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Instituto de Ciencias de la Ingieneŕıa, Universidad O’Higgins, 2841959 Rancagua, Chile

Simon Merminod
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453, USA

Eric Falcon and Michael Berhanu
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In a granular gas experiment of magnetized particles confined in a thin layer, the rate of dissipative
collisions is tuned by adjusting the amplitude of an external magnetic field. The velocity statistics
are analyzed using the dynamic and static structure factors of transverse velocity modes. Using the
fluctuating hydrodynamics theory we measure the deviation from kinetic energy equipartition in
this out-of-equilibrium system as a function of the dissipative collision rate. When the collision rate
is decreased, the distance to equipartition becomes smaller meaning that the dynamical properties
of this granular gas approach by analogy those of a molecular gas in thermal equilibrium.

I. INTRODUCTION

Statistical mechanics succeeds in predicting the macro-
scopic states of systems composed of many interacting
particles, mainly when these systems are in thermal equi-
librium. Such systems have a reversible dynamics and do
not dissipate energy. In contrast, for out-of-equilibrium
systems like turbulent flows, biological living systems, ac-
tive fluids or electrical circuits, only few general results
statistically describe the nonequilibrium steady states [1],
in which energy must be continuously injected to com-
pensate for energy dissipation [2]. Among them, granular
gases refer to an assembly of athermal macroscopic parti-
cles mechanically agitated which undergo dissipative col-
lisions. They are relevant model systems to investigate
non-equilibrium steady states theoretically [3–5], numer-
ically [6–9] and experimentally [10–14]. Taking into ac-
count the inelasticity of collisions and assuming that the
forcing acts as a stochastic noise [15, 16], kinetic theories
propose a method for predicting the large scale behav-
ior of many particle systems. For instance, mode cou-
pling theory models velocity structure factors and pre-
dicts long range spatial correlations caused by dissipative
collisions [17]. More recently, for a driven granular sys-
tem fluidized by a stochastic bath with friction, the fluc-
tuating hydrodynamics theory [18] also derives the static
velocity structure factors and finds correlation lengths
related to energy dissipation, in order to model vibrated
granular experiments. Due to the dissipative collisions,
the kinetic energy per particle at large scales called the
“bath temperature” is higher than the one at the parti-
cle scale, the “grain temperature”. The energy equipar-
tition is thus violated through the space scales. This
approach has been successfully validated in a quasi-two-
dimensional experiment of homogeneously driven granu-
lar particles [19, 20]. In that work, the level of dissipation
is varied by changing the number of particles per area
unit, the area fraction. However, their structure factors

FIG. 1. (a) Schematic of the experimental setup (not to scale).
Magnetized granular spheres of diameter a = 1 mm are im-
aged from the top with a high-speed camera in the region of
interest S. The spheres are immersed in a transverse mag-
netic field B and vertically shaken with acceleration Γ. (b)
Snapshot of the experiment for B ≈ 0 G (ε ≈ 0), and (c) for
B = 62 G (ε = 8.80). Shaker acceleration is Γ = 1.6g and
snapshot size is 17.5 × 17.5 mm2.

remain dominated by collision effects because the parti-
cle area fraction must be kept high enough to maintain
the validity of the hydrodynamics approach.

In a previous work [21], we introduced a different ex-
perimental setup realizing a homogeneously driven quasi
two-dimensional granular gas, in which tunable inter-
particle repulsive forces have been added by means of an
external magnetic field. When these forces are strength-
ened, the rate of dissipative collisions decreases because
collisions are progressively replaced by elastic dipolar in-
teractions. In a range of moderated applied magnetic
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field, the statistical properties of the granular gas ap-
proach those of a molecular gas in thermal equilibrium.
To our knowledge, the effect of repulsive interactions on
the dissipation rate has been firstly investigated theoret-
ically and numerically by Scheffler and Wolf [22] for a
granular gas of electrically charged particles in ballistic
motion. Here, we quantify the distance to kinetic energy
equipartition in our experiment throughout the transi-
tion from a dissipative granular gas to a quasi-elastic sys-
tem of particles. Specifically, we use the methods from
the fluctuating hydrodynamics theory [18] to compute
the difference between the bath and the grain tempera-
tures to define a distance to equipartition. We observe
that once the collision rate vanishes, these two tempera-
tures are nearly equal. Indeed, we show that the devia-
tion from equipartition is caused by energy depletion at
small scales due to dissipative collisions.

