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Predicting breast cancer metastasis 
from whole-blood transcriptomic 
measurements
Einar Holsbø1* , Vittorio Perduca2, Lars Ailo Bongo1, Eiliv Lund3,4 and Etienne Birmelé2

Abstract 

Objective: In this exploratory work we investigate whether blood gene expression measurements predict breast 
cancer metastasis. Early detection of increased metastatic risk could potentially be life-saving. Our data comes from 
the Norwegian Women and Cancer epidemiological cohort study. The women who contributed to these data 
provided a blood sample up to a year before receiving a breast cancer diagnosis. We estimate a penalized maximum 
likelihood logistic regression. We evaluate this in terms of calibration, concordance probability, and stability, all of 
which we estimate by the bootstrap.

Results: We identify a set of 108 candidate predictor genes that exhibit a fold change in average metastasized obser-
vation where there is none for the average non-metastasized observation.
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Introduction
About one in ten women will at some point develop 
breast cancer (BC). About 25% have an aggressive can-
cer at the time of diagnosis, with metastatic spread. The 
absence or presence of metastatic spread largely deter-
mines the patient’s survival. Early detection is hence very 
important in terms of reducing cancer mortality. A blood 
sample is cheaper and less invasive than the usual node 
biopsy. Were we able to detect signs of metastasis or met-
astatic potential by a blood sample, we could conceivably 
start treatment earlier.

Several recent articles develop this idea of liquid biop-
sies [1]. A review in Cancer and Metastasis Reviews [2] 
lists liquid biopsies and large data analysis tools as impor-
tant challenges in metastatic breast cancer research.

The Norwegian Women and Cancer (NOWAC) post-
genome cohort [3] is a prospective population-based 

cohort that contains blood samples from 50,000 women 
born between 1943 and 1957. Out of these in total about 
1600 BC case–control pairs (3200 blood samples) have at 
various times been processed to provide transcriptomic 
measurements in the form of mRNA abundance. These 
measurements combine with questionnaires, disease 
status from the Norwegian Cancer Registry, and death 
status from the Cause of Death Registry from Statistics 
Norway to provide a high-quality dataset. These data are 
used for exploration and hypothesis generation.

We examine 88 breast cancer cases from the NOWAC 
study. The blood samples were provided 6–358 days 
before BC diagnosis. We fit a penalized likelihood logis-
tic regression with the ElasticNet-type penalty [4]. This 
approach provides built-in variable selection in the esti-
mation procedure. Our model suggests 108 predictor 
genes that form a potential direction for further research.
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Main text
Material and methods
Data
We analyze 88 cases with breast cancer diagnoses from 
the NOWAC Post-genome cohort [5]. For each case, we 
have an age-matched control that we use to normalize 
the gene expression levels. For our analysis this is mainly 
done to mitigate batch effects from the lab processing of 
the blood samples, cases and controls being kept together 
for the whole pipeline. Only women who received a 
breast cancer diagnosis at most one year after providing 
a blood sample were considered as cases. This limits our 
sample size but it is more biologically plausible to see a 
signal in more recent blood samples.

Out of the 88 breast cancers, 25% have metastases. The 
metastic- and non-metastic cancers are fairly similar in 
terms of usual covariates. Respectively the proportion of 
smokers is 13% against 25%. The proportion of hormone 
treatment is 25% against 31%. The median age (with .05 
and .95 quantiles) is 56 (51, 61) against 56 (51, 62). The 
median BMI is 24.5 (19.4, 35.9) against 25.5 (21.1, 32.4). 
The median parity is 2 (1, 3) against 2 (0, 3).

The data were processed according to [6] and [7]. The 
pre-processed data is a 88× 12404 fold change matrix, 
X, on the log2 scale. For each gene, g, and each observa-
tion, i, we have the measurement log2 xig − log2 x

′
ig . Here 

xig is the g expression level for the ith case, and x′ig is the 
corresponding control. The response variable, metastasis, 
indicates the presence of metastatic spread.

