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Abstract

Background: DNA methylation changes in peripheral blood have recently been identified
in relation to lung cancer risk. Some of these changes have been suggested to mediate
part of the effect of smoking on lung cancer. However, limitations with conventional me-
diation analyses mean that the causal nature of these methylation changes has yet to be
fully elucidated.

Methods: We first performed a meta-analysis of four epigenome-wide association stud-
ies (EWAS) of lung cancer (918 cases, 918 controls). Next, we conducted a two-sample
Mendelian randomization analysis, using genetic instruments for methylation at CpG
sites identified in the EWAS meta-analysis, and 29 863 cases and 55 586 controls from
the TRICL-ILCCO lung cancer consortium, to appraise the possible causal role of methyla-
tion at these sites on lung cancer.

Results: Sixteen CpG sites were identified from the EWAS meta-analysis [false discovery
rate (FDR) < 0.05], for 14 of which we could identify genetic instruments. Mendelian randomi-
zation provided little evidence that DNA methylation in peripheral blood at the 14 CpG sites
plays a causal role in lung cancer development (FDR > 0.05), including for cg05575921-AHRR
where methylation is strongly associated with both smoke exposure and lung cancer risk.
Conclusions: The results contrast with previous observational and mediation analysis,
which have made strong claims regarding the causal role of DNA methylation. Thus, pre-
vious suggestions of a mediating role of methylation at sites identified in peripheral
blood, such as cg05575921-AHRR, could be unfounded. However, this study does not
preclude the possibility that differential DNA methylation at other sites is causally in-
volved in lung cancer development, especially within lung tissue.

Key words: Lung cancer, DNA methylation, Mendelian randomization, ALSPAC, ARIES

Key Messages

* DNA methylation is a modifiable biomarker, giving it the potential to be targeted for intervention in many diseases,
including lung cancer that is the most common cause of cancer-related death.

* This Mendelian randomization study attempted to evaluate whether there was a causal relationship, and thus poten-
tial for intervention, between DNA methylation measured in peripheral blood and lung cancer, by assessing whether
genetically altered DNA methylation levels impart differential lung cancer risks.

Differential methylation at 14 CpG sites identified in epigenome-wide association analysis of lung cancer were
assessed. Despite >99% power to detect the observational effect sizes, our Mendelian randomization analysis gave
little evidence that any of the sites were causally linked to lung cancer.

* This is in stark contrast to previous analyses that suggested two CpG sites within the AHRR and F2RL3 loci, which
were also observed in this analysis, mediate >30% of the effect of smoking on lung cancer.

Overall findings suggest there is little or no role of differential methylation at the CpG sites identified within the blood
in the development of lung cancer. Thus, targeting these sites for prevention of lung cancer is unlikely to yield effec-
tive treatments.

Background Given the plasticity of epigenetic markers, any DNA meth-
Lung cancer is the most common cause of cancer-related ylation changes that are causally linked to lung cancer are
death worldwide.! Several DNA methylation changes have potentially appealing targets for intervention.>® However,

been recently identified in relation to lung cancer risk.”™* these epigenetic markers are sensitive to reverse causation,
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being affected by cancer processes,® and are also prone to
confounding, for example by socioeconomic and lifestyle
factors.”®

One CpG site, cg05575921 within the aryl hydrocarbon
receptor repressor (AHRR) gene, has been consistently rep-
licated in relation to both smoking” and lung cancer®*'°
and functional evidence suggests that this region could be
causally involved in lung cancer."! However, the observed
association between methylation and lung cancer might
simply reflect separate effects of smoking on lung cancer
and DNA methylation, i.e. the association may be a result
of confounding,'? including residual confounding after ad-
justment for self-reported smoking behaviour.'*!*
Furthermore, recent epigenome-wide association studies
(EWAS) for lung cancer have revealed additional CpG sites
which may be causally implicated in development of the
disease.>’

Mendelian randomization (MR) uses genetic variants
associated with modifiable factors as instruments to infer
causality between the modifiable factor and outcome,
overcoming most unmeasured or residual confounding and
reverse causation.'>'® In order to infer causality, three
core assumptions of MR should be met: (i) the instrument
is associated with the exposure; (ii) the instrument is not
associated with any confounders; and (iii) the instrument is
associated with the outcome only through the exposure.
MR may be adapted to the setting of DNA methylation'”~
1% with the use of single nucleotide polymorphisms (SNPs)
that correlate with methylation of CpG sites, known as
methylation quantitative trait loci (mQTLs).*°

In this study, we performed a meta-analysis of four lung
cancer EWAS (918 case-control pairs) from prospective co-
hort studies to identify CpG sites associated with lung can-
cer risk, and we applied MR to investigate whether the
observed DNA methylation changes at these sites are caus-

ally linked to lung cancer.

