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Abstract. We prove that ω-languages of (non-deterministic) Petri nets
and ω-languages of (non-deterministic) Turing machines have the same
topological complexity: the Borel and Wadge hierarchies of the class
of ω-languages of (non-deterministic) Petri nets are equal to the Borel
and Wadge hierarchies of the class of ω-languages of (non-deterministic)
Turing machines. We also show that it is highly undecidable to determine
the topological complexity of a Petri net ω-language. Moreover, we infer
from the proofs of the above results that the equivalence and the inclusion
problems for ω-languages of Petri nets areΠ1

2 -complete, hence also highly
undecidable.

Keywords: Automata and formal languages · Petri nets · Infinite words
· Logic in computer science · Cantor topology · Borel hierarchy · Wadge
hierarchy · Wadge degrees · Highly undecidable properties

1 Introduction

In the sixties, Büchi was the first to study acceptance of infinite words by finite
automata with the now called Büchi acceptance condition, in order to prove
the decidability of the monadic second order theory of one successor over the
integers. Since then there has been a lot of work on regular ω-languages, accepted
by Büchi automata, or by some other variants of automata over infinite words,
like Muller or Rabin automata, see [37, 36, 27]. The acceptance of infinite words
by other finite machines, like pushdown automata, counter automata, Petri nets,
Turing machines, . . . , with various acceptance conditions, has also been studied,
see [36, 8, 3, 38, 35].

The Cantor topology is a very natural topology on the set Σω of infinite
words over a finite alphabet Σ which is induced by the prefix metric. Then a
way to study the complexity of languages of infinite words accepted by finite
machines is to study their topological complexity and firstly to locate them with
regard to the Borel and the projective hierarchies [37, 8, 24, 36].

Every ω-language accepted by a deterministic Büchi automaton is a Π0
2-set.

On the other hand, it follows from Mac Naughton’s Theorem that every regu-
lar ω-language is accepted by a deterministic Muller automaton, and thus is a
boolean combination of ω-languages accepted by deterministic Büchi automata.



Therefore every regular ω-language is a ∆0
3-set. Moreover Landweber proved

that the Borel complexity of any ω-language accepted by a Muller or Büchi
automaton can be effectively computed (see [23, 27]). In a similar way, every
ω-language accepted by a deterministic Muller Turing machine, and thus also
by any Muller deterministic finite machine is a ∆0

3-set, [8, 36].

On the other hand, the Wadge hierarchy is a great refinement of the Borel
hierarchy, firstly defined by Wadge via reductions by continuous functions [39].
The trace of the Wadge hierarchy on the ω-regular languages is called the Wagner
hierarchy. It has been completely described by Klaus Wagner in [40]. Its length is
the ordinal ωω. Wagner gave an automaton-like characterization of this hierarchy,
based on the notions of chain and superchain, together with an algorithm to
compute the Wadge (Wagner) degree of any given ω-regular language, see also
[29, 32, 31, 33].

The Wadge hierarchy of deterministic context-free ω-languages was deter-
mined by Duparc in [5, 6]. Its length is the ordinal ω(ω2). We do not know yet
whether this hierarchy is decidable or not. But the Wadge hierarchy induced by
deterministic partially blind 1-counter automata was described in an effective
way in [10], and other partial decidability results were obtained in [11]. Then,
it was proved in [13] that the Wadge hierarchy of 1-counter or context-free ω-
languages and the Wadge hierarchy of effective analytic sets (which form the
class of all the ω-languages accepted by non-deterministic Turing machines) are
equal. Moreover similar results hold about the Wadge hierarchy of infinitary
rational relations accepted by 2-tape Büchi automata, [14]. Finally, the Wadge
hierarchy of ω-languages of deterministic Turing machines was determined by
Selivanov in [30].

We consider in this paper acceptance of infinite words by Petri nets. Petri
nets are used for the description of distributed systems [9, 28, 20], and form a very
important mathematical model in Concurrency Theory that has been developed
for general concurrent computation. In the context of Automata Theory, Petri
nets may be defined as (partially) blind multicounter automata, as explained in
[38, 8, 19]. First, one can distinguish between the places of a given Petri net by
dividing them into the bounded ones (the number of tokens in such a place at
any time is uniformly bounded) and the unbounded ones. Then each unbounded
place may be seen as a partially blind counter, and the tokens in the bounded
places determine the state of the partially blind multicounter automaton that
is equivalent to the initial Petri net. The transitions of the Petri net may then
be seen as the finite control of the partially blind multicounter automaton and
the labels of these transitions are then the input symbols. The infinite behavior
of Petri nets was first studied by Valk [38] and by Carstensen in the case of
deterministic Petri nets [1].

On one side, the topological complexity of ω-languages of deterministic Petri
nets is completely determined. They are ∆0

3-sets and their Wadge hierarchy has
been determined by Duparc, Finkel and Ressayre in [7]; its length is the ordinal

ωω
2

. On the other side, Finkel and Skrzypczak proved in [18] that there exist
Σ0

3-complete, hence non ∆0
3, ω-languages accepted by non-deterministic one-



partially-blind-counter Büchi automata. The existence of a Σ1
1-complete, hence

non Borel, ω-language accepted by a Petri net was independently proved by
Finkel and Skrzypczak in [17, 34]. Moreover, Skrzypczak has proved in [34] that
one blind counter is sufficient. In this paper, we fill the gap between Σ0

3 and Σ1
1

for Petri nets ω-languages. Notice that ω-languages accepted by (non-blind) one-
counter Büchi automata have the same topological complexity as ω-languages
of Turing machines, [13], but the non-blindness of the counter, i.e. the ability to
use the zero-test of the counter, was essential in the proof of this result.

Using a simulation of a given real time 1-counter (with zero-test) Büchi au-
tomaton A accepting ω-words x over the alphabet Σ by a real time 4-blind-
counter Büchi automaton B reading some special codes h(x) of the words x,
we prove here that ω-languages of non-deterministic Petri nets and effective
analytic sets have the same topological complexity: the Borel and Wadge hi-
erarchies of the class of ω-languages of Petri nets are equal to the Borel and
Wadge hierarchies of the class of effective analytic sets. In particular, for each
non-null recursive ordinal α < ωCK

1 there exist some Σ0
α-complete and some

Π0
α-complete ω-languages of Petri nets, and the supremum of the set of Borel

ranks of ω-languages of Petri nets is the ordinal γ12 , which is strictly greater than
the first non-recursive ordinal ωCK

1 .
Notice that the topological equivalences we get in this paper are different

from the language theoretical equivalences studied by Carstensen and Valk.
We also show that it is highly undecidable to determine the topological com-

plexity of a Petri net ω-language. Moreover, we infer from the proofs of the above
results that the equivalence and the inclusion problems for ω-languages of Petri
nets are Π1

2 -complete, hence also highly undecidable.
The paper is organized as follows. In Section 2 we review the notions of

(blind) counter automata and ω-languages. In Section 3 we recall notions of
topology, and the Borel and Wadge hierarchies on a Cantor space. We prove our
main results in Section 4. We show that the topological complexity of a Petri
net of ω-language is highly undecidable in Section 5. The equivalence and the
inclusion problems for ω-languages of Petri nets are shown to be Π1

2 -complete
in Section 6. Concluding remarks are given in Section 7.