Predictive model
We model the probability of metastasis, p(m), given gene 
expression across all genes, x, by a penalized likelihood 
logistic regression with an ElasticNet-type penalty [4]. 
The likelihood of the logistic model

is maximized under the constraint that 
(1− α)

∑

∣

∣βj
∣

∣+ α
∑

β2
j ≤ t for some user-specified 

penalty size t and mixing parameter α.
We choose α = 0.5 a priori and find a penalty size t in 

a data-driven way by optimizing for the modified version 
of Akaike’s Information Criterion [8, 9],

where LRχ2 is the likelihood ratio χ2 for the model and k 
is the number of non-zero coefficients. We use this crite-
rion on the recommendation of Harrell [10], who states 
that maximizing this criterion in terms of penalty often 
leads to a reasonable choice. We prefer this to tuning by 

log
p(m)

1− p(m)
= β0 + β1x1 + · · · + xp

AIC ′ = LRχ2 − 2k ,

cross-validation since it does not require data splitting. 
Data splitting procedures tend to induce more variance, 
which is undesirable with as few observations as we have. 
A more detailed discussion of these choices can be found 
in [11].

Metrics
We evaluate models by several criteria. Brier score [12] is 
the mean squared error,

between the probability that was predicted by the model, 
ŷ , and the known outcomes, y. It is a one-number sum-
mary of the calibration of predicted probabilities.

We also assess calibration by means of a calibration 
curve. This is an estimate of proportion of true successes 
as a function of predicted probability, which we calculate 
by smoothing the true zero/one outcome as a function 
of predicted probability (LOWESS with a span of 23 ). If n 
observations receive a prediction of p̂ , np̂ of them should 
have the predicted condition for a well-calibrated model.

Concordance probability is the probability of rank-
ing (in terms of predicted p̂ ) a randomly chosen posi-
tive higher than a randomly chosen negative. This is 
equivalent to the area under the receiver operating char-
acteristic curve (AUC), and is proportional to the Mann-
Whitney-Wilcoxon U statistic [13].

Stability is the proportion of overlap between predictor 
genes chosen during different realizations of the mode-
ling procedure. We follow [14] and measure this by the 
Jaccard index, |S1∩S2||S1∪S2| , where S1 and S2 are two sets of pre-
dictor genes.

Brier score and concordance probability are esti-
mated using the optimism-corrected bootstrap approach 
described in [15], which has the advantage of using all of 
the data in estimating model performance opposed to 
data splitting procedures. Stability is estimated from reg-
ular bootstrap resampling.

Results
Evaluation metrics
Figure  1 shows the bootstrap distributions for our esti-
mates of Brier score, concordance probability, and stabil-
ity. The solid lines show point estimates and the dotted 
lines indicate the middle .8 of each distribution. The Brier 
score for our model is roughly .1, while that of an inter-
cept-only null model is roughly .18. Since Brier score is 
the mean square error of predicted probabilities we can 
take its root to get an average error on the probability 
scale; 

√
.1 ≈ .32 , which suggests that the predicted prob-

abilities are not very accurate on average. Figure  2 cor-
roborates this. The figure shows the pointwise calibration 

B̄ = n−1
∑

(ŷi − yi)
2,
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of predicted probabilities, ie., for a given predicted 
metastasis probability, how great a proportion obser-
vations turned out to have metastases. For a predicted 
metastasis probability < .4 the true proportion is ≈ .1 , 
while for a predicted metastasis probability > .8 the true 
proportion is ≈ .7 . In other words we overestimate low 
probabilities and underestimate high ones.

Returning to Fig.  1, the concordance probability (or 
AUC) is quite high at roughly .88, with a lower bound for 
the middle .8 of the distribution at .81. Contrast this with 
random guess at .5. This suggests that the model consist-
ently selects gene sets that separate metastases from non-
metastases in their expression levels in spite of the fact 
that the predicted probabilities are poorly calibrated. The 
stability of these chosen gene sets is around .16, which 
suggests the likely scenario that there are many corre-
lated genes to choose from. With a stability of .16 for 108 
genes you might expect a 17-gene overlap when fitting a 
similar model to similar data.