Methods
EWAS meta-analysis

We conducted a meta-analysis of four lung cancer case-
control EWAS that assessed DNA methylation using the
Ilumina Infinium® HumanMethylation450 BeadChip.
All EWAS are nested within prospective cohorts that mea-
sured DNA methylation in peripheral blood samples before
diagnosis: EPIC-Italy (185 case-control pairs), Melbourne
Collaborative Cohort Study (MCCS) (367 case-control
pairs), Norwegian Women and Cancer (NOWAC) (132
case-control pairs) and the Northern Sweden Health and
Disease Study (NSHDS) (234 case-control pairs). Study
populations, laboratory methods, data preprocessing and

quality control methods have been described in detail else-
where® and are outlined in the Supplementary Methods,
available as Supplementary data at IJE online.

To quantify the association between the methylation
level at each CpG and the risk of lung cancer, we fitted
conditional logistic regression models for beta values of
methylation [which ranges from 0 (no cytosines methyl-
ated) to 1 (all cytosines methylated)] on lung cancer status
for the four studies. The cases and controls in each study
were matched; details of this are in the Supplementary
Methods, available as Supplementary data at IJE online.
Surrogate variables were computed in the four studies us-
ing the SVA R package,”' and the proportion of CD8+
and CD4+ T cells, B cells, monocytes, natural killer cells
and granulocytes within whole blood were derived from
DNA methylation.?” The following EWAS models were in-
cluded in the meta-analysis: Model 1—unadjusted; Model
2—adjusted for 10 surrogate variables (SVs); Model 3—
adjusted for 10 SVs and derived cell proportions.
Stratification of EWAS by smoking status was also con-
ducted [never (N=304), former (N=648) and current
smoking (N=2857)]. For Model 1, 2 and 3, the case-
control studies not matched on smoking status (EPIC-Italy
and NOWAC) were adjusted for smoking.

We performed an inverse-variance weighted fixed
effects meta-analysis of the EWAS (918 case-control pairs)
using the METAL software [http://csg.sph.umich.edu/abe
casis/metal/]. Direction of effect, effect estimates and the I
statistic were used to assess heterogeneity across the studies
in addition to effect estimates across smoking strata (never,
former and current). All sites identified at a false discovery
rate (FDR) <0.05 in Models 2 and 3 were also present in
the sites identified in Model 1. The effect size differences
between models for all sites identified in Model 1 were
assessed by a Kruskal-Wallis test and a post hoc Dunn’s
test. There was little evidence for a difference (P> 0.1), so
to maximize inclusion into the MR analyses, we took
forward the sites identified in the unadjusted model
(Model 1).

Mendelian randomization

Two-sample MR was used to establish potential causal
effects of differential methylation on lung cancer risk.”***
In the first sample, we identified mQTL-methylation effect
estimates (fgp) for each CpG site of interest in an mQTL
database from the Accessible Resource for Integrated
Epigenomic Studies (ARIES) [http://www.mqtldb.org].
Details on the methylation preprocessing, genotyping and
quality control (QC) pipelines are outlined in the
Supplementary Methods, available as Supplementary data
at IJE online. In the second sample, we used summary data
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from a GWAS meta-analysis of lung cancer risk conducted
by the Transdisciplinary Research in Cancer of the Lung
and The International Lung Cancer Consortium (TRICL-
ILCCO) (29 863 cases, 55 586 controls) to obtain mQTL-
lung cancer estimates ( [fGD).ZS

For each independent mQTL (r* <0.01), we calculated
the log odds ratio (OR) per standard deviation (SD) unit
increase in methylation by the formula fgp/fgp (Wald ra-
tio). Standard errors were approximated by the delta
method.”® Where multiple independent mQTLs were avail-
able for one CpG site, these were combined in a fixed
effects meta-analysis after weighting each ratio estimate by
the inverse variance of their associations with the outcome.
Heterogeneity in Wald ratios across mQTLs was estimated
using Cochran’s Q test, which can be used to indicate hori-
zontal pleiotropy.?” Differences between the observational
and MR estimates were assessed using a Z test for difference.

If there was evidence for an mQTL-CpG site association
in ARIES in at least one time point, we assessed whether
the mQTL replicated across time points in ARIES (FDR <
0.05, same direction of effect). Further, we re-analysed this
association using linear regression of methylation on each
genotyped SNP available in an independent cohort
(NSHDS), using rvtests>® (Supplementary Methods, avail-
able as Supplementary data at IJE online). Replicated
mQTLs were included where possible to reduce the effect
of winner’s curse using effect estimates from ARIES. We
assessed the instrument strength of the mQTLs by investi-
gating the variance explained in methylation by each
mQTL (r*) as well as the F statistic in ARIES
(Supplementary Table 1, available as Supplementary data
at IJE online). The power to detect the observational effect
estimates in the two-sample MR analysis was assessed a
priori, based on an alpha of 0.05, sample size of 29 863
cases and 55 586 controls (from TRICL-ILCCO) and cal-
culated variance explained (r?).