2 Counter Automata

We assume the reader to be familiar with the theory of formal (ω-)languages
[36, 27]. We recall the usual notations of formal language theory.

If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k, and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word is denoted by λ; its length is 0. Σ?

is the set of finite words (including the empty word) over Σ, and we denote
Σ+ = Σ? \ {λ}. A (finitary) language V over an alphabet Σ is a subset of Σ?.

The first infinite ordinal is ω. An ω-word over Σ is an ω-sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ = a1 . . . an . . . is an ω-word over
Σ, we write σ(n) = an, σ[n] = σ(1)σ(2) . . . σ(n) for all n ≥ 1 and σ[0] = λ.



The usual concatenation product of two finite words u and v is denoted u · v
(and sometimes just uv). This product is extended to the product of a finite
word u and an ω-word v: the infinite word u · v is then the ω-word such that:

(u · v)(k) = u(k) if k ≤ |u| , and (u · v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language

V over an alphabet Σ is a subset of Σω, and its complement (in Σω) is Σω \ V ,
denoted V −.

The prefix relation is denoted v: a finite word u is a prefix of a finite word
v (respectively, an infinite word v), denoted u v v, if and only if there exists a
finite word w (respectively, an infinite word w), such that v = u · w.

Let k be an integer ≥ 1. A k-counter machine has k counters, each of which
containing a non-negative integer. The machine can test whether the content
of a given counter is zero or not, but this is not possible if the counter is a
blind (sometimes called partially blind, as in [19]) counter. This means that if a
transition of the machine is enabled when the content of a blind counter is zero
then the same transition is also enabled when the content of the same counter
is a positive integer. And transitions depend on the letter read by the machine,
the current state of the finite control, and the tests about the values of the
counters. Notice that in the sequel we shall only consider real-time automata,
i.e. λ-transitions are not allowed (but the general results of this paper will be
easily extrended to the case of non-real-time automata).

Formally a real time k-counter machine is a 4-tupleM=(K,Σ, ∆, q0), where
K is a finite set of states, Σ is a finite input alphabet, q0 ∈ K is the initial state,
and ∆ ⊆ K ×Σ × {0, 1}k ×K × {0, 1,−1}k is the transition relation.

If the machineM is in state q and ci ∈ N is the content of the ith counter Ci
then the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈ E ⊆
{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ where ij = 0
for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk).

Thus the transition relation must obviously satisfy:
if (q, a, i1, . . . , ik, q

′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k} then
jm = 0 or jm = 1 (but jm may not be equal to −1).

Moreover if the counters ofM are blind, then, if (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈

∆ holds, and im = 0 for some m ∈ {1, . . . , k} then (q, a, i1, . . . , ik, q
′, j1, . . . , jk) ∈

∆ also holds if im = 1 and the other intergers are unchanged.

An ω-sequence of configurations r = (qi, c
i
1, . . . c

i
k)i≥1 is called a run ofM on

an ω-word σ = a1a2 . . . an . . . over Σ iff:

(1) (q1, c
1
1, . . . c

1
k) = (q0, 0, . . . , 0)

(2) for each i ≥ 1,

ai : (qi, c
i
1, . . . c

i
k) 7→M (qi+1, c

i+1
1 , . . . ci+1

k ).

For every such run r, In(r) is the set of all states entered infinitely often
during r.



Definition 1. A Büchi k-counter automaton is a 5-tuple M=(K,Σ, ∆, q0, F ),
where M′=(K, Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of
accepting states. The ω-language accepted by M is:

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r)∩F 6= ∅}

Definition 2. A Muller k-counter automaton is a 5-tupleM=(K, Σ,∆, q0,F),
where M′=(K, Σ,∆, q0) is a k-counter machine and F⊆ 2K is the set of ac-
cepting sets of states. The ω-language accepted by M is: L(M)={σ ∈ Σω |
there exists a run r of M on σ such that In(r) ∈ F}

It is well known that an ω-language is accepted by a non-deterministic (real
time) Büchi k-counter automaton iff it is accepted by a non-deterministic (real
time) Muller k-counter automaton [8]. Notice that it cannot be shown without
using the non determinism of automata and this result is no longer true in the
deterministic case.

The class of ω-languages accepted by real time k-counter Büchi automata
(respectively, real time k-blind-counter Büchi automata) is denoted r-CL(k)ω.
(respectively, r-BCL(k)ω). (Notice that in previous papers, as in [13], the class
r-CL(k)ω was denoted r-BCL(k)ω so we have slightly changed the notation in
order to distinguish the different classes).

The class CL(1)ω is a strict subclass of the class CFLω of context free ω-
languages accepted by pushdown Büchi automata.

If we omit the counter of a real-time Büchi 1-counter automaton, then we
simply get the notion of Büchi automaton. The class of ω-languages accepted by
Büchi automata is the class of regular ω-languages.

3 Hierarchies in a Cantor Space

3.1 Borel hierarchy and analytic sets

We assume the reader to be familiar with basic notions of topology which may be
found in [25, 24, 36, 27]. There is a natural metric on the set Σω of infinite words
over a finite alphabet Σ containing at least two letters which is called the prefix
metric and is defined as follows. For u, v ∈ Σω and u 6= v let δ(u, v) = 2−lpref(u,v)

where lpref(u,v) is the first integer n such that the (n+ 1)st letter of u is different
from the (n + 1)st letter of v. This metric induces on Σω the usual Cantor
topology in which the open subsets of Σω are of the form W ·Σω, for W ⊆ Σ?.
A set L ⊆ Σω is a closed set iff its complement Σω − L is an open set.

Define now the Borel Hierarchy of subsets of Σω:

Definition 3. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω, Π0
1 is the class of closed subsets of Σω,

and for any countable ordinal α ≥ 2:
Σ0
α is the class of countable unions of subsets of Σω in

⋃
γ<α Π0

γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ .



The class of Borel sets is ∆1
1 :=

⋃
ξ<ω1

Σ0
ξ =

⋃
ξ<ω1

Π0
ξ , where ω1 is the first

uncountable ordinal. There are also some subsets of Σω which are not Borel. In
particular the class of Borel subsets of Σω is strictly included into the class Σ1

1

of analytic sets which are obtained by projection of Borel sets.

