

# Development and internal validation of a diagnostic score for gastric linitis plastica

J. Vivier-Chicoteau, J. Lambert, R. Coriat, P. E Bonnot, D. Goéré, B. Roche,

M. Dior, G. Goujon, S. Morgant, Marc Pocard, et al.

# ▶ To cite this version:

J. Vivier-Chicoteau, J. Lambert, R. Coriat, P. E Bonnot, D. Goéré, et al.. Development and internal validation of a diagnostic score for gastric linitis plastica. Gastric Cancer, in Press, 10.1007/s10120-020-01051-x . hal-02555520

# HAL Id: hal-02555520 https://u-paris.hal.science/hal-02555520

Submitted on 27 Apr 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

## **ORIGINAL ARTICLE**

## TITTLE:

Development and internal validation of a diagnostic score for gastric linitis plastica

## AUTHORS:

J. VIVIER-CHICOTEAU<sup>1</sup> (MD), J. LAMBERT<sup>2</sup> (MD, PhD), R. CORIAT <sup>3</sup> (MD, PhD), P.E. BONNOT<sup>4</sup> (MD), D. GOERE<sup>5</sup> (MD, PhD), B. ROCHE<sup>6</sup> (MD), M. DIOR<sup>7</sup> (MD), G. GOUJON<sup>8</sup> (MD), S. MORGANT<sup>3</sup> (MD), M. POCARD<sup>9</sup> (MD, PhD), O. GLEHEN<sup>4</sup> (MD, PhD), T. APARICIO<sup>1</sup> (MD, PhD), J.M. GORNET<sup>1</sup> (MD),

1 : Service de Gastroentérologie, Hôpital Saint Louis, Paris – France ; 2 : Service de Biostatistique, Hôpital Saint-Louis, Paris – France ; 3 : Service de Gastroentérologie, Hôpital Cochin, Paris – France ; 4 : Service de Chirurgie Digestive, Centre Hospitalier Lyon-Sud, Lyon – France; 5 : Service de Chirurgie Digestive, Hôpital Saint-Louis, Paris – France; 6 : Service d'Anatomopathologie, Hôpital Saint Louis, Paris – France 7 : Service de Gastroentérologie, Hôpital Louis Mourier, Colombes – France ; 8 : Service de Gastroentérologie, Hôpital Bichat, Paris – France ; 9 : Service de Chirurgie Digestive, Hôpital Lariboisière, Paris – France.

## **CORRESPONDING AUTHOR:**

## Dr GORNET Jean-Marc (MD)

Dr Jean-Marc Gornet Service de Gastroentérologie, Hôpital Saint Louis 1 Avenue Claude Vellefaux 75010 Paris, France Phone +33 1 42 49 95 75 Fax +33 1 42 49 91 68 E-mail : jean-marc.gornet@aphp.fr

## SHORT RUNNING HEAD:

Diagnostic score for linitis plastica

## THE WORD COUNT OF THE ARTICLE: 3310

1 ABSTRACT:

2 **Background**:

3 There is no consensual definition for gastric linitis plastica (GLP). We aim to construct a
4 diagnostic score to distinguish this rare tumor from usual gastric adenocarcinomas.

5 Methods:

6 In this retrospective study, all patients who had gastrectomy for cancer between 2007 and 7 2017 in French tertiary centers were included. The outcome was a diagnosis of GLP based on 8 pathological review of the surgical specimen. The diagnostic score was created by using 9 variables that were most frequently associated with GLP using penalized logistic regression 10 on multiply imputed datasets. We used discrimination measures to assess the performances 11 of the score. Internal validation was perfomed using bootstrapping methods to correct for 12 overoptimism.

13 **Results**:

14 220 patients including 71 linitis plastica (female 49%, median age 57 years) were analyzed. 15 The six parameters retained in the diagnosis score were the presence of large folds and/or 16 parietal thickening on at least one segment, pangastric infiltration and presence of gastric 17 stenosis on the upper endoscopy, circumferential thickening on at least one segment and 18 thickening of the third hyperechogenic layer on endoscopic ultrasound and the presence of 19 signet ring cells on endoscopic biopsies. The area under the ROC curve (AUC) was 0.967 with 20 a sensitivity of 94% [89.9-97.3] and a specificity of 88.7% [81.7-95.8] for a threshold of 2.75. 21 After internal validation, the corrected AUC was 0.959.

22 **Conclusion**:

- 1t's the first study validating a pre-therapeutic diagnostic score (Saint-Louis linitis score) with
  an excellent ability to discriminate GLP from non-GLP adenocarcinomas. An external
  validation is necessary to confirm our data.
- 26

# 27 **KEYWORDS:**

- 28 Linitis plastica
- 29 Diagnostic score
- 30 Gastrectomy

#### 31 **INTRODUCTION**:

32 Gastric adenocarcinoma (GA) is the fifth most common cancer in the world (1). Despite 33 medico-surgical progress, its prognosis remains poor, ranking third among the most fatal 34 cancers (1,2). There are various classifications of GA, either purely histological (3-5), or 35 taking into account the macroscopic aspect (6), or the site of the tumor (7). Among the 36 different subtypes, gastric linitis plastica (GLP) represents a particular entity. It develops 37 from the submucosa and is characterized macroscopically by a major segmental or diffuse 38 thickening of the gastric wall and microscopically by the existence of poorly cohesive and/or 39 signet ring cells, within an abundant fibrous stroma infiltrating all the tunics (8,9). The terms 40 of poorly cohesive and/or signet ring cell carcinoma (SRC) and GLP are often indiscriminately 41 used leading to confusion in literature and difficulties to define the best therapeutic options 42 for this subtype of gastric tumor. GLP appears to have specific characteristics such as 43 younger age at diagnosis, female predominance, increased frequency of stages 3 and 4 and 44 lymph node invasion, and significantly decreased overall survival due to higher frequency of 45 R1 resection (10,11). Despite these specific features, there is to date no clear definition of 46 GLP. A recent consensus on the pathological definition and classification of poorly cohesive 47 gastric carcinoma propose that GA should be classified according to the WHO classification; 48 the term GLP being reserved for the description of the macroscopic characteristics of the 49 tumor (12). According to those discrepancies, the gold standard for GLP diagnosis is 50 currently based on histological examination of a surgical specimen (13,14). However in case 51 of locally advanced or metastatic disease which represents the vast majority of the patients, 52 surgery is rarely done. Thus, the diagnosis of GLP is mainly based on a simple set of 53 arguments (clinical, endoscopic, scannographic, histological). In case of a planned surgery for 54 localized GLP, the impact of preoperative chemotherapy remains uncertain and a total

gastrectomy is needed even in case of peroperative impression of free margin. The development of a new diagnostic tool in order to make an early diagnosis of GLP remains challenging and may lead to better understanding and significant therapeutic advances in this field. The aim of this study is to construct a diagnostic score to discriminate GLP from others GA. 60 **METHODS**:

