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ARTICLE

Physical activity and risks of breast and colorectal
cancer: a Mendelian randomisation analysis
Nikos Papadimitriou et al.#

Physical activity has been associated with lower risks of breast and colorectal cancer in

epidemiological studies; however, it is unknown if these associations are causal or con-

founded. In two-sample Mendelian randomisation analyses, using summary genetic data

from the UK Biobank and GWA consortia, we found that a one standard deviation increment

in average acceleration was associated with lower risks of breast cancer (odds ratio [OR]:

0.51, 95% confidence interval [CI]: 0.27 to 0.98, P-value= 0.04) and colorectal cancer (OR:

0.66, 95% CI: 0.48 to 0.90, P-value= 0.01). We found similar magnitude inverse associa-

tions for estrogen positive (ER+ve) breast cancer and for colon cancer. Our results support a

potentially causal relationship between higher physical activity levels and lower risks of

breast cancer and colorectal cancer. Based on these data, the promotion of physical activity is

probably an effective strategy in the primary prevention of these commonly diagnosed

cancers.

https://doi.org/10.1038/s41467-020-14389-8 OPEN

#A full list of authors and their affiliations appears at the end of the paper.
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Breast and colorectal cancer are two of the most common
cancers globally with a combined estimated number of 4
million new cases and 1.5 million deaths in 20181. Physical

activity is widely promoted along with good nutrition, main-
taining a healthy weight, and refraining from smoking, as key
components of a healthy lifestyle that contribute to lower risks of
several non-communicable diseases such as cardiovascular dis-
ease, diabetes, and cancer2.

Epidemiological studies have consistently observed inverse
relationships between physical activity and risks of breast and
colorectal cancer3–5. The World Cancer Research Fund/American
Institute for Cancer Research (WCRF/AICR) Continuous Update
Project classified the evidence linking physical activity to lower
risks of breast (postmenopausal) and colorectal cancer as
‘strong’6. However, previous epidemiological studies have gen-
erally relied on self-report measures of physical activity which are
prone to recall and response biases and may attenuate ‘true’
associations with disease risk7. More objective methods to mea-
sure physical activity, such as accelerometry, have seldom been
used in large-scale epidemiological studies, with the UK Biobank
being a recent exception in which ~100,000 participants wore a
wrist accelerometer for 7-days to measure total activity levels8.
Epidemiological analyses of these data will provide important
new evidence on the link between physical activity and cancer,
but these analyses remain vulnerable to other biases of observa-
tional epidemiology such as residual confounding (e.g. low phy-
sical activity levels may be correlated with other unfavourable
health behaviours) and reverse causality (e.g. preclinical cancer
symptoms may have resulted in low physical activity levels).

Mendelian randomisation (MR) is an increasingly used tool
that uses germline genetic variants as proxies (or instrumental
variables) for exposures of interest to enable causal inferences to
be made between a potentially modifiable exposure and an out-
come9. Unlike traditional observational epidemiology, MR ana-
lyses should be largely free of conventional confounding owing to
the random independent assignment of alleles during meiosis10.
In addition, there should be no reverse causation, as germline
genetic variants are fixed at conception and are consequently
unaffected by the disease process10.

We used a two-sample MR framework to examine potential
causal associations between objective accelerometer-measured
physical activity and risks of breast and colorectal cancer using
genetic variants associated with accelerometer-measured physical
activity identified from two recent genome-wide association stu-
dies (GWAS)11,12. We examined the associations of these genetic
variants with risks of breast cancer13 and colorectal cancer14.

