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The edge clique cover number ecc(G ) of a graphG is size of
the smallest collection of complete subgraphs whose union
covers all edges ofG . Chen, Jacobson, Kézdy, Lehel, Schein-
erman, andWang conjectured in 2000 that ifG is claw-free,
then ecc(G ) is bounded above by its order (denoted n). Re-
cently, Javadi and Hajebi verified this conjecture for claw-
free graphs with independence number at least three. We
study the edge clique cover number of graphs with indepen-
dence number two, which are necessarily claw-free. We give
the first known proof of a linear bound in n for ecc(G ) for
such graphs, improving upon the bound ofO (n4/3 log1/3 n)
due to Javadi,Maleki andOmoomi. More preciselywe prove
that ecc(G ) is at most the minimum of n + δ(G ) and 2n −
Ω(

√
n log n), where δ(G ) is theminimum degree ofG . In the

fractional version of the problem, we improve these upper
bounds to 3

2n . We also verify the conjecture for some spe-
cific subfamilies, for examplewhen the edge packing number
with respect to cliques (a lower bound for ecc(G )) equals n ,
and whenG contains no induced subgraph isomorphic toH
whereH is any fixed graph of order 4.
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1 | INTRODUCTION

Throughout,G = (V , E ) refers to a simple loopless graph and n denotes the number of vertices inG when the graph in
question is clear. Standard graph theory notation is used throughout, but wemake the following definitions explicit.

We denote byG [X ] the subgraph ofG induced byX ⊆ V (G ). A clique is a setQ ⊆ V (G ) such thatG [Q ] is a complete
graph. The edge clique cover number of a graphG , denoted ecc(G ), is theminimum number of complete subgraphs ofG
whose union contains every edge ofG . This parameter, also known as the intersection number of a graph, was introduced
by Erdős, Goodman, and Posa [1]. In addition to being an interesting parameter in its own right, it is also related to a
parameter known as the competition number of a graph, introduced by Cohen [2] in the study of foodwebs.

We begin with the following problem:

Problem 1.1 (Chen, Jacobson, Kézdy, Lehel, Scheinerman,Wan [3]) IfG is a claw free graph, is ecc(G ) ≤ n?

As evidence, it was shown in [3] that the answer is “yes” in the special case of quasi-line graphs (graphs where the
neighborhood of any vertex can be partitioned into two cliques), a question which was of interest from the point of view
of competition numbers of graphs. Recently, Javadi and Hajebi [4] have given an affirmative answer to Problem 1.1
when α(G ) ≥ 3. Their result relies heavily on Chudnovsky and Seymour’s structure theorem for claw-free graphs (see
[5]), which only applies to graphs with α(G ) ≥ 3. Since their techniques cannot be extended to the case of α(G ) = 2,
Problem 1.1 is reduced to the following conjecture, which is the focus of our study in this paper:

Conjecture 1 IfG is a graph with α(G ) = 2, then ecc(G ) ≤ n .

Our work is organized as follows. Section 2 contains our main results on ecc(G ), where we improve upon the
previously best known bound of ecc(G ) ≤ cn4/3 log1/3 n if α(G ) = 2, given by Javadi, Maleki, andOmoomi in [6]1. We
also show how our results can be used to obtain even better bounds for fractional edge clique covers. In Section 3, we
consider the dual problem of packing edges with respect to cliques. In Section 4, we present some basic observations
about graphs of independence number 2 and use them to derive properties that any minimal counterexample to
Conjecture 1must have, if one exists. Finally, in Section 5, we examine ecc(G ) for some interesting subclasses of graphs
with independence number 2; in particular, we consider forbidden induced subgraphs, the complete joins of graphs, and
graphs with bounded diameter.

2 | IMPROVED UPPER BOUNDS

2.1 | Edge clique cover number

Webegin with the following simple lemma.

Lemma 2.1 If α(G ) ≤ 2 and x is a vertex ofG , N (x ) induces a clique inG .

Given a graphG , we say that an edge e ∈ E (G ) is a dominating edge if every v ∈ V (G ) is adjacent to an end of e . The
proof of our main result relies on the two following lemmas:

Lemma 2.2 IfG with α(G ) ≤ 2 has no dominating edge, then ecc(G ) ≤ n .
1We note that an upper bound of 2(1 − o(1))n is cited in [4], which is claimed to have been shown in a manuscript written by one of the authors of that paper.
However, this manuscript does not appear to be available in publication and no explicit proof is given elsewhere.
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Proof The hypothesis onG implies that the ends of any edge ofG belongs to some N (x ). Hence the collection of all
non-neighborhoods constitutes a family of n cliques (by Lemma 2.1) that cover all edges of the graph.
Lemma 2.3 LetG be a graph with α(G ) = 2. For an edge e ∈ E (G ), α(G − e) > α(G ) if and only if e is not a dominating edge.

