as a multiset). In turn (I(k)/0) C 2C[z]
can be defined by deleting all monomials of each ¢; of degree < k, yielding the map
I(k) — I(1) for any ! > k. Thus the quotient of (12.3) by the circle is visibly a tree
with leaves I/9 and root I(k,)/0 = {x}:

(12.4) 1/ — (k1) [ — -+ — T(ky) /0 = {#}.

The picture on the title page corresponds to a simple twisted case (related to the
irregular class (2°/2) at oo of the linear equation whose isomonodromic deformations
yield the first Painlevé equation). The reader is invited to draw (or at least imagine)
the analogous picture in a case with several levels (iterated fission).

Data attached to natural quotients. Natural quotients J = I(k) behave
just like finite subcovers of Z. In particular the dominance ordering descends to the
fibres of J in the obvious way and then Stokes directions, singular directions, levels,
Stokes arrows etc of J — 0 are well-defined. In turn the notion of “Stokes filtered
local system indexed by J” is well-defined. Indeed we could choose a component
of Z in each equivalence class so as to get an embedding J — Z, and thus identify
J itself as a finite subcover (for example by forgetting all the terms of order < k
with respect to some coordinate). Then all the data attached to J is the same as
that which arises by viewing J as a finite subcover (independent of the choice of
embedding). In this way the notion of a natural quotient is a mild generalisation of
a finite subcover of Z (since we don’t want to choose such an embedding), and we
don’t need to worry about the fact that J is not canonically a finite subcover of Z.

Partially graded Stokes filtered local systems. Suppose V — 0 is a
J-graded local system. Then the dominance ordering determined by J determines
the associated filtration, yielding a Stokes filtered local system (V, F(V')) indexed
by J. This will be called the tautological Stokes filtration.

Now suppose 7 : I — J is a natural quotient. A “Stokes filtered local system
indexed by I — J” is a pair (V, F') where V is a J-graded local system and (V, F')
is a Stokes filtered local system indexed by I, and they are compatible in the sense
that each I-filtration Fy refines the J-filtration F(V)4. In particular each local
I-grading @, Va(i) (in the definition of (V, F)), is a refinement of the J-grading:

Vi) = D Vali)
iem—1(4)
for all j € J;. For clarity this will sometimes be called a “partially graded Stokes
filtered local system”. For example if J = 0 then this is just a Stokes filtered local
system indexed by I. At the other extreme, if I = J it is just an I-graded local
system (with its tautological Stokes filtration). Some natural examples will appear
in the next subsection.

Since the exponents in different graded pieces do not interact it is natural to
define the “levels of I — J” to be the slopes of local sections g; — ¢; where ¢, j are
in the same part of I. This means that the levels of I — I(k) are the levels of T
that are < k. Thus in the factorisation (12.3) each map I(k;) — I(k;+1) just has
one level, equal to k; (including I — I(k1)). In turn the Stokes directions, singular
directions, Stokes arrows etc of I — J are well-defined. For example the Stokes
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arrows I —J are the subset of I x I given by the pairs (¢;, ¢;) where ¢, j are in the
same part of I; and d is a point of maximal decay for ¢; — ¢;. The corresponding
singular directions are denoted A(I—J).

Similarly a “Stokes graded local system (V,T') indexed by I — J”, consists of a
J-graded local system V', plus an I-grading I'y of V; that refines the J grading, for
each d € 9\ A(I — J), and satisfies the Stokes conditions.

If I — J just has one level and (V, F) is indexed by I — J then Prop. 12.2
cannot be applied blindly to see there is a unique compatible Stokes grading, since
1) J may have monodromy, and 2) the dominance orders of I; are not necessarily
opposite at the ends of a supersector (but they are in each part). However it is
clear preferred gradings exist: given a singular sector U, consider one sheet of J on
U and the corresponding part of I—upon restriction to the supersector U , Prop.
12.1 can then be applied to give a unique splitting. Then repeat for each sheet of J.
Then the proof of Prop. 12.2 works verbatim to show this gives a Stokes grading
and that there are no others, yielding:

PROPOSITION 12.3. Suppose I — J just has one level and (V, F) is a Stokes
filtered local system indexed by I — J. Then there is unique Stokes graded local
system (V,T') indexed by I — J, that is compatible with F.