MR analyses were also performed to investigate the im-
pact of methylation on lung cancer subtypes in TRICL-
ILCCO: adenocarcinoma (11 245 cases, 54 619 controls),
small cell carcinoma (2791 cases, 20 580 controls) and
squamous cell carcinoma (7704 cases, 54 763 controls).
We also assessed the association in never smokers (2303
cases, 6995 controls) and ever smokers (23 848 cases,
16 605 controls).”® Differences between the smoking sub-
groups were assessed using a Z test for difference.

We next investigated the extent to which the mQTLs at
cancer-related CpGs were associated with four smoking
behaviour traits which could confound the methylation-
lung cancer association: number of cigarettes per day,
smoking cessation rate, smoking initiation and age of
smoking initiation, using GWAS data from the Tobacco
and Genetics (TAG) consortium (N = 74 053).%°

Supplementary analyses

Assessing the potential causal effect of AHRR methylation:
one-sample MR
Given previous findings implicating methylation at AHRR

. . 2
in relation to lung cancer,>?

we performed a one-sample
MR analysis®® of AHRR methylation on lung cancer inci-
dence, using individual-level data from the Copenhagen
City Heart Study (CCHS) (357 incident cases, 8401
remaining free of lung cancer). Details of the phenotypic,
methylation and genetic data, as well as the linked lung
cancer data, are outlined in the Supplementary Methods,
available as Supplementary data at IJE online.

An allele score of mQTLs located with 1Mb of
cg05575921-AHRR was created and its association with
AHRR methylation tested (Supplementary Methods, avail-
able as Supplementary data at IJE online). We investigated
associations between the allele score and several potential
confounding factors (sex, alcohol consumption, smoking
status, occupational exposure to dust and/or welding
fumes, passive smoking). We next performed MR analyses
using two-stage Cox regression, with adjustment for age
and sex, and further stratified by smoking status.

Tumour and adjacent normal methylation patterns

DNA methylation data from lung cancer tissue and matched
normal adjacent tissue (N =40 squamous cell carcinoma
and N=29 adenocarcinoma), profiled as part of The
Cancer Genome Atlas (TCGA), were used to assess tissue-
specific DNA methylation changes across sites identified in
the meta-analysis of EWAS, as outlined previously.*

mQTL association with gene expression

For the genes annotated to CpG sites identified in the lung
cancer EWAS, we examined gene expression in whole
blood and lung tissue, using data from the gene-tissue ex-
pression (GTEx) consortium.>?

Analyses were conducted in Stata (version 14) and R (ver-
sion 3.2.2). For the two-sample MR analysis we used the
MR-Base R package TwoSampleMR.** An adjusted P-value
that limited the FDR was calculated using the Benjamini-
Hochberg method.>* All statistical tests were two-sided.

Results

A flowchart representing our study design along with a sum-
mary of our results at each step is displayed in Figure 1.

EWAS meta-analysis

The basic meta-analysis adjusted for study-specific covari-
ates identified 16 CpG sites that were hypomethylated in
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Meta-analysis of four lung cancer EWAS (918 cases and controls)
Identifies 16 CpG sites

Identify genetic instruments (SNPs) for CpG sites in ARIES (N=2 000*)
Obtain instruments for 14/16 sites ~ | observational and MR

Comparison of

TRICL-ILLCO: 29 863 cases and V results

55 586 controls Tm -

Two sample MR of DNA methylation on lung cancer
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controls Pre
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adenocarcinoma cases \
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E b
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One sample MR of AHRR methylation on
lung cancer
Little evidence of association (FDR < 0.05)

Differences in methylation between cancerous and
adjacent healthy tissue for the 16 sites
No association corresponding to observations in

SNP associations with gene expression in
blood (N = 338) and in lung (N = 278)
Little evidence of association (FDR < 0.05)

Figure 1. Study design with results summary. ARIES, Accessible Resource for Integrated Epigenomic Studies; TRICL-ILLCO, Transdisciplinary
Research in Cancer of the Lung and The International Lung Cancer Consortium; MR, Mendelian randomization; CCHS, Copenhagen City Heart Study;
TCGA, The Cancer Genome Atlas. *2 000 individuals with samples at multiple time points.

relation to lung cancer (FDR < 0.05, Model 1, Figure 2).
Adjusting for 10 surrogate variables (Model 2) and derived
cell counts (Model 3) gave similar results (Table 1). The di-
rection of effect at the 16 sites did not vary between studies
(median I* = 38.6) (Supplementary Table 2, available as
Supplementary data at IJE online), but there was evidence
for heterogeneity of effect estimates at some sites when
stratifying individuals by smoking status (Table 1).

Mendelian randomization

We identified 15 independent mQTLs (r*<0.01) associated
with methylation at 14 of 16 CpGs. Ten mQTLs replicated
at FDR < 0.05 in NSHDS (Supplementary Table 3, avail-
able as Supplementary data at IJE online). MR power anal-
yses indicated >99% power to detect ORs for lung cancer
of the same magnitude as those in the meta-analysis of
EWAS.

