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Abstract

We present here the statistical models that are most in use in survival data analysis. The parametric ones
are based on explicit distributions, depending only on real unknown real parameters, while the preferred models
are semi-parametric, like Cox model, which imply unknown functions to be estimated. Now, as big data sets
are available, two types of methods are needed to deal with the resulting curse of dimensionality including non
informative factors which spoil the informative part relative to the target: on one hand, methods that reduce
the dimension while maximizing the information left in the reduced data, and then applying classical stochastic
models; on the other hand algorithms that apply directly to big data, i.e. artificial intelligence (AI or machine
learning). Actually, those algorithms have a probabilistic interpretation. We present here several of the former
methods. As for the latter methods, which comprise neural networks, support vector machines, random forests and
more (see second edition, January 2017 of Hastie, Tibshirani et al [18]), we present the neural networks approach.
Neural networks are known to be efficient for prediction on big data. As we analyzed, using a classical stochastic
model, risk factors for Alzheimer on a data set of around 5000 patients and p = 17 factors, we were interested in
comparing its prediction performance with the one of a neural network on this relatively small sample size data.
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1. Introduction

When analyzing the risk of an event E to occur, such as a degradation, a failure, a disease or even
death, one may consider how the waiting time Y of onset of such a nocuous event is influenced by intrinsic
and environmental factors X := (X1, .., Xp):

Y = f(X) (1)

The function f is not deterministic. In classical survival data analysis, a stochastic model for f is chosen
among several families of models, fully parametric, nonparametric or semi-parametric [31,1]. Then, f is
to be estimated, based on the chosen model and from the observation of a training set, i.e. a sample of n
observations, (X, Y )i i = 1, · · · , n, of the pair (X, Y ). Finally, the stochastic model initially chosen has
to be tested for fit; see E. J. Lehmann [37], and [27]. The classical versions of these models are available in
R software. To adapt the analysis to specific situations, researchers have to elaborate extensions of these
models and work them out using R, which is both a software and a programming language; see [43,45]. As
a counterpart, the machine learning approach of this same problem consists in using an algorithm which
has the potential risk factors X as entries and Y as output. Several families of algorithms are available:
neural networks, random forests or support vector machines [18,33]. This second approach leads to the
so-called “data driven models”. In that respect, it seems to be more satisfactory than the subjective choice
of a stochastic model that appears in the first approach. However, machine learning is often viewed as a
“black box” as the algorithm goes back and forth until convergence is achieved, and it scatters thus the
initial potential risk factors in such way that interpretation becomes difficult. Also, every machine learning
method, even though it seems to be purely algorithmic, has a probabilistic interpretation. We shall see
this feature in particular for neural networks, which are a parametric version of a stochastic model: the
projection pursuit regression and discrimination model. Several recurrent problems occur when dealing
with duration data:

(i) Incomplete data occur very frequently. For some subjects or items, the event does not occur before
the end of the study, leading to missing data that are called “censored” data. More precisely, they
are called “right censored data” as other phenomenons may occur like left censoring or interval
censoring [25]. Right censoring means that the true value of Y is unknown but known to be “to the
right” of the observed duration. Those incomplete data are not to be thrown away. They are taken
into account using special devices.

(ii) Specially in medicine, it may happen that the training sample is small. If the sample size is small, it
does not help in drawing conclusions. This happens with prospective studies. The simplest example
of this case is a clinical trial: only one risk factor, the treatment. It compares a new treatment
X = 1 to the usual one X = 0 to increase the life length of patients suffering from a specific disease.
For ethical reasons, the sample size n is rather small and the patients are carefully chosen as the
characteristics of the two groups should be comparable except for the treatment. This is achieved
either by randomization (a double blind study, an experimental procedure in which neither the
subjects nor the experimenters know which subjects are in the test and control groups), or pairing
on possibly relevant factors [12] in order to ensure the comparability of the two sub-samples except
for the treatment. For ethical reasons, the size of such samples is necessarily rather small. We should
notice that a perfect comparability is achieved in the randomization case only asymptotically, and
in the pairing case only if the set of matched factors is correctly chosen. In order to work with an
increased sample size, one may use bootstrap techniques [14], which consist in drawing at random
new samples out of the unique sample we have. Several theorems are needed to justify, in each
specific case, the use of such duplications of a unique sample; see P. Hall [16].

