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A GENERALIZATION OF MULTIPLIER RULES FOR

INFINITE-DIMENSIONAL OPTIMIZATION PROBLEMS

HASAN YILMAZ

Abstract. We provide a generalization of first-order necessary conditions of
optimality for infinite-dimensional optimization problems with a finite num-
ber of inequality constraints and with a finite number of inequality and equal-
ity constraints. Our assumptions on the differentiability of the functions are
weaker than those of existing results.
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1. Introduction

We provide an improvement of first-order necessary conditions of optimality for
infinite-dimensional problems under a finite number of inequality constraints and
under a finite number of inequality and equality constraints in the form of Fritz
John’s theorem and Karush-Kuhn-Tucker’s theorem.
In this paper, we give a proof of multiplier rules by following the same approach as
Michel in [1] p. 510. To prove his result, Michel uses the Brouwer fixed-point the-
orem that is why, at the first slight, his proof seems specific to finite-dimensional
optimisation problems. However, we remark that we can extend this result for
infinite-dimensional optimizaton problems. The proof of Michel is explained in de-
tail in [2], Appendix B. Another proof of the multiplier rules was established by
Halkin in [3] but his proof is completely different. Indeed, Halkin uses an implicit
function theorem with only Fréchet differentiable at a point framework instead
of the continuously Fréchet differentiable framework. The improvement of Michel
and Halkin is to replace the assumption of continuously Fréchet differentiable on
a neighborhood of the optimal solution (see in [4] Chapter 13 section 2) with the
assumptions of the continuity on a neighborhood of the optimal solution and the
Fréchet differentiability at the optimal solution.
Note that there are another way to generalize the assumption of continuous Fréchet
differentiability by using locally Lipschitzian mappings e.g. [5]. The statement of
Halkin and Michel is not similar with the statements of locally Lispchitzian. Indeed,
in general, a mapping which is Fréchet differentiable at a point is not locally Lips-
chitzian arround this point and conversely a mapping which is locally Lipschitzian
arround a point is not Fréchet differentiable at this point.
In [6], Blot gave also a proof of multiplier rules for finite-dimensional optimiza-
tion problems under only inequality constraints and under inequality and equality
constraints. For the problems with inequality constraints, Blot reduced the as-
sumptions of Pourciau in [7] by replacing, at the optimal solution, the Fréchet
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differentiability with the Gâteaux differentiability. For the problems with inequal-
ity and equality constraints, Blot deleted the assumptions of local continuity on a
neighborhood for the objective function and for the functions in the constraints of
inequality. Therefore, Blot improved the multilplier rules of Michel and Halkin by
lightening the assumptions on the continuity of the functions.
The main contributions of this paper are as follows.

• Contrary to Blot and Michel, we do not assume the finiteness of the dimen-
sion of the space. Therefore, we extend the main theorems of [6] and [1] in
infinite-dimensional vector spaces.

• Moreover, in comparison with Blot’s multiplier rules, we replaced the as-
sumptions of Fréchet differentiability by the Hadamard differentiability
which is weaker in infinite-dimensional vector. For consequently, our as-
sumptions on the differentiability of the functions are weaker than [6], [1]
and [3].

We summarize the content of this paper as follows.
In Section 2, we state the main theorems of the paper.
In Section 3, we specify the definition of Gâteaux differentiability and Hadamard
differentiability. Besides, we recall a supporting hyperplane theorem and the
Schauder fixed-point theorem.
In Section 4, in order to proof our first-order necessary conditions under inequality
constraints, we delete the inactive inequality constraints. Next, we use a supporting
hyperplane theorem to find the multipliers.
In Section 5, we give a proof of first-order necessary conditions of optimality under
inequality and equality constraints. As in Section 4, we delete the inactive inequal-
ity constraints. In order to use the supporting hyperplane theorem, we use the
Schauder fixed-point theorem.

2. Statements of the Main Results

The paper deals with infinite-dimensional optimization problems with a finite list
of inequality constraints and with a finite list of inequality and equality constraints.
Let E be a normed vector space, let Ω be a nonempty open subset of E, let fi : Ω →
R when i ∈ {0, ...,m} be functions, let f : Ω → R, gi : Ω → R when i ∈ {1, ..., p},
hj : Ω → R when j ∈ {1, ..., q} be functions and m, p and q are integer number.
We consider the two following problems

(I)







Maximize f0(x)
subject to x ∈ Ω

∀i ∈ {1, ...,m}, fi(x) ≥ 0

and

(P)















Maximize f(x)
subject to x ∈ Ω

∀i ∈ {1, ..., p}, gi(x) ≥ 0
∀j ∈ {1, ..., q}, hj(x) = 0.