Stokes groups by level. Suppose I — J = I(k;). If V is I-graded and d € 9
then the three Stokes groups:

Stod(I), Stod(J), Stod(I% J) C GL(Vd)
are well defined.

LEMMA 12.4. The groups Stogq(J), Stog(I — J) are subgroups of Stogq(I) (with
Stogq(J) being a normal subgroup) and they directly span it in any order. In other
words there is a semidirect product decomposition.:

(12.5) Stoa(I) = Stog(I — J)x Stog(J).

Indeed there is a parabolic subgroup P C GL(V;) with Levi decomposition
P = H - U such that Stog(I) C P and Stog(I — J) = Stoq(I) N H and Stog(J) =
Stog(I) NU. Here H is the automorphism group of the J-grading of V; (not the
I-grading).

Tterating as much as possible (as in (12.3)) this gives the level decomposition
of the Stokes groups, i.e. the direct spanning deomposition:

(12.6) Stoq(I) = ( Stofy(I) | kis a level of I )®

where StoZ(I ) is the level k Stokes group, i.e. the subgroup corresponding to
the level k Stokes arrows, i.e. the arrows i <4 j such that ¢; — ¢; has slope k.
The decomposition (12.5) corresponds to taking the arrows of level < k; (to give
Stog(I — J)) and the arrows of level > k; (to give Stog(J)).

Partial associated gradeds. Suppose (V, F) is a Stokes filtered local system
indexed by I — K with K = I(l). Choose k < [ and let J = I(k) so that
I - J — K — 0. Then two new Stokes filtered local systems indexed by J — K
and by I — J respectively, can be defined, as follows.

First define a filtration F*) indexed by J on V:

EP () =Y Fa(i)  (where j € Jgso j C Ia).

i€j
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LemMA 12.5. (V, F*®)) is a Stokes filtered local system indexed by J — K.

Proof. Given a local splitting (grading) of (V| F') indexed by I, we can collapse
the grading to be indexed by J. Then F*) is the associated filtration indexed by
J. O

Now let V¥ = Gr(V, F (k) be the corresponding associated graded local system.
It is a J-graded local system. Let F* be the filtration on the fibres of V* induced
by F

LEMMA 12.6. (V*, Fk) is a Stokes filtered local system indeved by I — J,
and its associated graded is canonically isomorphic to Gr(V, F) (as I-graded local
systems).

Proof. We will drop the point d € 9 from the notation. By definition V*(j) =
FU)( ‘)/F(k)(< J) = 2ie; F(i)/ 32,; F(i) where i € I and i < j means there is

some j' < j with i € j. Write 7, : F®)(§) — V*(4) for the natural projection.
ThenforallzGIJEJ

=@ FH) nVFG) where F*(i) N V(i) = m(F (i) n F®(j)).

jeJ
As above, a local splitting (grading) of (V, F) indexed by I, will induce a local
splitting of (V, F (k)), and thus a local isomorphism with its associated graded
(VE F(V*)) (with its tautological filtration indexed by J). This gives a local
I-grading of V* and F* is the associated filtration, thereby showing it satisfies the
Stokes conditions (when we start with a local grading across a Stokes direction).
The isomorphism of the associated gradeds is left as an exercise. O

Completing the proof. The main result, Thm 11.3, is a special case of the
more general statement: Any Stokes filtered local system (V, 0, F) indexed by
I — K admits a unique Stokes grading I', such that F' is the Stokes filtration
associated to I'.

In turn this can be proved by induction on the number of levels of I — K.
The one level case is Prop. 12.3. If (V, F') has more than one level choose J = I(k)
so that I — J — K and both of I — J and J — K have fewer levels. Then
(V, F®)) and (V*, F¥) both have unique Stokes splittings by induction. Composing
these gives a splitting of (V, F') on each singular sector. The level decomposition
(12.5),(12.6) of the Stokes groups implies these are a Stokes grading. Again by the
decomposition of the Stokes groups, any other Stokes splitting will give a splitting
of the two pieces, and thus equal the previous one (by the uniqueness of the lower
level splittings). This completes the proof.