(iii) But when the training set is not carefully collected on purpose like in the preceding example, one
has to deal frequently with immense data bases, even in the medical field. Sample size n and/or
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number of factors p may be very big. It happens when the data are obtained retrospectively, for
example from an internet national or international data base. In France, big data sets of patients,
with extensive information, are available from the national health insurance. Depending on the goal
aimed at, there is a need to extract the useful information, reducing thus the high dimensionality
of the data.

The next section, section 2, deals with several types of stochastic survival models. Section 3 gives an
illustration of the difficulty of model selection. In section 4, we present some data reduction methods for
the high dimensionality of data sets and in section 5 we define neural networks as a parametric version
of a stochastic model: projection pursuit regression and discrimination. Finally, in section 6, we give an
example of comparison of a stochastic model and a neural network to predict Alzheimer occurrence among
patients at Pitié-Salpêtrière Hospital in Paris (France).

2. Stochastic survival models

The probability distribution of the waiting time Y may be defined by anyone of five different equivalent
functions: its survival function S(t) := P (Y ≥ t), its distribution function F (t) := P (Y < t), its density
f(t) := F ′(t) := −S′(t) (whenever it is assumed to exist, which is mostly the case), its hazard function

h(t) := f(t)/S(t) and, finally, its integrated hazard H(t) :=
∫ t

0
h(s)ds.

The relationships between them are

{
S(t) = 1− F (t) = exp(−H(t))

h(t) = H ′(t) ; H(t) = − ln(S(t))
(2)

Most current models are based on the hazard rate h, the probability that the event takes place at time
t, knowing that it did not take place before:




h(t) =
f(t)

S(t)

f(t) = −S′(t)

(3)

2.1. Parametric survival models

(i) Weibull and generalized Weibull [40]

(a) Weibull model
One of the most usual simple parametric model is due to Weibull. It has two positive real
parameters λ and α, to be estimated from a training set. Weibull model W (λ, α) is defined as

h(t|λ, α) = αλαtα−1 ; (λ, α > 0) ; t ≥ 0 (4)

α = 1 h is constant h = λ (no ageing, ≡ exponential model E(λ) as S(t) = exp(−λt))

0 < α < 1 h is decreasing ∞ ↓ 0 (see Figure 1 left)

α > 1 h is increasing 0 ↑ ∞ (see Figure 1 right).
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Figure 1. Weibull hazards for diverse values of α (shape), λ (scale)
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As will be seen below, h is assumed to be a function of p real risk factorsXj named covariates
in medicine and stresses in industrial setting.

(b) Generalized Weibull GW (λ, α, γ)
It has a third parameter γ and reads

h(t|λ, α, γ) = λα

γ
(λt)α−1{1 + (λt)α}1/γ−1; (λ, α, γ > 0); t ≥ 0 (5)

GW allows multiple hazard shapes; see Figure 2

GW (λ, 1, 1) = E(λ), Exponential

GW (λ, α, 1) = W (λ, α), Weibull

If α > 1, α > γ, h : 0 ↑ ∞
If α = 1, γ < 1, h : λ

γ ↑ ∞
If 0 < α < 1, α < γ, h : ∞ ↓ 0

If 0 < α < 1, α = γ, h : ∞ ↓ λ
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Figure 2. Generalized Weibull hazards for diverse values of the parameters

(c) Exponentiated Weibull EW (λ, α, γ)
Exponentiated Weibull hazard [11,38] reads

h(t|λ, α, γ) = λα{1− exp[−(λt)α]}(1−γ)/γ exp[−(λt)α](λt)α−1

γ{1− (1− exp[−(λt)α])}1/γ , (λ, α, γ > 0), t ≥ 0 (6)

All moments of EW are finite. Sub-models are EW (λ, α, 1) = W (λ, α) and EW (λ, 1, 1) = E(λ).
For α > 1, α ≥ γ, the hazard h increases from 0 to ∞.
For α = 1, γ ≤ 1, the hazard h increases from (λγ ) to ∞.
For 0 < α < 1, α < γ, the hazard h decreases from ∞ to 0.
For 0 < α < 1, α = γ, the hazard h decreases from λ to 0.

(ii) General parametric models
The waiting time Y is defined through a link function g and a random variable Z:

g(Y ) = βT x+ σZ (7)

where x are the risk factors, β the parameters to be estimated, g identity or log, and density f of
Z may be
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logistic : f(z) =
e−z

(1 + e−z)2

normal : f(z) =
1√
2π

e−
z
2

2

extreme : f(z) = ez−ez

(8)

As an example, let us see how Weibull is represented in this setting: if Y is Weibull W (λ, α), g = log
and Z ∼ E(1), exponential(1) so that

log(Y ) = β0 + βTx+ σ log(Z) = − log(λ) +
1

α
log(Z) (9)

In terms of W (λ, α) (4): λ = e−(β0+βT
x), α = 1/σ.