Results
MR estimates for breast cancer. We estimated that a 1 standard
deviation (SD) (8.14 milligravities) increment in the genetically
predicted levels of accelerometer-measured physical activity was
associated with a 49% lower risk of breast cancer for the instru-
ment using the 5 genome-wide-significant SNP instrument (odds
ratio [OR]: 0.51, 95% confidence interval [CI]: 0.27 to 0.98,
P-value= 0.04, Q-value= 0.062) (Table 1), and a 41% lower risk
for the extended 10 SNP instrument (OR: 0.59, 95% CI: 0.42 to
0.84, P-value= 0.003, Q-value= 0.012). An inverse association
was only found for estrogen receptor positive breast cancer
(ER+ve) (5 SNP instrument, OR: 0.45, 95% CI: 0.20 to 1.01,
P-value= 0.054, Q-value= 0.077; extended 10 SNP instru-
ment, OR: 0.53, 95% CI: 0.35 to 0.82, P-value= 0.004, Q-value=
0.004), and not estrogen receptor negative (ER-ve) breast cancer
(Table 1); although this heterogeneity by subtype was not statis-
tically different (I2= 16%; P-heterogeneity by subtype= 0.27).
There was some evidence of heterogeneity based on Cochran’s Q

(P-value < 0.05) for the breast cancer analyses; consequently, for
these models random effects MR estimates were used (Table 1).
MR estimates for each of the SNPs associated with accelerometer-
measured physical activity in relation to breast cancer risk are
presented in Fig. 1 and Supplementary Fig. 1. Scatter plots (with
coloured lines representing the slopes of the different regression
analyses) and funnel plots of the accelerometer-measured physical
activity and breast cancer risk association for the extended 10 SNP
instrument are presented in Supplementary Figs. 2 and 3.

Mendelian randomisation estimates for colorectal cancer. For
colorectal cancer, a 1 SD increment in accelerometer-measured
physical activity level was associated with a 34% lower risk (OR:
0.66, 95% CI: 0.48 to 0.90, P-value= 0.01, Q-value= 0.022) for
the 5 SNP instrument, and a 40% lower risk for the extended
10 SNP instrument (OR: 0.60, 95% CI: 0.47 to 0.76, P-value=
2.4 × 10−5, Q-value= 0.0002) (Table 1). The inverse effect
estimate was stronger for women (OR: 0.57, 95% CI: 0.36 to
0.90, P-value= 0.02, Q-value= 0.036), while there was weak
evidence for an inverse association for men (OR: 0.79, 95%
CI: 0.50 to 1.23, P-value= 0.29, Q-value= 0.31); this hetero-
geneity did not meet the threshold of significance (I2= 0%;
P-heterogeneity by sex= 0.34). For colorectal subsite analyses,
accelerometer-measured physical activity levels were inversely
associated with risks of colon cancer (OR per 1 SD increment
OR: 0.64, 95% CI: 0.44 to 0.94, P-value= 0.02, Q-value=
0.036); while there was weak evidence for an inverse association
between accelerometer-measured physical activity levels and
rectal cancer (OR: 0.70, 95% CI: 0.43 to 1.14, P-value= 0.15, Q-
value= 0.18). Similar results by sex and subsite for colorectal
cancer were found for the extended 10 SNP instrument
(Table 1). MR estimates for each individual SNP associated
with accelerometer-measured physical activity in relation to
colorectal cancer risk are presented in Fig. 2 and Supplementary
Figs. 4–6. Scatter plots (with coloured lines representing the
slopes of the different regression analyses) and funnel plots of
the accelerometer-measured physical activity and colorectal
cancer risk association for the extended 10 SNP instrument are
presented in Supplementary Figs. 7 and 8.

Evaluation of assumptions and sensitivity analyses. The
strength of the genetic instruments denoted by the F-statistic was
≥10 for all the accelerometer-measured physical activity variants
and ranged between 27 and 56 (Table 2). Little evidence of
directional pleiotropy was found for all models that used the
extended 10 SNP instrument (MR-Egger intercept P-values >
0.06) (Table 1). The estimates from the weighted-median
approach for the extended 10 SNP instrument were consistent
with those of inverse-variance weighted (IVW) models (Table 1).
The MR pleiotropy residual sum and outlier test (MR-PRESSO)
method identified the SNPs rs11012732 and rs55657917 con-
tained within the extended 10 SNP instrument as pleiotropic for
breast cancer, but similar magnitude associations were observed
when these variants were excluded from the analyses (Supple-
mentary Table 10). After examining Phenoscanner and GWAS
catalogue, we found that several of the accelerometer-measured
physical activity genetic variants were also associated with
adiposity-related phenotypes (Supplementary Tables 11, 12).
However, the results from the leave-one-SNP out analysis did not
reveal any influential SNPs driving the associations (Supple-
mentary Tables 13–18). Additionally, similar results were found
when the 5 adiposity-related SNPs were excluded from the
extended 10 SNP genetic instrument (Supplementary Table 19).
Further, the results from the multivariable MR analyses adjusting
for BMI using the extended 10 SNP instrument were largely
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unchanged from the main IVW results (Supplementary Table 20).
Finally, a similar pattern of results was found when GWAS effect
estimates adjusted for BMI were used for 5 SNP genetic instru-
ment11 (Supplementary Table 21).