It is visually helpful to draw the punctured disk model of the Stokes local sys-
tem, decomposing each tangential puncture radially into several tangential punc-
tures (one for each level, supported by the corresponding components of the Stokes
groups), as in [18]§7.2. Then the direct spanning decompositions (12.5),(12.6)
amount to factorising loops around these decomposed tangential punctures (this
amounts to nesting one level fission spaces as in [18,25], and reflects the Gevrey
filtration [49,50] as already mentioned).

12.4. Fully faithfullness. Here we will prove fully faithfulness, which hinges
on the following proposition. Recall that (0) C Z is the tame circle.
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PROPOSITION 12.7. Let (V, F) be a Stokes filtered local system indexed by I — O
and let T be the unique compatible Stokes grading. Suppose v is a section of V' on 0,
and v(d) € F4(0) for alld € O\S. Then v(d) € T'4(0) for alld € O\ A. Consequently
(by Lemma 3.3) v extends uniquely to a section of Gr(V, F) (the tame piece of
the associated graded local system,).

The following corollary shows how the topological picture encodes the fact that
if a solution has exponential decay in some direction then it will have exponen-
tial growth somewhere else (moderate global solutions cannot decay exponentially
anywhere).

COROLLARY 12.8. Suppose v, (V, F) satisfy the hypotheses of Prop. 12.7. If
there exists d € O\'S and i € I such that i <q (0) and v(d) € F4(i), then v =0.

Proof (of corollary). One of the gradings I" will split F' across d. O

COROLLARY 12.9. The following two subspaces of H*(V,d) are equal:
HO((V,T),0) := {v € H(V,9) | v(d) € T'4(0) for all d € 9\ A},
HO((V, F),0) == {v e H(V,9) | v(d) € F4(0) for all d € O\ S}.

Moreover this common vector space embeds naturally in the space H®(Gr(V, F)0,0)
of sections of the tame component of the associated graded local system.

Proof. It is clear that the first space is contained in the second. The reverse
inclusion follows from Prop. 12.7, as does the inclusion in H°(Gr(V, F)y,0). O

COROLLARY 12.10. The functor ¢ taking a Stokes graded local system to the
associated Stokes filtered local system is fully faithful.

Proof.  Using the internal hom, this comes down to showing that H((V,T),%)
H((V, F),%) as subspaces of H*(V, %), for any Stokes graded local system (V,T
where (V, F) = p(V,T'). This follows from Prop. 12.7 as in Cor. 12.9.

~

)

O

Proof (of Prop. 12.7). First replace I by I U (0) (to avoid a separate argument
ruling out the case with (0) absent—it will follow that v is zero then). We will
prove (by induction on the number of levels) the more general statement with
I — O replaced by I — J.

First suppose I — J just has one level (and (0) is present in both I and J).

Its enough to prove that if v(d) € Fy(i) for some d € 9\ S and i € I with
i <q (0), then v = 0. (Indeed if this holds then v € Fy4(0) will imply v € I'4(0).)

Write 9\S = UyUUU- - -UU,,,—1 and suppose d € Uy. Choose i <4 (0) minimal
in I; so that v € Fy(i). Let ¢ = ¢(i) € N be the number of Stokes directions one
needs to cross (in a positive sense) before the dominance ordering between ¢ and
(0) changes (possibly going around the circle several times). If we pass to U; and
i does not cross (0), possibly another index j may replace i (as the minimal index
so that v € Fy(j)), but in any case the number ¢ will decrease by at least 1:

LEMMA 12.11. If j <q i <q (0) in Uy and i <4 j <4 (0) in Uy then c(j) < c(3).

Proof.  Since there is only one level k the dominance order of each pair in ¢, j, (0)
changes every m/k. Thus if j crosses above ¢ then j will cross 0 before i does. O
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Thus after a finite number of steps there is a Stokes direction 7 where the
minimal index ¢ will change dominance with (0). Choosing a local splitting of the
Stokes filtrations across T, we see that if v is nonzero then v € F(0) on the other
side of 7. Thus v is zero.