The main theorems of the paper are the following ones.

Theorem 2.1. Let x̂ be a solution of (I). We assume that the following assump-
tions are fulfilled.
(i) For all i ∈ {0, ...,m}, fi is Gâteaux differentiable at x̂.
(ii) For all i ∈ {1, ...,m}, fi is lower semicontinuous at x̂ when fi(x̂) > 0.
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Then, there exist λ0, ..., λm ∈ R+ which satisfy the following conditions.
(a) (λ0, ..., λm) 6= (0, ..., 0).
(b) For all i ∈ {1, ...,m}, λifi(x̂) = 0.
(c)

∑m

i=0 λiDGfi(x̂) = 0.
In addition, if we assume that the following assumption is verified
(iii) there exists w ∈ E such that for all i ∈ {1, ...,m}, DGfi(x̂)w > 0 when fi(x̂) = 0
then we can take
(d) λ0 = 1.

Theorem 2.2. Let x̂ be a solution of (P). We assume that the following assump-
tions are fulfilled.
(i) f is Hadamard differentiable at x̂.
(ii) For all i ∈ {1, ..., p}, gi is Hadamard differentiable at x̂ when gi(x̂) = 0.
(iii) For all i ∈ {1, ..., p}, gi is lower semicontinuous at x̂ and Gâteaux differentiable
at x̂ when gi(x̂) > 0.
(iv) For all j ∈ {1, ..., q}, hj is continuous on a neighborhood at x̂ and Hadamard
differentiable at x̂.
Then, there exist λ0, ..., λp ∈ R+ and µ1, ..., µq ∈ R which satisfy the following con-
ditions.
(a) (λ0, ..., λp, µ1, ..., µq) 6= (0, ..., 0).
(b) For all i ∈ {1, ..., p}, λigi(x̂) = 0.
(c) λ0DHf(x̂) +

∑p

i=1 λiDGgi(x̂) +
∑q

j=1 µjDHhj(x̂) = 0.
Futhermore, if we assume that the following assertion hold
(v) DHh1(x̂), ..., DHhq(x̂) are linearly independent
we have
(d) (λ0, ..., λp) 6= (0, ..., 0).
Moreover, under (v) and the following assertion
(vi) there exists w ∈ ∩q

i=1KerDHhj(x̂) such that for all i ∈ {1, ..., p},
DGgi(x̂)w > 0 when gi(x̂) = 0
we can take
(e) λ0 = 1.

3. Recall and Notations

We set N the set of positive integer and N
∗ = N \ {0}. R denotes the set of real

numbers and R+ the set of non negative real numbers.
Let E, F and G be three normed vector spaces, let Ω be a nonempty open subset
of E, let f : Ω → F be a mapping, let x ∈ Ω, let y ∈ E and r ∈]0,+∞[. The closed
ball centered at y with a radius equal to r is denoted by B(y, r).
Let A ⊂ E and B ⊂ F , C0(A,B) denotes the continuous mappings from A into B.
bdA denotes the topological boundary of A.
We denote by L(E,F ) the space of the bounded linear mappings from E into F .
Let l ∈ L(E,F ), we note Iml = l(E). Let l1 ∈ L(E,F ) and l2 ∈ L(E,G), we note
by (l1, l2) the mapping in L(E,F ×G) defined by for all x ∈ E, (l1, l2)x = (l1x, l2x).
f is called Gâteaux differentiable at x when there exists DGf(x) ∈ L(X,Y ) such

that for all h ∈ E, limt↓0
f(x+th)−f(x)

t
= DGf(x)h.

We say that f is Hadamard differentiable at x when there exists DHf(x) ∈ L(X,Y )
such that for all h ∈ E, for all sequence (hn)n∈N converging to h and for all sequence
(tn)n∈N of positive numbers converging to 0 we have
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limn→+∞
f(x+tnhn)−f(x)

tn
= DHf(x)h which is equivalent to (see [8] p. 265) for each

K compact in E, limt↓0 suph∈K
f(x+th)−f(x)

t
= DHf(x)h.