Discussion
In this MR analysis, higher levels of genetically predicted
accelerometer-measured physical activity were associated with
lower risks of breast cancer and colorectal cancer, with similar
magnitude inverse associations found for ER+ve and for colon
cancer. These findings indicate that population-level increases in
physical activity may lower the incidence of these two commonly
diagnosed cancers, and support the promotion of physical activity
for cancer prevention.

A large body of observational studies has investigated how
physical activity relates to risk of breast and colorectal cancer15,16.

In a participant-level pooled analysis of 12 prospective studies,
when the 90th and 10th percentile of leisure-time physical activity
were compared, lower risks of breast cancer (hazard ratio [HR]:
0.90, 95% CI: 0.87 to 0.93), colon cancer (HR: 0.84, 95% CI: 0.77
to 0.91), and rectal cancer (HR: 0.87, 95% CI: 0.80 to 0.95) were
found3. Similarly, inverse associations between total physical
activity and risks of postmenopausal breast and colorectal cancer
were recently reported in meta-analyses of all published pro-
spective cohort data by the WCRF/AICR Continuous Update
Project15,16.

These observational studies relied on self-report physical
activity assessment methods that are prone to measurement error,
which may attenuate associations towards the null. In addition,
causality cannot be ascertained from such observational analyses
as they are vulnerable to residual confounding and reverse
causality. Further, logistical and financial challenges prohibit

Table 1 Mendelian Randomisation estimates between accelerometer-measured physical activity and cancer risk.

Methods Genome-wide significant SNPs (n= 5) from the
GWAS by Doherty et al.11

Extended number of SNPs (n= 10) from the
GWAS by Klimentidis et al.12

No. Cases Estimates
(OR)a

95% CI P-value Q-value P-value for
pleiotropyb or
heterogeneityc

Estimates
(OR)a

95% CI P-value Q-value P-value for
pleiotropyb or
heterogeneityc

Breast cancer
Inverse-variance
weightedd

122,977 0.51 0.27, 0.98 0.04 0.062 4.4 × 10−8 0.59 0.42, 0.84 0.003 0.012 6.8 × 10−7

MR-Egger 0.01 0.00, 2.01 0.09 0.16 0.55 0.09, 3.20 0.5 0.9
Weighted median 0.61 0.42, 0.87 0.006 0.76 0.59, 0.98 0.03
ER+ve subset
Inverse-variance
weightedd

69,501 0.45 0.20, 1.01 0.054 0.077 8.5 × 10−9 0.53 0.35, 0.82 0.004 0.004 3.1 × 10−7

MR-Egger 0.03 0.00, 40 0.34 0.46 0.61 0.07, 5.26 0.65 0.9
Weighted median 0.55 0.35, 0.85 0.008 0.66 0.48, 0.90 0.008
ER-ve subset
Inverse-variance
weightedd

21,468 0.95 0.44, 2.04 0.89 0.89 0.002 0.78 0.51, 1.22 0.27 0.3 0.01

MR-Egger 0.01 0.00, 4.48 0.15 0.15 0.24 0.03, 1.81 0.17 0.24
Weighted median 0.84 0.47, 1.47 0.53 0.7 0.47, 1.04 0.08
Colorectal cancer
Inverse-variance
weighted