61 All patients who underwent a gastrectomy for gastric cancer between 2007 and 2017 in 62 seven French tertiary centers were retrospectively identified either from a hospital database 63 known as Programme de Médicalisation des Systèmes d'Information (PMSI) or from 64 databases of the Gastroenterology departments. All the the files were reviewed by the same 65 person (JVC) to minimize missing data and control concordance; collected data included 66 information concerning demographic characteristics, case history, biological parameters, 67 description of endoscopic, endoscopic ultrasound and computed tomography scan findings, type of surgery, histological analysis of surgical specimen and the treatments used. 68

69 Exclusion criteria were: genetic gastric cancer, history of gastric surgery for any reason, 70 history of endoscopic resection for superficial tumor prior to surgery (endoscopic mucosal 71 resection or submucosal dissection), gastro-esophageal junction cancer, non-72 adenocarcinomatous gastric tumor, adenocarcinoma infiltration of extra-gastric origin and 73 absence of tumor residue on the pathology report. We also excluded the files with at least 74 one major missing data (histological report of endoscopic biopsies or surgical specimen, 75 digestive endoscopy report). The large number of excluded patients is due to the 76 retrospective design of our study and the lack of computerization of medical data in some 77 centers (incomplete paper records). and non-available histological report. Patients were 78 treated in accordance with the Helsinki Declaration (World Medical Association Declaration 79 of Helsinki. Ethical principles for medical research involving human subjects. Bulletin of the 80 World Health Organization, 2001, 79 (4), 373 - 374). All data were anonymously collected 81 and, according to the Loi Jardé (French law amended by Order No. 2016-800 and its 82 implementing decree No. 2016-1537 of 16/11/ 2016 relating to research involving the

83 human person), no patient consent was needed, as the treatment implemented in this study

84 was the standard recommended therapy.

85 To create the score, our study population was divided into 2 groups: GLP group and non-

86 linitic adenocarcinoma (non-GLP or control group).

#### 87 Definition of GLP and pathological analysis

88 The diagnosis of GLP was retained if the three following criteria were mentioned on the 89 pathology report of surgical specimen:

90 - Macroscopic examination of the surgical specimen showing segmental or pangastric

91 diffuse parietal thickening.

- Histological examination showing an abundant and diffuse fibrous stromal reaction
   extended throughout the gastric lining to the sub serosa.
- Histological examination showing a carcinoma with more than 50% poorly cohesive
   cells having classical SRC morphology.
- 96

97 The pathology reports of gastrectomy were all reviewed for validation by an expert 98 pathologist in the reference center of Assistance Publique des Hôpitaux de Paris (APHP) for 99 the treatment of oeso-gastric tumors. In some doubtful cases, a re-reading of the glass slides 100 was carried out. If one of the 3 criteria was absent, the patient was excluded from the GLP 101 group even if the clinical presentation and the morphological assessment appeared 102 compatible with the diagnosis.

Patients in the non GLP group were randomly selected from the same centers withoutmatching regardless of the presence or not of signet ring cells on surgical specimen.

All pathology reports of gastrectomy have been standardized according to the latest UICCAJCC 2016 classification (15).

#### 107 **Parameters for diagnostic score**

108 The parameters taken into account for the creation of the score were demographic 109 characteristics, symptoms at the diagnosis of GA, description of the initial upper 110 gastrointestinal endoscopy and if available of gastric endoscopic ultrasound, description of 111 pre-therapeutic abdominal computed tomography scan and histological description of 112 endoscopic biopsies at diagnosis (cf Table 1 and 2). The biological parameters included for 113 the creation of the score were: total blood count (anemia, increased neutrophils count, 114 thrombocytosis), high neutrophil-to-lymphocyte ratio, elevated C-reactive protein, 115 hypoalbuminemia, increased tumor markers (carcinoembryonic antigen, carbohydrate 116 antigen 19-9). Further details are provided in Supplementary Tables 1-5.

### 117 Statistical analysis

Patient characteristics are presented using medians and interquartile ranges for quantitative data and counts with percentages for qualitative data. Characteristics of patients with and without GLP were compared using Wilcoxon tests for quantitative data and Chi2 tests or Fisher tests for qualitative data.

122 There were 12.6% of missing data among all the predictors considered, and only 5 % of 123 patients had no missing data. Under the hypothesis of missingness at random, we used 124 multiple imputations by chained equations to generate 20 imputed datasets. The diagnostic 125 score was constructed with the most frequently selected predictors on these 20 datasets. To 126 take into account for both the low variable/individual ratio with 71 patients having GLP and 127 49 candidate covariates and the high risks of collinearities between candidate covariates, we 128 used a generalized linear model with LASSO regularization (with 10-fold cross validation to 129 select  $\lambda$  parameter) to build the multivariable model and select predictors. Finally, due to the 130 near separation of some variables (no individuals in any of the modalities), a Firth penalized

| 131 | logistic regression was performed to assess the respective importance of each predictor. The |
|-----|----------------------------------------------------------------------------------------------|
| 132 | Firth logistic model was applied to each of 20 imputed datasets and the resulting mean value |
| 133 | of each coefficient was used to construct the score. We rounded the coefficient to obtain an |
| 134 | easy to calculate diagnostic score.                                                          |
| 135 | Performances of this score were assessed through discrimination measures: ROC curve, Area    |
| 136 | under the Curve (AUC), sensitivity and specificity at chosen threshold.                      |
| 137 | Finally, bootstrap resampling (200 bootstrap resampling for each of the 20 imputed           |
| 138 | datasets) allowed us to obtain an internal validation to correct for over-optimism in the    |
| 139 | discrimination measures. All statistical analyses were performed using R software            |
| 140 | The methodology used is in agreement with the criteria defined by the TRIPOD checklist.      |

141 Further details are provided in Supplementary Table S6.

142 **RESULTS:** 

#### 143 **Patients' characteristics**

The files of 457 patients aged over 18 years who underwent a gastrectomy for gastric cancer were reviewed. Among them, 72 records were not analyzable due to major missing data. In the remaining 385 patients, 165 presented an exclusion criteria. Therefore, a total of 220 patients (71 in the GLP group and 149 in the control group) met the inclusion criteria and were included in the analysis (Figure 1).

149 The general characteristics of the study population at diagnosis are presented in Table 1. 150 Several statistical differences regarding epidemiological data and clinical presentation at 151 diagnosis were noted between GLP and non-GLP patients. In the GLP group, the population 152 was younger (p < 0.001) with a higher proportion of women (p = 0.007), a longer diagnostic 153 time (p=0.02) and the need to repeat iterative biopsy endoscopy more frequently (p < 154 0.001). Clinical presentation also differed with a higher proportion of patients with general 155 impairment (p < 0.001), undernutrition (p = 0.002), dysphagia (p < 0.001) and epigastralgia 156 (p = 0.01). In the non-GLP group, we noted a higher proportion of patients explored for 157 anemia or with externalized digestive hemorrhage (p = 0.03). Upfront surgery was 158 performed in 4 patients in the GLP group (surgical decision at baseline: n = 3, perforation: n 159 = 1) and one patient in the non-GLP group (perforation).