There was little evidence for an effect of methylation at
these 14 sites on lung cancer (FDR > 0.05, Supplementary
Table 4, available as Supplementary data at IJE online).
For nine of 14 CpG sites, the point estimates from the MR
analysis were in the same direction as in the EWAS, but of
a much smaller magnitude (Z test for difference,
P <0.001) (Figure 3).

For nine of out the 16 mQTL-CpG associations, there
was strong replication across time points (Supplementary
Table 5, available as Supplementary data at IJE online)
and 10 out of 16 mQTL-CpG associations replicated at

FDR < 0.05 in an independent adult cohort (NSHDS).
Using mQTL effect estimates from NSHDS for the 10 CpG
sites that replicated (FDR < 0.035), findings were consistent
with limited evidence for a causal effect of peripheral
blood-derived DNA methylation on lung cancer
(Supplementary Figure 1, available as Supplementary data
at IJE online).

There was little evidence of different effect estimates be-
tween ever and never smokers at individual CpG sites
(Supplementary Figure 2, available as Supplementary data
at IJE online, Z test for difference, P >0.5). There was
some evidence for a possible effect of methylation at
cg21566642-ALPPL2 and cg23771366-PRSS23 on squa-
mous cell lung cancer {OR=0.85 [95% confidence inter-
val (CI)=0.75, 0.97] and 0.91 (95% CI=0.84, 1.00) per
SD (14.4% and 5.8%) increase, respectively} as well as
methylation at ¢g23387569-AGAP2, ¢gl16823042-
AGAP2, and ¢g01901332-ARRB1 on lung adenocarci-
noma [OR=0.86 (95% CI=0.77, 0.96), 0.84 (95%
CI=0.74, 0.95), and 0.89 (95% CI=0.80, 1.00) per SD
(9.47%, 8.35%, and 8.91%) increase, respectively].
However, none of the results withstood multiple testing
correction (FDR <0.05) (Supplementary Figure 3, avail-
able as Supplementary data at IJE online). For those CpGs
where multiple mQTLs were used as instruments
(cg05575921-AHRR and ¢g01901332-ARRB1), there was
limited evidence for heterogeneity in MR effect estimates
(Q test, P>0.05, Supplementary Table 6, available as
Supplementary data at IJE online).
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Figure 2. Observational associations of DNA methylation and lung can-
cer: a fixed effects meta-analysis of lung cancer EWAS weighted on the
inverse variance was performed to establish the observational associa-
tion between differential DNA methylation and lung cancer. a)
Manhattan plot, all points above the solid line are at P< 1 x 107 and all
points above the dashed line (and triangular points) are at FDR <0.05. In
total, 16 CpG sites are associated with lung cancer (FDR <0.05). b)
Quantile-quantile plot of the EWAS results [same data as (a) Manhattan
plotl.

Single mQTLs for ¢g05575921-AHRR, cg27241845-
ALPPL2 and cg26963277-KCNQ1 showed some evidence
of association with smoking cessation (former vs current
smokers), although these associations were not below the
FDR < 0.05 threshold (Supplementary Figure 4, available
as Supplementary data at IJE online).

Potential causal effect of AHRR methylation on lung
cancer risk: one-sample MR

In the CCHS, a per (average methylation-increasing) allele
change in a four-mQTL allele score was associated with a
0.73% (95% CI=0.56, 0.90) increase in methylation
(P<1 x 107'% and explained 0.8% of the variance in
cg05575921-AHRR  methylation (F statistic=74.2).
Confounding factors were not strongly associated with the

genotypes in this cohort (P >0.11) (Supplementary Table
7, available as Supplementary data at IJE online). Results
provided some evidence for an effect of cg05575921 meth-
ylation on total lung cancer risk [hazard ratio (HR) =0.30
(95% CI=0.10, 1.00) per SD (9.2%) increase]
(Supplementary Table 8, available as Supplementary data
at IJE online). The effect estimate did not change substan-
tively when stratified by smoking status (Supplementary
Table 8, available as Supplementary data at IJE online).

Given contrasting findings with the main MR analysis,
where ¢g05575921-AHRR methylation was not causally im-
plicated in lung cancer, and the lower power in the one-
sample analysis to detect an effect of equivalent size to the ob-
servational results (power = 19% at alpha = 0.05), we per-
formed further two-sample MR based on the four mQTLs
using data from both CCHS (sample one) and the TRICL-
ILCCO consortium (sample two). Results showed no strong
evidence for a causal effect of DNA methylation on total lung
cancer risk [OR=1.00 (95% CI=0.83, 1.10) per SD in-
crease] (Supplementary Figure 5, available as Supplementary
data at IJE online). There was also limited evidence for an ef-
fect of cg05575921-AHRR methylation when stratified by
cancer subtype and smoking status (Supplementary Figure 5,
available as Supplementary data at IJE online) and no strong
evidence for heterogeneity of the mQTL effects
(Supplementary Table 9, available as Supplementary data at
IJE online). Conclusions were consistent when MR-Egger®”
was applied (Supplementary Figure 5, available as
Supplementary data at IJE online) and when accounting for
correlation structure between the mQTLs (Supplementary
Table 9, available as Supplementary data at IJE online).