52,775 0.66 0.48, 0.90 0.01 0.022 0.39 0.6 0.47, 0.76 2.4 × 10−5 0.0002 0.5

MR-Egger 0.32 0.01, 6.69 0.46 0.64 0.24 0.08, 0.72 0.011 0.1
Weighted median 0.6 0.39, 0.92 0.02 0.61 0.44, 0.85 0.003
Colorectal cancer in men
Inverse-variance
weighted

28,207 0.79 0.50, 1.23 0.29 0.31 0.22 0.76 0.55, 1.07 0.11 0.14 0.62

MR-Egger 16.4 0.32, 812 0.16 0.13 0.59 0.12, 2.81 0.51 0.74
Weighted median 0.64 0.34, 1.19 0.16 0.8 0.51, 1.27 0.34
Colorectal cancer in women
Inverse-variance
weighted

24,568 0.57 0.36, 0.90 0.02 0.036 0.08 0.49 0.35, 0.68 3.0 × 10−5 0.0002 0.19

MR-Egger 0.01 0.00, 0.54 0.02 0.045 0.11 0.02, 0.55 0.007 0.06
Weighted median 0.61 0.32, 1.16 0.13 0.47 0.29, 0.75 0.002
Colon cancer
Inverse-variance
weighted

27,817 0.64 0.44, 0.94 0.02 0.036 0.17 0.56 0.42, 0.73 4.4 × 10−5 0.0002 0.57

MR-Egger 0.42 0.00, 40.5 0.71 0.86 0.35 0.09, 1.29 0.11 0.47
Weighted median 0.62 0.36, 1.06 0.08 0.49 0.34, 0.72 3.0 × 10−4

Proximal colon cancer
Inverse-variance
weighted

12,360 0.66 0.41, 1.06 0.09 0.12 0.72 0.6 0.42, 0.86 0.005 0.014 0.9

MR-Egger 0.62 0.01, 33.12 0.82 0.98 0.33 0.06, 1.71 0.18 0.46
Weighted median 0.67 0.36, 1.22 0.19 0.56 0.35, 0.89 0.01
Distal colon cancer
Inverse-variance
weighted

14,016 0.51 0.31, 0.83 0.007 0.018 0.74 0.45 0.31, 0.64 1.7 × 10−5 0.0002 0.72

MR-Egger 0.32 0.00, 121 0.71 0.88 0.34 0.06, 1.89 0.22 0.75
Weighted median 0.5 0.25, 1.00 0.051 0.45 0.28, 0.75 0.002
Rectal cancer
Inverse-variance
weighted

13,713 0.7 0.43, 1.14 0.15 0.18 0.13 0.68 0.47, 0.98 0.04 0.062 0.24

MR-Egger 3.49 0.01, 1635 0.69 0.6 0.43 0.06, 3.26 0.41 0.65
Weighted median 0.94 0.49, 1.79 0.85 0.76 0.47, 1.27 0.3

CI confidence intervals, MR Mendelian randomisation, OR odds ratio, SNPs Single nucleotide polymorphisms
aThe estimates correspond to a standard deviation increase in physical activity
Q-value: False discovery rate (FDR) correction performed using the Benjamini–Hochberg method
bP-value or pleiotropy based on MR-Egger intercept
cP-value for heterogeneity based on Q statistic
dThe estimates were derived from a random effects model due to the presence of heterogeneity based on Cochran’s Q statistic
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randomised controlled trials of physical activity and cancer
development. For example, it has been estimated that in order to
detect a 20% breast cancer risk reduction, between 26,000 to
36,000 healthy middle-aged women would need to be randomised
to a 5 year exercise intervention17. Several trials on cancer sur-
vivors are registered and underway, and these may provide evi-
dence of potential causal associations between physical activity
and disease free survival and cancer recurrence;18 however, these
interventions will not inform causal inference of the relationship
between physical activity and cancer development. We therefore
conducted MR analyses to allow causal inference between
accelerometer-measured physical activity and risks of developing
breast and colorectal cancer. The inverse associations we found
were stronger for ER+ve breast cancer and colon cancer, and are
highly concordant with prior observational epidemiological
evidence.