Definition 4. A subset A of Σω is in the class Σ1
1 of analytic sets iff there exists

another finite set Y and a Borel subset B of (Σ×Y )ω such that x ∈ A↔ ∃y ∈ Y ω
such that (x, y) ∈ B, where (x, y) is the infinite word over the alphabet Σ × Y
such that (x, y)(i) = (x(i), y(i)) for each integer i ≥ 1.

We now define completeness with regard to reduction by continuous func-
tions. For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respec-
tively, Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet):

E ∈ Σ0
α (respectively, E ∈ Π0

α, E ∈ Σ1
1) iff there exists a continuous function

f : Y ω → Σω such that E = f−1(F ).

Let us now recall the definition of the arithmetical hierarchy of ω-languages,
see for example [36, 25]. Let Σ be a finite alphabet. An ω-language L ⊆ Σω

belongs to the class Σn iff there exists a recursive relation RL ⊆ (N)n−1 × Σ?

such that L = {σ ∈ Σω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}, where
Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order). An
ω-language L ⊆ Σω belongs to the class Πn if and only if its complement Σω−L
belongs to the class Σn. The inclusion relations that hold between the classes
Σn and Πn are the same as for the corresponding classes of the Borel hierarchy
and the classes Σn and Πn are strictly included in the respective classes Σ0

n and
Π0
n of the Borel hierarchy.

As in the case of the Borel hierarchy, projections of arithmetical sets (of the
second Π-class) lead beyond the arithmetical hierarchy, to the analytical hierar-
chy of ω-languages. The first class of the analytical hierarchy of ω-languages is the
(lightface) class Σ1

1 of effective analytic sets. An ω-language L ⊆ Σω belongs to
the class Σ1

1 if and only if there exists a recursive relation RL ⊆ (N)×{0, 1}?×Σ?

such that: L = {σ ∈ Σω | ∃τ(τ ∈ {0, 1}ω ∧ ∀n∃m((n, τ [m], σ[m]) ∈ RL))}.
Thus an ω-language L ⊆ Σω is in the class Σ1

1 iff it is the projection of an
ω-language over the alphabet {0, 1} ×Σ which is in the class Π2.

Kechris, Marker and Sami proved in [22] that the supremum of the set of
Borel ranks of (lightface) Π1

1 , so also of (lightface) Σ1
1 , sets is the ordinal γ12 .

This ordinal is precisely defined in [22]. It holds that ωCK
1 < γ12 , where ωCK

1 is
the first non-recursive ordinal, called the Chruch-Kleene ordinal.

Notice that it seems still unknown whether every non null ordinal γ < γ12 is
the Borel rank of a (lightface) Π1

1 (or Σ1
1) set. On the other hand it is known

that for every ordinal γ < ωCK
1 there exist some Σ0

γ-complete and Π0
γ-complete

sets in the class ∆1
1.

Recall that a Büchi Turing machine is just a Turing machine working on
infinite inputs with a Büchi-like acceptance condition, and that the class of ω-
languages accepted by Büchi Turing machines is the class Σ1

1 [3, 36].



3.2 Wadge hierarchy

We now introduce the Wadge hierarchy, which is a great refinement of the Borel
hierarchy defined via reductions by continuous functions, [4, 39].

Definition 5 (Wadge [39]). Let X, Y be two finite alphabets. For L ⊆ Xω

and L′ ⊆ Y ω, L is said to be Wadge reducible to L′ (L ≤W L′) iff there exists
a continuous function f : Xω → Y ω, such that L = f−1(L′). l L and L′ are
Wadge equivalent iff L ≤W L′ and L′ ≤W L. This will be denoted by L ≡W L′.
And we shall say that L <W L′ iff L ≤W L′ but not L′ ≤W L.
A set L ⊆ Xω is said to be self dual iff L ≡W L−, and otherwise it is said to be
non self dual.

The relation ≤W is reflexive and transitive, and ≡W is an equivalence relation.
The equivalence classes of ≡W are called Wadge degrees. The Wadge hierarchy
WH is the class of Borel subsets of a set Xω, where X is a finite set, equipped
with ≤W and with ≡W .
For L ⊆ Xω and L′ ⊆ Y ω, if L ≤W L′ and L = f−1(L′) where f is a continuous
function from Xω into Y ω, then f is called a continuous reduction of L to L′.
Intuitively it means that L is less complicated than L′ because to check whether
x ∈ L it suffices to check whether f(x) ∈ L′ where f is a continuous function.
Hence the Wadge degree of an ω-language is a measure of its topological com-
plexity.
Notice that in the above definition, we consider that a subset L ⊆ Xω is given
together with the alphabet X.
We can now define the Wadge class of a set L:

Definition 6. Let L be a subset of Xω. The Wadge class of L is :
[L] = {L′ | L′ ⊆ Y ω for a finite alphabet Y and L′ ≤W L}.

Recall that each Borel class Σ0
α and Π0

α is a Wadge class. A set L ⊆ Xω is a Σ0
α

(respectively Π0
α)-complete set iff for any set L′ ⊆ Y ω, L′ is in Σ0

α (respectively
Π0
α) iff L′ ≤W L.

There is a close relationship between Wadge reducibility and games which
we now introduce.

Definition 7. Let L ⊆ Xω and L′ ⊆ Y ω. The Wadge game W (L,L′) is a game
with perfect information between two players, player 1 who is in charge of L and
player 2 who is in charge of L′. Player 1 first writes a letter a1 ∈ X, then player
2 writes a letter b1 ∈ Y , then player 1 writes a letter a2 ∈ X, and so on. The two
players alternatively write letters an of X for player 1 and bn of Y for player 2.
After ω steps, the player 1 has written an ω-word a ∈ Xω and the player 2 has
written an ω-word b ∈ Y ω. The player 2 is allowed to skip, even infinitely often,
provided he really writes an ω-word in ω steps. The player 2 wins the play iff
[a ∈ L↔ b ∈ L′], i.e. iff :

[(a ∈ L and b ∈ L′) or (a /∈ L and b /∈ L′ and b is infinite)].



Recall that a strategy for player 1 is a function σ : (Y ∪ {s})? → X. And a
strategy for player 2 is a function f : X+ → Y ∪ {s}. The strategy σ is a
winning stategy for player 1 iff he always wins a play when he uses the strategy
σ, i.e. when the nth letter he writes is given by an = σ(b1 · · · bn−1), where bi is
the letter written by player 2 at step i and bi = s if player 2 skips at step i.A
winning strategy for player 2 is defined in a similar manner.