II. TRANSITION TOWARDS A
COLLISIONLESS GRANULAR GAS

First, we recall the features of the experimental de-
vice [21, 23, 24] whose schematic is given in Fig. 1 (a).
An assembly of 2000 soft magnetic spheres of diameter
a = 1 mm and of mass m = 4.07 × 10−3 g is confined
in a square cell of surface S0 = 90 × 90 mm2 with a
vertical gap of 1.42 a. The cell is vertically vibrated
at a frequency fv = 300 Hz with a r.m.s. accelera-
tion Γ = (2πfv)

2A0/g = 1.6 g,where A0 is the ampli-
tude of vibration and g is the gravitational acceleration.
Particles perform Brownian-like motion in the horizon-
tal plane due to the roughness of the bottom surface of
the cell, whose r.m.s. rugosity is measured to be 20µm.
By imaging with a high-speed camera (Phantom V10)
the area S (50.36 × 50.36 mm2) through a transparent
and smooth lid, the trajectory of each particle is recon-
structed in two-dimensions, in the horizontal plane. The
ratio of the surface of the imaged area S to the surface
of the entire cell S0 reads S/S0 = 0.315. When im-
mersed in the external vertical magnetic field B, each
sphere behaves as an induced dipole. In a first approx-
imation, two particles whose centers are separated by a
distance ri,j interact according to the repulsive potential

Ui,j = 4π
µ0
B2 (a/2)6

r3i,j
[24, 25], where µ0 is the permeabil-

ity constant. The relevant parameters of our experiments

are the area fraction φ = Nπa2

4S , with N the average num-
ber of spheres imaged in S (here φ ≈ 0.2), the mean

kinetic energy per particle Ek = 〈 m2N
∑N
i=1 v

2
i 〉 (with

vi the velocity of particle i in the horizontal plane and
the brackets denote time averaging) and the mean mag-

netic energy per particle Em = 〈 1
N

∑N
i=1

∑N
j=i+1 Ui,j〉.

The dimensionless number ε = Em/Ek quantifies the
competition between the interaction strength and ki-
netic energy. B is varied in [−0.11, 430] G, correspond-
ing to ε ∈ [6.5 × 10−4 , 1.5 × 103]. Each measurement
is averaged over five independent realizations. After an

equilibration time of 100 s, images are acquired using
the high-speed camera during 3.85 s at a frame rate of
780 Hz. Using tracking algorithms [26], the position,
trajectory and velocity of each particle in the horizon-
tal plane are computed in the window of observation
S. For this vertical confinement distance of approxi-
mately 1.42 a and area fraction φ ≈ 0.2, it has been
shown [21, 27, 28], that the dipolar interaction remains
purely repulsive and the system can be described as two-
dimensional. For larger gap, three-dimensional effects
must be taken into account for the interaction potential
and the spatial distribution of spheres, leading to a large
variety of phases [23, 24, 29]. When the external mag-
netic field is increased, the strength of magnetic interac-
tions quickly overcomes kinetic agitation as shown in the
plot of ε = Em/Ek as a function of B (Fig. 2 (a)). As ε
is increased, the competition between repulsive interac-
tions and kinetic agitation results in a transition from a
granular gas towards a hexagonal crystal. Snapshots of
a window inside S are shown without applied magnetic
field in Fig. 1 (b) (ε ≈ 0) and with a moderate value of
B = 62 G (ε ≈ 8.80) in Fig. 1 (c). In both cases, the
assembly of spheres is in a granular gas state, but in the
second snapshot the particles do not come into contact
anymore. We note also a smaller number of particles in
the second case. In Fig. 2 (b), we show indeed a de-
crease of φ with ε in the observation window S, which
is due to increasing particle repulsion while boundaries
are non-repulsive. The crystallization towards a hexago-
nal crystal is monitored by the sixfold bond-orientational
order parameter per particle