Tumour and adjacent normal lung tissue
methylation patterns

For cg05575921-AHRR, there was no strong evidence for
differential methylation between adenocarcinoma tissue
and adjacent healthy tissue (P =0.963), and weak evidence
for hypermethylation in squamous cell carcinoma tissue
(P=0.035) (Figure 4; Supplementary Table 10, available
as Supplementary data at IJE online). For the other CpG
sites there was evidence for a difference in DNA methyla-
tion between tumour and healthy adjacent tissue at several
sites in both adenocarcinoma and squamous cell carci-
noma, with consistent differences for CpG sites in
ALPPL2 (cg2156642, cg05951221 and cg01940273), as
well as ¢g23771366-PRSS23, ¢g26963277-KCNQ1,
cg09935388-GFI1, c¢g0101332-ARRB1, c¢g08709672-
AVPRI1B and ¢g25305703-CASC21. However, hyperme-
thylation in tumour tissue was found for the majority of
these sites, which is opposite to what was observed in the
EWAS analysis.
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Figure 3. Mendelian randomization (MR) vs observational analysis. Two-sample MR was carried out with methylation at 14/16 CpG sites identified in
the EWAS meta-analysis as the exposure and lung cancer as the outcome. cg01901332 and ¢g05575921 had two instruments, so the estimate was cal-
culated using the inverse variance weighted method; for the rest, the MR estimate was calculated using a Wald ratio. Only 14 of 16 sites could be
instrumented using mQTLs from [mqtldb.org]. OR, odds ratio per SD increase in DNA methylation. *Instrumental variable not replicated in indepen-
dent dataset (NSHDS). The sites for which instrumental variables have not been replicated are cg01901332, cg21566642, cg05575921 and

¢cg08709672.

Gene expression associated with mQTLs in blood
and lung tissue

Of the 10 genes annotated to the 14 CpG sites, eight genes
were expressed sufficiently to be detected in lung (AVPR1B
and CASC21 were not) and seven in blood (AVPRIB,
CASC21 and ALPPL2 were not). Of these, gene expres-
sion of ARRB1 could not be investigated as the mQTLs in
that region were not present in the GTEx data. rs3748971
and rs878481, mQTLs for ¢g21566642 and ¢g05951221,
respectively, were associated with increased expression of
ALPPL2 (P=0.002 and P=0.0001). No other mQTLs
were associated with expression of the annotated gene
at a Bonferroni corrected P-value threshold (P <0.05/
19=0.0026) (Supplementary Table 11, available as
Supplementary data at IJE online).

Discussion

In this study, we identified 16 CpG sites associated with
lung cancer, of which 14 have been previously identified in
relation to smoke exposure’ and six were highlighted in a
previous study as being associated with lung cancer.® This

previous study used the same data from the four cohorts
investigated here, but in a discovery and replication, rather
than meta-analysis framework. Overall, using MR we
found limited evidence supporting a potential causal effect
of methylation at the CpG sites identified in peripheral
blood on lung cancer. These findings are in contrast to pre-
vious analyses suggesting that methylation at two CpG
sites investigated (in AHRR and F2RL3) mediated >30%
of the effect of smoking on lung cancer risk.? This previous
study used methods which are sensitive to residual con-
founding and measurement error that may have biased
results.'>?* These limitations are largely overcome using
MR.'? Although there was some evidence for an effect of
methylation at some of the other CpG sites on risk of sub-
types of lung cancer, these effects were not robust to multi-
ple testing correction and were not validated in the
analysis of tumour and adjacent normal lung tissue methyl-
ation nor in gene expression analysis.

A major strength of the study was the use of two-
sample MR to integrate an extensive epigenetic resource
and summary data from a large lung cancer GWAS, to ap-
praise causality of observational associations with >99%
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Figure 4. Differential DNA methylation in lung cancer tissue: a comparison of methylation at each of the 16 CpG sites identified in our meta-analysis
was made between lung cancer tissue and adjacent healthy lung tissue for patients with: a) lung adenocarcinoma; and b) squamous cell lung cancer.
Publicly available Data from The Cancer Genome Atlas were used for this analysis.

power. Evidence against the observational findings was
also acquired through tissue-specific DNA methylation
and gene expression analyses.