When f is Hadamard differentiable at x, f is also Gâteaux differentiable at x and
DHf(x) = DGf(x). But the converse is false when the dimension of E is greater
than 2.
More information on these notions can be found in [8].
If n ∈ N

∗, we note 〈·, ·〉 the canonical scalar product on R
n, (en,i)1≤i≤n the canonical

basis of Rn and ‖·‖∞ the maximum norm on R
n. Moreover, we note by B‖·‖∞

(y, r)
the closed ball centered at y with a radius equal to r in R

n with the maximum norm.
We recall a supporting hyperplane theorem.

Theorem 3.1. Let n ∈ N
∗. Let C be a nonempty convex subset of Rn and z ∈ bdC.

Then there exist v ∈ R
n \ {0} and γ ∈ R such that 〈v, z〉 = γ and for all x ∈ C,

〈v, x〉 ≤ γ.

This theorem is a corralary of Hahn-Banach theorem. We can find a proof in [9] p.
37. Note that if z = 0 we have γ = 0.
Next, we recall the Schauder fixed-point theorem.

Theorem 3.2. (Schauder fixed-point theorem) Let E be a normed vector space, let
C be a nonempty convex and compact subset of E and let f : C → C be a contin-
uous mapping, then f admit a fixed point i.e. there exists x ∈ C such that f(x) = x.

We can find a proof of the Schauder fixed-point theorem in [10] p. 119.

4. Proof of Theorem 2.1

We set S := {i ∈ {1, ...,m} : fi(x̂) = 0}. If S = ∅ we have for all i ∈
{1, ...,m}, fi(x̂) > 0 using the lower semicontinuous of fi, there exists an open
neighborhood Ω1 of x̂ in Ω such that for all i ∈ {1, ...,m}, for all x ∈ Ω1, fi(x) > 0.
Since x̂ is a solution of (I), we have x̂ maximize f0 on Ω1. Therefore by using (i),
we have DGf0(x̂) = 0. By taking λ0 = 1 and for all i ∈ {1, ...,m}, λi = 0, we
proved (a), (b), (c) and (d). We assume that S 6= ∅ in the rest of the proof.

4.1. To delete all inactive inequality constraints. By doing a change of index,
we can assume that S = {1, ..., s} where 1 ≤ s ≤ m. Since for all i ∈ {s+1, ...,m},
we have fi(x̂) > 0, using (ii) there exists an open neighborhood U of x̂ in Ω such
that for all i ∈ {s+ 1, ...,m}, for all x ∈ U , we have fi(x) > 0. For consequently,
we have x̂ is a solution of the following problem

(N I)







Maximize f0(x)
subject to x ∈ U

∀i ∈ {1, ..., s}, fi(x) ≥ 0.

4.2. Proof of (a), (b), (c). We consider the mapping F : U → R
s+1 defined

by ∀x ∈ U , F (x) = (f0(x), ..., fs(x)). Since for all i ∈ {0, ..., s}, fi is Gâteaux
differentiable at x̂, we have F is Gâteaux differentiable at x̂ and
DGF (x̂) = (DGf0(x̂), ..., DGfs(x̂)).
We set C := ImDGF (x̂)+R

s+1
− . We note that C is a convex set of Rs+1. Moreover,

C is not a neighborhood of 0. To prove this, we proceed by contradiction, by
assuming that C is a neighborhood of 0. Therefore, there exists r > 0 such that
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B‖·‖∞
(0, r) ⊂ C. Since b = (r, ..., r) ∈ B‖·‖∞

(0, r) we have b ∈ C then there exists

u ∈ E and z = (z0, ..., zs) ∈ R
s+1
− such that DGF (x̂)u + z = b. For consequently,

we have

∀i ∈ {0, ..., s}, DGfi(x̂).u = r − zi ≥ r. (4.1)

By using (4.1), we remark that u 6= 0.
Since F is Gâteaux differentiable at x̂, we have

∃δ > 0 ∀t ∈]0, δ] (x̂+ tu ∈ U) ‖F (x̂+ tu)− F (x̂)− tDGF (x̂)u‖∞ < rt. (4.2)