Ψj
6 =

1

nj

nj∑
k=1

e6iθjk , (1)

where nj is the number of nearest neighbors of particle j,
and θjk is the angle between the neighbor k of particle j
and a reference axis. The corresponding global average,

|Ψ6| =

∣∣∣∣∣∣
〈

1

N

N∑
j=1

Ψj
6

〉∣∣∣∣∣∣ , (2)

where the vertical bars denote a modulus, measures the
degree of hexagonal order of the particle assembly. We
will refer to |Ψ6| as the hexagonal order parameter. In
Fig. 2 (c) |Ψ6| is plotted as a function of ε. |Ψ6| is of order
0.4 in the granular gas phase, to reach 0.9 in the hexago-
nal crystal phase. The transition towards the hexagonal
phase is located at εc ≈ 62, corresponding to a maximal
susceptibility, i.e the maximal variation of the hexagonal
order parameter |Ψ6| to changes of ε. Here, our study is
focused on the granular gas phase, thus for ε < 62, i.e.
B . 165 G. Although the system remains in a fluid-like
phase for this range of B, it undergoes important struc-
tural changes. In Fig. 2 (d), the radial pair distribution
function g(r) (or radial pair correlation function) [30, 31]
is plotted as a function of the center-to-center distance
between spheres r for selected values of ε. For ε = 0,
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FIG. 2. (a) Ratio between magnetic and kinetic energy per particle ε = Em/Ek as a function of the applied magnetic field
B. (b) Area fraction φ as a function of ε. (c) Hexagonal order parameter |Ψ6| as a function of ε. Shaded area corresponds
to the hexagonal phase (described in [21]). (d) Radial distribution function g(r) for various values of ε. (e) Collision rate or
collision frequency between particles fc as a function of ε. Red line shows the modeled exponential decay of the collision rate:
fc = f0 exp(−b ε), with f0 = 28 s−1 and b = 0.25. (f) Kinetic energy experimentally measured (Ek, blue) and modeled (Eth

k

from Eq. 3, red) as a function of ε. The model relates the increase of Ek to the decrease of fc. (g) Probability distribution
function (PDF) of the particle horizontal velocities v, normalized by the standard deviation σv for selected values of ε. The
black line corresponds to the Gaussian distribution. Both spatial coordinates (x and y) are statistically equivalent and are used
to compute the velocity PDF. (h) Kurtosis or flatness of the velocity distributions (F = 〈v4〉/σ4

v) minus 3 as a function of the
collision rate fc for 1 < ε < 100. (i) Fit parameters of modeled velocity PDF, A and β (see Eq. 4) versus the collision rate fc.
Blue dashed line, value A = 1/2 = 0.5 expected for a Gaussian distribution. Red dashed lines, β = 2 expected for a Gaussian
distribution and β = 3/2 = 1.5 for a homogeneously driven granular gas.

g(r) displays a strong peak at contact between spheres,
i.e. r = a due to hard-sphere repulsion. For larger values
of ε, the amplitude of this peak decreases due to strength-
ened inter-particle repulsion. In particular, g(r) becomes
nearly flat for ε = 6.1 denoting the quasi absence of spa-
tial correlations. When repulsion is further increased, the

contacts become unlikely and a depleted zone appears for
r slightly larger than a. At ε = 62, g(r) displays spatial
oscillations characteristic of an emerging hexagonal or-
der [21]. For roughly ε > 5, the rate of collisions between
particles, fc, defined as the average number of distinct
events per second for which r < 1.03 a, is strongly re-
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duced by the increasingly repulsive interactions (Fig. 2
(e)). It nearly vanishes for ε ≈ 20. For even larger ε, the
dissipative collisions disappear. Then, particles interact
with each other only through magnetic dipolar interac-
tions, which are elastic (i.e. conservative). The decrease
of fc with ε is roughly approximated by a decaying ex-
ponential function, f0 exp(−b ε), with f0 = 28 s−1 and
b = 0.25. To collide two particles must overcome an en-
ergy barrier due to magnetic repulsion. Hence, the colli-
sion rate should be proportional to an Arrhenius factor
exp(−ε) [22]. Factor b being different from unity in our
experiments may be explained by the exclusion of verti-
cal motion from our analysis or by collective effects if the
granular gas is not dilute enough [22]. Note also that,
the variations of φ and Ek are too limited in this set
of measurements to test their expected influence on the
collision rate. However, a possible dimensional scaling
is fc ∼

√
Ek/mφa−1 geq(r = a) exp(−b ε), by assuming

that fc is given by the product of the mean quadratic
velocity by the mean free path, whose expression is given
for hard-spheres by (a

√
π)/(2 geq(r = a)φ) [20] with

geq(r = a) the value of the equilibrium pair correlation
function at contact.