Limitations include potential ‘winner’s curse’ which
may bias causal estimates in a two-sample MR analysis to-
wards the null if the discovery sample for identifying ge-
netic instruments is used as the first sample, as was done
for our main MR analysis using data from ARIES.*®
However, findings were similar when using replicated
mQTLs in NSHDS, indicating that the potential impact of
this bias was minimal (Supplementary Figure 1, available
as Supplementary data at IJE online). Another limitation
relates to the potential issue of consistency and validity of
the instruments across the two samples. For a minority of
the mQTL-CpG associations (four out of 16), there was
limited replication across time points and in particular, six
mQTLs were not strongly associated with DNA methyla-
tion in adults. Further, our primary data used for the first
sample in the two-sample MR were ARIES, which contains
no male adults. If the mQTLs identified vary by sex and

time, then this could bias our results. However, our repli-
cation cohort NSHDS contains adult males. Therefore, the
10 mQTLs that replicated in NSHDS are unlikely to be bi-
ased by the sex discordance. Also, we replicated the find-
ings for ¢g05575921 AHRR in CCHS, which contains
both adult males and females, in a two-sample MR analy-
sis, suggesting that these results also are not influenced by
sex discordance. Caution is therefore warranted when
interpreting the null results for the two-sample MR esti-
mates for the CpG sites for which mQTLs were not repli-
cated, which could be the result of weak-instrument bias.
The lack of independent mQTLs for each CpG site did
not allow us to properly appraise horizontal pleiotropy in
our MR analyses. Where possible we only included cis-
acting mQTLs to minimize pleiotropy, and investigated
heterogeneity where there were multiple independent
mQTLs. Three mQTLs were nominally associated with
smoking phenotypes, but not to the extent that this
would bias our MR results substantially. Some of the
mQTLs used influence multiple CpGs in the same region,
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Figure 4. Continued.

suggesting genomic control of methylation at a regional
rather than single CpG level. This was untested, but meth-
ods to detect differentially methylated regions (DMRs) and
identify genetic variants which proxy for them may be
fruitful in probing the effect of methylation across gene
regions.

A further limitation relates to the inconsistency in effect
estimates between the one- and two-sample MR analysis to
appraise the causal role of AHRR methylation. Findings in
CCHS were supportive of a causal effect of AHRR methyl-
ation on lung cancer [HR=0.30 (95% CI=0.10, 1.00)
per SDJ, but in two-sample MR this site was not causally
implicated [OR =1.00 (95% CI=0.83, 1.10) per SD in-
crease]. We verified that this was not due to differences in
the genetic instruments used, nor due to issues of weak in-
strument bias. Given that the CCHS one-sample MR had
little power (19% at alpha = 0.05) to detect a causal effect
with a size equivalent to that of the observational analysis,
we have more confidence in the results from the two-
sample approach.

Peripheral blood may not be the ideal tissue to assess
the association between DNA methylation and lung

cancer. A high degree of concordance in mQTLs has been
observed across lung tissue, skin and peripheral blood
DNA,*” but we were unable to directly evaluate this here.
A possible explanation for a lack of causal effect at
AHRR is due to the limitation of tissue specificity, as we
found that the mQTLs used to instrument ¢g05575921
were not strongly related to expression of AHRR in lung
tissue. However, findings from MR analysis were corrob-
orated by the lack of evidence for differential methylation
at AHRR between lung adenocarcinoma tissue and adja-
cent healthy tissue, and weak evidence for hypermethyla-
tion (opposite to the expected direction) in squamous cell
lung cancer tissue. This result may be interesting in itself,
as smoking is hypothesized to influence squamous cell
carcinoma more than adenocarcinoma. However, the re-
sult conflicts with that found in the MR analysis.
Furthermore, another study investigating tumorous lung
tissue (N =511) found only weak evidence for an associa-
tion between smoking and ¢g05575921 AHRR methyla-
tion, which did not survive multiple testing correction
(P=0.02).>8 However, our results do not fully exclude
AHRR from involvement in the disease process. AHRR
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and AHR form a regulatory feedback loop, which means
that the actual effect of differential methylation or differ-
ential expression of AHR/AHRR on pathway activity is
complex.’” In addition, some of the CpG sites identified
in the EWAS were found to be differentially methylated
in the tumour and adjacent normal lung tissue compari-
son. Whereas this could represent a false-negative result
of the MR analysis, it is of interest that differential meth-
ylation in the tissue comparison analysis was typically in
the opposite direction to that observed in the EWAS.
Furthermore, although this method can be used to mini-
mize confounding, it does not fully eliminate the possibil-
ity of bias due to reverse causation (whereby cancer
induces changes in DNA methylation) or intra-individual
confounding e.g. by gene expression. Therefore, it does
not give conclusive evidence that DNA methylation
changes at these sites are not relevant to the development
of lung cancer.

Whereas DNA methylation in peripheral blood may be
predictive of lung cancer risk, according to the present analy-
sis it is unlikely to play a causal role in lung carcinogenesis at
the CpG sites investigated. Findings from this study issue
caution over the use of traditional mediation analyses to im-
plicate intermediate biomarkers (such as DNA methylation)
in pathways linking an exposure with disease, given the po-
tential for residual confounding in this context.'> However,
the findings of this study do not preclude the possibility that
other DNA methylation changes are causally related to lung
cancer (or other smoking-associated disease).*’

Supplementary Data

Supplementary data are available at IJE online.