Martin’s Theorem states that every Gale-Stewart game G(X) (see [21]), with
X a Borel set, is determined and this implies the following :

Theorem 8 (Wadge). Let L ⊆ Xω and L′ ⊆ Y ω be two Borel sets, where X
and Y are finite alphabets. Then the Wadge game W (L,L′) is determined: one
of the two players has a winning strategy. And L ≤W L′ iff the player 2 has a
winning strategy in the game W (L,L′).

Theorem 9 (Wadge). Up to the complement and ≡W , the class of Borel sub-
sets of Xω, for a finite alphabet X having at least two letters, is a well ordered
hierarchy. There is an ordinal |WH|, called the length of the hierarchy, and a
map d0W from WH onto |WH| − {0}, such that for all L,L′ ⊆ Xω:
d0WL < d0WL

′ ↔ L <W L′ and
d0WL = d0WL

′ ↔ [L ≡W L′ or L ≡W L′−].

The Wadge hierarchy of Borel sets of finite rank has length 1ε0 where 1ε0 is
the limit of the ordinals αn defined by α1 = ω1 and αn+1 = ωαn

1 for n a non
negative integer, ω1 being the first non countable ordinal. Then 1ε0 is the first
fixed point of the ordinal exponentiation of base ω1. The length of the Wadge
hierarchy of Borel sets in ∆0

ω = Σ0
ω ∩Π0

ω is the ωth1 fixed point of the ordinal
exponentiation of base ω1, which is a much larger ordinal. The length of the
whole Wadge hierarchy of Borel sets is a huge ordinal, with regard to the ωth1
fixed point of the ordinal exponentiation of base ω1. It is described in [39, 4] by
the use of the Veblen functions.

4 Wadge Degrees of ω-Languages of Petri Nets

We are firstly going to prove the following result.

Theorem 10. The Wadge hierarchy of the class r-BCL(4)ω is equal to the
Wadge hierarchy of the class r-CL(1)ω.

In order to prove this result, we first define a coding of ω-words over a finite
alphabet Σ by ω-words over the alphabet Σ ∪ {A,B, 0} where A, B and 0 are
new letters not in Σ.

We shall code an ω-word x ∈ Σω by the ω-word h(x) defined by

h(x) = A0x(1)B02x(2)A · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

This coding defines a mapping h : Σω → (Σ ∪ {A,B, 0})ω.
The function h is continuous because for all ω-words x, y ∈ Σω and each positive
integer n, it holds that δ(x, y) < 2−n → δ(h(x), h(y)) < 2−n.

We now state the following lemma.



Lemma 11. Let A be a real time 1-counter Büchi automaton accepting ω-words
over the alphabet Σ. Then one can construct a real time 4-blind-counter Büchi
automaton B reading words over the alphabet Γ = Σ∪{A,B, 0}, such that L(A)
= h−1(L(B)), i.e. ∀x ∈ Σω h(x) ∈ L(B)←→ x ∈ L(A).

Proof. Let A= (K,Σ,∆, q0, F ) be a real time 1-counter Büchi automaton ac-
cepting ω-words over the alphabet Σ. We are going to explain informally the
behaviour of the 4-blind-counter Büchi automaton B when reading an ω-word of
the form h(x), even if we are going to see that B may also accept some infinite
words which do not belong to the range of h. Recall that h(x) is of the form

h(x) = A0x(1)B02x(2)A · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

Notice that in particular every ω-word in h(Σω) is of the form:

y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·

where for all i ≥ 1, ni > 0 is a positive integer, and x(i) ∈ Σ.
Moreover it is easy to see that the set of ω-words y ∈ Γω which can be

written in the above form is a regular ω-language R ⊆ Γω, and thus we can
assume, using a classical product construction (see for instance [27]), that the
automaton B will only accept some ω-words of this form.

Now the reading by the automaton B of an ω-word of the above form

y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·

will give a decomposition of the ω-word y of the following form:

y = Au1v1x(1)Bu2v2x(2)Au3v3x(3)B · · ·
· · ·Bu2nv2nx(2n)Au2n+1v2n+1x(2n+ 1)B · · ·

where, for all integers i ≥ 1, ui, vi ∈ 0?, x(i) ∈ Σ, |u1| = 0.
The automaton B will use its four blind counters, which we denote C1, C2, C3, C4,

in the following way. Recall that the automaton B being non-deterministic, we
do not describe the unique run of B on y, but the general case of a possible run.

At the beginning of the run, the value of each of the four counters is equal to
zero. Then the counter C1 is increased of |u1| when reading u1, i.e. the counter
C1 is actually not increased since |u1| = 0 and the finite control is here used to
check this. Then the counter C2 is increased of 1 for each letter 0 of v1 which is
read until the automaton reads the letter x(1) and then the letter B. Notice that
at this time the values of the counters C3 and C4 are still equal to zero. Then
the behaviour of the automaton B when reading the next segment 0n2x(2)A is
as follows. The counters C1 is firstly decreased of 1 for each letter 0 read, when
reading k2 letters 0, where k2 ≥ 0 (notice that here k2 = 0 because the value
of the counter C1 being equal to zero, it cannot decrease under 0). Then the
counter C2 is decreased of 1 for each letter 0 read, and next the automaton has
to read one more letter 0, leaving unchanged the counters C1 and C2, before
reading the letter x(2). The end of the decreasing mode of C1 coincide with the



beginning of the decreasing mode of C2, and this change may occur in a non-
deterministic way (because the automaton B cannot check whether the value of
C1 is equal to zero). Now we describe the behaviour of the counters C3 and C4
when reading the segment 0n2x(2)A. Using its finite control, the automaton B
has checked that |u1| = 0, and then if there is a transition of the automaton A
such that x(1) : (q0, |u1|) 7→A (q1, |u1|+N1) then the counter C3 is increased of
1 for each letter 0 read, during the reading of the k2 +N1 first letters 0 of 0n2 ,
where k2 is described above as the number of which the counter C1 has been
decreased. This determines u2 by |u2| = k2 + N1 and then the counter C4 is
increased by 1 for each letter 0 read until B reads x(2), and this determines v2.
Notice that the automaton B keeps in its finite control the memory of the state
q1 of the automaton A, and that, after having read the segment 0n2 = u2v2,
the values of the counters C3 and C4 are respectively |C3| = |u2| = k2 + N1 and
|C4| = |v2| = n2 − (|u2|).