The measured kinetic energy per particle Ek has a non-
monotonous behavior, as a function of ε (Fig. 2 (f)). For
0 < ε < 10, Ek increases due to the decrease of the
collision rate. Then for ε > 10, i.e. for stronger magnetic
repulsion, Ek significantly decreases. For a granular gas
in stationary regime, by balancing energy injection with
dissipation [8], the theoretical mean kinetic energy per
particle can be written as:

Ethk =
〈P 〉

[(1− r2) fc + δ]
(3)

where 〈P 〉 is the average injected power per particle,
δ Ethk is the average dissipation due to the collisions
of particles with the bottom and top walls, whereas
(1 − r2) fcE

th
k is the dissipation caused by the inelas-

tic collisions between particles, and r = 0.9 is a realis-
tic restitution coefficient [29]. Using the experimentally
measured collision rate fc, the growth of Ek as a func-
tion of ε is well described by Eq. 3 with fitted param-
eters 〈P 〉 = 1.1 × 10−9 W and δ = 1.9 (red curve in
Fig. 2 (f)). For ε ≥ 10, the magnetic repulsion con-
strains the horizontal motions perpendicular to the ap-
plied magnetic field, to favor the vertical motions and
thus decreases the effective injected power. Finally, as
reported for other quasi-two-dimensional vibrated granu-
lar gas experiments [11, 20, 21, 32–35], the distribution of
particle velocities v for ε = 0 deviates from the Gaussian
distribution expected for a molecular gas in equilibrium
(Fig. 2 (g)). When ε is increased, the distance to the
Gaussian distribution decreases due to the diminution of
the particle collision rate. Indeed, when the collision rate
decreases, the kurtosis of the velocity distribution, or the
“flatness”, F = 〈v4〉/σ4

v , where σv is the standard devia-
tion of the velocity distribution, approaches the value 3
expected for a Gaussian distribution (Fig. 2 (h)). We

note that the velocity distributions are satisfactorily fit-
ted by a stretched exponential function

f(v) ∝ exp(−A|v/σv|β) , (4)

with A and β varying respectively from 0.81 to 0.51 and
1.40 to 1.97 as fc decreases (Fig. 2 (i)). For a homo-
geneously driven granular gas with dissipative collisions
kinetic theory predicts an exponent β = 3/2 for the high
energy tail of the velocity PDF [17]. In our experiment,
the fitted value of β is 1.48 for fc = 18.7 s−1 the largest
collision rate. β is thus close to this theoretical predic-
tion. In contrast, when fc ≈ 0, we find A = 0.520 and
β = 1.94. These values approach those expected for a
Gaussian distribution A = 1/2 and β = 2. Therefore, as
B is increased and fc diminishes, the continuous increase
of β from 1.40 to 1.97, shows unambiguously that the
shape of the velocity distribution depends on the collision
rate in a granular gas. Similarly, the velocity distribution
can be fitted using the one-dimensional Sonine poynomial
corrections to a Gaussian distribution [34, 36, 37]. The
experimental velocity distributions are approximately re-
produced using the development at the second order (not
shown), with Sonine coefficients a1 = 0, a2 in the range
[0.01, 0.26] [38]. The coefficient a2 decreases indeed with
fc and the kurtosis verifies accurately F = 3 (1 + a2).

III. EFFECTIVE DISSIPATION PARAMETERS

We showed in previous Section that the dynamical be-
havior of this assembly of magnetized spheres is strongly
controlled by the particle collision rate for moderate val-
ues of ε, by studying the statistics of individual velocities.
We now investigate the collective dynamics to obtain a
different characterization of the dissipative processes at
work. For that, velocity correlations can be computed in
the spatial Fourier space and analyzed in the framework
of linearized hydrodynamics [30] which provides effective
transport coefficients. A fruitful approach is to com-
pute the dynamical transverse velocity structure factor
Jt(k, t) [19, 20, 30, 39] (also called the transverse current
correlation function):

Jt(k, t) =

〈
1

N

N∑
i,j=1

(k̂× vi)(t) (k̂× vj)(0) eik (ri(t)−rj(0))