160 The description of the main additional examinations carried out for diagnostic purposes is161 presented in Table 2.

162 Endoscopic findings

Several statistical differences were noted at endoscopic examination between GLP and non-GLP patients. In the GLP group, more patients with large folds or macroscopic tumor infiltration on at least one segment (p < 0.001) with a higher frequency of multiple

166 ulcerations or erosions in the suspected area (p = 0.001). Difficulty with insufflation and the 167 presence of stenosis were also more frequently observed (p < 0.001). In the non-GLP group, 168 there was a higher proportion of patients with a single ulcer or ulcer-budding tumor (p < 169 0.001). On endoscopic ultrasound, there was more frequent thickening on at least one 170 segment (p < 0.04) or pangastric thickening in the GLP group (p < 0.001). This one was more 171 frequently circumferential with predominance over the third hyperechoic layer or fusion 172 aspect of the layers (p < 0.001).

173 Imaging

On contrast-enhanced computed tomography scan (13% with opacification with water or contrast medium), we observed a higher proportion of diffuse parietal involvement and circumferential thickening of the gastric wall.

177 Biology

Among all the biological parameters studied, only anemia was significantly more frequent in the non-GLP group. No significant differences were observed on the other characteristics of blood count and CRP, serum albumin and tumor marker elevation frequency (ACE and CA 19-9) between both groups.

182 Pathological findings

The comparative analysis of the histological characteristics of the gastrectomy specimens is presented in Table 3. Again, we noted several statistically significant differences between the two groups. In the GLP group, the number of total gastrectomy was higher with more incomplete resection. The disease was more frequently pangastric with an increased number of T4 status, positive lymph nodes, distant metastases and poorly cohesive and/or SRC contingent. Among the patients with positive lymph nodes, we observed more frequently a N3 status in the GLP group than in the non-GLP group (45% vs 18%). Among the

patients with metastatic location, peritoneal carcinomatosis only was known preoperatively
in 19 patients (14 in the GLP group and 5 in the non-GLP group) and found per-operatively in
15 patients (10 in the GLP group and 5 in the non-GLP group). In 5 patients of the GLP group,
the tumor was a mixed type (n = 4) or a majority mucinous type (n = 1), according to the
WHO 2010 classification. Of note, HER2 status positivity was low and the proportion of
patients with Helicobacter Pylori infection was similar in both groups.

#### 196 **Diagnostic score**

197 The diagnosis score for gastric LP is presented in Table 4. Regarding first results, six variables 198 were selected to create the score. Three variables corresponding to uppergastrointestinal 199 endoscopic characteristics, the presence of large folds and/or gastric thickening on at least 200 one segment (1.5 points), pangastric infiltration (2 points) and presence of gastric stenosis (1 201 point). Two variables corresponding to endoscopic ultrasound characteristics, a 202 circumferential thickening on at least one segment (0.5 points) and predominance of the 203 lesion on the third hyperechoic layer (1 point). And one variable on histological report on 204 endoscopic biopsies, presence of poorly cohesive cells and/or signet ring cells (1.5 points). 205 The score performance was evaluated by ROC curve (Figure 2), with an AUC of 0.967 [0.948 -206 0.987], a sensitivity of 94% [89.9-97.3] and a specificity of 88.7% [81.7-95.8] for a threshold 207 of 2.75 points (observed performances on one of the 20 imputed datasets).

208 After internal bootstrap validation (resampling), the corrected AUC was 0.959.

#### 209 **DISCUSSION:**

#### 210 GLP: a clearly different entity

Firstly, our results confirmed that GLP tumor have to be considered as a different entity from non-GLP tumors with different epidemiological, clinical, radiological and histological presentation. The importance of the differences observed at diagnosis between these two types of gastric tumors makes it necessary to use a reliable tool that clearly differentiates them.

#### 216 A new diagnostic score for GLP

To our knowledge, we are reporting the first diagnostic score to discriminate GLP from other GA. This score has an excellent diagnostic performance to predict the existence of GLP with an AUC of 0.967, a sensitivity of 94% and a specificity of 88.7% for a threshold of 2.75 points. The resampling by boostrap allowed us to obtain an internal validation of the score performances with a corrected AUC of 0.959 with reinforce its viability. The 2/1 ratio between the GLP and the non-GLP group and the absence of a priori selection of the control group allows a satisfactory validation sample to be obtained.

The six variables used to create the score include 3 endoscopic parameters: the presence of large folds and / or parietal thickening on at least one segment (1.5 points), pangastric infiltration (2 points) and the presence of gastric stenosis (1 point); 2 endoscopic ultrasound parameters: circumferential thickening on at least one segment (0.5 points) and thickening of the third hyperechoic layer (1 point) and a histological parameter: presence of poorly cohesive and/or SRC (1.5 points).

GLP group was identified using 3 strict criteria based on histological analysis of the gastrectomy specimen which is considered as the gold standard for the positive diagnosis of GLP. In addition, this diagnosis was validated by a centralized review of histological reports

233 by a pathologist from a center specializing in the management of oesogastric tumors using a 234 keyword grid and in some cases a re-reading of the glass slides. As LP is a rare entity, 235 obtaining a group of 71 patients who were included using only the current gold standard can 236 be considered a large sample. Among the various parameters analyzed to create the score, 237 many differed significantly between the two samples. The differences in clinical, endoscopic, 238 scannographic and histological presentation observed in the GLP group have been previously 239 reported in the literature underlining the quality of our sampling (8,9,16). The percentage of 240 patients with SRC adenocarcinoma (22%) in the control group was also in agreement with 241 the literature (17–19).

#### 242 GLP: a lack of a consensual definition to date

243 Histological analysis of the surgical specimen is not a tool that can be easily used in clinical 244 practice given the high frequency of GLP who will never be operated on, mainly because of 245 the greater aggressiveness of this pathology. Therefore, the definitions currently proposed 246 are mainly based on upper gastrointestinal endoscopy. Thus, Pedrazzani et al (20) defined 247 GLP as a thickening and stiffening of the gastric wall which involve circumferentially at least 248 one-third of the stomach, and Endo et al (21) more than two thirds of the stomach. More 249 recently, Agnes et al (9) proposed the following definition: thickening of the gastric wall, 250 with lack of distensibility, which involves more than one third of the gastric surface, both as 251 a circumferential involvement of more than one area, or a semi-circular involvement of 252 more than two areas. Finally Jung et al (16) proposed a decisional algorithm to diagnose GLP 253 based on macroscopic and microscopic data of the initial upper gastrointestinal endoscopy. 254 However, these definitions are not validated and the inter-observer reproducibility of the 255 description of endoscopic lesions is not known.