The general statement can now be deduced. If (V) F) is indexed by I — K
with > 1 levels, then as before there is a factorisation I — J — K, and (V, F(*))
indexed by J — K, and (V*, F¥) indexed by I — .J, both with fewer levels. Given
a section v of V' with v(d) € F4(0) then v(d) € Fék) (0), so we can apply the induc-
tive hypothesis to (V, F(k)). Thus v takes values in the tame piece of the Stokes
grading I'®) of V (that splits F' (k)), and extends uniquely to a section of the tame
component of the associated graded, i.e. V¥(0). Thus we get a section of V¥, and
by the original hypothesis it lives in the piece F f (0) of the induced filtration. Thus
we can apply the inductive hypothesis to (V*, F*¥) and see that v takes values in the
tame piece of its Stokes grading I'* and extends uniquely to a section of the tame
component of the associated graded, Gr(V*, F*) = Gr(V, F). This is the desired
statement (since I'* gives I' once we use view the splitting '™ as giving a local
isomorphism V¥ = V). O

13. Wild character varieties and moduli problems

This section will review the main implications for the wild character varieties
(considered in the generic case in [9,11,39] and in general in [18,25], using the
local theory of [42]). Fix a smooth complex projective curve ¥ and some marked
points a C X. Write £° =X\ a.

13.1. Tame character varieties. This section will quickly run through the
theory of tame character varieties, as a model before discussing the wild case.
Let LocSys be the category of local systems of finite dimensional complex vector
spaces (on the topological surface underlying °). Each such local system has an
invariant, its rank. Let LocSys(n) be the groupoid of local systems of rank n (so
that isomorphisms are the only maps considered).

The set of isomorphism classes in LocSys(n) appears as the set of orbits of
a complex reductive group on an affine variety, as follows. Choose a basepoint
b € ¥° then LocSys(n) is equivalent to the category of rank n modules for the
group 71(X°,b) (taking a local system to its monodromy representation). Recall
that a framed local system is a local system V equipped with a framing at b, i.e. a
basis ¢ : C™ — V}, of the fibre at b. The representation variety

R, = Hom(m(2°,b), GL,(C))

is the set of isomorphism classes of framed rank n local systems. Choosing a presen-
tation of m (X°,b) makes it clear that R,, is an affine variety (replace the generators
by elements of GL,(C) in the relation). Changing the framing corresponds to the
conjugation action of G = GL,(C) on R, and it follows that the set of isomor-
phism classes in LocSys(n) is in bijection with the set of G orbits in the affine
variety R,.

The character stack 9, is the stack theoretic quotient of R,, by G, whereas
the character variety M, is the affine geometric invariant theory quotient of R,
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by G, i.e. M, is the variety associated to the ring
C[R.)¢

of G-invariant functions on the affine variety R,. This ring is finitely generated
since G is reductive.

It is well-known that M, has an algebraic Poisson structure with symplectic
leaves given by fixing the isomorphism class of the local system in a small punc-
tured disk around each puncture (this is the same as fixing the conjugacy class of
monodromy around each puncture).

13.2. Wild character varieties. The definition of the wild character vari-
eties now follows a similar pattern. Let SLocSys be the category of Stokes local
systems associated to X, a. To simplify the presentation suppose a consists of just
one point. The general case is in [18,25]. Each such Stokes local system has an
invariant, its irregular class. Let SLocSys(0O) be the groupoid of Stokes local sys-
tems of class © (so that isomorphisms are the only maps considered). In particular
this fixes its rank, n = rk(©).

The set of isomorphism classes in SLocSys(O) appears as the set of orbits of a
complex reductive group on an affine variety, as follows. (This will then yield the
wild character variety Mg of the irregular curve ¥ = (3, a,0).)