Proof Let x and y be the endpoints of e . First we prove that if e is not a dominating edge, then α(G − e) > α(G ). Since e
is not a dominating edge, there exists a vertex v ∈ V (G ) such that xv < E (G ) and yv < E (G ). Thus, in graphG − e the
set {x , y ,v } is an independent set. Therefore, α(G − e) ≥ 3 > 2 ≥ α(G ). Now, we prove that if e is a dominating edge,
then α(G − e) = α(G ). Since for every v ∈ V (G ), v is adjacent to at least one of x or y , no independent set of size 3 can
contain x and y inG − x y . Thus, α(G − e) = α(G ).

In [6], it is shown that there is a constant c such that ecc(G ) ≤ cn4/3 log1/3 n if α(G ) = 2. By applying Lemmas 2.2
and 2.3, we obtain the following general theorem, which implies a linear upper bound for ecc(G ) in terms of n . Recall
that the vertex cover number of a graphG , denoted β (G ), is the cardinality of a smallest set of vertices which is incident
to every edge ofG .
Theorem 2.4 Let G be a graph with α(G ) = 2. If G ′ is a minimal spanning subgraph with α(G ′) = 2, then ecc(G ) ≤
n + β (G − E (G ′)).

Proof LetD = E (G ) \ E (G ′) and letGD = (V (G ),D ) (or, equivalently,GD = G − E (G ′)). As a consequence of Lemma
2.3, every edge ofD is a dominating edge inG . By minimality, no edge remaining inG ′ is a dominating edge ofG ′. By
Lemma 2.2,G ′ has an edge clique cover C of size at most n . Since the only edges ofG which are not covered by C are
those inD , we are left to find a set of at most β (GD ) cliques which coverD inG .

Letv ∈ V (G ) be any vertex and denote byDv = {vu1, . . . ,vuk } the edges ofD incident tov . Sinceu1, . . . ,uk are non-
neighbors of v inG ′, they form a clique inG ′ by Lemma 2.2, and thus form a clique inG as well. Let Kv = {v ,u1, . . . ,uk };
clearly Kv covers Dv . IfW is a vertex cover for GD , then every edge of D is incident to some vertexw ∈ W . It then
follows that {Kw : w ∈W } coversD , and soD can be covered by at most β (GD ) cliques as desired.
Corollary 2.5 IfG is a graph with α(G ) = 2, then ecc(G ) ≤ n + δ(G ).
Proof LetG ′,D , andGD be as in the proof of Theorem 2.4. Recalling that every edge inD is a dominating edge inG , it
follows that, for any vertex v ∈ V (G ), every edge ofD is incident to a vertex of NG′ [v ]. Let v be a vertex of minimum
degree. If some edge ofD is incident to v , dG′ (v ) ≤ δ(G ) − 1 and soNG′ [v ] is a vertex cover forGD of cardinality at most
(δ(G ) − 1) + 1 = δ(G ). On the other hand, if no edge ofD is incident to v , then in factNG′ (v ) suffices for our vertex cover,
which also has cardinality at most δ(G ).
Corollary 2.6 IfG is a graph with α(G ) = 2, then ecc(G ) ≤ 2n − c√n log n for some absolute constant c > 0.
Proof Again, let G ′, D , and GD be as in the proof of Theorem 2.4. If the vertices x , y , z form a triangle in GD , then
{x , y , z } is an independent set inG ′. By our choice ofG ′ to have α(G ′) = 2, it follows thatGD is triangle-free. It is known
that every triangle-free graph has an independent set of size Ω(√n log n) [7]. Since the complement of an independent
set is a vertex cover, we get an upper bound of n − c√n log n for the size of a vertex cover ofGD , and soG has an edge
clique cover of size at most 2n − c√n log n .

Corollary 2.6 makes explicit use of the lower bound known on the Ramsey number R (3, t ) (theminimum value of n
such that every n-vertex graph contains either a clique of size 3 or an independent set of size t ). It is worth noting that
this bound was shown to be tight by a famous theorem of Kim [8], and so any significant improvement to the bound
given in Corollary 2.6 will almost certainly require a different approach than that of Theorem 2.4.
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2.2 | Fractional edge clique covers

Consider the fractional version of the problem. A graphG has a fractional edge clique cover of size k if there exists a set of
cliques Q and a real-valuedweight functionw such that

1. w (Q ) ≥ 0 for allQ ∈ Q,
2.