256

#### 257 GLP: a new diagnostic score that uses routine exams

258 Endoscopic ultrasound is usually recommended for the diagnosis of GLP but its diagnostic 259 value in distinguishing it from classical GA has never been studied (22). Endoscopic 260 ultrasound puncture seems a useful tool in difficult cases but remains poorly evaluated and 261 most often useless (23). Although the presence of poorly cohesive cells and/or SRC is almost 262 constant in GLP, they can frequently be found in diffuse gastric adenocarcinomas and 263 therefore do not constitute a discriminant parameter. Our score allows the diagnosis of GLP 264 to be carried out with high sensitivity and specificity using usual explorations for the 265 diagnosis of GA. Even if the inter-observer reproducibility of the different examinations is 266 poorly known, the description of the macroscopic aspect on the upper gastrointestinal 267 endoscopy, the analysis of the different gastric wall layers in endoscopic ultrasound and the 268 histological description of gastric tumors represent routine procedures applicable in current 269 practice to establish a diagnostic score. Despite some differences, no discriminating clinical 270 parameters were found in the GLP sample. This is in agreement with the literature which 271 reports that gastric cancer symptoms are non-specific and that in the event of a positive 272 diagnosis there is no clinical sign to distinguish a particular tumor subtype. The CT scan has 273 been recently shown to be a useful tool for the diagnosis of GLP (24). This is confirmed by 274 our data which show a significantly increased frequency of circumferential and/or pangastric 275 parietal abnormalities. However, these two morphological parameters remain less 276 discriminating than those observed on the upper gastrointestinal endoscopy and the 277 endoscopic ultrasound.

## 278 GLP diagnostic score: a new tool to standardize its management

Despite the severity of this pathology, medico-surgical management of gastric LP remains
poorly codified. The rarity of this gastric tumor, the absence of a consensual definition and

the confusion created by the term signet ring cell carcinoma contribute to the absence of therapeutic advances, although the GLP has different characteristics and a poorer prognosis. Other scores have already been validated in GA in patients treated, notably to establish survival predictive factors after gastrectomy (25–27) or in metastatic patients undergoing chemotherapy (28,29). The validation of a diagnostic score specific to GLP provides a new homogeneous pre-therapeutic definition that could standardize the management of this pathology, which is considered chemoresistant (30).

288 Limitations

289 Nevertheless, our study has some limitations. The data were collected retrospectively with a 290 limited number of patients in the LP sample and no systematic centralized re-reading of all 291 the glass slides. The retrospective design of the study led to some missing data. However, all 292 the files including the pathology reports were centrally reviewed in order to reduce the 293 number of missing data. Some inaccuracies in upper gastrointestinal endoscopy, endoscopic 294 ultrasound and CT scan reports may also have led to misinterpretation of some data 295 however this parameter has been taken into account in the creation of our score by 296 performing multiple imputations using chain equations. Furthermore, our score was not 297 externally validated in an independent cohort. Nevertheless, the rarity of this pathology and 298 the difficulty of obtaining a homogeneous study group make it difficult to carry out such 299 work.

300

301 **CONCLUSION:** 

302 We have constructed and validated the first score to diagnose GLP with high sensitivity and 303 specificity (Saint-Louis linitis score). This one is composed of six parameters easily applicable 304 in clinical practice and allows to determine a homogeneous group of patients in a pathology

- 305 where there is no consensual definition. The use of this score may help to improve the
- 306 therapeutic management of this subtype of GA, in particular the interest of preoperative
- 307 chemotherapy and extend of gastric resection if planned. However an external validation is
- 308 necessary in order to integrate this new score into clinical practice.

## TABLES:

| Variables                                        | GL    | P <i>N</i> = 71 | Non-G  | LP <i>N</i> = 149 | P value |
|--------------------------------------------------|-------|-----------------|--------|-------------------|---------|
| Gender, n (%)                                    |       |                 |        |                   |         |
| Female/Male                                      | 35/36 | (49/51)         | 45/104 | (30/70)           | 0.007   |
| Age at diagnosis (years)                         |       |                 |        |                   |         |
| Median (IQR)                                     | 57    | (45.5-63)       | 64     | (56-71.5)         | <0.001  |
| Time to first symptoms - cancer diagnosis (days) |       |                 |        |                   |         |
| Median (IQR)                                     | 103   | (72-184)        | 67     | (17-181)          | 0.02    |
| Tumor stage at diagnosis, n (%)                  |       |                 |        |                   |         |
| Localized tumor                                  | 57    | (80)            | 142    | (95)              |         |
| Metastatic tumor                                 | 14    | (20)            | 7      | (5)               |         |
| Pre-operative treatment                          |       |                 |        |                   |         |
| Upfront surgery                                  | 24    | (34)            | 69     | (46)              |         |
| Systemic chemotherapy                            | 47    | (66)            | 80     | (54)              |         |
| Systemic chemotherapy + PIPAC *, n (%)           | 2     | (3)             | 0      | (0)               |         |
| Clinical symptoms at diagnosis, n (%) **         |       |                 |        |                   |         |
| Poor general status                              | 41    | (58)            | 39     | (26)              | <0.001  |
| Undernutrition                                   | 32    | (45)            | 40     | (27)              | 0.002   |
| Dysphagia                                        | 14    | (20)            | 6      | (4)               | <0.001  |
| Epigastric pain                                  | 58    | (82)            | 97     | (65)              | 0.01    |
| Vomiting                                         | 11    | (15.5)          | 14     | (9.5)             | 0,255   |
| Digestive hemorrhage                             | 4     | (5.5)           | 25     | (17)              | 0.03    |
| Occlusive syndrome                               | 7     | (10)            | 7      | (5)               | 0,151   |
| Perforation                                      | 3     | (4)             | 4      | (3)               | 0,684   |
| Histological diagnosis, n (%)                    |       |                 |        |                   |         |
| Unique upper digestive endoscopy                 | 49    | (69)            | 140    | (94)              | <0.001  |
| Repeated upper digestive endoscopies             | 9     | (12.5)          | 7      | (5)               | <0.001  |
| Upper endoscopic ultrasound                      | 2     | (3)             | 1      | (0.5)             |         |
| Exploratory coelioscopy                          | 7     | (10)            | 0      | (0)               |         |
| Inaugural surgery                                | 4     | (5.5)           | 1      | (0.5)             |         |