Let ¥ C 3 be the auxiliary curve determined by the irregular class © (removing
a tangential puncture near each singular direction). Choose a basepoint b € 9 then
SLocSys(©) embeds in the category of rank n modules for the group II := 71 (2, b)
(the wild surface group). A framed Stokes local system is a Stokes local system V
equipped with a framing at b, i.e. an isomorphism ¢ : F — V, of graded vector
spaces, where F = C® := ®i€Ib C® is the standard fibre—a graded vector space
of dimension ©, so that F(i) = C®(),

The naive wild representation variety is the space Hom(Il,G) where G =
GL(F) 2 GL,(C). Each framed Stokes local system canonically determines a point
of Hom(II, G) and it is easy to characterise the subvariety of Stokes representations
(the wild representation variety)

Reo = Homg(II, G) C Hom(II, G)

where the monodromy of Stokes local systems lives (reflecting the facts that the
monodromy around 0 should be the monodromy of a graded local system, and the
Stokes conditions, that monodromy around each tangential puncture should land
in the corresponding Stokes group). This will be spelt out below in §13.3.

In this way Re = Homg(II, G) is the set of isomorphisms classes of framed
Stokes local systems of class ©. Choosing a presentation of II makes it clear that
Reo is an affine variety (since the Stokes groups are affine too). Changing the
framing corresponds to the conjugation action of H = GrAut(F) C G on Reg, and
it follows that the set of isomorphism classes in SLocSys(©) is in bijection with
the set of H orbits in the affine variety Rg. Thus this key fact still persists in the
wild case.

Similarly a framing of a Stokes filtered local system (V, F, ©) is a graded isomor-
phism ¢ : F — Gr(V, F);, and a framing of a Stokes graded local system (V,T", ©) is
a graded isomorphism ¢ : F — (V,I'}), taking the median grading if b is a singular
direction. The main result of this paper then implies the following statement:
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COROLLARY 13.1. The wild representation variety Re = Homg(II, G) param-
eterises the set of isomorphism classes of:

e Framed Stokes filtered local systems of class ©, and also of

e Framed Stokes graded local systems of class ©, and also of

e Framed Stokes local systems of class ©.

Note this corollary also follows from the local result in [42] after some identi-
fications.

In turn the wild character stack Mg is the stack theoretic quotient of Rg by
H, whereas the wild character variety Mg is the affine geometric invariant theory
quotient of Rg by H, i.e. Mg is the variety associated to the ring

C[Re]"”

of H-invariant functions on the affine variety Rg. This ring is finitely generated
since H is reductive. Stability for the action of H has been analysed in [18].

Results of [10,11,13,15,18,25] show that the wild character variety Mg has
an algebraic Poisson structure with symplectic leaves given by fixing the isomor-
phism class of the graded local system in the halo (this is the same as fixing a
twisted conjugacy class for the group H, cf. [25]). This generalises the tame case,
where there are no tangential punctures, and the grading is trivial (everything is
graded by the tame circle (0)).

13.3. Here is how to define the subvariety Homg(II, G) € Hom(II,G). Let
po : Iy — I, be the monodromy of the active exponents I — 9 (in a positive sense),
and let p : IT — GL(FF) be the monodromy of a Stokes local system V of class ©.

1) Due to the I-grading of V on 9, the monodromy satisfies
(13.1) polE (1)) = F(7o(i)
for all i € I.

If d € A let a be any path in 0 from b to d, and let 74 be the simple loop based
at d going out to e(d) around it in a positive sense and then back to d. Then let
N4 = a~ ! o740 a be the corresponding loop based at b. Let Stogz C GL(F) be the
group obtained by transporting Stog C GL(V,) along « to b and then to GL(F) via
the framing.

2) The Stokes conditions then say that

(13.2) p(na) € Stog

for all such d and a.
The subvariety Homg(IT, G) C Hom(II, G) is cut out by these two conditions.
By choosing generators of II this is easily made completely explicit, and yields the
Birkhoff type presentations of the wild character variety, as the quotient by H of
the fibre at 1 of a map of the form
g
G? x H(Q) x Sto - G;  (A,B,h,S) — (H[Ai,BZ-]> S, --- S8
1

where [A, B] = ABA"'B~1, Sto C G" is a product of Stokes groups and
H(9) = {h € G | h(F(i)) = F(py(i)) for all i € I,}

is the twist of H consisting of elements satisfying the relation (13.1). See [18]
equation (37) (and [25]) for the multipoint case—the generic case in genus zero
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is in [39] (2.46), closely related to that of Birkhoff [9] §15. These presentations
motivated the TQFT approach to meromorphic connections [11, 13,15, 18, 25]
where such quotients are shown to be multiplicative symplectic quotients, and thus
have natural symplectic/Poisson structures.