Now the run will continue. Notice that generally when reading a segment
B0n2nx(2n)A the counters C1 and C2 will successively decrease when reading
the first (n2n − 1) letters 0 and then will remain unchanged when reading the
last letter 0, and the counters C3 and C4 will successively increase, when reading
the (n2n) letters 0. Again the end of the decreasing mode of C1 coincide with
the beginning of the decreasing mode of C2, and this change may occur in a
non-deterministic way. But the automaton has kept in its finite control whether
|u2n−1| = 0 or not and also a state q2n−2 of the automaton A. Now, if there
is a transition of the automaton A such that x(2n − 1) : (q2n−2, |u2n−1|) 7→A
(q2n−1, |u2n−1|+N2n−1) for some integer N2n−1 ∈ {−1; 0, 1}, and the counter C1
is decreased of 1 for each letter 0 read, when reading k2n first letters 0 of 0n2n ,
then the counter C3 is increased of 1 for each letter 0 read, during the reading of
the k2n + N2n−1 first letters 0 of 0n2n , and next the counter C4 is increased by
1 for each letter 0 read until B reads x(2n), and this determines v2n. Then after
having read the segment 0n2n = u2nv2n, the values of the counters C3 and C4
have respectively increased of |u2n| = k2n+N2n−1 and |v2n| = n2n−|u2n|. Notice
that one cannot ensure that, after the reading of 0n2n = u2nv2n, the exact values
of these counters are |C3| = |u2n| = k2n +N2n−1 and |C4| = |v2n| = n2n − |u2n|.
Actually this is due to the fact that one cannot ensure that the values of C3 and
C4 are equal to zero at the beginning of the reading of the segment B0n2nx(2n)A
although we will see this is true and important in the particular case of a word
of the form y = h(x).

The run will continue in a similar manner during the reading of the next
segment A0n2n+1x(2n+ 1)B, but here the role of the counters C1 and C2 on one
side, and of the counters C3 and C4 on the other side, will be interchanged. More
precisely the counters C3 and C4 will successively decrease when reading the first
(n2n+1−1) letters 0 and then will remain unchanged when reading the last letter
0, and the counters C1 and C2 will successively increase, when reading the (n2n+1)
letters 0. The end of the decreasing mode of C3 coincide with the beginning of
the decreasing mode of C4, and this change may occur in a non-deterministic
way. But the automaton has kept in its finite control whether |u2n| = 0 or not



and also a state q2n−1 of the automaton A. Now, if there is a transition of the
automaton A such that x(2n) : (q2n−1, |u2n|) 7→A (q2n, |u2n| + N2n) for some
integer N2n ∈ {−1; 0, 1}, and the counter C3 is decreased of 1 for each letter 0
read, when reading k2n+1 first letters 0 of 0n2n+1 , then the counter C1 is increased
of 1 for each letter 0 read, during the reading of the k2n+1 +N2n first letters 0
of 0n2n+1 , and next the counter C2 is increased by 1 for each letter 0 read until B
reads x(2n+ 1), and this determines v2n+1. Then after having read the segment
0n2n+1 = u2n+1v2n+1, the values of the counters C1 and C2 have respectively
increased of |u2n+1| = k2n+1 + N2n and |v2n+1| = n2n+1 − |u2n+1|. Notice that
again one cannot ensure that, after the reading of 0n2n+1 = u2n+1v2n+1, the
exact values of these counters are |C1| = |u2n+1| = k2n+1 + N2n and |C2| =
|v2n+1| = n2n+1 − |u2n+1|. This is due to the fact that one cannot ensure that
the values of C1 and C2 are equal to zero at the beginning of the reading of the
segment A0n2n+1x(2n + 1)B although we will see this is true and important in
the particular case of a word of the form y = h(x).

The run then continues in the same way if it is possible and in particular if
there is no blocking due to the fact that one of the counters of the automaton
B would have a negative value.

Now an ω-word y ∈ R ⊆ Γω of the above form will be accepted by the
automaton B if there is such an infinite run for which a final state qf ∈ F of
the automaton A has been stored infinitely often in the finite control of B in the
way which has just been described above.

We now consider the particular case of an ω-word of the form y = h(x), for
some x ∈ Σω. Let then

y = h(x) = A0x(1)B02x(2)A03x(3)B · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·
We are going to show that, if y is accepted by the automaton B, then x ∈

L(A). Let us consider a run of the automaton B on y as described above and
which is an accepting run. We first show by induction on n ≥ 1, that after having
read an initial segment of the form A0x(1)B02x(2)A · · ·A02n−1x(2n − 1)B,
the values of the counters C3 and C4 are equal to zero, and the values of the
counters C1 and C2 satisfy |C1|+ |C2| = 2n− 1. And similarly after having read
an initial segment of the form A0x(1)B02x(2)A · · ·B02nx(2n)A the values of the
counters C1 and C2 are equal to zero, and the values of the counters C3 and C4
satisfy |C3|+ |C4| = 2n.

For n = 1, we have seen that after having read the initial segment A0x(1)B,
the values of the counters C1 and C2 will be respectively 0 and |v1| and here
|v1| = 1 and thus |C1| + |C2| = 1. On the other hand the counters C3 and C4
have not yet increased so that the value of each of these counters is equal to
zero. During the reading of the segment 02 of 02x(2)A the counters C1 and C2
successively decrease. But here C1 cannot decrease (with the above notations, it
holds that k2 = 0) so C2 must decrease of 1 because after the decreasing mode
the automaton B must read a last letter 0 without decreasing the counters C1
and C2 and then the letter x(2) ∈ Σ. Thus after having read 02x(2)A the values
of C1 and C2 are equal to zero. Moreover the counters C3 and C4 had their values
equal to zero at the beginning of the reading of 02x(2)A and they successively



increase during the reading of 02 and they remain unchanged during the reading
of x(2)A so that their values satisfy |C3|+ |C4| = 2 after the reading of 02x(2)A.

Assume now that for some integer n > 1 the claim is proved for all integers
k < n and let us prove it for the integer n. By induction hypothesis we know
that at the beginning of the reading of the segment A02n−1x(2n− 1)B of y, the
values of the counters C1 and C2 are equal to zero, and the values of the counters
C3 and C4 satisfy |C3|+ |C4| = 2n−2. When reading the (2n−2) first letters 0 of
A02n−1x(2n − 1)B the counters C3 and C4 successively decrease and they must
decrease completely because after there must remain only one letter 0 to be read
by B before the letter x(2n−1). Therefore after the reading of A02n−1x(2n−1)B
the values of the counters C3 and C4 are equal to zero. And since the values of
the counters C1 and C2 are equal to zero before the reading of 02n−1x(2n− 1)B
and these counters successively increase during the reading of 02n−1, their values
satisfy |C1|+ |C2| = 2n−1 after the reading of A02n−1x(2n−1)B. We can reason
in a very similar manner for the reading of the next segment B02nx(2n)A, the
role of the counters C1 and C2 on one side, and of the counters C3 and C4 on
the other side, being simply interchanged. This ends the proof of the claim by
induction on n.