∑
Q : e∈E (G [Q ])

w (Q ) ≥ 1 for each e ∈ E (G ), and
3.

∑
Q∈Q

w (Q ) = k .

The fractional edge clique cover number of a graphG , denoted eccf (G ) and first studied in [9], is the smallest k such
thatG has a fractional edge clique cover of size k . The proof of Theorem 2.4 is easily modified to give an upper bound on
eccf (G )which is an improvement on its integer counterparts.

Theorem 2.7 IfG is a graph with α(G ) = 2, then eccf (G ) ≤ 3
2 n .

Proof LetG ,G ′, andD be as in the proof of Theorem 2.4. As before, we begin with an edge clique cover ofG ′ of size at
most n . Instead of taking a vertex cover for D , we take the set {Kv | v ∈ V (G )}. Note that each edge of D is covered
twice by {Kv }. Thus, by assigning weight 1 to the cliques coveringG ′ andweight 12 to each Kv , we obtain the desired
result.

3 | EDGE PACKING WITH RESPECT TO CLIQUES

A set of edges E ′ ⊆ E (G ) is called an edge packing with respect to cliques (which we will simply call a packing for the
remainder of this work) if for any two distinct edges e1, e2 ∈ E ′, no clique ofG contains both e1 and e2. The packing
number ofG , denoted pack(G ), is the maximum size of a packing ofG . Since no clique ofG can cover two edges of a
packing, ecc(G ) ≥ pack(G ). Indeed, it is easy to see that if we consider the edge clique cover problem as an integer
program, then the edge packing problem is its dual. It thus easily follows that pack(G ) ≤ packf (G ) = eccf (G ) ≤ ecc(G ).

We begin with two simple observations.

Proposition 3.1 If F is a packing ofG and v ∈ V (G ), then v is incident to at most α(G ) edges that belong to F .

Proof Denote byGF = (V , F ) the graphG restricted to F . The neighborhood of v inGF must form an independent set
inG , as otherwise two packed edges would belong to a common triangle.

This leads us to an easy to obtain upper bound on pack(G ) in the case where α(G ) = 2.

Proposition 3.2 IfG is a graph with α(G ) = 2, then pack(G ) ≤ n .

Proof By Proposition 3.1, each vertex v has at most 2 incident packed edges. By a handshaking argument, pack(G ) ≤ n .

Onemay tempted to conjecture that, should a counterexample exists to Conjecture 1, it should have very large
packing number. The following theorem shows, perhaps somewhat surprisingly, that graphs with α = 2 andmaximum
possible packing number actually satisfy Conjecture 1.
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Theorem 3.3 If α(G ) = 2 and pack(G ) = n , then ecc(G ) = n .

Proof Let F be a packing of n edges. By Proposition 3.1, every vertex is incident to exactly two edges of F . For u,v ∈ V ,
denote Nu,v = NG [u] ∩ NG [v ]. We prove that for every uv ∈ F , Nu,v is a clique, and that the collection of cliques
{Nu,v : uv ∈ F } covers E (G ).

Let v ∈ V (G ) be an arbitrary vertex, and let v1,v2 ∈ V (G ) be such that vv1,vv2 ∈ F (note that this implies that
v1v2 < E (G )). If vz ∈ E for some z , then z must be a neighbor of at least one of v1 or v2, for if not, {v1,v2, z } form an
independent set. We now argue that z is adjacent to exactly one of v1 and v2. Suppose that both v1z ,v2z ∈ E . Let
z1, z2 ∈ V (G ) be such that zz1, zz2 ∈ F . Note that z1, z2 must be distinct from v , as well as from v1,v2 – if vi = z j for
i , j ∈ {1, 2}, then vvi , zvi are both packed edges in the {v ,vi , z } triangle, a contradiction. If z1 is a neighbor of v , then as
above, it must be also neighbor of v1 or v2 . Suppose w.l.o.g. that z1v1 ∈ E . Then {v1,v , z , z1 } form a clique, contradicting
that vv1 and zz1 are both packed edges. Therefore, vz1, and by the same argument vz2, cannot be edges, implying that
{v , z1, z2 } is an independent set, a contradiction. Thus, no neighbor of v is a common neighbour to both v1 and v2; in
other words, Nv ,v1 \ {v } are all non-neighbors of v2 . This implies that Nv ,v1 \ {v } is a clique (since α(G ) = 2), and thus so
is Nv ,v1 as claimed.