Then, using (4.2) with t = δ, we have ‖F (x̂+δu)−F (x̂)−δDGF (x̂)u‖∞ < rδ which
implies that ∀i ∈ {0, ..., s}, fi(x̂+δu)−fi(x̂)−δDGfi(x̂)u > −rδ. For consequently,
by using (4.1) we have for all i ∈ {0, ..., s}, fi(x̂+δu)−fi(x̂) > δDGfi(x̂)u−δr ≥ 0.
Therefore, we have f0(x̂ + δu) > f0(x̂) and for all i ∈ {0, ..., s}, fi(x̂ + δu) > 0
which implies that x̂ is not a solution of (N I). This is a contradiction. Since 0 ∈ C
and C is not a neighborhood of 0, we have 0 ∈ bdC.
Since C is a convex of R

s+1 and 0 ∈ bdC, by using Theorem 3.1 there exists
v = (λ0, ..., λs) ∈ R

s+1 \ {0} such that for all x ∈ C, 〈v, x〉 ≤ 0. For consequently,
we have

∀u ∈ E, ∀z = (z0, ..., zs) ∈ R
s+1
− ,

∑s

i=0 λi(DGfi(x̂)u + zi) ≤ 0. (4.3)

We set for all i ∈ {s+ 1, ..., m} λi = 0.
Since (λ0, ..., λs) 6= 0, we have (λ0, ..., λm) 6= 0. Let i ∈ {0, ..., s}, by using (4.3)
with u = 0 and z = −es+1,i+1, we have −λi ≤ 0 which implies that λi ≥ 0.
We have also for all i ∈ {1, ...,m}, λifi(x̂) = 0.
By using (4.3), with z = 0, we have ∀u ∈ E,

∑s

i=0 λiDGfi(x̂)u ≤ 0 which implies
that

∑s

i=0 λiDGfi(x̂) = 0, (4.4)

therefore
∑m

i=0 λiDGfi(x̂) = 0.
We proved (a), (b) and (c).

4.3. Proof of (d). In addition, if we assume (iv), we have λ0 6= 0. We proceed by
contradiction by assuming that λ0 = 0. Since (iii) and (λ1, ..., λs) ∈ R

s
+ \ {0}, we

have
∑s

i=1 λiDGfi(x̂)w > 0. By using (4.4), we have
∑s

i=1 λiDGfi(x̂)w = 0. This

a contradiction. Since, λ0 6= 0, by taking for all i ∈ {0, ...,m}, λ′
i =

λi

λ0

, we proved

(d).

5. Proof of Theorem 2.2

We set S := {i ∈ {1, ..., p} : gi(x̂) = 0}. Without loss of generality, we can
assume that S 6= ∅. If S = ∅ we can delete all inequality constraints. Indeed, we
have for all i ∈ {1, ..., p}, gi(x̂) > 0, by using (iii), there exists a neighborhood Ω1

of x̂ in Ω such that for all i ∈ {1, ..., p}, for all x ∈ Ω1, gi(x) > 0. For consequently,
x̂ is a solution of the following problem

(SP )







Maximize f(x)
subject to x ∈ Ω1

∀j ∈ {1, ..., q}, hj(x) = 0.
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5.1. To delete all inactive inequality constraints. In the rest of the proof, we
assume that S 6= ∅. By doing a change of index, we can assume that S = {1, ..., s}
where 1 ≤ s ≤ m. Since for all i ∈ {s+ 1, ...,m}, we have gi(x̂) > 0, using (iii) and
(iv) there exists an open neighborhood U of x̂ in Ω such that for all i ∈ {s+1, ...,m},
for all x ∈ U , we have gi(x) > 0 and for all j ∈ {1, ..., q}, hj is continuous on U .
For consequently, we have x̂ is a solution of the following problem

(NP )















Maximize f(x)
subject to x ∈ U

∀i ∈ {1, ..., s}, gi(x) ≥ 0
∀j ∈ {1, ..., q}, hj(x) = 0.

5.2. Proof of (a), (b), (c). We consider the mappings G : U → R
s+1 and

H : U → R
q defined by ∀x ∈ U , G(x) = (f(x), g1(x), ..., gs(x)) and

H(x) = (h1(x), ..., hq(x)). Since (i), (ii) and (iv) we have G and H are Hadamard
differentiable at x̂. Moreover DHG(x̂) = (DHf(x̂), DHg1(x̂)..., DHgs(x̂)) and
DHH(x̂) = (DHh1(x̂), ..., DHhq(x̂)).

We set C := Im(DHG(x̂), DHH(x̂)) + R
s+1
− × {0}. C is a convex set of Rs+q+1.