There is currently no standard method in translating accel-
erometer data into energy expenditure values, such as metabolic
equivalent of tasks (METs). However, using an accepted thresh-
old for moderate activity (e.g. fast walking) of 100 milli-
gravity19,20, 1-SD higher mean acceleration (~8 milli-gravity)
equates to approximately 50 min extra moderate activity per
week. Similarly, using an accepted threshold of 425 milli-gravity
for vigorous activity (e.g. running)19,20, a 1-SD higher mean
acceleration equates to approximately 8 min of extra vigorous
activity per week. In our study, we found that such an increase in

weekly activity translates to a 49 and 34% lower risks of devel-
oping breast and colorectal cancer, respectively.

Being physically active is associated with less weight gain and
body fatness, and lower adiposity is associated with lower risks of
breast and colorectal cancer15,16. Since body size/adiposity is
likely on the causal pathway linking physical activity and breast
and colorectal cancer, it is challenging to disentangle independent
effects of physical activity on cancer development. The close
inter-relation between adiposity and physical activity is evident
from 5 of the 10 SNPs in the extended genetic instrument for
accelerometer-measured physical activity being previously asso-
ciated with adiposity/body size traits. However, it is noteworthy
that our results were unchanged when we excluded adiposity-
related SNPs from this genetic instrument, and when we con-
ducted multivariable MR analyses adjusting for body mass index
(BMI). These results would therefore suggest that physical activity
is also associated with breast and colorectal cancer independently
of adiposity.

Multiple biological mechanisms are hypothesised to mediate
the potential beneficial role of physical activity on cancer devel-
opment21,22. Greater physical activity has been associated with
lower circulating levels of insulin and insulin-like growth factors,
which promote cellular proliferation in breast and colorectal
tissue and have also been linked to development of cancers at
these sites21,23–27. Higher levels of physical activity have also been
associated with lower circulating concentrations of estradiol,
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Fig. 1 Mendelian randomisation analysis for individual SNPs associated with accelerometer-measured physical activity in relation to breast cancer risk
using the genetic instrument from the GWAS by Doherty et al.11. The x axis corresponds to a log OR per one unit increase in the physical activity based
on the average acceleration (milligravities). The Mendelian randomisation (MR) result corresponds to a random effects model due to heterogeneity across
the genetic instruments. logOR= log odds ratio (black filled circle). 95% CI= 95% confidence interval (black line). SNP single nucleotide polymorphism.
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estrone, and higher levels of sex hormone binding globulin28–30

which are themselves risk factors for breast cancer develop-
ment31,32. Physical activity has also been associated with
improvements in the immune response with increased surveil-
lance and elimination of cancerous cells33,34. Higher levels of
physical activity may also reduce systemic inflammation by
lowering the levels of pro-inflammatory factors, such as C-
reactive protein (CRP), interleukin-6 (IL-6) and tumour necrosis
factor-alpha (TNF-a)33,35,36. Finally, emerging evidence suggests
that the gut microbiome may play an important role in the
physical activity and cancer relationship. Dysbiosis of the gut
microbiome has been associated with increased risks of several
malignancies, including breast and colorectal cancer37. Changes
in gut microbiome composition and derived metabolic products
have been found following endurance exercise training with
short-chain fatty acid concentrations increased in lean, but not
obese, subjects38,39.

A fundamental assumption of MR is that the genetic variants
do not influence the outcome via a different biological pathway
from the exposure of interest (horizontal pleiotropy). We con-
ducted multiple sensitivity analyses using an extended 10 SNP
genetic instrument for accelerometer-measured physical activity
to test for the influence of pleiotropy on our causal estimates, and
our results were robust according to these various tests. A
potential limitation of our analysis is that the genetic variants
explained a small fraction of the variability of accelerometer-

measured physical activity, which may have resulted in some of
the breast cancer subtype and colorectal subsite analyses being
underpowered. In addition, our use of summary-level data pre-
cluded subgroup analyses by other cancer risk factors (e.g. BMI,
exogenous hormone use). We were also unable to stratify breast
cancer analyses by menopausal status; however, the majority of
women in the source GWAS had postmenopausal breast can-
cer13. Finally, 7-day accelerometer-measured physical activity
levels of UK Biobank participants may not have been repre-
sentative of usual behavioural patterns.

