Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns - Université Paris Cité Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2020

Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns

Résumé

The aerosol properties of Mount Etna’s passive degassing plume and its short-term processes and radiative impact were studied in detail during the EPL-RADIO campaigns (summer 2016–2017), using a synergistic combination of observations and radiative transfer modelling. Summit observations show extremely high particulate matter concentrations. Using portable photometers, the first mapping of small-scale (within ∼20km from the degassing craters) spatial variability of the average size and coarse-to-fine burden proportion of volcanic aerosols is obtained. A substantial variability of the plume properties is found at these spatial scales, revealing that processes (e.g. new particle formation and/or coarse aerosols sedimentation) are at play, which are not represented with current regional scale modelling and satellite observations. Statistically significant progressively smaller particles and decreasing coarse-to-fine particles burden proportion are found along plume dispersion. Vertical structures of typical passive degassing plumes are also obtained using observations from a fixed LiDAR station constrained with quasi-simultaneous photometric observations. These observations are used as input to radiative transfer calculations, to obtain the shortwave top of the atmosphere (TOA) and surface radiative effect of the plume. For a plume with an ultraviolet aerosol optical depth of 0.12–0.14, daily average radiative forcings of −4.5 and −7.0W/m2, at TOA and surface, are found at a fixed location ∼7km downwind the degassing craters. This is the first available estimation in the literature of the local radiative impact of a passive degassing volcanic plume.
Fichier principal
Vignette du fichier
s41598-020-71635-1.pdf (5.05 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-02960829 , version 1 (08-10-2020)
hal-02960829 , version 2 (21-10-2020)

Licence

Paternité

Identifiants

Citer

Pasquale Sellitto, Giuseppe Salerno, Alessandro La Spina, Tommaso Caltabiano, Simona Scollo, et al.. Small-scale volcanic aerosols variability, processes and direct radiative impact at Mount Etna during the EPL-RADIO campaigns. Scientific Reports, 2020, Scientific Reports, 10 (1), ⟨10.1038/s41598-020-71635-1⟩. ⟨hal-02960829v2⟩
138 Consultations
122 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More