REMARK 13.2. The full story involves adding tame (Levelt—Simpson) filtrations
as well, and the resulting wild character varieties will not in general be affine (the
case here corresponds to having trivial Betti weights, denoted ¢ in [22], v in [7], 8
n [56]).

REMARK 13.3. In general [18,25], in order to fit well with the group-valued mo-
ment map approach, the group II is usually replaced by the fundamental groupoid
I1; (2, 8) where 8 C X consists of one point in each component circle of d. Beware
that a different groupoid was used earlier (in [11] p.160) to encode Stokes data.

REMARK 13.4. The Stokes decompositions and wild monodromy/Stokes local
system don’t seem to have been used in the linear setting beyond the curve case,
so these approaches may well simplify and render more explicit existing approaches
(cf. [27]). New examples of such wild character varieties seem lacking (see the
problem at the end of §1.6 in [22]).

13.4. Wild nonabelian periods/wild Wilson loops. Functions on Rg
invariant under the action of H may be constructed as follows. In the tame case,
one would just take the trace of the monodromy around loops in the surface. In
general one can take the wild monodromy, i.e. the monodromy of the Stokes local
system along wild loops, i.e. loops in ¥. Moreover if the wild loop is based in 0
then the fibre is graded so there are more invariants than just the trace (one only
needs to quotient by the graded automorphisms).

Let K = K(I};) be the complete quiver with nodes I,. This has a loop at each
node and a directed edge in each direction between each pair of distinct nodes.
Thus if V is any Iy-graded vector space then End(V) is the same as the space
Rep(K,V) of quiver representations of K on V:

End(V) = Rep(K, V).
Any cycle (i.e. aloop) C in K determines an H-invariant function
¢c : Rep(K,V) - C

by taking the trace of the composition of the maps along the edges in the cycle C.
Here H = GrAut(V). Now given p € Re = Homg(II, GL(F)) and a loop v € II,
i.e. aloop in 3 based at b then p(y) € GL(F) C End(F) = Rep(K,F). Thus there
is an H-invariant function

(13.3) ¢cy 1 Re = C; pr dq(p) = dc(p(v))

for each choice of cycle C' in K and wild loop v € II. Of course given a Stokes
local system V with irregular class © there is no need to discuss framings, and
one can just work with the graded vector space V;,; A Stokes representation p €
Homg(II, GL(V})) is intrinsically defined and this is enough to construct numbers
¢c,(p) that depend only on the isomorphism class of V. Of course these numbers
are invariants of the corresponding connection V too: for each choice of loop « and
cycle C the complex number ¢¢ (V) := ¢ (p) is well defined. They are the “wild
nonabelian periods/wild Wilson loops” of V.
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Appendix A. Analytic black boxes

For completeness this section gives a quick review of the analytic results used to
define the topological data (or to show they have the desired properties). The ana-
lytic results will be presented /used as black boxes, and aren’t used elsewhere in this
article. The different approaches to Stokes data arise from the use of different ana-
lytic tools. One particular aim is to show how the abstract/intrinsic language used
here encapsulates what most authors actually do when defining monodromy/Stokes
data.

A.1. Cauchy and local systems. Let (E,V) — X° be an algebraic con-
nection on an algebraic vector bundle £ on ¥°. Thus V is an operator V :
E — E ® Q' which is a C-linear map of sheaves, satisfying the Leibniz rule
V(fv) = (df)v + fV(v) for any local section v and function f. For example
take E = C™ x X° to be trivial and ¥° C C to be the complement of a finite
number of points in the complex plane, and V = d — Bdz for any algebraic map
B : ¥° — gl,(C). The basic existence/uniqueness theorem for systems of linear
ODEs implies the following.

THEOREM A.1. If A C ¥° is a disk then the space
V(A) = {veH(E™ A) | V(v) =0}
of analytic solutions of (E,V) on A is a finite dimensional complex vector space,
and the map
V(A) — Ey; v o(b)
to the fibre of E at b, is a linear isomorphism for any b € A.