In conclusion, we found that genetically elevated levels of
accelerometer-measured physical activity were associated with
lower risks of breast and colorectal cancer. These findings
strongly support the promotion of physical activity as an effective
strategy in the primary prevention of these commonly diagnosed
cancers.

Methods
Data on physical activity. Summary-level data were obtained from two recently
published GWAS on accelerometer-measured physical activity conducted in
~91,000 participants from the UK Biobank11,12. In the GWAS by Doherty et al.11,
BOLT-LMM was used to perform linear mixed models analyses that were adjusted
for assessment centre, genotyping array, age, age2, and season. This GWAS iden-
tified 5 genome-wide-significant SNPs (P-value < 5 × 10−8) associated with
accelerometer-measured physical activity. The estimated SNP-based heritability for
accelerometer-measured physical activity in the UK Biobank is 14%12, suggesting
that additional SNPs contributed to its variation. Consequently, we also used
an accelerometer-measured physical activity instrument with an expanded number
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Fig. 2 Mendelian randomisation analysis for individual SNPs associated with accelerometer-measured physical activity in relation to colorectal cancer
risk (overall, colon, rectal) using the genetic instrument from the GWAS by Doherty et al.11. The x axis corresponds to a log OR per one unit increase in
the physical activity based on the average acceleration (milli-gravities). The Mendelian randomisation (MR) result corresponds to a random effects model
due to heterogeneity across the genetic instruments. logOR= log odds ratio (black filled circle). 95% CI= 95% confidence interval (black line). SNP single
nucleotide polymorphism.
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of SNPs (n= 10; associated with accelerometer-measured physical activity at
P-value < 1 × 10−7) identified by another UK Biobank GWAS by Klimentidis
et al.12. The extended number of SNPs in the accelerometer-measured physical
activity instrument allowed us to conduct more robust sensitivity analyses to check
for the influence of horizontal pleiotropy on the results. Data for the associations
between the 10 SNPs and physical activity were obtained from a recent MR study
on physical activity and depression that used the data from the same UK Biobank
GWAS40. Detailed information on the genetic variants used in the 5 genome-wide
significant SNP instrument and the extended 10 SNP instrument is provided in
Table 2.

Data on breast cancer and colorectal cancer. Summary data for the associations
of the accelerometer-measured genetic variants with breast cancer (overall and by
estrogen receptor status: ER positive [ER+ve] and ER negative [ER-ve]) were
obtained from a GWAS of 228,951 women (122,977 breast cancer [69,501 ER
positive, 21,468 ER negative] cases and 105,974 controls) of European ancestry
from the Breast Cancer Association Consortium (BCAC)13. Genotyping data were
imputed using the program IMPUTE214 with the 1000 Genomes Project Phase III
integrated variant set as the reference panel. Single nucleotide polymorphisms
(SNPs) with low imputation quality (imputation r2 < 0.5) were excluded. Top
principal components (PCs) were included as covariates in regression analysis to
address potential population substructure (iCOGS: top eight PCs; OncoArray: top
15 PCs) (Supplementary Tables 1, 2)13,41. For colorectal cancer, summary data
from 98,715 participants (52,775 colorectal cancer cases and 45,940 controls) were
drawn from a meta-analysis within the ColoRectal Transdisciplinary Study
(CORECT), the Colon Cancer Family Registry (CCFR), and the Genetics and
Epidemiology of Colorectal Cancer (GECCO) consortia14. Imputation was per-
formed using the Haplotype Reference Consortium (HRC) r1.0 reference panel and
the regression models were further adjusted for age, sex, genotyping platform
(whenever appropriate), and genomic PCs (from 3 to 13, whenever appropriate)
(Supplementary Tables 3–6).