# **Table 1:** General characteristics of the study population

- \* Pressurized intraperitoneal aerosol chemotherapy
   \*\* Several symptoms may be associated

| Variables                                                | GLP N = | : 71   | Non-GLP N | = 149  | P value |
|----------------------------------------------------------|---------|--------|-----------|--------|---------|
| Upper gastrointestinal endoscopy, n (%) *                |         |        |           |        |         |
| Single ulcer                                             | 27      | (38)   | 79        | (53)   | 0.04    |
| Ulcerations or multiple erosions                         | 16      | (22.5) | 10        | (6.5)  | 0.001   |
| Ulcer-budding tumor                                      | 4       | (5.5)  | 53        | (35.5) | <0.001  |
| Large gastric folds or thickening on one segment         | 40      | (56)   | 9         | (6)    | <0.001  |
| Large gastric folds or diffuse thickening                | 15      | (21)   | 0         | (0)    | <0.001  |
| Difficulty of insufflation                               | 13      | (18)   | 0         | (0)    | <0.001  |
| Stenosis                                                 | 21      | (29.5) | 18        | (12)   | 0.001   |
| Pangastric tumor infiltration                            | 17      | (24)   | 0         | (0)    | <0.001  |
| Tumor infiltration extending to the duodenal bulb        | 8       | (11)   | 1         | (1)    | <0.001  |
| Tumor diagnosis not mentioned on the macroscopic aspect  | 16      | (22.5) | 4         | (3)    | <0.001  |
| Upper endoscopic ultrasound, n (%) *                     |         |        |           |        |         |
| Circumferential thickening                               | 28      | (39.5) | 8         | (5.5)  | <0.001  |
| Pan gastric thickening                                   | 13      | (18)   | 0         | (0)    | <0.001  |
| Thickening of an entire segment or a limited part        | 33      | (46.5) | 77        | (52)   | 0.004   |
| Wall thickening predominant on the 3rd hyperechoic layer | 15      | (21)   | 0         | (0)    | <0.001  |
| Layer fusion                                             | 14      | (20)   | 11        | (7.5)  | 0.008   |
| Suspicious peri-gastric adenopathy                       | 26      | (36)   | 44        | (29.5) | 0,585   |
| Scanner, n (%) **                                        |         |        |           |        |         |
| Localized parietal abnormality                           | 43      | (60.5) | 95        | (64)   | 0,63    |
| Diffuse parietal abnormality                             | 19      | (27)   | 4         | (3)    | <0.001  |
| Circumferential parietal abnormality                     | 33      | (46.5) | 17        | (11.5) | <0.001  |
| Suspicious peri-gastric adenopathy                       | 21      | (29.5) | 66        | (44)   | 0,128   |

**Table 2:** Characteristics of endoscopic findings and imaging in the study population

\* Several possible lesions in the same patient
 \*\* Parietal abnormalities = thickening +/- parietal enhancement or endoluminal bud

| Variables                                     | GLP N = | 71          | Non-GLP N | = 149       | P value |  |
|-----------------------------------------------|---------|-------------|-----------|-------------|---------|--|
| Type of gastrectomy, n (%)                    |         |             |           |             |         |  |
| Total                                         | 61      | (86)        | 86        | (58)        | <0.001  |  |
| Partial                                       | 10      | (14)        | 63        | (42)        | <0.001  |  |
| Resection, n (%)                              |         |             |           |             |         |  |
| RO                                            | 46      | (65)        | 141       | (94)        | <0.001  |  |
| R1                                            | 25      | (35)        | 7         | (5)         |         |  |
| R2                                            | 0       | (0)         | 1         | (1)         |         |  |
| Tumour site, n (%)                            |         |             |           |             | <0.001  |  |
| Pangastric                                    | 30      | (42)        | 0         | (0)         |         |  |
| Fundus                                        | 12      | (17)        | 28        | (19)        |         |  |
| Antrum/pylorus                                | 24      | (34)        | 93        | (62)        |         |  |
| Antro-fundic junction or body                 | 5       | (7)         | 28        | (19)        |         |  |
| AJCC TNM stage, n (%) *                       |         |             |           |             | <0.001  |  |
| pT1-T2                                        | 2       | (3)         | 64        | (43)        |         |  |
| рТЗ-Т4                                        | 69      | (97)        | 85        | (57)        |         |  |
| Positive lymph nodes (any N)                  | 55      | (75.5)      | 85        | (57)        | <0.001  |  |
| M1 (metastatic location)                      | 24      | (34)        | 12        | (8)         | <0.001  |  |
| WHO classification, n (%)**                   |         |             |           |             |         |  |
| Poorly cohesive (including signet ring cells) | 66      | (93)        | 33        | (22)        |         |  |
| Tubular                                       | 0       | (0)         | 60        | (40.5)      |         |  |
| Papillary                                     | 0       | (0)         | 6         | (4)         |         |  |
| Mucinous                                      | 1       | (1.5)       | 5         | (3.5)       |         |  |
| Mixed                                         | 4       | (5.5)       | 21        | (14)        |         |  |
| Unknown                                       | 0       | (0)         | 24        | (16)        |         |  |
| Lymph node(s)                                 |         |             |           |             |         |  |
| Number of lymph nodes analyzed, median (IQR)  | 26      | (18-<br>34) | 22        | (16-<br>31) | 0,054   |  |
| Number of invaded lymph nodes, median (IQR)   | 8       | (3-<br>13)  | 4         | (3-9)       | <0.001  |  |
| HER2, n (%)***                                |         |             |           |             |         |  |
| Positive                                      | 1       | (1.5)       | 12        | (8)         | 0,112   |  |
| Not determined                                | 16      | (22.5)      | 19        | (13)        |         |  |

Table 3: histological characteristics of the gastrectomy specimens

- \* UICC/AJCC 2016
- \*\* WHO classification 2010
- \*\*\* HER2 status has sometimes been determined on endoscopic biopsies

| Items                                                                     | $\beta *$ | Point |
|---------------------------------------------------------------------------|-----------|-------|
| Upper gastrointestinal endoscopy                                          |           |       |
| Large folds and / or gastric thickening on at least one segment           | 3.18      | 1.5   |
| Pangastric infiltration                                                   | 4.33      | 2     |
| Stenosis                                                                  | 1.63      | 1     |
| Upper endoscopic ultrasound                                               |           |       |
| Circumferential thickening                                                | 0.18      | 0.5   |
| Thickening of the gastric wall predominant on the third hyperechoic layer | 2.49      | 1     |
| Histology of gastric biopsies                                             |           |       |
| Poorly cohesive and/or signet ring cells                                  | 3.14      | 1.5   |

## Table 4: Diagnostic score of gastric linitis plastica

Each item scores 0 if absent or the tabulated value if present. The diagnostic score is the sum of each items and ranges from 0 to 7.5; a higher score indicates a higher probability of linitis plastic. The chosen threshold is 3: patients with a score<3 are considered not having a gastric linitis plastica and patients with a score >=3 are considered having a gastric linitis plastica

\*  $\beta$  coefficient are obtained with Firth penalized logistic regression model