(iii) Estimation method: Maximum Likelihood (ML)
What is known is the observed training set (yi,xi)i=1,··· ,n, and a stochastic model P = L(Y |X),
the probability distribution of Y knowing X, implying unknown parameters to be estimated from
the training set.

The unknown parameters are

— p parameters: β = β1, · · · , βp quantifying the weight of each risk factor Xj , j = 1, · · · , p
— the baseline hazard function h0(t) the probability, having “survived” up to time t, to have the

event at time t when no risk factors is present. If h0 is assumed to be a given function of k
parameters, like a Weibull depending on k = 2 parameters, we have, in all, p+ 2 parameters
to estimate.

The values chosen for the parameters are those that maximize the probability of the observed
training set, called Maximum Likelihood (ML) estimators. It should be mentioned that one has to
be careful when using maximum likelihood looking at the ratio of the parameters to estimate as
compared to the size of the training sample which should not exceed some value [23]
As the likelihood of one observation, L(α, λ,β|y, x1, x2, · · · , xp) is equal to f(y, α, λ,β,x), and all
observations are assumed to be independent, the likelihood of the observed training set is equal to
the product L =

∏n
i=1 L(α, λ,β|yi,xi) =

∏n
i=1 f(yi, α, λ,β,xi).

Now, find the values of α, λ,β that maximize the likelihood L:
α̂, λ̂, β̂ = argmax

α,λ,β
L(α, λ,β|y,x) (10)

Actually as it is easier to find the derivative of a sum than of a product, in order to maximize an
expression, one deals with the log of the likelihood (named log-likelihood) rather than the likelihood
itself.

(iv) Now, how to deal with right censored data?
Due to the nature of the data, it may happen that Y is not observed when the experiment stops
at time C before the event takes place. One can then provide the fact that what is known is that
Y > C and replace in the likelihood, the density f at the unknown time Y by the survival S at
the known time C. Other types of censoring may occur besides right censoring: left censoring, when
the duration is known to be bigger than some observed duration C, interval censoring, when the
duration is known to lie between two observed values, C1 and C2. Moreover, what may also happen
is truncation: some items or patients may be skipped from the observed sample due to the experi-
mental scheme. In that case, some special procedures have to be applied [13,24,20].
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2.2. Semi-parametric survival models

Semi-parametric models have a non-parametric part (an ”infinite dimensional” unknown parameter: e.g.
one or several functions) and a parametric one (a finite dimensional unknown real parameter), both to
be estimated through a training set, but focussing on the parametric part, for the sake of interpretation.

(i) Cox model [8,9,4]
The hazard rate h is assumed to be equal to a baseline hazard h0(t) (the nonparametric part of
the model), modified by p covariates X = (X1, · · · , Xp) whose weights are the parameters β =
(β1, · · · , βp) (the parametric part of the model) to be estimated, as well as h0 which may be any
positive function:

h(t|X) = h0(t) e
βTX (11)

Usually, one is only interested in β and the objective is to get rid of the nuisance infinite dimensional
parameter h0. This can be done using Cox’s partial likelihood (see below). Once the respective
weights of the risk factors have been estimated, one can derive an estimation of the function h0.

(ii) Estimation method
In this semi-parametric case, the baseline h0 is free to be any function. The likelihood is then
replaced by Cox’s partial likelihood: at each failure time yi, consider the ratio of the item that fails
to all items still present at risk. Those at risk are those who are neither failed nor censored at time
yi. This eliminates h0, as it has the same value, h0(yi) for everyone, and takes advantage of all items
that will be censored later on, in the denominators. Then, once we have estimated the coefficients
β of the risk factors, we can estimate h0.