It remains to show that these cliques cover all edges ofG . If vz ∈ E (G ), where z < {v1,v2 }, then exactly one of v1z
and v2z is an edge ofG , as argued above. In other words, every edge incident to v must lie either in the clique Nv ,v1 or
the clique Nv ,v2 . Thus {Nu,v : uv ∈ F } covers E (G ).

We note that infinite families of graphs satisfying the conditions of Theorem 3.3 exist. Javadi andHajebi [4] show
that the pth power of the cycle C3p+1 has independence number 2 and edge clique cover number 3p + 1; it is easy to
check that pairs of vertices at distance p around such a cycle are adjacent inC3p+1 and these edges for a packing. This
also shows that the bound in Proposition 3.2 cannot be improved upon.

It may seem tempting to consider this as evidence in favour of the validity of Conjecture 1, as graphs with low
packing numbermight seem to be easier to cover with few cliques. However, ecc(G ) can bemuch greater than pack(G )
– the completemultipartite graph K2,2,...,2 with n parts satisfies α(G ) = 2, pack(G ) = 4, and ecc(G ) = θ(log n) for large
enough n [9].

4 | TOWARD A MINIMUM COUNTEREXAMPLE TO CONJECTURE 1

Wenow establish a number of lemmas, stated in their most general form, which will allow us to simply state a number of
properties that any vertex-minimal counterexample to Conjecture 1must possess, if such a graph exists.

Lemma 4.1 IfG is a graph with α(G ) = 2 and u ∈ V (G ) is an arbitrary vertex, then

1. ecc(G ) = ecc(G − u) + k if d (u) = n − 1, where k denotes the number of isolated vertices inG − u ;
2. ecc(G ) ≤ ecc(G − u) + 1 if u is simplicial (i.e. if N (u) is a clique);
3. ecc(G ) ≤ ecc(G [N (u)]) + ` + d (u) + 1 if 1 < d (u) < n − 1, where ` denotes the number of isolated vertices inG [N (u)];
4. ecc(G ) ≤ 2d (u) + 1 if ecc(G [N (u)]) ≤ d (u);
5. ecc(G ) ≤ n if δ(G ) ≤ n−1

2 and ecc(G [N (u)]) ≤ d (u)where u is a vertex of minimum degree.

Proof The proofs of the first two claims are left to the reader. To prove the third, let C be a minimal clique cover of
G [N (u)] for some vertex u satisfying the given condition. By adding u to eachC ∈ C, we obtain a collection of cliques



6 CHARBIT, HAHN, KAMIŃSKI, LAFOND, LICHIARDOPOL, NASERASR, SEAMONE, SHERKATI

which covers all edges in G [N [u]]. By Proposition 2.1, N (u) is a clique, and so we are left only to cover those edges
from N (u) to N (u). To do this, for each x ∈ N (u)we add the clique {x } ∪ (N (x ) ∩ N (u)). Altogether we have at most
ecc(G [N (u)]) + d (u) + 1 cliques, as claimed. The fourth claim follows from the third, and the fifth from the fourth.

Proposition 4.2 LetG be a graph with α(G ) = 2. IfG contains distinct vertices x , y ∈ V (G ) such that N [x ] ⊆ N [y ], then
ecc(G ) ≤ ecc(G − y ) + 1.

Proof If there exists such x and y , note that Z = N (y ) \ N (x ) is a clique. The family of at most ecc(G − y ) cliques
covering the edges ofG − y can easily be extended to the desired collection of ecc(G − y ) + 1 cliques by adding y to
every clique that contains x , and adding a new clique {y } ∪ Z to the collection.

Proposition 4.3 LetG be a graph with α(G ) = 2. IfG contains non-adjacent vertices x , y ∈ V (G ) such that N (x ) ( N (y )
and ecc(G − y ) ≤ n − 1, then ecc(G ) ≤ n .

Proof Since α(G ) = 2 and x and y are non adjacent, every other vertex is adjacent to either x or y . Since N (x ) ⊆ N (y ),
this gives thatV (G ) = {x , y } ∪ N (y ). Note also that if there is an isolated vertex in the graph induced by N (y ), then
N (y ) is just a clique plus an isolated vertex. With the addition of x and y ,G can be edge covered with four cliques. Since
wemay easily assume thatG has at least 4 vertices, we need only consider the case when every vertex in N (y ) has a
neighbor in N (y ).