C is not a neighborhood of 0. To prove this, we proceed by contradiction, by as-
suming that C is a neighborhood of 0. Therefore, there exists r > 0 such that
B‖·‖∞

(0, r) ⊂ C.

We set b = (r, ..., r) ∈ R
s+1. Since, for all j ∈ {1, ..., q}, (b, req,j) ∈ C and

(b,−req,j) ∈ C, there exists uj ∈ E and zj = (z0,j , ..., zs,j) ∈ R
s+1
− such that

DHG(x̂)uj + zj = b and DHH(x̂)uj = req,j (5.1)

and there exists ũj ∈ E and z̃j = (z̃0,j , ..., z̃s,j) ∈ R
s+1
− such that

DHG(x̂)ũj + z̃j = b and DHH(x̂)ũj = −req,j . (5.2)

We set K := {
∑q

j=1 ajuj +
∑q

j=1 ãj ũj : ∀j ∈ {1, ..., q}, aj ≥ 0, ãj ≥ 0 and
∑q

j=1 aj +
∑q

j=1 ãj = 1}. By using (5.1), we have 0 /∈ K.
We remark that K is a convex and compact set of E. Since G and H are Hadamard
differentiable at x̂ and K is a compact set of E, we have

∃δ1 > 0 ∀t ∈]0, δ1], ∀k ∈ K, ‖G(x̂+ tk)−G(x̂)− tDHG(x̂)k‖∞ < rt (5.3)

∃δ2 > 0 ∀t ∈]0, δ2], ∀k ∈ K, ‖H(x̂+ tk)−H(x̂)− tDHH(x̂)k‖∞ < r
q
t. (5.4)

Since U is a neighborhood of x̂, we have there exists r0 > 0 such that B(x̂, r0) ⊂ U .
we set α := min{δ1, δ2,

r0
sup

k∈K
‖k‖}. Therefore, by using (5.3) and (5.4) with t = α,

we have

∀k ∈ K, |f(x̂+ αk)− f(x̂)− αDHf(x̂)k| < rα (5.5)

∀k ∈ K, ∀i ∈ {1, ..., s}, |gi(x̂+ αk)− αDHgi(x̂)k| < rα (5.6)

∀k ∈ K, ∀j ∈ {1, ..., q}, |hj(x̂+ αk)− αDHhj(x̂)k| <
r
q
α. (5.7)

We set for all j ∈ {1, ..., q}, for all k ∈ K, wj(k) =
1
α
hj(x̂ + αk)−DHhj(x̂)k. We

note that for all j ∈ {1, ..., q}, wj ∈ C0(K,R) because hj ∈ C0(K,R) and for all
j ∈ {1, ..., q}, for all k ∈ K, |wj(k)| <

r
q
(by (5.7)).

We consider the mapping Φ : K → E defined by
Φ(k) :=

∑q

j=1 φj(k)uj +
∑q

j=1 φ̃j(k)ũj where for all j ∈ {1, ..., q}, for all k ∈ K,

φj(k) = 1
2q − 1

2rwj(k) and φ̃j(k) = 1
2q + 1

2rwj(k). For all k ∈ K, we have for all
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j ∈ {1, ..., q}, φj(k) ≥ 0, φ̃j(k) ≥ 0 and
∑q

j=1 φj(k) +
∑q

j=1 φ̃j(k) = 1 therefore we

have Φ(K) ⊂ K. Since for all j ∈ {1, ..., q}, φj and φ̃j belong to C0(K,R), we have

Φ ∈ C0(K,K). Therefore, by using Theorem 3.2, we obtain there exists k̂ ∈ K

such that Φ(k̂) = k̂. Since

DHH(x̂)k̂ = DHH(x̂)Φ(k̂)

=
∑q

j=1(
1
2q − 1

2rwj(k̂))DHH(x̂)uj +
∑q

j=1(
1
2q + 1

2rwj(k̂))DHH(x̂)ũj

= −
∑q

j=1 wj(k̂)eq,j .

Therefore, for all j ∈ {1, ..., q}, DHhj(x̂)k̂ = −wj(k̂) = −( 1
α
hj(x̂+αk̂)−DHhj(x̂)k̂)

which implies that hj(x̂+ αk̂) = 0.