Selected genes
We list the 108 genes selected by penalized likelihood 
and describe them in general quantitative terms. We 

keep track of the selected gene sets under resampling and 
can hence calculate statistics for how often a given gene 
is selected and for how often a given gene is co-selected 
with any other gene. Table 1 shows the 108 selected genes 
ordered by their individual selection probabilities. Apart 
from the first few genes, the selection probabilities are 
not very high. It is quite likely that (i) a larger set of genes 
correlate with the ones we select and get selected in their 
place some of the time, and (ii) our selected genes corre-
late with one another and the selection of one some times 
makes the selection of another less likely. This is a natu-
ral consequence of doing variable selection: “redundant” 
information may shrink out of the model.

The selected genes show a clear difference in fold 
change between metastasized- and non-metastasized BC 
cases; we refer interested readers to Additional file 1. Fur-
ther figures and discussion about, as well as pairwise co-
selection can be found in [11].

Limitations
The prospective design of NOWAC yields data prior to 
the cancer diagnosis, thus allowing to test prediction 
models on original data corresponding to early-stage 
cancer. However, there will perforce never be more cases 
where the blood sample was provided close to diagnosis 
in this particular study. As the data acquisition technol-
ogy has changed, there little hope to produce new com-
parable data outside of NOWAC. Since our data set is 
small (88 pairs of women for 12404 probes), we expect 
the success of both variable selection and prediction to 
be limited.

Concerning variable selection, the set of genes kept in 
the model is highly unstable under perturbation by resa-
mpling, and only a few of them are selected in a meaning-
ful fraction resamples.

Concerning prediction, the AUC is high enough that 
there is reason for suspicion. The same is the case for 
Brier score, which is suspiciously low. It is quite likely that 
the bootstrap corrections for optimism are too. Moreo-
ver the bootstrap shows high variability in high dimen-
sions. The calibration curve suggests that the predicted 
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Fig. 1 Bootstrap distribution of optimism-corrected estimates for Brier score, concordance/AUC, and stability for the Elasticnet model. The solid 
vertical lines show point estimates, and the dotted vertical lines show the middle .8 of each distribution

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Calibration curve for predictions

Predicted metastasis probability

P
ro

po
rti

on
 o

f m
et

as
ta

se
s

expected
middle 80%

Fig. 2 Expected calibration of predicted probabilities shown in solid 
black. The dotted line shows middle .8 of the bootstrap distribution. 
Ideally, .8 of the observations for which .8 metastasis probability was 
predicted should turn out to show metastasis. In other words the 
ideal calibration is a diagonal line (shown in grey). Our model tends 
to overestimate lower probabilities and underestimate higher ones
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probabilities need to be better calibrated for this model 
to be useful for prediction in a real setting.

In model selection with small data sets it is recom-
mended to use AUCc, which places a stronger penalty 
on larger numbers of parameters than the formulation 
we use [16]. At the same time we overestimate the effec-
tive number of parameters by taking k as the number of 
non-zero parameters, which does not take into account 
the shrinkage on parameter size. This places a larger pen-
alty than necessary on a given model. Since in our case all 
models lie on the regularization path decided by the pen-
alty size, a stronger/weaker parameter penalty will lead to 
similar results in terms of selected genes with some addi-
tions/omissions as the case may be.

The model we apply does not control for what is con-
sidered usual sources of confounding in breast cancer. 
This is both out of a desire to identify a pre-diagnosic 
gene signature for metastasis independent of question-
naire data, and from the realization that this would 
require the estimation of even more coefficients for 
already-inadequate data. The potential confounding 
from sources such as smoking and hormone therapy 
may not be a problem for prediction, but makes inter-
pretation challenging. On the other hand what is con-
sidered a source of confounding for breast cancer may 
or may not be one when comparing breast cancers to 
one another in terms of metastasis. The explicit way 
to deal with this would be to derive a causal model to 
argue from.