〉

where t is the time, k is the wave vector, k̂ is the uni-
tary vector directed along k, vi (resp., vj) is the velocity
vector of particle i (particle j), and ri (resp., rj) is the
position vector of particle i (particle j). 〈 〉 denotes a time
average. These structure factors are computed for a sta-
tionary forcing for each test value of k = [kx, ky] chosen
in a horizontal grid of size 50×50 in the domain 0.0624 <
kx,y < 3.12 mm−1. Each pair (kx, ky) is discretized ac-
cording to (nxπ/Lx, nyπ/Ly), where nx, ny ∈ N and
Lx = Ly = 50.36 mm. A loop and a nested loop over the
image numbers perform sweeps of initial times t = 0 and
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FIG. 3. Temporal decay of the transverse current correlation functions Jt(k, t), for selected k increasing from top to bottom
for ε = 0 (a) and ε = 8.80 (b). Dashed lines, exponential fits measuring the dissipative time τ(k). The behavior is similar for
larger values of ε in the granular gas phase (ε . 50). (c) Inverse of the fitted typical dissipative time τ(k) as a function of k a
for ε = 0, and (d) for ε = 8.80. (e) Evolution of the friction coefficient γb and of the rescaled kinematic viscosity ν/a2 with ε.
(f) Self-diffusion coefficient D as a function of τa Te, with τa = τ(k = 1/a) and Te = Ek/m. Each data point corresponds to a
value of ε (for ε < 62). Red arrowheads point towards greater ε. Dashed line corresponds to D = τaTe.

time lags t of the correlation function. Then, the quan-
tity (k̂×vi)(t) (k̂×vj)(0) eik (ri(t)−rj(0)) is computed by
separating the real and imaginary parts for each pair of
particles i at time t and j at time 0. Jt(k, t) is obtained
by first ensemble averaging and then time averaging. As-
suming isotropy of particle motions, the quadrants for
negative kx or ky are reconstructed. The angular av-

erage is computed as Jt(k, t) = (2π)−1
∫ 2π

0
Jt(k, t) dθ,

where k = ||k||. Jt(k, t) is finally averaged over five in-
dependent runs with identical experimental parameters.

The typical decay time of the transverse current
Jt(k, t) characterizes the dissipative processes at play. In
the granular gas phase (ε < 62), the short-time decrease
of Jt(k, t) is well approximated by a decaying exponential
∼ e−t/τ(k), where τ(k) is the typical life time of an exci-
tation at the scale k (Fig. 3 (a) and (b)). For vibrated
granular layers, energy dissipation is often modeled by
the combination of a viscous drag and of a Coulomb fric-
tion leading to the equation τ−1(k) = ν k2 + γb [20, 39],
with ν a kinematic viscosity and γb a friction coefficient.
For each value of ε, parameters ν and γb are obtained
by fitting this equation to the measured values of τ−1(k)
(Fig. 3 (c) and (d)). Note that such a modeling of en-

ergy dissipation becomes invalid for high ε, when the
hexagonal phase is reached. Moreover, the fit quality
worsens at small k a, where the statistical convergence
is lesser and finite size effects may interfer. Parameters
ν/a2 and γb are plotted as a function of ε in the gran-
ular gas phase (0 < ε < 62) in Fig. 3 (e). For this set
of experiments, dissipation is dominated by friction. A
characteristic length ξ = ν/γb of order 0.3 mm can be
defined. Surprisingly, this value is significantly smaller
than the one found in Puglisi et al. [20]. Important dif-
ferences between their system and ours include that their
particles do not remotely interact and are more strongly
agitated, and that their experimental cell has no lid.The
fluctuating hydrodynamics theory interprets this length
as a spatial correlation length of excitations [18–20].

The relation between particle diffusion and dissipation
is studied as follows. The self-diffusion coefficient, D,
is obtained by fitting the mean-squared displacements
of particles using the equation 〈[ri(t) − ri(t = 0)]2〉 =
4Dt. Standard diffusion remains valid in the granular
gas phase until approximately ε < 50. By analogy with
the Einstein relation [40], we propose and experimentally
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test the relation