Let A = N (y ) \ N (x ), which is non-empty by assumption. Denote by B the set of vertices in N (x ) which have a
neighbor inA, and letC = N (x ) \ B . SinceA is non-empty and α(G ) = 2,C is a clique. LetC1,C2, ...Cp , with p ≤ n − 1, be
the collection of cliques which covers all edges ofG \ y . For every i such that Ci does not contain x , we add y to the
cliqueCi (it is still a clique since y dominates every vertex but x ). We also add a new clique {y } ∪ C . We claim that this
collection of at most n cliques is an edge cover ofG . Every vertex a in A is adjacent to some edge in N (y ), so it must
be contained in some cliqueCi that cannot contain x (since x and a are not adjacent), and therefore the edge y a will
be covered by the new clique Ci ∪ {y }. Every vertex b ∈ B is adjacent to some vertex a in A so the edge ab must be
contained in some clique that cannot contain x , so similarly the new cliquewith y will contain the edge yb . Since we
added the clique {y } ∪ C the collection is an edge cover as claimed.

Proposition 4.4 Let G be a graph with α(G ) = 2. If G contains non-adjacent vertices x , y such that N (x ) = N (y ) and
ecc(G − {x , y }) ≤ n − 2, then ecc(G ) ≤ n .

Proof As in the proof of Proposition 4.3,V (G ) = {x , y } ∪ N (y ) and we may assume that every vertex in N (y ) has a
neighbor in N (y ). LetG ′ be the graph induced by N (y ). IfG ′ is complete thenG satisfies the theorem. Assume then
that x ′ and y ′ are non adjacent vertices inG ′. Now apply induction toG ′ and get a family of cliquesC1,C2, ...Cp , with
p ≤ n − 2 that cover all edges ofG ′. We add x to every clique that contains x ′, and y to every clique that contains y ′
(note that no clique contain both x ′ and y ′). Denote byX (resp.Y ) be the set of neighbors of x ′ (resp. y ′) inG ′. Because
α(G ) = 2, X \Y andY \ X induce cliques. It is easy to check that adding the cliques {x } ∪ (Y \ X ) and {y } ∪ (X \Y )
gives a collection of at most n cliques that cover every edge.

Lemma 4.5 LetG be a graphwithα(G ) = 2. IfX is a clique such that |X | ≥ n+1
2 and ecc(G −X ) ≤ |G −X |, then ecc(G ) ≤ n .

Proof Let |X | = k . If v ∈ V (G − X ) has a neighbor in X , let Gv be the graph induced by v and all its neighbors in
X . The collection of all Gv ’s covers all edges from X to G − X , and so G has an edge clique cover of size at most
(n − k ) + (n − k ) + 1 ≤ 2n − 2 n+12 + 1 = n .
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Lemma 4.6 IfG is a graph with α(G ) = 2,X ⊂ V (G ) is a vertex cut, and ecc(G [X ]) ≤ |X | < n−1
3 , then ecc(G ) ≤ n .

Proof Let |X | = k . Since α(G ) ≤ 2,G − X must have exactly 2 connected components (call them A and B ) and each
much be a complete graph. LetX = {x1 . . . , xk }, letAi = G [xi ∪ (N (xi ) ∩V (A))], and letBi = G [xi ∪ (N (xi ) ∩V (B))]. The
collection ofAi ’s and Bi ’s are complete graphs which cover all edges fromX toA ∪ B . By assumption, the edges ofG [X ]
can be covered by at most k complete subgraphs. Finally, wemust cover A and B . Note that if x1 is nonadjacent to a
vertex in B , then it must be complete toA (and vice versa). Thus, eitherA or B (possibly both) has already been covered,
and at most onemore complete subgraph is needed. Thus E (G ) can be covered by 3k + 1 ≤ n complete subgraphs.

Lemma 4.6 implies that anyminimal counterexample to Conjecture 1must have large connectivity. The following
lemma implies that in anyminimal counterexample, if it exists, any two non-adjacent vertices must have a large common
neighbourhood, and the one following it shows that the connectivity bound can be improved if one considers only
connected separators.

Lemma 4.7 LetG be a graph with α(G ) = 2 and let u,v ∈ V (G ) be a pair of non-adjacent vertices. If ecc(G [N (u) ∩ N (v )]) ≤
|N (u) ∩ N (v ) | and |N (u) ∩ N (v ) | ≤ n−2

5 , then ecc(G ) ≤ n .