Table 1 Resampling selection probability for the 108 elasticnet-selected genes

a  Two probes map to the same gene GRK5. Combined selection probability is 1.06, implying that both get selected together at least some of the time
b  Illumina probe id 3NDg8gVCdQkNdcg.Ko, missing annotation
c  Two probes map to the same gene PDGFD. Combined selection probability is 0.766
d  Ilummina probe id Z6FIQGkeoCSiVAoKeg, missing annotation
e  Illumina probe id uX15cu4f_VUIuXoST0, missing annotation
f  Illumina probe id rh13dQX04hUS7uOpRQ, missing annotation

GRK5a 0.853 C1orf115 0.290 ANO8 0.221 FBLN5 0.157

GPATCH4 0.682 LOC654055 0.287 PTTG1IP 0.219 BLMH 0.156

GNGT2 0.474 RNF214 0.280 3NDg8gVCdb 0.218 FCRL3 0.149

PDGFDc 0.467 SULT1A1 0.278 USF1 0.216 TDRD9 0.143

FAM24B 0.457 ZNF365 0.271 BCCIP 0.210 ACY1 0.142

PTPRN2 0.442 USE1 0.267 MGC29506 0.209 ZFP57 0.142

CBLB 0.440 DNMT3A 0.267 GRK5a 0.207 SLIC1 0.138

PDCL 0.410 LOC649210 0.266 WTIP 0.205 PICK1 0.135

RASA2 0.380 CNTNAP2 0.265 BCL10 0.204 RTN4IP1 0.134

C11orf48 0.376 IL2RA 0.265 DLGAP2 0.200 CDCA7L 0.132

TCEB1 0.374 CCT5 0.264 HRAS 0.199 BEX4 0.131

CAPN3 0.354 R3HDM1 0.263 RAD1 0.189 FCAR 0.130

STK19 0.351 MRPL43 0.260 PRKCE 0.187 ANKRD35 0.111

GUCY1A3 0.348 SLC38A1 0.256 UBAP2L 0.186 USP39 0.109

ZDHHC11 0.345 GNG8 0.255 BPI 0.186 KIAA0495 0.106

SULT1A3 0.336 PLA2G4C 0.251 DTX1 0.184 BRI3BP 0.106

Z6FIQGkeod 0.335 TCF4 0.248 LASS5 0.182 TUBA4A 0.105

FAM89A 0.328 uX15cu4f_e 0.247 GSTT1 0.182 IDH1 0.102

rh13dQX04f 0.324 C20orf107 0.245 SPATA20 0.182 DDX52 0.100

LANCL2 0.323 VCL 0.242 IGLL1 0.172 ANKRD57 0.094

SERPINE2 0.318 EZH2 0.242 SPG3A 0.172 TFG 0.087

ADIPOR2 0.314 PRPSAP2 0.237 PPAP2A 0.172 LILRA6 0.080

GPR177 0.312 ISY1 0.235 NOTCH2NL 0.172 C6orf47 0.078

PDGFDc 0.299 UGDH 0.234 TAF6 0.168 WDR60 0.075

LOC647460 0.294 ABCF2 0.230 CCDC90B 0.166 AHCYL2 0.068

WEE1 0.293 C16orf5 0.229 LOC731486 0.158 HAUS4 0.068

ITM2C 0.291 VAV3 0.225 CDH2 0.157 MAD2L2 0.053
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This study is exploratory and not validated in exter-
nal data. It is important that this work be viewed as 
hypothesis generating.

Supplementary information
Supplementary information accompanies this paper at https ://doi.
org/10.1186/s1310 4-020-05088 -0.

Additional file 1. Expression levels of selected genes. This figure shows 
the expression levels of selected genes ordered by difference in medians 
between metastasized andnon-metastasized observations.
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