Funding

This work was partly supported by a Wellcome Trust PhD student-
ship to T.B. (203746); and by Cancer Research UK (C18281/
A19169, C57854/A22171 and C52724/A20138). This work was
also supported by the UK Medical Research Council
(MC_UU_00011/1 and MC_UU_00011/5), which funds a Unit at
the University of Bristol where T.B., R.C.R., P.C.H., T.R.G., G.D.S.
and C.L.R. work. Funding to pay the Open Access publication
charges for this article was provided by the University of Bristol
RCUK. The UK Medical Research Council and Wellcome (Grant
ref: 102215/2/13/2) and the University of Bristol provide core sup-
port for ALSPAC. Methylation data in the ALSPAC cohort were
generated as part of the UK BBSRC-funded (BB/1025751/1 and BB/
1025263/1) Accessible Resource for Integrated Epigenomic Studies
(ARIES) [http://www.ariesepigenomics.org.uk].

Acknowledgements

For the contributions of ALSPAC data to our study: we are extremely
grateful to all the families who took part, the midwives for their help

in recruiting them, and the whole ALSPAC team, which includes
interviewers, computer and laboratory technicians, clerical workers,
research scientists, volunteers, managers, receptionists and nurses.

Author Contributions

This publication is the work of the authors and T.B., R.C.R. and
C.L.R. will serve as guarantors for the contents of this paper.

Conflict of interest: None declared.

References

1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers
C. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality
Worldwide: IARC CancerBase No. 11. 2013. http://globocan.
iarc.fr (9 December 2017, date last accessed).

2. Fasanelli F, Baglietto L, Ponzi E et al. Hypomethylation of
smoking-related genes is associated with future lung cancer in
four prospective cohorts. Nat Commun 2015;6:10192.

3. Baglietto L, Ponzi E, Haycock P e al. DNA methylation changes
measured in pre-diagnostic peripheral blood samples are associ-
ated with smoking and lung cancer risk. Int | Cancer 2017;140:
50-61.

4. McCarthy S, Das S, Kretzschmar W et al. A reference panel of
64, 976 haplotypes for genotype imputation. Nat Genet 2016;
48:1279-83.

5. Strathdee G, Brown R. Aberrant DNA methylation in cancer:
potential clinical interventions. Expert Rev Mol Med 2002;4:
1-17.

6. Jones PA, Baylin SB. The fundamental role of epigenetic events
in cancer. Nat Rev Genet 2002;3:415-28.

7. Borghol N, Suderman M, McArdle W et al. Associations with
early life socioeconomic position in adult DNA methylation. Inz
] Epidemiol 2012;41:62-74.

8. Elliott HR, Tillin T, McArdle WL et al. Differences in smoking
associated DNA methylation patterns in South Asians and
Europeans. Clin Epigenetics 2014;6:4.

9. Joehanes R, Just AC, Marioni RE et al. Epigenetic signatures of
cigarette smoking. Circ Cardiovasc Genet 2016;9:436-47.

10. Bojesen SE, Timpson N, Relton C, Davey Smith G,
Nordestgaard BG. AHRR (cg05575921) hypomethylation
marks smoking behaviour, morbidity and mortality. Thorax
2017;72:646-53.

11. Zudaire E, Cuesta N, Murty V et al. The aryl hydrocarbon recep-
tor repressor is a putative tumor suppressor gene in multiple hu-
man cancers. | Clin Invest 2008;118:640-50.

12. Richmond RC, Hemani G, Tilling K, Davey Smith G, Relton CL.
Challenges and novel approaches for investigating molecular me-
diation. Hum Mol Genet 2016;25:R149-56.

13. Fewell Z, Davey Smith G, Sterne JA. The impact of residual and
unmeasured confounding in epidemiologic studies: a simulation
study. Am ] Epidemiol 2007;166:646-55.

14. Munafo MR, Timofeeva MN, Morris RW et al. Association be-
tween genetic variants on chromosome 15g25 locus and objec-
tive measures of tobacco exposure. | Natl Cancer Inst 2012;104:
740-438.

15. Davey Smith G, Hemani G. Mendelian randomization: genetic
anchors for causal inference in epidemiological studies. Hum
Mol Genet 2014;23:R89-98.

€202 8unp /(0 UO J8SN SaUI[oAA-US-UNUaND-1S-S9||IBSISA 8p alisioAlun Ag 610E.SS/S61 L/S/8/a1o11e/all/woo dno-olwapeoe//:sdiy Wwol) papeojumo(]


https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyz190#supplementary-data
http://www.ariesepigenomics.org.uk
http://globocan.iarc.fr
http://globocan.iarc.fr

1504 International Journal of Epidemiology, 2019, Vol. 48, No. 5
16. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can ge- analysis using sequence data. Bioinformatics 2016;32:
netic epidemiology contribute to understanding environmental 1423-26.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

determinants of disease? Intl | Epidemiol 2003;32:1-22.