Proof.  Choose a local trivialisation of E*" (the analytic vector bundle deter-
mined by E) on A and a coordinate z on A, so V(A) becomes identified with
the holomorphic maps v : A — C™ such that dv/dz = Bv for some matrix of
holomorphic functions B on A (so that the connection is d — Bdz). Now use the
existence/uniqueness theorem for this system of linear ODEs. ]

This analytic fact defines the local system V' — 3° of solutions of (F, V).

A.2. Stokes filtrations and the local asymptotic existence theorem.
Given the local system V' — 3° of solutions of (E,V), the n-dimensional vector
space Vj is well-defined for any d € 9 (see §4.3).

The Stokes filtration in Vy is defined by looking for the subspace of recessive
solutions, i.e. those with maximal exponential decay (or least growth), in some
algebraic trivialisation of E across the pole. Then quotient V; by the subspace of
recessive solutions and iterate to get the filtration. The fact that this process works,
and the result is a Stokes filtration, follows from the local asymptotic existence
theorem (in turn this uses the formal classification of meromorphic connections).
In general, given d € 9 and ¢ € Z; the corresponding piece Fy(q) C Vg of the
Stokes filtration is made up of the solutions v € Vj such that v/ exp(q) has at most
moderate growth at 0 in some open sector containing d.

Choose a small disk A C X containing a marked point a. Choose a coordinate
z on A vanishing at a and a local trivialisation of E, so that

V=d-A4, A=) Azd:
-N
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where A; € gl,,(C) and the series is convergent.
For simplicity suppose V is unramified (the general case follows by descent).
Then the formal classification implies that there is F' € GL,,(C((z))) such that

A= ﬁ[AO] =FA°F' 4+ (dﬁ)ﬁfl where A° = dQ + A%, Q = diag(q1, ..., qn)-
z

Here @ is an irregular type, with ¢; € z71C[27!], and A € gl,,(C) is a constant
matrix that commutes with Q.

Thus F is a formal isomorphism taking V° to V, where V? = d — A° (often
called the formal normal form). The irregular class is given by the {g;) with their
multiplicities (each is a trivial cover of the circle 9). The general result is that one
can always pass to a cyclic cover (t" = z) and then get such a formal normal form
upstairs.

The local asymptotic existence theorem (cf. [61] Thm. 19.1) says that any
direction d € 9 has a (small) open neighbourhood U C 0 on which there exists an
analytic isomorphism F taking V° to V, that is asymptotic at zero to FinU.

The topological interpretation is as follows:

1) V¥ = d — A% is a graded connection, it breaks up into a direct sum of
connections indexed by the set 2~'C[z7!] of unramified irregular classes. Thus
its solutions form a graded local system VO (on a germ of a punctured disc, or
equivalently on 9).

2) The local asymptotic existence theorem gives local isomorphisms between V°
and V (on ). Since V9 is graded, this gives local gradings of V. These gradings are
not intrinsic, but the associated filtrations are completely intrinsic, and moreover
the condition for the existence of such local gradings splitting the filtrations gives
a way to axiomatise the filtrations. This is Deligne’s idea [29] yielding the Stokes
filtrations and the axioms for Stokes filtered local systems.

3) The associated graded local system Gr(V) — 9 of the Stokes filtration is
intrinsically defined. The choice of V° determines a graded local system VO (its
solutions), and the choice of a formal isomorphism F then uniquely determines
an isomorphism V9 — Gr(V) of graded local systems (induced by any such local
analytic isomorphism F'). This gives a bijection between the set of such F and
such graded isomorphisms (the categories of formal connections and graded local
systems are equivalent [29]).

REMARK A.2. If instead one chooses an open cover of 0 and such a local
isomorphism F' on each open set, and examines how they differ on two-fold overlaps,
one gets to the Malgrange-Sibuya cohomological approach [43,54]. This amounts
to taking the cohomology class classifying the sheaf of torsors determined by the
sets Splits, of splittings.