Proof For two non-adjacent vertices u,v ∈ V , let Nu = N (u) \ N (v ), Nv = N (v ) \ N (u) and Nuv = N (u) ∩ N (v ).
We denote the cardinalities of these sets by nu = |Nu |, nv = |Nv |, nuv = |Nuv |. By Lemma 2.1, G [Nu ∪ {u }] and
G [Nv ∪ {v }] are cliques inG . By assumption, nuv cliques coverG [Nuv ]. Consider the remaining edges to be coverered
– (Nu ,Nv ), (Nu ,Nuv ), (Nv ,Nuv ), (Nuv , {u,v }) – where (A,B) denotes the set of edges between two sets A,B ⊂ V (G ).
Let C yx denote the clique induced by {x , y } ∪ (N (x ) ∩ Ny ), where x ∈ Nuv , y ∈ {u,v }. There are nuv such cliques
for each of y = u and y = v , and the collection of these cliques cover the edges (Nu ,Nuv ), (Nv ,Nuv ), and (Nuv , {u,v }).
To cover the remaining edges of (Nu ,Nv ), we choose the smaller of Nu and Nv (without loss of generality Nu ), and
for each z ∈ Nu use the clique induced by {z } ∪ (N (z ) ∩ Nv ). In total, the number of cliques used to cover E (G ) is
2 + nuv + 2nuv +min{nu , nv } ≤ 2 + n−2

5 + 2(n−2)
5 + 1

2

(
n − n−2

5 − 2
)
≤ n .

Lemma 4.8 Let G be a graph with α(G ) = 2. If G contains a minimal vertex cut S such that G [S ] is disconnected, then
ecc(G ) ≤ n

2 + 4.

Proof Suppose a subset S ofV (G ) separatesG into two cliques and is disconnected. If S induces a disconnected graph,
then this graph has exactly two connected components whichmust be cliques. ThenG consists of four pairwise disjoint
cliques, say S0, S1, S2, S3, with S = S0 ∪ S2 andV (G ) \ S = S1 ∪ S3 and (Si , Si+2) = ∅ (additionmodulo 4). Observe that
S1 ∪ S3 is also a separating set ofG and one of the two separating sets has at most half of the vertices ofG . Without
loss of generality, assume it is S . Further, each of the cliques Si is the union (as described above) of two sets of vertices,
those adjacent to all of Si+1 and those adjacent to all of Si−1. Let us denote these sets by S+i and S−i . Clearly the sets
Si ∪ S+i−1 and Si ∪ S−i+1 induce cliques inG and cover most of the edges ofG , in particular all the edges of the cliques
induced by the Si . It remains to cover the edges between Si and S+i+1 and between Si and S−i−1. This is quite easy since
each vertex of Si only needs to cover the edges to at most one of S+i+1 and S−i−1. The cliques consisting each of a vertex
x ∈ S∗

j
\ (S+

j
∩ S−

j
) for j = 0, 2, and its neighbors in Sj ∗1 ( ∗ ∈ {+,−}) cover the edges that need to be covered and there

are at most n2 of them. Thus, ecc(G ) ≤ n
2 + 4.

From Lemmas 4.1 to 4.8, wemay deduce the following:

Theorem 4.9 IfG is a minimal counterexample to Conjecture 1, then
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1. ∆(G ) < n − 1;
2. δ(G ) ≥ n

2 − 1;
3. G contains no vertices x , y such that N (x ) ⊆ N (y ) or such that N [x ] ⊆ N [y ];
4. κ(G ) ≥ n

3 and any minimal vertex cut induces a connected subgraph ofG ;
5. ω(G ) ≤ n

2 ;
6. for any pair u,v of nonadjacent vertices, nuv > n−2

5 ;

Furthermore, since the proofs of Lemmas 4.1 to 4.8 are all inductive, Theorem 4.9 holds when restricted to any
class G of graphs having some hereditary property P (in particular, forH -free graphs, which we consider in Section 5.3).

5 | COVERINGS IN PARTICULAR GRAPH CLASSES

This final section considers ecc(G ) for particular classes of graphs when restricted to those satisfying α(G ) = 2.

5.1 | Bounded vertex cover number

Lemma 5.1 IfV (G ) can be covered by k disjoint cliques of size n1 ≥ n2 ≥ . . . ≥ nk , then ecc(G ) ≤ k +∑k
i=1(i − 1)ni .

Proof Weproceed by induction on k . The statement is trivial when k = 1, so assume that k > 1 and that the statement
holds for all positive integers less than k . LetQ i be the clique of size ni in the vertex cover given by the statement of the
theorem, and letG ′ = G −Qk . SinceG ′ can be covered by k − 1 cliques, ecc(G ′) ≤ k − 1 +∑k−1

i=1 (i − 1)ni . We extend this
clique cover as follows. First, for each q ∈ Qk and i ∈ {1, . . . , k − 1}, add the clique q ∪ (NG (q ) ∩Q i ). This adds (k − 1)nk
cliques which cover all edges with exactly one end inQk . Adding the cliqueQk gives our desired clique cover of size
k +

∑k
i=1(i − 1)ni .