(iii) Frailty models
Up to now, the observed population is assumed to be homogeneous and all items (or patients)
are independent. In order to model a possible inhomogeneity, one can introduce into the model a
random effect η, called frailty [46,29,30], acting multiplicatively on the hazard rate h(t|x) of an
individual with covariate vector x.

h(t|x, η) = η exp(βTx) h0(t) (12)

A frailty model may be considered as a Cox model with an unobserved covariate ln(η) whose
coefficient is equal to 1 and whose distribution function is known, derived from Fη the distribution
of η. Flexible distributions are usually chosen for Fη, the most common being gamma, but also
inverse gaussian and all stable distributions, leading to the model

S(t|x, η) = exp(−η exp(βTx)H0(t)) (13)

where H0(t) is the baseline cumulative hazard. Thus, as η is not observed, what is available is the
survival integrated with respect to η:

S(t|x) =
∫ ∞

0

exp(−u exp(βTx)H0(t)) dFη(u)

= exp(−G(exp(βTx)H0(t)))

(14)

where G is -log of the Laplace transform of η distribution function

G(y) = − ln(

∫ ∞

0

exp(−uy)dFη(u) (15)

The simple Cox model is obtained when G is the identity.
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2.3. Nonparametric survival models

In industrial setting, accelerated failure time models (AFT) [2,3] are more popular than Cox model
and covariates are called stresses which are often controlled while the covariates are simply observed:
for G a survival function, i.e. a decreasing function from 1 to 0 on R+, and r a positive function on a
p-dimensional process X

S(t|X(s), 0 ≤ s ≤ t) = G(

∫ t

0

r(X(s))ds) ∀X ∈ X (16)

We can see there a totally nonparametric model, involving two unknown functions, G and r. It has a
semi-parametric version when one of the two unknown functions involved,G or r, is replaced by a function
depending on a finite number of parameters; and a fully parametric version if both functions are assumed
to be known except for one or more real parameters to be estimated. Those replacements should be done
with flexible functions able to adopt different shapes. Other examples of nonparametric models may be
found in [10,15].
Let us remark that parametric models may seem to be too coercive as compared to nonparametric ones.
One way to remedy this possible defect is to replace the distribution function of a parametric model
by a neighborhood defined through a distance on probability distributions like Hellinger or Prokhorov
distance. This leads to a fourth type of model, called robust models [26,21].

2.4. Latent variable model: First Hitting Time

Health L(t) of a patient, or operational state L(t) of a technological material is a latent (not observed)
variable that decreases to 0 due to three types of risk factors. The event occurs when this process reaches
a boundary, usually 0 [36,35]. In order to make clear the structure of this model, let us give a motivating
medical example:
One has to estimate the expected years of life free of lung cancer lost due to occupational exposure to
asbestos. Such a study was required based on a french case-control survey [5]. The model is as follows:

L(t|h, µ) = ℓ+ µt+B(t) (17)

where

(i) ℓ > 0, the initial amount of health, is a function of the initial covariates XI : gender, past family
disease history, genetic factors,...(Note that in our example, the amount of health is meant with
respect to lung cancer occurrence, not with respect to death itself).

(ii) µ < 0, the slope of the process, is a function of XI and also of lifetime covariates XL: smoking and
food habits, environment, biological measurements (glycemia, cholesterol, · · · ).

(iii) B(t) is a Brownian motion, the random part of the model.

(iv) Finally, the focus is put on a special risk factor XS (here occupational exposure to asbestos), which
accelerates by a function r(t) the time to onset of lung cancer.

The initial amount, ℓ, will depend on xI , the slope, µ, on xI and xL. Usually this dependence is assumed
to be linear, which results in a parametric model, with the weights of each risk factor to be determined for
ℓ and for µ. Now, given the values of xI and xL of a patient, one can compute the years free of disease that
he lost due to his exposure to asbestos by using the acceleration function r, estimated from the training
set. In the absence of any asbestos exposure the waiting time to the event (lung cancer occurrence) is

T (ℓ, µ) = inf{t ≥ 0 : L(t|ℓ, µ) ≤ 0}, (18)

T (ℓ, µ), (< ∞ as µ < 0) is inverse Gaussian (Φ(t) =
∫ t

−∞
1√
2π

exp(−u2/2) is the standard normal cdf

(cumulative distribution function)):
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F (t|ℓ, µ) = 1 + e−2ℓµΦ
(
(µt− ℓ)t−1/2

)
− Φ

(
(µt+ ℓ)t−1/2

)
, (19)

In the presence of asbestos exposure, the time to event is accelerated by a nondecreasing continuous
function r on IR+ such that r(t) ≥ t ∀t:

T (ℓ, µ, r) = inf{t ≥ 0 : L(r(t)|ℓ, µ) ≤ 0} (20)

This parametric model has a nonparametric version [19].