Since k̂ ∈ K there exists (aj , ãj)1≤j≤q ∈ R
2q
+ with

∑q

j=1 aj+
∑q

j=1 ãj = 1 such that

k̂ =
∑q

j=1 ajuj +
∑q

j=1 ãj ũj. For consequently, we have

DHf(x̂)k̂ =
∑q

j=1 ajDHf(x̂)uj +
∑q

j=1 ãjDHf(x̂)ũj

=
∑q

j=1 aj(r − z0,j) +
∑q

j=1 ãj(r − z̃0,j) (from (5.1) and (5.2))

which implies that

DHf(x̂)k̂ ≥ r. (5.8)

By the same reasoning, we have also

∀i ∈ {1, ..., s}, DHgi(x̂)k̂ ≥ r. (5.9)

By using (5.8), (5.9), (5.5) and (5.6) with t = k̂, we have f(x̂+αk̂) > f(x̂) and for

all i ∈ {1, ..., s}, we have gi(x̂+αk̂) > 0. Since x̂+αk̂ ∈ U verify for all i ∈ {1, ..., s},

gi(x̂+αk̂) > 0, for all j ∈ {1, ..., q}, hj(x̂+αk̂) = 0 and f(x̂+αk̂) > f(x̂), we have
x̂ is not a solution of (NP). This is a contradiction. Since 0 ∈ C and C is not a
neighborhood of 0, we have 0 ∈ bdC.
Since C is a convex of R1+s+q and 0 ∈ bdC, by using Theorem 3.1 there exists
v = (λ0, ..., λs, µ1, ..., µq) ∈ R

1+s+q \ {0} such that for all x ∈ C, 〈v, x〉 ≤ 0.
Therefore, we have

∀u ∈ E, ∀z = (z0, ..., zs) ∈ R
1+s
−

λ0(DHf(x̂)u+ z0) +
∑s

i=1 λi(DHgi(x̂)u + zi) +
∑q

j=1 µjDHhj(x̂)u ≤ 0

}

(5.10)
We set for all i ∈ {s + 1, ..., p} λi = 0. Since (λ0, ..., λs, µ1, ..., µq) 6= 0, we have
(λ0, ..., λp, µ1, ..., µq) 6= 0.
Let i ∈ {0, ..., s}, by using (5.10) with u = 0 and z = −es+1,i+1, we have −λi ≤ 0
which implies that λi ≥ 0. We have also for all i ∈ {1, ..., p}, λigi(x̂) = 0. By using
(5.10), with z = 0, we have
∀u ∈ E, λ0DHf(x̂)u +

∑s

i=1 λiDHgi(x̂)u +
∑q

j=1 µjDHhj(x̂)u ≤ 0 which im-

plies that λ0DHf(x̂) +
∑s

i=1 λiDHgi(x̂) +
∑q

j=1 µjDHhj(x̂) = 0. Since, for all

i ∈ {1, ..., s}, DGgi(x̂) = DHgi(x̂), we have

λ0DHf(x̂)u+
∑s

i=1 λiDGgi(x̂)u+
∑q

j=1 µjDHhj(x̂)u = 0. (5.11)

Therefore λ0DHf(x̂)u +
∑p

i=1 λiDGgi(x̂)u +
∑q

j=1 µjDHhj(x̂)u = 0. We proved

(a), (b) and (c).
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5.3. Proof of (d). We assume (i), (ii), (iii) and (iv). We proceed by contradiction
by assuming that (λ0, ..., λp) = (0, ..., 0). Therefore, according to (5.11),
∑q

j=1 µjDHhj(x̂)u = 0. Since (iv), we have (µ1, ..., µq) = 0. For consequently, we

have (λ0, ..., λp, µ1, ..., µq) = (0, ..., 0) this a contradiction with (a). We proved (d).

5.4. Proof of (e). We assume (i), (ii), (iii), (iv) and (v). Thanks to our previous
proof we know that there exist λ0, ..., λp ∈ R+ and µ1, ..., µq ∈ R which verify (a),
(b), (c) and (d). We have λ0 6= 0, we proceed by contradiction by assuming that
λ0 = 0. Since (d) and (b), we have (λ1, ..., λs) 6= 0. Since (v) and (λ1, ..., λs) ∈ R

s
+\

{0}, we have
∑s

i=1 λiDGgi(x̂)w > 0. By using (5.11), we have
∑s

i=1 λiDGgi(x̂)w =

0. This a contradiction. Since, λ0 6= 0, by taking for all i ∈ {0, ..., p}, λ′
i =

λi

λ0

, we

proved (e).
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bâtiment Sophie Germain, 8 place Aurélie Nemours,
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