Relton CL, Davey Smith G. Two-step epigenetic Mendelian ran-
domization: a strategy for establishing the causal role of epige-
netic processes in pathways to disease. Int | Epidemiol 2012;41:
161-76.

Relton CL, Davey Smith G. Mendelian randomization: applica-
tions and limitations in epigenetic studies. Epigenomics 2015;7:
1239-43.

Richardson TG, Zheng J, Davey Smith G et al. Mendelian ran-
domization analysis identifies CpG sites as putative mediators
for genetic influences on cardiovascular disease risk. Am | Hum
Genet 2017;101:590-602.

Gaunt TR, Shihab HA, Hemani G et al. Systematic identification
of genetic influences on methylation across the human life
course. Genome Biol 2016;17:61.

Leek JT, Johnson WE, Parker HS, Fertig EJ, Jaffe AE, Storey JD.
sva: Surrogate Variable Analysis. R Package Version 30. 2017.
http://www.genomine.org/sva/.

Houseman EA, Accomando WP, Koestler DC et al. DNA meth-
ylation arrays as surrogate measures of cell mixture distribution.
BMC Bioinformatics 2012;13:86.

Inoue A, Solon G. Two-sample instrumental variables estima-
tors. Rev Econ Stat 2010;92:557-61.

Pierce BL, Burgess S. Efficient design for Mendelian randomiza-
tion studies: subsample and 2-sample instrumental variable esti-
mators. Am ]| Epidemiol 2013;178:1177-84.

McKay JD, Hung R], Han Y e# al. Large-scale association analy-
sis identifies new lung cancer susceptibility loci and heterogene-
ity in genetic susceptibility across histological subtypes. Nat
Genet 2017;49:1126.

Thomas DC, Lawlor DA, Thompson JR. Re: Estimation of bias
in nongenetic observational studies using “Mendelian triangu-
lation” by Bautista et al. Ann Epidemiol 2007;17:511-13.
Bowden ], Davey Smith G, Burgess S. Mendelian randomization
with invalid instruments: effect estimation and bias detection
through Egger regression. Int | Epidemiol 2015;44:512-25.
Zhan X, Hu Y, Li B, Abecasis GR, Liu DJ. RVTESTS: an effi-

cient and comprehensive tool for rare variant association

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Tobacco and Genetics Consortium et al. Genome-wide meta-
analyses identify multiple loci associated with smoking behavior.
Nat Genet 2010;42:441-47.

Haycock PC, Burgess S, Wade KH, Bowden ], Relton C, Davey
Smith G. Best (but oft-forgotten) practices: the design, analysis,
and interpretation of Mendelian randomization studies. Am |
Clin Nutr 2016;103:965-78.

Teschendorff AE, Yang Z, Wong A et al. Correlation of
smoking-associated DNA methylation changes in buccal cells
with DNA methylation changes in epithelial cancer. JAMA
Oncol 2015;1:476-85.

GTEx Consortium. The Genotype-Tissue Expression (GTEx)
project. Nat Genet 2013;45:580-85.

Hemani G, Zheng J, Wade KH et al. MR-Base: a platform for
Mendelian randomization using summary data from genome-
wide association studies. eLife 2018;7:¢34408.

Benjamini Y, Hochberg Y. Controlling the false discovery rate -
a practical and powerful approach to multiple testing. ] R Stat
Soc B Methodol 1995;57:289-300.

Hemani G, Tilling K, Davey Smith G. Orienting the causal rela-
tionship between imprecisely measured traits using GWAS sum-
mary data. PLoS Genet 2017;13:e1007081.

Burgess S, Thompson SG; CRP CHD Genetics Collaboration .
Avoiding bias from weak instruments in Mendelian randomiza-
tion studies. Intl | Epidemiol 2011;40:755-64.

Shi J, Marconett CN, Duan J et al. Characterizing the genetic ba-
sis of methylome diversity in histologically normal human lung
tissue. Nat Commun 2014;5:3365.

Freeman JR, Chu S, Hsu T, Huang YT. Epigenome-wide associa-
tion study of smoking and DNA methylation in non-small cell
lung neoplasms. Oncotarget 201657:69579-91.

Chen YT, Widschwendter M, Teschendorff AE. Systems-epige-
nomics inference of transcription factor activity implicates aryl-
hydrocarbon-receptor inactivation as a key event in lung cancer
development. Genome Biol 2017;18:236.

Gao X, Zhang Y, Breitling LP, Brenner H. Tobacco smoking and
methylation of genes related to lung cancer development.
Oncotarget 2016;7:59017-28.

€202 8unp /(0 UO J8SN SaUI[oAA-US-UNUaND-1S-S9||IBSISA 8p alisioAlun Ag 610E.SS/S61 L/S/8/a1o11e/all/woo dno-olwapeoe//:sdiy Wwol) papeojumo(]


http://www.genomine.org/sva/

	dyz190-TF1
	dyz190-TF2
	dyz190-TF3
	dyz190-TF4