3. Illustration of the difficulty of model selection

Model selection is a difficult problem. The following artificial example is an illustration of the difficulty
of eliminating irrelevant predictors. It shows that removing potential risk factors which seem to be inde-
pendent of the outcome may lead to serious errors.
Let us consider a very simple diagnosis problem, discrimination between 2 diseases M = M1 or M = M2

based on 3 symptoms Xj , j = 1, 2, 3, meeting the following distribution:

M = M1

X1 = 0 X1 = 1

❍
❍
❍
❍
❍

X2

X3 0 1

0 1/4 0

1 0 1/4

❍
❍
❍
❍
❍

X2

X3 0 1

0 0 1/4

1 1/4 0

M = M2

❍
❍
❍
❍
❍

X2

X3 0 1

0 0 1/4

1 1/4 0

❍
❍
❍
❍
❍

X2

X3 0 1

0 1/4 0

1 0 1/4

(i) All 3 symptoms are present with the same probability 1/2 in M1 and in M2. This implies that all
3 symptoms seem to be independent of the type of the disease, M1 or M2.

(ii) For any pair of symptoms xj , xk, P (M1|xjxk) = P (M2|xjxk) = 1/4, so that every pair (Xj , Xj′ )
is uniform on its 4 values in M1 as well as in M2. As a result, none of the 3 pairs (Xj , Xj′) can
discriminate M1 and M2.

(iii) But for any triplet of symptoms (x1, x2, x3), whenever P (M1|x1, x2, x3) = 1), P (M2|x1, x2, x3) = 0
and the reverse is also true. This implies that (X1, X2, X3) altogether discriminate perfectly M1

and M2 and lead to a perfect diagnosis of M .

This phenomenon can be extended to any k-uple of risk factors, so that one has to take into account the
maximum possible size of sets of risk factors allowed by the number of observed items as compared to
the number of risk factors.
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4. Reduction methods

Among existing methods (POD, PGD and others [42]), let us cite PGD (Proper Generalized Decom-
position method) of Chinesta, Ladevèze et al [6,7]:

f(x1, .., xp) ≃
q∑

i=1

(

p∏

j=1

f j
i (xj)) (21)

and the classical Singular Value Decomposition (SVD) of a matrix An×p, which is useful when the data is
a high dimensional (rectangular) (n×p) matrix A. It replaces A by a product of three matrices, the inner
one being diagonal with dimension r, the rank of A, smaller than min(n,p). It can be seen as a Principal
Component Analysis of the matrix An×p, which replaces the explanatory variables X for the outcome
Y by a few linear combinations of them, giving thus a probabilistic interpretation of SVD. Finally, I will
cite a decomposition of a function f(x1, .., xp) of several discrete variables, based on variance analysis,
that is useful for sparse contingency tables. For an overview of existing methods, see [41].

4.1. Singular Value Decomposition (SVD)

A : Rp → R
n rank(A) = r ≤ min(n, p) :

An×p =




x11 x12 ............... x1p

x21 x22 ............... x2p

... ... ............... ...

xn1 xn2 ............... xnp








n : n ≪ p, a centered matrix

︸ ︷︷ ︸
p

Find U ,V ,D such that:

A = UDV T or UTAV = D (22)

where 



Un×r orthonormal basis of Er j R
n column space of A

Vp×r orthonormal basis of E ′
r j R

p row space of A

Dr×r diagonal matrix (d1, · · · , dr) ; r = rank(A)

(23)

Let us remark that U and V have left inverses:

V T
r×pVp×r = UT

r×nUn×r = Ir×r (24)

In order to obtain U ,V ,D verifying Eqs. (22), we proceed as follows:

As UTU = Ir×r , ATA = V D2V T and, as V TV = Ir×r , AAT = UD2UT . ATA, the Gram matrix
associated to A, and AAT are semi-definite positive matrices, so that the columns of V are the real
eigenvectors of ATA and the columns of U are the real eigenvectors of AAT and d21, · · · , d2r are the
common positive eigenvalues of ATA and AAT . As a consequence, the singular value decomposition of
A is UDV T .

9



4.2. Statistical approach to SVD: Principal Component Analysis (PCA)

X1 X2 ....... ...... Xp

An×p =




x11 x12 ............... x1p

x21 x22 ............... x2p

... ... ............... ...

xn1 xn2 ............... xnp








n : n ≪ p, a centered matrix

︸ ︷︷ ︸
p

A represents n observations (on n patients or n technological devices) of the p-dimensional variable
(covariate or stress) X = (X1, · · · , Xp), and it is considered as a cloud of n points in Rp or p points
in Rn. The goal is to find the best representation of the cloud in a space of smaller dimension, while
keeping most of the initial information. This suggests to maximize the variance of linear combinations of
the vectors Xj , which is obtained by projection on the first k eigenvectors of the symmetric semi-definite
positive matrix ATA. This matrix is an estimator of Σ, the unknown covariance matrix of X. This can
be seen from the following equations:
Let W be any linear combination of the X ′

js, W = a1X1 + · · ·+ apXp It has a representation in terms of

the eigenvectors,W = b1V1+· · ·+brVr, so that ̂V ar(W ) = aTATAa = b21λ1+· · ·+b2rλr, where
∑r

j=1 b
2
j = 1.