It is now easy to see by induction that for each integer n ≥ 2, it holds
that kn = |un−1|. Then, since with the above notations we have |un+1| =
kn+1 + Nn = |un| + Nn, and there is a transition of the automaton A such
that x(n) : (qn−1, |un|) 7→A (qn, |un| + Nn) for Nn ∈ {−1; 0, 1}, it holds that
x(n) : (qn−1, |un|) 7→A (qn, |un+1|). Therefore the sequence (qi, |ui|)i≥0 is an ac-
cepting run of the automaton A on the ω-word x and x ∈ L(A). Notice that the
state q0 of the sequence (qi)i≥0 is also the initial state of A.

Conversely, it is easy to see that if x ∈ L(A) then there exists an accepting
run of the automaton B on the ω-word h(x) and h(x) ∈ L(B). �

The above Lemma 11 shows that, given a real time 1-counter (with zero-test)
Büchi automaton A accepting ω-words over the alphabet Σ, one can construct a
real time 4-blind-counter Büchi automaton B which can simulate the 1-counter
automaton A on the code h(x) of the word x. On the other hand, we cannot
describe precisely the ω-words which are accepted by B but are not in the set
h(Σω). However we can see that all these words have a special shape, as stated
by the following lemma.

Lemma 12. Let A be a real time 1-counter Büchi automaton accepting ω-words
over the alphabet Σ, and let B be the real time 4-blind-counter Büchi automaton
reading words over the alphabet Γ = Σ ∪ {A,B, 0} which is constructed in the
proof of Lemma 11. Let y ∈ L(B) \ h(Σω) being of the following form

y = A0n1x(1)B0n2x(2)A0n3x(3)B · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·
and let i0 be the smallest integer i such that ni 6= i. Then it holds that either
i0 = 1 or ni0 < i0.

Proof. Assume first that y ∈ L(B) \ h(Σω) is of the following form
y = A0n1x(1)B0n2x(2)A · · ·B0n2nx(2n)A0n2n+1x(2n+ 1)B · · ·



and that the smallest integer i such that ni 6= i is an even integer i0 > 1.
Consider an infinite accepting run of B on y. It follows from the proof of the
above Lemma 11 that after the reading of the initial segment

A0n1x(1)B0n2x(2)A · · ·A0i0−1x(i0 − 1)B

the values of the counters C3 and C4 are equal to zero, and the values of the
counters C1 and C2 satisfy |C1|+ |C2| = i0− 1. Thus since the two counters must
successively decrease during the next ni0−1 letters 0, it holds that ni0−1 ≤ i0−1
because otherwise either C1 or C2 would block. Therefore ni0 < i0 since ni0 6= i0
by definition of i0. The reasoning is very similar in the case of an odd integer i0,
the role of the counters C1 and C2 on one side, and of the counters C3 and C4 on
the other side, being simply interchanged. �

Let L ⊆ Γω be the ω-language containing the ω-words over Γ which belong
to one of the following ω-languages.

– L1 is the set of ω-words over the alphabet Σ ∪{A,B, 0} which have not any
initial segment in A · 0 ·Σ ·B.

– L2 is the set of ω-words over the alphabet Σ ∪ {A,B, 0} which contain a
segment of the form B · 0n · a · A · 0m · b or of the form A · 0n · a · B · 0m · b
for some letters a, b ∈ Σ and some positive integers m ≤ n.

Lemma 13. The ω-language L is accepted by a (non-deterministic) real-time
1-blind counter Büchi automaton.

Proof. First, it is easy to see that L1 is in fact a regular ω-language, and thus it
is also accepted by a real-time 1-blind counter Büchi automaton (even without
active counter). On the other hand it is also easy to construct a real time 1-blind
counter Büchi automaton accepting the ω-language L2. The class of ω-languages
accepted by non-deterministic real time 1-blind counter Büchi automata being
closed under finite union in an effective way, one can construct a real time 1-blind
counter Büchi automaton accepting L. �

Lemma 14. Let A be a real time 1-counter Büchi automaton accepting ω-words
over the alphabet Σ. Then one can construct a real time 4-blind counter Büchi
automaton PA such that L(PA) = h(L(A)) ∪ L.

Proof. Let A be a real time 1-counter Büchi automaton accepting ω-words
over Σ. We have seen in the proof of Lemma 11 that one can construct a real
time 4-blind counter Büchi automaton B reading words over the alphabet Γ =
Σ ∪ {A,B, 0}, such that L(A) = h−1(L(B)), i.e. ∀x ∈ Σω h(x) ∈ L(B)←→
x ∈ L(A). Moreover By Lemma 12 it holds that L(B) \ h(Σω) ⊆ L. and thus
h(L(A)) ∪ L = L(B) ∪ L. But By Lemma 13 the ω-language L is accepted by a
(non-deterministic) real-time 1-blind counter Büchi automaton, hence also by a
real-time 4-blind counter Büchi automaton. The class of ω-languages accepted
by (non-deterministic) real-time 4-blind counter Büchi automata is closed under



finite union in an effective way, and thus one can construct a real time 4-blind
counter Büchi automaton PA such that L(PA) = h(L(A)) ∪ L. �

We are now going to prove that if L(A)⊆ Σω is accepted by a real time 1-
counter automatonA with a Büchi acceptance condition then L(PA) = h(L(A))∪L
will have the same Wadge degree as the ω-language L(A), except for some very
simple cases.

We first notice that h(Σω) is a closed subset of Γω. Indeed it is the image of
the compact set Σω by the continuous function h, and thus it is a compact hence
also closed subset of Γω = (Σ ∪ {A,B, 0})ω. Thus its complement h(Σω)− =
(Σ ∪ {A,B, 0})ω − h(Σω) is an open subset of Γω. Moreover the set L is an
open subset of Γω, as it can be easily seen from its definition and one can easily
define, from the definition of the ω-language L, a finitary language V ⊆ Γ ? such
that L = V ·Γω. We shall also denote L′ = h(Σω)− \L so that Γω is the dijoint
union Γω = h(Σω)∪L∪L′. Notice that L′ is the difference of the two open sets
h(Σω)− and L.

We now wish to return to the proof of the above Theorem 10 stating that
the Wadge hierarchy of the class r-BCL(4)ω is equal to the Wadge hierarchy of
the class r-CL(1)ω.

To prove this result we firstly consider non self dual Borel sets. We recall the
definition of Wadge degrees introduced by Duparc in [4] and which is a slight
modification of the previous one.

Definition 15.

(a) dw(∅) = dw(∅−) = 1
(b) dw(L) = sup{dw(L′) + 1 | L′ non self dual and L′ <W L}

(for either L self dual or not, L >W ∅).