# Figure 1: Flow chart of the whole population

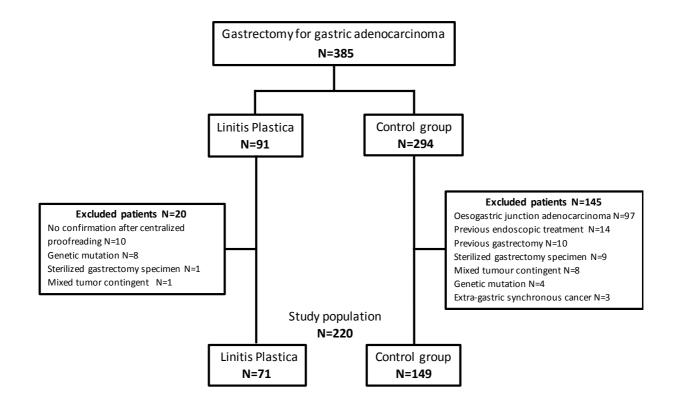
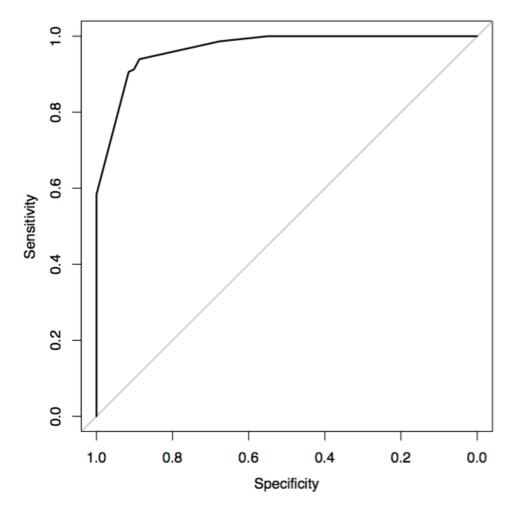




Figure 2 : ROC curve



## **FIGURES LEGENDS**

Figure 1: Flow chart

Figure 2: ROC curve. The AUC is 0,967 [0.948 - 0.987]; using a threshold of 2.75, the sensitivity is 94% [89,9-97,3] and the specificity is 88,7% [81,7-95,8].

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions.

All the authors declare no conflict of interest for this article (ICMJE Form for Disclosure of Potential Conflicts of Interest).

All data were anonymously collected and, according to the Loi Jardé, no patient consent was needed, as the treatment implemented in this study was the standard recommended therapy. **SUPPLEMENTARY TABLES S1 to S6:** unadjusted association between each candidate predictor and outcome. using Firth's bias-Reduced penalized-likelihood logistic regression.

## **Table S1 : Clinical Variables**

| Variables                                  | Odds Ratio<br>(OR) | 95% CI            | P value OR | Missing data<br>(N) |
|--------------------------------------------|--------------------|-------------------|------------|---------------------|
| Age                                        | 0.94               | [0.92 - 0.97]     | <0.001     | 1                   |
| Gender                                     | 0.45               | [0.25 - 0.8]      | 0.0064     | 0                   |
| Time to first symptoms-cancer<br>diagnosis | 1                  | [1 - 1.01]        | 0.14       | 70                  |
| Epigastric pain                            | 2.33               | [1.21 - 4.75]     | 0.011      | 0                   |
| Dysphagia                                  | 5.57               | [2.18 -<br>15.76] | <0.001     | 0                   |
| Vomiting                                   | 1.78               | [0.76 - 4.07]     | 0.18       | 0                   |
| Poor general status                        | 3.9                | [2.16 - 7.14]     | <0.001     | 2                   |
| Upper digestive hemorrhage                 | 0.33               | [0.1 - 0.85]      | 0.02       | 0                   |
| Iron deficiency anemia                     | 0.18               | [0.05 - 0.51]     | <0.001     | 0                   |
| Stenosing gastric tumor                    | 2.21               | [0.76 - 6.47]     | 0.14       | 0                   |
| Perforation                                | 1.65               | [0.36 - 6.97]     | 0.5        | 0                   |
| Undernutrition                             | 2.64               | [1.44 - 4.88]     | 0.0018     | 14                  |

# **Table S2 Biological Variables**

| Variables                       | Odds Ratio<br>(OR) | 95% CI           | P value OR | Missing data<br>(N) |
|---------------------------------|--------------------|------------------|------------|---------------------|
| Anemia                          | 0.45               | [0.24 -<br>0.81] | 0.0084     | 15                  |
| Elevated C-reactive protein     | 1.33               | [0.58 - 3.1]     | 0.5        | 99                  |
| Increased neutrophils count     | 0.7                | [0.27 -<br>1.64] | 0.42       | 37                  |
| Lymphopenia                     | 0.52               | [0.18 -<br>1.33] | 0.18       | 54                  |
| Neutrophil-to-lymphocytes ratio | 1                  | [0.91 -<br>1.07] | 0.92       | 54                  |
| Thrombocytosis                  | 0.23               | [0.04 -<br>0.73] | 0.011      | 35                  |
| Hypoalbuminemia                 | 1.64               | [0.82 -<br>3.27] | 0.16       | 56                  |
| Increased CEA                   | 0.36               | [0.09 -<br>1.06] | 0.064      | 38                  |
| Increased CA 19-9               | 0.76               | [0.31 -<br>1.76] | 0.53       | 47                  |

| Variables                                               | Odds Ratio (OR) | 95% CI                | P value OR | Missing data (N) |
|---------------------------------------------------------|-----------------|-----------------------|------------|------------------|
| Single ulcer                                            | 0.54            | [0.3 - 0.95]          | 0.033      | 4                |
| Ulcerations or multiples erosions                       | 3.94            | [1.73 - 9.33]         | 0.0011     | 4                |
| Ulcer-budding tumor                                     | 0.12            | [0.04 - 0.3]          | <0.001     | 4                |
| Large gastric folds or thickening on one segment        | 19.36           | [8.96 - 45.67]        | <0.001     | 3                |
| Large gastric folds or diffuse thickening               | 82.95           | [10.85 -<br>10653.78] | <0.001     | 2                |
| Difficulty of insufflation                              | 73.57           | [9.49 - 9472.06]      | <0.001     | 5                |
| Stenosis                                                | 3.19            | [1.58 - 6.52]         | 0.0013     | 4                |
| Pangastric tumor infiltration                           | 97.15           | [12.83 -<br>12457.88] | <0.001     | 2                |
| Fundic tumor site                                       | 1.79            | [0.94 - 3.38]         | 0.077      | 3                |
| Antral tumor site                                       | 0.43            | [0.23 - 0.78]         | 0.0049     | 2                |
| Antro-fundic junction or body tumor site                | 0.56            | [0.28 - 1.07]         | 0.082      | 3                |
| Tumor infiltration extending to the duodenal bulb       | 13.59           | [2.97 - 129.6]        | <0.001     | 3                |
| Tumor diagnosis not mentioned on the macroscopic aspect | 5               | [2.11 - 12.66]        | <0.001     | 2                |
| Repeated diagnosis upper endoscopy                      | 0.22            | [0.1 - 0.45]          | <0.001     | 0                |

## **Table S3 Upper Gastrointestinal Endoscopy Variables**

# Table S4 Upper Endoscopic Ultrasound Variables

| Table 54 Upper Endosco                                          | pic Ultrasound  | variables             |            |                  |
|-----------------------------------------------------------------|-----------------|-----------------------|------------|------------------|
| Variables                                                       | Odds Ratio (OR) | 95% CI                | P value OR | Missing data (N) |
| Circumferential thickening                                      | 13.33           | [5.56 - 34.98]        | <0.001     | 88               |
| Pangastric thickening                                           | 68.91           | [8.71 - 8908.76]      | <0.001     | 89               |
| Thickening of an entire segment or a limited part               | 0.24            | [0.09 - 0.63]         | 0.0034     | 90               |
| Wall thickening predominant<br>on the 3 rd hyperechoic<br>layer | 96.51           | [12.24 -<br>12473.83] | <0.001     | 97               |
| Layer fusion                                                    | 3.35            | [1.38 - 8.36]         | 0.0076     | 99               |
| Suspicious perigastric<br>adenopathy                            | 1.26            | [0.62 - 2.59]         | 0.52       | 87               |
|                                                                 |                 |                       |            |                  |