We can see from those equations that the “most informative k-dimensional subspace” in Rp is the space
spanned by (V1, · · · , Vk), the first k eigenvectors of ATA.

4.3. Decomposition of a function of several random variables

Let f be a real function of p real random variables. We have the following decomposition lemma based
on the classical variance analysis:
Every integrable function f = f(x1, · · · , xp) may be decomposed uniquely into a sum:

f = C +

p∑

j=1

gj(xj) +
∑

j,k∈{1,··· ,p}2, j<k

gjk(xj , xk) + ..+ g1,..,p(x1, .., xp) (25)

where C is a constant and all expectations of g functions on any of their arguments are 0.

This result will be essentially applied in the following case: the variables Xj are discrete and take a finite
number of values. The expectations are taken with respect to the joint probability of X = (X1, ·, Xp).
Constructive decomposition

C = E(f(X1, .., Xp))

gj(xj) = E(f(X1, .., Xp)|Xj = xj)− C

gj,k(xj , xk) = E(f(X1, .., Xp)|(Xj , Xk) = (xj , xk))− gj(xj)− gk(xk)− C

etc . . .

This approach is very useful for sparse contingency tables as can be seen from the following diagnosis
example, where the data leave many symptom profiles empty. We have p = 9 binary syptoms Xj , j =
1, · · · , p, Xj = 1 if the symptom is present, which gives p′ = 29 = 512 symptom profiles, which are
supposed to discriminate two different forms, M1 and M2, of the same disease M .
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Observations on n = 150 patients give counts for 1024 cells, so that many cells are empty in the observed
sample, though their probabilities may not be assumed to be equal to 0.

A2×512 =


 n11 n12 ............... n1p′

n21 n22 ............... n2p′





 q = 2

︸ ︷︷ ︸
p′=512

log(P (X = x|M1)) = C +
∑p

j=1 gj(xj) +
∑

j 6=j′ , j<j′ gj,j′(xj , xj′ )

+
∑

j 6=j′ 6=k, j<j′<k gj,j′,k(xj , xj′ , xk) + · · ·+ g1,2,··· , p(x1, x2, · · · , xp)

We have two such developments, one for disease M1, and one for disease M2, with sums of functions of an
increasing number, k, of variables. If we can assume that the symptoms are independent, which is very
simple but often unrealistic, we can stop the preceding developments at k = 1. If we stop at k = 2, it
means that we assume a possible dependence of order 2, but with no influence of any third symptom on
the link between any two given symptoms. Now, stopping at k, named assumption Hk, i.e. cutting off all
functions of more than k arguments, means that we allow possible order k interactions, but no interaction
greater than k. Under assumption Hk, the marginals of order k of the data are sufficient statistics [22].

5. Neural Networks

The most usual Neural Network, the single hidden layer back-propagation network (or single layer per-
ceptron), is a particular case of a stochastic model, the Projection Pursuit Regression and Discrimination
(PPRD) model.

5.1. Projection Pursuit Regression and Discrimination model (PPRD)

This semi-parametric model is fit for regression as well as discrimination problems.

(i) Regression

The target Y ∈ R is the response variable to X = (X1, · · · , Xp) ∈ Rp. The PPR Ŷ of Y is defined
as:

Ŷ = f̂(X) :=

M∑

m=1

ĝm(ω̂T
mX) :=

M∑

m=1

ĝm(Vm) (26)

in which ωm,m = 1, · · · ,M are M unitary p-dimensional vectors and functions gm : R → R.
Function gm(Vm) is called a ridge function. The estimators are based on the observed training
sample: (xi, yi), i = 1, · · · , n. This is an additive model, but not with respect to the initial variables
X but with respect to appropriate linear combinations of them: Vm = ωT

mX.
A remarkable property of this model is that if we choose M big enough, any continuous function

may be approximated arbitrarily well. This is what made the success of neural networks which are
a parametric version of this stochastic model. A simple example of the nonlinearity of the model
may be given in the simplest case where p = M = 2, ω1 = (1/

√
2, 1/

√
2), ω2 = (1/

√
2,−1/

√
2),

g1(t) = t2/4, g2(t) = −t2/4, so that the resulting value of f is f(X) = X1X2. However, a drawback
of this model is the difficulty of interpretation of the results in terms of the initial risk factors as
each feature Xj is scattered into every linear combination of X. The quadratic measurement error
is:

R(θ) :=

n∑

i=1

[yi −
M∑

m=1

gm(ωT
mxi)]

2 (27)

where θ is the set of parameters of the problem (θ := (ωm, gm)).