Statistical power. The a priori statistical power was calculated using an online tool
at http://cnsgenomics.com/shiny/mRnd/42. The 5 and 10 SNP accelerometer-
measured physical activity instruments explained an estimated 0.2% and 0.4% of
phenotypic variability, respectively. Given a type 1 error of 5%, for the 5 SNP
instrument identified from the GWAS by Doherty et al.11 we had sufficient power
(> 80%) when the expected OR per 1 SD was ≤ 0.77 and ≤ 0.67 for overall breast
cancer (122,977 cases and 105,974 controls) and colorectal cancer (52,775 color-
ectal cancer cases and 45,940 controls), respectively. Power estimates for the 5
genome-wide significant SNP and the extended 10 SNP instruments by subtypes of
breast cancer and subsites of colorectal cancer are presented in Supplementary
Tables 7 and 8.

Statistical analysis. A two-sample MR approach using summary data and the
fixed-effect IVW method was implemented. All accelerometer-measured physical
activity and cancer results correspond to an OR per 1 SD increment (8.14 milli-
gravities) in the genetically predicted overall average acceleration. The

heterogeneity of causal effects by cancer subtype and sex was investigated by
estimating the I2 statistic assuming a fixed-effects model43.

For causal estimates from MR studies to be valid, three main assumptions must be
met: 1) the genetic instrument is strongly associated with the level of accelerometer-
measured physical activity; 2) the genetic instrument is not associated with any
potential confounder of the physical activity—cancer association; and 3) the genetic
instrument does not affect cancer independently of physical activity (i.e. horizontal
pleiotropy should not be present)44. The strength of each instrument was measured
by calculating the F-statistic using the following formula: F ¼ R2 N � 2ð Þ= 1� R2ð Þ,
where R2 is the proportion of the variability of the physical activity explained by
each instrument and N the sample size of the GWAS for the SNP-physical activity
association45. To calculate R2 for the 5 genome-wide significant SNP instrument we
used the following formula:2´ EAF´ 1� EAFð Þ ´ beta2; whereas for the extended
10 SNP instrument we used: 2 ´ EAF´ 1� EAFð Þ´ beta2� �

= 2 ´ EAF´ 1� EAFð Þ ´ð½
beta2Þ þ ð2 ´ EAF´ 1� EAFð Þ´N ´ SEðbetaÞ2Þ�, where EAF is the effect allele
frequency, beta is the estimated genetic effect on physical activity, Ν is the sample size
of the GWAS for the SNP-physical activity association and SE (beta) is the standard
error of the genetic effect46. FDR correction (Q-value) was performed using the
Benjamini–Hochberg method47.

Sensitivity analyses. Several sensitivity analyses were used to check and correct
for the presence of pleiotropy in the causal estimates. Cochran’s Q was computed
to quantify heterogeneity across the individual causal effects, with a P-value ≤ 0.05
indicating the presence of pleiotropy, and that consequently, a random effects IVW
MR analysis should be used43,48. We also assessed the potential presence of hor-
izontal pleiotropy using MR-Egger regression based on its intercept term, where
deviation from zero denotes the presence of directional pleiotropy. Additionally,
the slope of the MR-Egger regression provides valid MR estimates in the presence
of horizontal pleiotropy when the pleiotropic effects of the genetic variants are
independent from the genetic associations with the exposure49,50. We also com-
puted OR estimates using the complementary weighted-median method that can
give valid MR estimates under the presence of horizontal pleiotropy when up to
50% of the included instruments are invalid44. The presence of pleiotropy was also
assessed using the MR-PRESSO. In this, outlying SNPs are excluded from the
accelerometer-measured physical activity instrument and the effect estimates are
reassessed51. For all of the aforementioned sensitivity analyses to identify possible
pleiotropy, we considered the estimates from the extended 10 SNP instrument as
the primary results due to unstable estimates from the 5 SNP instrument. A leave-
one-SNP out analysis was also conducted to assess the influence of individual
variants on the observed associations. We also examined the selected genetic
instruments and their proxies (r2 > 0.8) and their associations with secondary
phenotypes (P-value < 5 × 10−8) in Phenoscanner (http://www.phenoscanner.
medschl.cam.ac.uk/) and GWAS catalog (date checked April 2019).