A.3. Summation and preferred bases. The general Stokes approach comes
from an apparently stronger analytic existence theorem [4], involving multisumma-
tion in general (which generalises k-summation, and in turn Borel summation).

In the set-up above with V = F[V?] this says that there are a finite number of
singular directions A C 0 and a preferred analytic isomorphism Fy € Isoy(V?, V)
canonically determined by F on each singular sector U C 0.

In particular, given the choice of a solution w of V° on U then Fw is a formal
solution of V, and the theorem implies this determines a preferred solution Fyw of
V. In other words formal solutions determine preferred analytic solutions. This is
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the form of the result discovered by Stokes (in the examples related to the Airy and
Bessel equations). Stokes used optimal truncation rather than Borel summation,
but one can check the preferred solutions he specified (for each formal solution) are
the same as those one gets from Borel summation.

1) On any singular sector U the element Fy; € Iso(V?, V) yields a grading of
the local system V of solutions of V (since V' is graded). The key remark to make
then is that this is the Stokes grading, and it depends only on V (and not the choice
of F,V0).

2) V, VY and the gluing maps Fyy make up a Stokes local system with gluing
maps.

This Stokes local system is isomorphic to the canonical Stokes local system
(determined by the Stokes gradings in 1) via the converse part of §9), once VO is
identifed with the canonical graded local system via the choice of F' (via 3) of §A.2
and Rmk 11.4)

In particular the corresponding Stokes representations will be isomorphic. This
is good to know since these Stokes local systems are the ones used in practice (via
choices of normal forms at each pole).

Note that the equivalence between Stokes gradings and Stokes filtrations, im-
plies that the analytic results of §A.2 and §A.3 are in fact algebraically equivalent.

A.4. Intuitive way to understand Borel summation etc. Consider the
following quite familiar statement:

Sometimes a power series determines a holomorphic
function outside of its domain of convergence.

(A1)

Indeed one can just consider the power series at zero of the function 1/(1 — z).
This has a pole at x = 1 so the series has radius of convergence 1, yet clearly
the function defined by the power series can be analytically continued outside the
unit disk (avoiding 1). Similarly the power series at zero for 1/4/1 — x defines a
holomorphic function in the unit disk, however now the branch of the function
obtained outside the unit disk depends on which side of the point x = 1 one takes:
for example at x = 2 one may get either sign in +i depending on the path taken.
One can readily cook up more examples with more singular directions on the unit
circle, and in turn examples with arbitrarily small radius of convergence.

The key point (to intuitively understand Borel summation etc) is that the
statement (A.1) may hold even if the series has radius of convergence zero. Indeed
this is precisely what Borel summation does: away from the singular directions a
holomorphic function is determined, and something like a different branch of the
same function appears if a different direction is used, on the other side of a singular
direction.

This interpretation is in Stokes’ paper [57]. Stokes viewed the singular di-
rections as limits of the singular points in the example above, as the radius of
convergence goes to zero. Since we are working topologically we can pull these
singularities slightly out of the pole, and thus define the tangential punctures (this
is justified by the fact that an equivalence of categories can be proved).

The fact that any formal series solution of a linear differential equation is
multisummable (and the singular directions are easy to determine) is remarkable.
Multisummation is a morphism of differential algebras and so formal solutions sum
to actual solutions.
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In fact Stokes worked with optimal truncation, not the Borel sum, so another
puzzle is how to relate them. For this consider another familiar statement:

Sometimes the partial sum of a power series differs
(A.2) from the full sum by less than the modulus
of the first term omitted.

This leads to “optimal truncation”: stopping the sum at the smallest term, and
using that to approximate the actual sum. Stokes applied this to a divergent series
and in this way was able to detect the preferred solutions. This application can
be justified since, in the cases where Stokes applied it, the statement (A.2) is true
provided one replaces “full sum” by “Borel sum” (cf. [62] p.219). Thus the optimal
truncation used by Stokes approximates the Borel sum in much the same way that
optimal truncation approximates the usual sum in the case of a convergent series.
The difference in the divergent case is that there are singular directions, and the
Borel sums on each side of a singular direction are not analytic continuations of each
other across the direction. These are the singular directions detected by Stokes.
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