11



(ii) Discrimination into K categories
Up to now we considered the case of a regression problem, Y being a random variable in R. If the
problem is a discrimination one, the target Y = (Y1, · · · , YK) is one of K categories, each Yk being
coded as a (0,1) variable. In that case, two different error measurements are considered:

R2(θ) :=
∑K

k=1

∑n
i=1(yik − fk(xi))

2 quadratic error

RKL(θ) := − ∑n
i=1

∑K
k=1 yik log(fk(xi)) crossed entropy

The indexKL for the crossed entropy makes reference to Kullback Leibler distance which is equal up
to an additive constant to crossed entropy as defined up there. We recall that the Kullback-Leibler
distance of two probabilities P and Q is defined as

KL(P,Q) =

∫
log(

dP

dQ
) dP

5.1.1. Neural Network as a special case of PPRD

Let the framework be a discrimination problem: the target Y is a category, each Yk being coded
as a (0,1) variable. Yk is modeled as a function gk of a linear combination of variables obtained by
a linear combination of activated M linear combinations of the inputs.
We can see that linearity comes in twice in this definition, with p × M coefficients α and p × K
coefficients β. To those parameters are added the activation function σ and the K functions gk:

Vm := ωT
mX := α0 +αT

mX m = 1, 2, · · · , M
Zm = σ(Vm) σ is the activation function

Tk = β0k + βT
k Z k = 1, 2, · · · , K

fk(X) = gk(T ), k = 1, 2, · · · , K

where gk(t) =
eTk∑
K

i=1
eTi

. This choice ensures that all Ŷk := fk(X) are positive and add to 1.

There are several possible choices for the activation function σ, see Figure 3. All of them are
smoothed versions of the step function s(u) = 1 {u ≥ 0} (up to an additive constant). The non-
linearity of the model is due to the activation function. If σ is the identity, the model becomes
linear.

σ(u) =
1

1 + e−u
the sigmöıd, the most usual one

σ(u) =
eu − e−u

eu + e−u
hyperbolic tangent (th(u))

σ(a, u) =

{
a(eu − 1) for u < 0

u for u ≥ 0 Exponential Linear Unit (ELU)

σ(a, u) =

{
au for u < 0

u for u ≥ 0 Rectified Linear Unit (ReLU)

σ(a, b, u) = b

{
a(eu − 1) for u < 0

u for u ≥ 0 Scaled Exponential Linear Unit (SELU)

12



−4 −2 0 2 4

−0
.5

0.
0

0.
5

1.
0

1.
5

sig
m

a

Activation functions

step
sigmoid
th
ELU
ReLU
SELU

Figure 3. Several activation functions

6. Application to Alzheimer prediction

We analyze the comparison of prediction abilities of a stochastic model, the logistic regression (GLM),
and a neural network (NN) approach, for the prediction for patient to develop Alzheimer in the next 4
years , based on the observation of 17 risk factors. The data set is issued from Pitié-Salpêtrière Hospital in
Paris (France). It has n = 5003 patients each with p = 17 covariates, including 3 genetic factors, familial
disease anteriority and personal factors (age, sex, education level, · · · ). 467 patients were excluded for
missing values, 142 developed the disease and 4214 were free of disease, and thus called controls [28]. Let
us notice that this is a very simple problem, which deals only with a discrimination problem between
two outcomes (Alzheimer or not) and a data set which is not big at all as it involves only a (5003× 17)
matrix. Note also the very unbalanced counts for diseased (142) and controls (4214) which makes the
discrimination uneasy for both methods. The logistic model reads

P (Y = 1|X = x) =
exp(βTx)

1 + exp(βTx)
(28)

We proceed as follows

(i) Split at random 3/4 of the data set to be the training set. This is a rather huge training set due to
the paucity of patients who developed the disease.

(ii) The remnant 1/4 will be the test set on which to predict who will be Alzheimer.