For the extended 10 SNP instrument, we also conducted multivariable MR
analyses to adjust for potential pleiotropy due to BMI because the initial GWAS on
physical activity reported several strong associations (P-value < 10−5) between the
identified SNPs and BMI52. The new estimates correspond to the direct causal
effect of physical activity with the BMI being fixed. The genetic data on BMI were

Table 2 Summary information on accelerometer-measured physical activity SNPs used as genetic instruments used for the
Mendelian randomisation analyses.

SNP Effect allele Baseline allele Chr Positiona Gene EAF beta PAb se PA Nc R2 F-statistic

5 SNPs from GWAS by Doherty et al. 201811

rs6775319 A T 3 18717009 SATB1-AS1 0.27 0.03 0.005 91,105 0.0003 27
rs6895232 T A 5 152659861 LINC01470 0.66 0.03 0.005 91,105 0.0003 30
rs564819152 A G 10 21531721 SKIDA1 0.68 0.03 0.005 91,105 0.0003 31
rs2696625 G A 17 46249498 KANSL1-AS1 0.23 0.04 0.005 91,105 0.0005 44
rs59499656 T A 18 43188344 RIT2/SYT4 0.35 0.03 0.005 91,105 0.0004 32
10 SNPs from GWAS by Klimentidis et al. 201812

rs12045968 G T 1 33225097 ZNF362 0.22 0.24 0.044 91,084 0.0003 30
rs34517439 C A 1 77984833 DNAJB4 0.91 0.31 0.056 91,084 0.0003 30
rs6775319 A T 3 18717009 LOC105376976 0.3 0.23 0.041 91,084 0.0003 30
rs12522261 G A 5 152675265 LINC01470 0.67 0.21 0.038 91,084 0.0003 31
rs9293503 T C 5 88653144 LINC00461 0.88 0.33 0.059 91,084 0.0003 31
rs11012732 A G 10 21541175 MLLT10 0.65 0.23 0.039 91,084 0.0004 33
rs148193266 C A 11 104657953 RP11-681H10.1 0.02 0.51 0.092 91,084 0.0003 31
rs1550435 T C 15 74039044 PML 0.53 0.2 0.037 91,084 0.0003 29
rs55657917 G T 17 45767194 CRHR1 0.22 0.3 0.04 91,084 0.0006 56
rs59499656 T A 18 43188344 RIT2/SYT4 0.34 0.23 0.038 91,084 0.0004 36

BMI body mass index, Chr chromosome, EAF effect allele frequency, NA not available, PA physical activity, se standard error, SNP single nucleotide polymorphism
aPosition based on GRCh38.p12
bThe beta coefficients are expressed in milligravities
cN refers to the sample size of the initial GWAS from which the genetic variants were selected
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obtained from a GWAS study published by The Genetic Investigation of
ANthropometric Traits (GIANT) consortium53 (Supplementary Table 9).
Additionally, for the extended 10 SNP instrument, we also conducted analyses with
adiposity-related SNPs (i.e. those previously associated with BMI, waist
circumference, weight, or body/trunk fat percentage in GWAS studies at P-value <
10−8) excluded (n= 5; rs34517439, rs6775319, rs11012732, rs1550435,
rs59499656). Finally, we conducted two-sample MR analyses using BMI adjusted
GWAS estimates for the 5 SNP accelerometer-measured physical activity
instrument11. However, the MR results using the BMI adjusted GWAS estimates
should be interpreted cautiously due to the potential for collider bias11.

All the analyses were conducted using the MendelianRandomisation54 and
TwoSampleMR55 packages, and the R programming language.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available within the paper and its
supplementary information files.

Received: 23 August 2019; Accepted: 28 December 2019;
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