## Table S5 CT Scan variables

| Variables                         | Odds Ratio<br>(OR) | 95% CI            | P value OR | Missing data<br>(N) |
|-----------------------------------|--------------------|-------------------|------------|---------------------|
| Localized parietal abnormality    | 0.82               | [0.45 - 1.54]     | 0.54       | 17                  |
| Diffuse parietal abnormality      | 12.02              | [4.43 -<br>40.03] | <0.001     | 15                  |
| Suspicious perigastric adenopathy | 0.61               | [0.33 - 1.11]     | 0.1        | 9                   |

| Table 30 mstological valiable          | Table 30 mistological variables (chaoscopic biopsies) |                   |                      |                     |  |  |  |  |
|----------------------------------------|-------------------------------------------------------|-------------------|----------------------|---------------------|--|--|--|--|
| Variables                              | Odds Ratio<br>(OR)                                    | 95% CI            | <i>P</i> value<br>OR | Missing data<br>(N) |  |  |  |  |
| Diffuse fibrous stromal reaction       | 7.49                                                  | [3.12 -<br>20.51] | <0.001               | 62                  |  |  |  |  |
| Mixed gastric tumor                    | 0.62                                                  | [0.23 - 1.5]      | 0.3                  | 6                   |  |  |  |  |
| Signet ring cells                      | 29.53                                                 | [11.81 -<br>94.1] | 0                    | 4                   |  |  |  |  |
| Positive HER 2 status                  | 0.26                                                  | [0.03 - 1.12]     | 0.075                | 35                  |  |  |  |  |
| Positive Helicobacter Pylori<br>status | 0.81                                                  | [0.39 - 1.66]     | 0.57                 | 72                  |  |  |  |  |
| Low-tumor burden                       | 2.23                                                  | [1.11 - 4.46]     | 0.025                | 29                  |  |  |  |  |

# Table S6 histological variables (endoscopic biopsies)

# Supplementary Table S7 (Tripod checklist)

| Section/Topic                | 1   | Checklist Item                                                                                                                                                                                   | Page             |
|------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Title and abstract           |     |                                                                                                                                                                                                  |                  |
| Title                        | 1   | Identify the study as developing and/or validating a multivariable prediction model, the target population, and the outcome to be predicted.                                                     | 1                |
| Abstract                     | 2   | Provide a summary of objectives, study design, setting, participants, sample size, predictors, outcome, statistical analysis, results, and conclusions.                                          | 2 and 3          |
| Introduction                 | -   |                                                                                                                                                                                                  |                  |
| Background and objectives    | 3a  | Explain the medical context (including whether diagnostic or prognostic) and rationale for developing or validating the multivariable prediction model, including references to existing models. | 4 and 5          |
| objectives                   | 3b  | Specify the objectives, including whether the study describes the development or validation of the model or both.                                                                                | 5                |
| Methods                      |     |                                                                                                                                                                                                  |                  |
| Source of data               | 4a  | Describe the study design or source of data (e.g., randomized trial, cohort, or registry data), separately for the development and validation data sets, if applicable.                          | 6                |
| Source of data               | 4b  | Specify the key study dates, including start of accrual; end of accrual; and, if applicable, end of follow-up.                                                                                   | 6                |
|                              | 5a  | Specify key elements of the study setting (e.g., primary care, secondary care, general population) including number and location of centres.                                                     | 6                |
| Participants                 | 5b  | Describe eligibility criteria for participants.                                                                                                                                                  | 6                |
|                              | 5c  | Give details of treatments received, if relevant.                                                                                                                                                | Not<br>relevan   |
| Outcome                      | ба  | Clearly define the outcome that is predicted by the prediction model, including how and when assessed.                                                                                           | 6 and 7          |
| Outcome                      | 6b  | Report any actions to blind assessment of the outcome to be predicted.                                                                                                                           | Not<br>relevan   |
| Predictors                   | 7a  | Clearly define all predictors used in developing or validating the multivariable prediction model, including how and when they were measured.                                                    | Table 1<br>and 2 |
| Flediciois                   | 7b  | Report any actions to blind assessment of predictors for the outcome and other predictors.                                                                                                       | 7                |
| Sample size                  | 8   | Explain how the study size was arrived at.                                                                                                                                                       | 6                |
| Missing data                 | 9   | Describe how missing data were handled (e.g., complete-case analysis, single imputation, multiple imputation) with details of any imputation method.                                             | 8                |
|                              | 10a | Describe how predictors were handled in the analyses.                                                                                                                                            | 8                |
| Statistical analysis methods | 10b | Specify type of model, all model-building procedures (including any predictor selection), and method for internal validation.                                                                    | 7 and 8          |
| anarysis meulous             | 10d | Specify all measures used to assess model performance and, if relevant, to compare multiple models.                                                                                              | 7 and 8          |
| Risk groups                  | 11  | Provide details on how risk groups were created, if done.                                                                                                                                        | Not              |

|                           |     |                                                                                                                                                                                                       | relevant                    |
|---------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| Results                   |     |                                                                                                                                                                                                       |                             |
| Participants              | 13a | Describe the flow of participants through the study, including the number of participants with and without the outcome and, if applicable, a summary of the follow-up time. A diagram may be helpful. | 10,<br>figure 1             |
|                           | 13b | Describe the characteristics of the participants (basic demographics, clinical features, available predictors), including the number of participants with missing data for predictors and outcome.    | Table<br>1-3                |
| Model<br>development      | 14a | Specify the number of participants and outcome events in each analysis.                                                                                                                               | 10-12                       |
|                           | 14b | If done, report the unadjusted association between each candidate predictor and outcome.                                                                                                              | Table 1<br>and Sup<br>S1-S5 |
| Model specification       | 15a | Present the full prediction model to allow predictions for individuals (i.e., all regression coefficients, and model intercept or baseline survival at a given time point).                           | Table 4                     |
|                           | 15b | Explain how to the use the prediction model.                                                                                                                                                          | Table 4                     |
| Model performance         | 16  | Report performance measures (with CIs) for the prediction model.                                                                                                                                      | 12,<br>Figure 2             |
| Discussion                |     |                                                                                                                                                                                                       |                             |
| Limitations               | 18  | Discuss any limitations of the study (such as nonrepresentative sample, few events per predictor, missing data).                                                                                      | 16                          |
| Interpretation            | 19b | Give an overall interpretation of the results, considering objectives, limitations, and results from similar studies, and other relevant evidence.                                                    | 13-16                       |
| Implications              | 20  | Discuss the potential clinical use of the model and implications for future research.                                                                                                                 | 15-17                       |
| Other information         | 1   |                                                                                                                                                                                                       |                             |
| Supplementary information | 21  | Provide information about the availability of supplementary resources, such as study protocol, Web calculator, and data sets.                                                                         | Not don                     |
| Funding                   | 22  | Give the source of funding and the role of the funders for the present study.                                                                                                                         | Not<br>relevan              |

# **REFERENCES:**

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):359–86.