(iii) Use separately logistic model (GLM) and neural network (NN) on the training set to estimate the
probabilities RGLM (X) and RNN (X) to develop Alzheimer based on the risk factors X.

(iv) Predict, on the test set, who will be Alzheimer based on the estimations done with both methods.
The result is four counts for each method: true positive, false positive, true negative, false negative.
Or, equivalently, the probabilities of correct classifications of Alzheimer (pd) and non Alzheimer
(pnd)

(v) Repeat this process N times, for both methods, to obtain confidence intervals for the probabilities
of correct prediction of Alzheimer, see Table 1:
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Method pd pnd pg CI95%(pd) CI95%(pnd)

GLM 0.72 0.73 0.73 0.55 0.85 0.70 0.76

NN(2) 0.68 0.73 0.73 0.50 0.85 0.65 0.77

Table 1: Comparison of prediction abilities of GLM and NN.

Average correct predictions due to GLM and NN are pd for dementia cases, pnd for people without de-
mentia, pg for global and CI95% are the respective confidence intervals.

Hereafter is an illustration, see Figure 4, of the neural network we used, with 2 layers, the first one
with 3 neurons and the second one with 2 neurons. In order to have a more readable picture, we choose to
show as entries only the four relevant predictive factors: age, incapacity, depression and the gene APOE4,
a reduced number (only 4) as compared to the initial 17 entries.
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Figure 4. 2 layers, 3 and 2 neurons

Some comments

(i) It was very surprising that the education level did not play a role in the occurrence of the disease.

(ii) The fact that the counts are very much unbalanced (142 dementia cases versus more than 4000
without dementia) creates problems for the prediction: the confidence intervals are large.

(iii) To overcome this problem, one can duplicate the smaller category [32], see Table 2:

Method pd pnd pg CI95%(pd) CI95%(pnd))

GLM 0.73 0.73 0.73 0.71 0.76 0.71 0.75

NN(2) 0.75 0.72 0.73 0.73 0.78 0.70 0.75

Table 2: correct predictions due to GLM and NN for dementia cases (pd), for people without
dementia (pnd), global pg, and 95% confidence intervals after duplication.
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After duplication, the widths of the 95% confidence intervals are reduced [0.71 0.76] instead of
[0.50 0.85] for the future Alzheimer detection and [0.70 0.75] instead of [0.65 0.77] for the future
non Alzheimer.

(iv) The prediction abilities of the two methods are very comparable on this example, with moderate
dimension of the data set.

(v) Increasing the number of neurons from 2 to 3 in a unique hidden layer does not improve the
prediction ability. The only consequence is increasing the time to get the result. Same comment
when using two layers with respective number of neurons 3 and 2

As a perspective, one could use world wide data (Big Data) related to Alzheimer disease and the observed
risk factors on the patients under survey. Then this would become a regression problem, estimating the
time to onset of the disease as a function of the numerous available risk factors.

7. Conclusions and perspectives

(i) Analysis of risk is a crucial issue nowadays. The same mathematical methods to evaluate the impact
of risk factors on the waiting time for an event to occur may be applied to technological aging systems
[44], to public health problems [47], insurance, management [17], ecology and other fields.

(ii) The link between survival analysis and reliability, ignored for a long time, so that the terminology
is different in both fields to name the same concepts, is now fully acknowledged. Only recently, their
common points, more numerous than their differences, were recognized. The favorite model though
for survival data is the Cox model and its extensions, while accelerated models are preferred in an
industrial environment [2,3].

(iii) The increasing power of computers facilitates the development of non parametric and semi-parametric
stochastic models, more greedy in time computation than the parametric ones, and also of complex
algorithms in Artificial Intelligence to deal with Big Data. Many new packages appear every month
in R and Python which are available on the web.

(iv) Statistical Learning and Big Data (SLBD):
Research statisticians turn now to Machine Learning, like Hastie, Tibshirani et al [18] and the reverse
is also true. Machine learning researchers like Murphy [39] investigate the probability background
of their manipulation of Big Data through algorithms. This forms finally what could be called
Statistical Learning and Big Data.

(v) The increasing knowledge of the genome [34] provides high dimensional data [34]. The FHT (First
Hitting Time) model, in use in this context, gives a special status to some risk factor.

(vi) Specific developments in medicine:
“Individualized medicine”, which seems to be in total contradiction with classical statistical analysis
is now seriously taken into account. Including all the data relative to a patient, such as medical
doctors report (text data) leads to the development of new graphical models.
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