A graphG is called tame if there exists a connected claw-free graph H with α(H ) ≥ 3 such that G is an induced
subgraph ofH . In [4], it is shown that ifG is a tame graph, then ecc(G ) ≤ n + 1, and further that ecc(G ) ≤ n ifG is not
the union of 3 cliques. They note, specifically, that graphs with independence number 2which are the union of 3 cliques
are tame. Lemma 5.1 gives a similar result for graphs which are the union of 3 cliques, with the requirement thatG
be tame omitted (in fact, no requirement on the independence number of the graph is imposed). Wemake use of this
result in Section 5.3 for a specific class of graphs whose vertices can be covered by three cliques or, equivlantly, whose
complement is 3-colourable.

Corollary 5.2 If χ(G ) can be properly 3-coloured with colour classes of size p ≥ q ≥ r , then ecc(G ) ≤ 2r + q + 3 and, in
particular ecc(G ) ≤ n + 3.

Note that a further corollary to Corollary 5.2 is that ifG is a minimal counterexample to Conjecture 1, then either
χ(G ) ≥ 4 or every proper 3-colouring ofG has colour classes of roughly equal size.

In light of the bound given in Corollary 2.6, we also note the following can be proven by a similar argument:

Corollary 5.3 If χ(G ) = 4, then ecc(G ) ≤ 3
2 n + 4.
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5.2 | Fixed diameter

We show that any future work can be restricted to those graphs having diameter exactly 2.

Proposition 5.4 IfG is a graph with α(G ) ≤ 2, thenG has diameter at most 3.

Proof By contradiction, suppose that there is a vertex u and vertices vi , i = 1, 2, 3, 4 such that vi is at distance i from u .
The independent set u,v2,v4 contradicts the assumption of α(G ) = 2.

Theorem 5.5 IfG is a graph with α(G ) = 2 and diam(G ) = 3, then ecc(G ) ≤ d n2 e + 1.

Proof Let u,v ∈ V (G ) be at distance 3. Let Ni (u) denote the set of vertices at distance i from u inG . By Lemma 2.1,
the sets Ni (u) induce complete graphs for i = 1, 2, 3, since there are no edges between Ni (u) and Ni+2(u) for i = 0, 1.
Further, the set N2(u) ∪ N3(u) induces a complete graph since if u3 ∈ N3(u) and u2 ∈ N2(u) are not adjacent, the set
{u,u2,u3 } is independent. Thus N2(u) ∪ N3(u) and N [u] are two cliques which cover all edges ofG except those having
one end in N1(u) and the other in N2(u). LetA be the smaller of N1(u),N2(u) and let B be the other. Clearly |A | ≤ n−2

2

and the cliquesCx induced by {x } ∪ (N (x ) ∩ B) for x ∈ A cover the remaining edges. Thus E (G ) is covered by at most
2 + d n−22 e = d

n
2 e + 1. Note that d n2 e + 1 ≤ n whenever n ≥ 2, and that this is the case in a graph of diameter 3.

5.3 | Forbidden induced subgraphs

Recall that a graphG is calledH -free if no induced subgraph ofG is isomorphic toH . In this section, we give bounds on
ecc(G ) for a variety ofH -free graphs, ultimately showing that Conjecture 1.1 holds when restricted toH -free graphs if
H is any graph on four vertices. To this end, we remind the reader of the graphs on four vertices which do not contain
three independent vertices, given in Figure 1.

2K2 P4 co-claw C4 paw diamond K4

F IGURE 1 4-vertex graphs with α ≤ 2

Proposition 5.6 IfG is 2K2-free and α(G ) = 2, then ecc(G ) ≤ n .

Proof Let x and y be non-adjacent vertices. Since α(G ) = 2, {x , y }must dominate the graph. Let X = N (x ) \ N (y ),
Y = N (y ) \ N (x ), and Z = N (x ) ∩ N (y ). By Theorem 4.9 and the observation at the end of Section 4 that the theorem
applies toH -free graphs, wemay assume thatX andY are non-empty. Since α(G ) = 2, each ofX andY is a clique; since
G is 2K2-free,X is complete toY . ThusX ∪Y is a clique. Let n′ denote the order ofG − {x , y } − X −Y . By induction,
ecc(G − {x , y } − X −Y ) ≤ n′. The remaining edgesmay be covered by the cliques x ∪ X , y ∪Y , andX ∪Y , and so the
edges ofG may be covered by at most n′ + 3 < n cliques.