D ≈ τaTe =
Ek

m(ν/a2 + γb)
, (5)

where τa is the characteristic dissipative time at the scale
1/a, τa = τ(k = 1/a), and Te is the usual granular
temperature Te = 〈v2〉/2 = Ek/m. Indeed, by analogy
with the physics of molecular systems [3, 41], for granular
gases the kinetic energy per particle is often expressed in
terms of an effective granular temperature Te = Ek/m.
The relation Eq. 5 works especially well in our experi-
ments for ε < 10, when Ek increases with ε , as shown
in Fig. 3 (f). The measured value of D is close to τa Te
until a turning point at its maximal value corresponding
to ε = 7.30. However, for ε > 10, D does not verify as
well this scaling law anymore. This result suggests that
the Einstein relation (which is a particular case of the
fluctuation-dissipation theorem) holds in granular gases
with dissipative collisions (for our system ε . 10), when
the dissipation coefficient is estimated from the velocity
correlation functions at the scale k = 1/a of few sphere
sizes. When the hexagonal crystal phase is approached
(ε = 62), we note that D nearly vanishes, which is con-
sistent to the transformation of a fluid-like phase into a
solid-like phase.

IV. DEVIATION FROM ENERGY
EQUIPARTITION

The static transverse velocity structure factor,
Jt(k, t = 0), provides the distribution across the spatial
scales k of the kinetic energy associated to the trans-
verse modes. Hence, it can be viewed as a kinetic energy
power spectrum. A flat spectrum denotes equipartition
of energy over the modes. For out-of-equilibrium, dis-
sipative and driven granular gases, the fluctuating hy-
drodynamics theory defines a “bath temperature”, Tb =
Jt(k → 0, 0), and a “granular temperature” at the parti-
cle scale, Tg = Jt(k ≈ 2π/a, 0) [18–20]. Due to the dissi-
pative collisions acting at the particle scale, Tb > Tg. In
a system in thermal equilibrium with elastic collisions,
these three temperatures Te = Ek/m, Tb and Tg must
be equal. In addition, this theory predicts the shape
of Jt(k, 0) as a function of the characteristic correlation

length ξ =
√
ν/γb:

Jt(k, 0) = Tg +
Tb − Tg

1 + ξ2 k2
(6)

Our experimental measurements of Jt(k, 0) are plotted
for selected values of ε in Fig. 4 (a). Consistently with
the non-monotonic evolution of Ek as a function of ε
(Fig. 1 (c)), the average level of Jt(k, 0) increases with ε
until ε ≈ 0, then decreases. In the granular gas phase,
(ε < 62), Jt(k, 0) is well fitted by Eq. (6), using the exper-
imentally obtained values of ξ, except for the smallest k
(Fig. 4 (a)). The largest peak at k ≈ 0 may be attributed

to a global system vibration rather than to particle dy-
namics. Note also that since our values of ξ are smaller
than those of Puglisi et al. [20], Jt(k, 0) display less varia-
tions than the sigmoidal shapes, that they reported. Fit-
ting Jt(k, 0) by Eq. 6 provide an estimation of Tb and of
Tg, whose difference quantifies the distance to equiparti-
tion [18–20]. In Fig. 4 (b), we compare the temperatures
Tb, Tg and Te from the kinetic energy as a function of
ε. For moderate ε, we verify that Tb > Te > Tg and
we observe that the distance to equipartition Tb−Tg de-
creases with ε to vanish at ε = 13.5 near the maximum of
Tg. For larger ε, Tg is greater than Tb. The intersection
of Tg with Tb corresponds to an inversion of the slope
of Jt(k, 0) and likely the limit of the validity domain of
the fluctuating hydrodynamics theory. For ε > 13.5, the
magnetic interactions oppose the large scale fluctuations
before inducing crystallization at ε ≈ 62. Fluctuating
hydrodynamics attributes the difference between Tb and
Tg to dissipative collisions. We verify this statement for
ε ≤ 17 in Fig. 4 (c). We find indeed that when fc de-
creases, Tb − Tg essentially monotonically decreases, to
nearly vanish when fc = 0. Moreover, the inverse of the
dissipative time 1/τa = 1/τ(k = 1/a), extracted from the
time decay of Jt(k, t), is plotted in Fig. 4 (d) as a func-
tion of ε. We find that for ε ≤ 10, 1/τa is nearly equal
to fc shifted by a positive constant τ−1

0 = 21 s−1. Note
that τ−1

0 = 21 s−1 equals roughly twice the dissipation
coefficient δ/(1 − r2) ≈ 10 extracted from the fit of the
kinetic energy Ek by Ethk (see Eq. 3). Therefore, the phe-
nomenological dissipation coefficients extracted from the
fluctuating hydrodynamics, τ−1

a reveals that in addition
to the collisions between the particles, a supplemental
dissipation mechanism, the particles collisions with the
bottom and top walls must be also taken into account.
The decrease of the particle collision rate, induced by in-
creasing the magnetic field, is precisely reported in 1/τa
at small ε. For larger values of ε, 1/τa significantly in-
creases although fc nearly vanishes, in correlation with
the decrease of Ek and the beginning of crystallization.
Our interpretation is that since magnetic repulsion be-
comes then very strong vertical bead motion is favored,
thus reducing the injected power into horizontal motion.