Wadge and Duparc used the operation of sum of sets of infinite words which has
as counterpart the ordinal addition over Wadge degrees.

Definition 16 (Wadge, see [39, 4]). Assume that X ⊆ Y are two finite al-
phabets, Y − X containing at least two elements, and that {X+, X−} is a par-
tition of Y − X in two non empty sets. Let L ⊆ Xω and L′ ⊆ Y ω, then
L′+L =df L∪{u·a·β | u ∈ X?, (a ∈ X+ and β ∈ L′) or (a ∈ X− and β ∈ L′−)}

This operation is closely related to the ordinal sum as it is stated in the following:

Theorem 17 (Wadge, see [39, 4]). Let X ⊆ Y , Y − X containing at least
two elements, L ⊆ Xω and L′ ⊆ Y ω be non self dual Borel sets. Then (L+ L′)
is a non self dual Borel set and dw(L′ + L) = dw(L′) + dw(L).

A player in charge of a set L′ + L in a Wadge game is like a player in charge
of the set L but who can, at any step of the play, erase his previous play and
choose to be this time in charge of L′ or of L′−. Notice that he can do this only
one time during a play.

The following lemma was proved in [13]. Notice that below the emptyset is
considered as an ω-language over an alphabet ∆ such that ∆ − Σ contains at
least two elements.



Lemma 18. Let L ⊆ Σω be a non self dual Borel set such that dw(L) ≥ ω.
Then it holds that L ≡W ∅+ L.

We can now prove the following lemma.

Lemma 19. Let L ⊆ Σω be a non self dual Borel set acccepted by a real time
1-counter Büchi automaton A. Then there is an ω-language L′ accepted by a real
time 4-blind counter Büchi automaton such that L ≡W L′.

Proof. Recall first that there are regular ω-languages of every finite Wadge
degree, [36, 29]. These regular ω-languages are Boolean combinations of open
sets, and they obviously belong to the class r-BCL(4)ω since every regular ω-
language belongs to this class.

So we have only to consider the case of non self dual Borel sets of Wadge
degrees greater than or equal to ω.

Let then L = L(A) ⊆ Σω be a non self dual Borel set, acccepted by a real time
1-counter Büchi automaton A, such that dw(L) ≥ ω. By Lemma 14, L(PA) =
h(L(A))∪L is accepted by a a real time 4-blind counter Büchi automaton PA,
where the mapping h : Σω → (Σ ∪ {A,B, 0})ω is defined, for x ∈ Σω, by:

h(x) = A0x(1)B02x(2)A03x(3)B · · ·B02nx(2n)A02n+1x(2n+ 1)B · · ·

We set L′ = L(PA) and we now prove that L′ ≡W L.

Firstly, it is easy to see that the function h is a continuous reduction of L to
L′ and thus L ≤W L′.

To prove that L′ ≤W L, it suffices to prove that L′ ≤W ∅+ (∅+ L) because
Lemma 18 states that ∅+L ≡W L, and thus also ∅+(∅+L) ≡W L. Consider the
Wadge game W (L′, ∅ + (∅ + L)). Player 2 has a winning strategy in this game
which we now describe.

As long as Player 1 remains in the closed set h(Σω) (this means that the
word written by Player 1 is a prefix of some infinite word in h(Σω)) Player 2
essentially copies the play of player 1 except that Player 2 skips when player
1 writes a letter not in Σ. He continues forever with this strategy if the word
written by player 1 is always a prefix of some ω-word of h(Σω). Then after ω
steps Player 1 has written an ω-word h(x) for some x ∈ Σω, and Player 2 has
written x. So in that case h(x) ∈ L′ iff x ∈ L(A) iff x ∈ ∅+ (∅+ L).

But if at some step of the play, Player 1 “goes out of” the closed set h(Σω)
because the word he has now written is not a prefix of any ω-word of h(Σω),
then Player 1 “enters” in the open set h(Σω)− = L∪L′ and will stay in this set.
Two cases may now appear.

First case. When Player 1 “enters” in the open set h(Σω)− = L ∪ L′, he
actually enters in the open set L = V ·Γω (this means that Player 1 has written
an initial segment in V ). Then the final word written by Player 1 will surely be
inside L′. Player 2 can now write a letter of ∆ − Σ in such a way that he is
now like a player in charge of the wholeset and he can now writes an ω-word u



so that his final ω-word will be inside ∅ + L, and also inside ∅ + (∅ + L). Thus
Player 2 wins this play too.

Second case. When Player 1 “enters” in the open set h(Σω)− = L∪L′, he
does not enter in the open set L = V ·Γω. Then Player 2, being first like a player
in charge of the set (∅ + L), can write a letter of ∆ − Σ in such a way that he
is now like a player in charge of the emptyset and he can now continue, writing
an ω-word u. If Player 1 never enters in the open set L = V · Γω then the final
word written by Player 1 will be in L′ and thus surely outside L′, and the final
word written by Player 2 will be outside the emptyset. So in that case Player
2 wins this play too. If at some step of the play Player 1 enters in the open set
L = V · Γω then his final ω-word will be surely in L′. In that case Player 1, in
charge of the set ∅ + (∅ + L), can again write an extra letter and choose to be
in charge of the wholeset and he can now write an ω-word v so that his final
ω-word will be inside ∅+ (∅+ L). Thus Player 2 wins this play too.

Finally we have proved that L ≤W L′ ≤W L thus it holds that L′ ≡W L.
This ends the proof. �

End of Proof of Theorem 10.

Let L ⊆ Σω be a Borel set accepted by a real time 1-counter Büchi automaton
A. If the Wadge degree of L is finite, it is well known that it is Wadge equivalent
to a regular ω-language, hence also to an ω-language in the class r-BCL(4)ω. If
L is non self dual and its Wadge degree is greater than or equal to ω, then we
know from Lemma 19 that there is an ω-language L′ accepted by a a real time
4-blind counter Büchi automaton such that L ≡W L′.

It remains to consider the case of self dual Borel sets. The alphabet Σ being
finite, a self dual Borel set L is always Wadge equivalent to a Borel set in the
form Σ1 ·L1∪Σ2 ·L2, where (Σ1, Σ2) form a partition of Σ, and L1, L2 ⊆ Σω are
non self dual Borel sets such that L1 ≡W L−2 . Moreover L1 and L2 can be taken
in the form L(u1) = u1 ·Σω ∩L and L(u2) = u2 ·Σω ∩L for some u1, u2 ∈ Σ?, see
[5]. So if L ⊆ Σω is a self dual Borel set accepted by a real time 1-counter Büchi
automaton then L ≡W Σ1 ·L1∪Σ2 ·L2, where (Σ1, Σ2) form a partition of Σ, and
L1, L2 ⊆ Σω are non self dual Borel sets accepted by real time 1-counter Büchi
automata. We have already proved that there is an ω-language L′1 in the class
r-BCL(4)ω such that L′1 ≡W L1 and an ω-language L′2 in the class r-BCL(4)ω
such that L′−2 ≡W L2. Thus L ≡W Σ1 · L1 ∪ Σ2 · L2 ≡W Σ1 · L′1 ∪ Σ2 · L′2 and
Σ1 · L′1 ∪Σ2 · L′2 is an ω-language in the class r-BCL(4)ω.