2. Karimi P, Islami F, Anandasabapathy S, Freedman ND, Kamangar F. Gastric Cancer: Descriptive Epidemiology, Risk Factors, Screening, and Prevention. Cancer Epidemiol Biomarkers Prev. 2014;23(5):700–13.

3. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

4. Bosman, Fred T., Carneiro, Fatima, Hruban, Ralph H., Theise, Neil D. World Health Organization (WHO) Classification of Tumours of the Digestive System. International Agency for Research on Cancer (IARC) 4th Edition. 2010;45–79.

5. Japanese Gastric Cancer Association. Japanese classification of gastric carcinoma: 3rd English edition. Gastric Cancer. 2011;14(2):101–12.

6. Borrmann R . Geschwülste Des Magens und Des Duodenums. Vol. I Berlin- Springer; 1926.

7. Siewert J, Stein H. Carcinoma of the gastroesophageal junction-Classification, pathology and extent of resection. Dis Esophagus 1996;9-173-82.

8. Mastoraki A, Papanikolaou IS, Sakorafas G, Safioleas M. Facing the challenge of managing linitis plastica–review of the literature. Hepatogastroenterology. 2009;56(96):1773–8.

9. Agnes A, Estrella JS, Badgwell B. The significance of a nineteenth century definition in the era of genomics: linitis plastica. World J Surg Oncol. 2017;15(1).

10. Chang JM, Lara KA, Gray RJ, Pockaj BA, Wasif N. Clinical Outcomes after Surgery for Linitis Plastica of the Stomach: Analysis of a Population Cancer Registry. Am Surg. 2017;83(1):23–9.

11. Blackham AU, Swords DS, Levine EA, Fino NF, Squires MH, Poultsides G, et al. Is Linitis Plastica a Contraindication for Surgical Resection: A Multi-Institution Study of the U.S. Gastric Cancer Collaborative. Ann Surg Oncol. 2016;23(4):1203–11.

12. Mariette C, Carneiro F, Grabsch HI, van der Post RS, Allum W, de Manzoni G, et al. Consensus on the pathological definition and classification of poorly cohesive gastric carcinoma. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2018 Aug 25. 13. Palli D, Bianchi S, Cipriani F, Duca P, Amorosi A, Avellini C, et al. Reproducibility of histologic classification of gastric cancer. Br J Cancer. 1991;63(5):765.

14. Flucke U, Mönig SP, Baldus SE, Zirbes TK, Bollschweiler E, Thiele J, et al. Differences between biopsy- or specimen-related Laurén and World Health Organization classification in gastric cancer. World J Surg. 2002;26(2):137–40.

15. Amin MB, Edge SB, Greene FL, et al, eds. AJCC Cancer Staging Manual. 8th ed. New York: Springer; 2017.

16. Jung K, Park MI, Kim SE, Park SJ. Borrmann Type 4 Advanced Gastric Cancer: Focus on the Development of Scirrhous Gastric Cancer. Clin Endosc. 2016;49(4):336–45.

17. Pernot S. Signet-ring cell carcinoma of the stomach: Impact on prognosis and specific therapeutic challenge. World J Gastroenterol. 2015;21(40):11428.

18. Golembeski CP, Genta RM. Signet-ring cell carcinoma in gastric biopsies: expecting the unexpected. J Clin Pathol. 2013;66(2):136–9.

19. Piessen G, Amielh D, Messager M, Vinatier E, Leteurtre E, Triboulet JP, et al. Is Pretreatment Endoscopic Biopsy a Good Predictor of Signet Ring Cell Histology in Gastric Carcinoma? World J Surg. 2012;36(2):346–54.

20. Pedrazzani C, Marrelli D, Pacelli F, Di Cosmo M, Mura G, Bettarini F, et al. Gastric linitis plastica: which role for surgical resection? Gastric Cancer. 2012;15(1):56–60.

21. Endo K, Sakurai M, Kusumoto E, Uehara H, Yamaguchi S, Tsutsumi N, et al. Biological significance of localized Type IV scirrhous gastric cancer. Oncol Lett. 2012;3(1):94–9.

22. Mocellin S, Pasquali S. Diagnostic accuracy of endoscopic ultrasonography (EUS) for the preoperative locoregional staging of primary gastric cancer. Cochrane Database Syst Rev. 2015;(2).

23. Liu Y, Chen K, Yang X-J. Endoscopic Ultrasound Guided Fine Needle Aspiration used in diagnosing Gastric Linitis Plastica: Metastatic Lymph Nodes can be valuable targets. J Gastroenterol Hepatol. 2018.

24. Morgant S, Artru P, Oudjit A, Lourenco N, Pasquer A, Walter T, et al. Computed tomography scan efficacy in staging gastric linitis plastica lesion: a retrospective multicentric French study. Cancer Manag Res. 2018;10:3825–31.

25. Han D-S, Suh Y-S, Kong S-H, Lee H-J, Choi Y, Aikou S, et al. Nomogram predicting longterm survival after d2 gastrectomy for gastric cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2012;30(31):3834–40.

26. Hirabayashi S, Kosugi S, Isobe Y, Nashimoto A, Oda I, Hayashi K, et al. Development and external validation of a nomogram for overall survival after curative resection in serosa-

negative, locally advanced gastric cancer. Ann Oncol Off J Eur Soc Med Oncol. 2014;25(6):1179–84.

27. Zheng Z-F, Lu J, Wang W, Desiderio J, Li P, Xie J-W, et al. Development and External Validation of a Simplified Nomogram Predicting Individual Survival After R0 Resection for Gastric Cancer: An International, Multicenter Study. Ann Surg Oncol. 2018.

28. Narita Y, Kadowaki S, Oze I, Kito Y, Kawakami T, Machida N, et al. Establishment and validation of prognostic nomograms in first-line metastatic gastric cancer patients. J Gastrointest Oncol. 2018;9(1):52–63.

29. Kim SY, Yoon MJ, Park YI, Kim MJ, Nam B-H, Park SR. Nomograms predicting survival of patients with unresectable or metastatic gastric cancer who receive combination cytotoxic chemotherapy as first-line treatment. Gastric Cancer Off J Int Gastric Cancer Assoc Jpn Gastric Cancer Assoc. 2018;21(3):453–63.

30. Messager M, Lefevre JH, Pichot-Delahaye V, Souadka A, Piessen G, Mariette C, et al. The Impact of Perioperative Chemotherapy on Survival in Patients With Gastric Signet Ring Cell Adenocarcinoma: A Multicenter Comparative Study. Ann Surg. 2011;254(5):684–93.