To summarize, by tuning the collision rate, dissipation
can be adjusted although not canceled. The distance to
equilibrium can be thus varied, but even at the maxi-
mum of the kinetic energy, the system remains out-of-
equilibrium and a continuous energy input is needed to
maintain a stationary state. However, our study high-
lights the peculiar role of dissipative collisions between
particles in tuning the distance to equipartition. Be-
cause they generate dissipation at small scales and are
uncorrelated with the forcing (the cell mechanical agita-
tion), these dissipative collisions induce small scale cor-
relations which reduce the kinetic energy spectrum at
large k. Close to the maximum of the kinetic energy
at ε ≈ 10, the spectrum is nearly flat, corresponding
to equipartition of the velocity modes. For this quasi-
elastic granular gas [21], spatial structural correlations
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FIG. 4. (a) Static transverse velocity structure factor Jt(k, t = 0) for selected values of ε. The dashed lines are the fits obtained
using Eq. (6). (b) Comparison of the usual granular temperature Te = Ek/m, the “bath temperature” Tb, and the “granular
temperature” at the particle scale Tg as a function of ε. The shaded region indicates the transition to the hexagonal phase. (c)
Distance to kinetic energy equipartition Tb − Tg as a function of the collision rate fc. (d) Inverse of the dissipative time, 1/τa
and fc shifted of an arbitrary constant τ−1

0 = 21 s−1 as a function of ε.

disappear (Fig. 2 (d)). Additionally, the velocity fluc-
tuations become Gaussian (Fig. 2 (g) (h) and (i)), as
for a molecular gas with elastic interactions in thermal
equilibrium. For the largest values of ε, the assembly
of vibrated spheres becomes structured into a crystalline
phase by the magnetic repulsion. Consequently, the ki-
netic energy at large scale is reduced.

V. DISCUSSION AND CONCLUSIONS

Our experimental study confirms the validity of the
fluctuating hydrodynamics theory and extends previous
works [19, 20]. We show a clear relationship between
the dissipation of hydrodynamics modes and the rate of
dissipative collisions between particles. By tuning this
collision rate, we demonstrate that the deviation from
the kinetic energy equipartition is a consequence of the
small scale dissipation induced by the collisions. When

the magnetic energy becomes large compared to the hor-
izontal kinetic energy, i.e. ε > 10, the limit of the va-
lidity domain of the fluctuating hydrodynamics theory
is reached. Magnetic repulsive forces modify the sys-
tem structure, increase its rigidity and induce correla-
tions in the velocity modes. Although a complete de-
scription of the system would require to incorporate the
magnetic interactions in the fluctuating hydrodynamics,
in this work we use a perturbation approach assuming
that in first approximation the interactions influence only
the collision rate. Our results show the relevance of this
hypothesis at least for ε . 10. Therefore, the fluctu-
ating hydrodynamics theory satisfactorily describes the
dynamical properties of such quasi-two-dimensional vi-
brated granular gas for a large range of collision rates.
The influences of the packing fraction and of the agi-
tation strength have been tested by Puglisi et al. [20].
However, it is a strong hypothesis to equate the energy
injection by consecutive particle collisions on the bot-
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tom rough wall with a thermal-like noise. Comparisons
with other theoretical methods like the mode coupling
model [17] or with three-dimensional molecular dynamic
simulations would be useful to characterize energy injec-
tion in quasi-two-dimensional driven granular gas, given
the absence of a measurement of particle vertical mo-
tions. Finally, we have shown that the out-of-equilibrium
specificity of granular gases, unlike molecular gas, is re-
lated to the emergence of spatial correlations, here caused
by the dissipative collisions. We would encourage to ex-
amine similar questions in other out-of-equilibrium sys-
tems with heterogeneous energy dissipation or injection
such as turbulent flows or assemblies of active particles.
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