The reverse direction is immediate: if L ⊆ Σω is a Borel set accepted by a
4-blind counter Büchi automaton A, then it is also accepted by a Büchi Turing
machine and thus by [13, Theorem 25] there exists a real time 1-counter Büchi
automaton B such that L(A) ≡W L(B). �

Recall that, for each non-null countable ordinal α, the Σ0
α-complete sets

(respectively, the Π0
α-complete sets) form a single Wadge degree. Thus we can

infer the following result from the above Theorem 10 and from the results of [13,
22].



Corollary 20. For each non-null recursive ordinal α < ωCK
1 there exist some

Σ0
α-complete and some Π0

α-complete ω-languages in the class r-BCL(4)ω. And
the supremum of the set of Borel ranks of ω-languages in the class r-BCL(4)ω
is the ordinal γ12 , which is precisely defined in [22].

We have only considered Borel sets in the above Theorem 10. However we
know that there also exist some non-Borel ω-languages accepted by real time
1-counter Büchi automata, and even some Σ1

1-complete ones, [12].
By Lemma 4.7 of [16] the conclusion of the above Lemma 18 is also true if

L is assumed to be an analytic but non-Borel set.

Lemma 21 ([16]). Let L ⊆ Σω be an analytic but non-Borel set. Then L ≡W
∅+ L.

Next the proof of the above Lemma 19 can be adapted to the case of an analytic
but non-Borel set, and we can state the following result.

Theorem 22. Let L ⊆ Σω be an analytic but non-Borel set acccepted by a real
time 1-counter Büchi automaton A. Then there is an ω-language L′ accepted by
a real time 4-blind counter Büchi automaton such that L ≡W L′.

Proof. It is very similar to the proof of the above Lemma 19, using Lemma 21
instead of the above Lemma 18. �

This implies in particular the existence of a Σ1
1-complete, hence non Borel, ω-

language accepted by a real-time 4-blind-counter Büchi automaton. But Micha l
Skrzypczak has recently proved that one blind counter is sufficient.

Theorem 23 (Skrzypczak [34]). There exists a Σ1
1-complete ω-language ac-

cepted by a 1-blind-counter automaton.

5 High Undecidability of topological properties.

We prove that it is highly undecidable to determine the topological complexity
of a Petri net ω-language. As usual, since there is a finite description of a real
time 1-counter Büchi automaton or of a 4-blind-counter Büchi automaton, we
can define a Gödel numbering of all 1-counter Büchi automata or of all 4-blind-
counter Büchi automata and then speak about the 1-counter Büchi automaton
(or 4-blind-counter Büchi automaton) of index z. Recall first the following result,
proved in [15], where we denote Az the real time 1-counter Büchi automaton
of index z reading words over a fixed finite alphabet Σ having at least two
letters. We refer the reader to a textbook like [26] for more background about
the analytical hierarchy of subsets of the set N of natural numbers.

Theorem 24. Let α be a countable ordinal. Then

1. {z ∈ N | L(Az) is in the Borel class Σ0
α} is Π1

2 -hard.
2. {z ∈ N | L(Az) is in the Borel class Π0

α} is Π1
2 -hard.



3. {z ∈ N | L(Az) is a Borel set } is Π1
2 -hard.

Using the previous constructions we can now easily show the following result,
where Pz is the real time 4-blind-counter Büchi automaton of indez z.

Theorem 25. Let α ≥ 2 be a countable ordinal. Then

1. {z ∈ N | L(Pz) is in the Borel class Σ0
α} is Π1

2 -hard.
2. {z ∈ N | L(Pz) is in the Borel class Π0

α} is Π1
2 -hard.

3. {z ∈ N | L(Pz) is a Borel set } is Π1
2 -hard.

Proof. It follows from the fact that one can easily get an injective recursive
function g : N → N such that PAz

= h(L(Az)) ∪ L = L(Pg(z)) and from the
following equivalences which hold for each countable ordinal α ≥ 2:

1. L(Az) is in the Borel class Σ0
α (resp., Π0

α)⇐⇒ L(Pg(z)) is in the Borel class
Σ0
α (resp., Π0

α).
2. L(Az) is a Borel set ⇐⇒ L(Pg(z)) is a Borel set. �

6 High Undecidability of the equivalence and the
inclusion problems.

We now add a result obtained from our previous constructions and which is
important for verification purposes.

Theorem 26. The equivalence and the inclusion problems for ω-languages of
Petri nets, or even for ω-languages in the class r-BCL(4)ω, are Π1

2 -complete.

1. {(z, z′) ∈ N | L(Pz) = L(Pz′)} is Π1
2 -complete

2. {(z, z′) ∈ N | L(Pz) ⊆ L(Pz′)} is Π1
2 -complete

Proof. Firstly, it is easy to see that each of these decision problems is in the class
Π1

2 , since the equivalence and the inclusion problems for ω-languages of Turing
machines are already in the class Π1

2 , see [2, 15]. The completeness part follows
from the fact that the equivalence and the inclusion problems for ω-languages
accepted by real time 1-counter Büchi automata are Π1

2 -complete [15], and from
the fact that there exists an injective recursive function g : N → N such that
PAz

= Pg(z), and then from the following equivalences:

1. L(Az) = L(Az′)⇐⇒ L(Pg(z)) = L(Pg(z′))
2. L(Az) ⊆ L(Az′)⇐⇒ L(Pg(z)) ⊆ L(Pg(z′)) �

7 Concluding remarks

We have proved that the Wadge hierarchy of Petri nets ω-languages, and even of
ω-languages in the class r-BCL(4)ω, is equal to the Wadge hierarchy of effective
analytic sets, and that it is highly undecidable to determine the topological
complexity of a Petri net ω-language. In some sense our results show that, in
contrast with the finite behavior, the infinite behavior of Petri nets is closer to
the infinite behavior of Turing machines than to that of finite automata.

It remains open for further study to determine the Borel and Wadge hierar-
chies of ω-languages accepted by automata with less than four blind counters.
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(1992)

34. Skrzypczak, M.: Büchi VASS recognise Σ1
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