Proposition 5.7 IfG is P4-free and α(G ) = 2, then ecc(G ) ≤ n .
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Proof It is well known (see, e.g., [10]) that any P4-free graph contains adjacent twins (that is, two vertices with identical
closed neighbourhoods), and so the bound follows immediately from Lemma 4.2.

Proposition 5.8 IfG is co-claw-free and α(G ) = 2, then ecc(G ) ≤ n .

Proof The assumptions onG imply thatG is the disjoint union of isolated vertices, paths, and cycles of length at least 4.
IfG has an isolated vertex, thenG has a universal vertex and the result follows from Lemma 4.1.1. If some connected
component of G is a path, then let x be an end of the path and y a neighbour; in this case, NG (y ) ( NG (x ), and the
result follows from Proposition 4.3. The final case to consider is thatG is a collection of disjoint cycles. It follows that
χ(G ) ≤ 3, andG can be 3-coloured with colour classes of size p ≥ q ≥ r , where r equals the number of odd cycles in
G . If 2r + q + 3 ≤ n , then ecc(G ) ≤ n by Lemma 5.2. Suppose that 2r + q + 3 > n . Since q ≤ 1

2 (n − r ), it follows that
3r + 6 > n . Combining this boundwith the fact that n ≥ 5r , we have that n < 15 and so r < 3. If r = 2, thenG must be
the disjoint union of two 5-cycles. If r = 1, then n ≤ 8 andG is a 5-cycle or 7-cycle, and if r = 0 thenG is a 4-cycle. It is
easy to check that each of these three graphs satisfy ecc(G ) ≤ n , completing the proof.

Rather than considering the cases of C4, the paw, and the diamond separately, we prove a stronger result on
P2 ∪ P3-free graphs (where P2 ∪ P3 denotes the complement of the disjoint union of a 2-vertex path and a 3-vertex path),
noting that P2 ∪ P3 contains each ofC4, the paw, and the diamond as an induced subgraph.

F IGURE 2 P2 ∪ P3

Theorem 5.9 IfG is P2 ∪ P3-free and α(G ) = 2, then ecc(G ) ≤ n .

Proof LetG be aminimal counterexample. Asmentioned at the end of Section 4, Theorem 4.9 holds when restricted
to H -free graphs; for the rest of this proof we let H = P2 ∪ P3. In particular, we may assume thatG has no universal
vertex, and that G contains no pair of vertices u,v such that N (u) ⊆ N (v ) or N [u] ⊆ N [v ]. We may also assume, by
Lemma 2.2, thatG has a dominating edge x y . Let us denote byX ,Y , Z the setsX = N (x ) \ N (y ),Y = N (y ) \ N (x ), and
Z = N (x ) ∩ N (y ). Note thatX andY are cliques.

It is easy to see that because the graph isH -free, every vertex inX has at most one neighbour inY and vice versa.
Moreover if a vertex u ∈ X has no neighbour inY then N [u] ⊆ N [x ], a contradiction. Thus,X andY have same order
and the edges betweenX andY form a perfect matching x1y1, x2y2, . . . , xp yp .

Let z be a vertex in Z . It is easy to see that if z is not adjacent to yi then it is not adjacent to xi , since the graph is
H -free. Furthermore, z must be adjacent to every other xj and yj since α(G ) = 2. This implies that Z can be partitioned
(Z0, Z1 . . . Zp ), where Z0 is the set of vertices in Z adjacent to every vertex in X ∪Y and Zi the set of vertices in Z
adjacent to every vertex inX ∪Y except xi and yi . Note, moreover, that for every i ≥ 1, Zi is a clique since α(G ) = 2 and
xi is a non neighbour of the vertices in Zi . Figure 3 represents the graph at this point of the proof; we proceed by cases
on possible values of p .
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x1

x2

x3

xp

y1

y2

y3

yp

x y

X Y

Z1

Z2

Z3

Zp

Z0

Z

F IGURE 3 The structure of aminimal counterexample to Theorem 5.9.

Case 1: p ≥ 4
We claim that Z is a clique. Let i and j be distinct integers between 0 and p , and let r , s be distinct integers in
{1, . . . , p } \ {i , j }. The vertices {x , yr , xs } induce a P3 which dominates Zi ∪ Z j , and so Zi ∪ Z j is a clique, and thus so
is Z . Wemay then cover the edges ofG with all cliques of the form{xi , yi } ∪ Z \ Zi together with the three cliques
{x , y } ∪ Z , {x } ∪ X and {y } ∪Y .

Case 2: p = 3
Let i be an integer between 1 and p , and let r , s be distinct integers in {1, . . . , p } \ {i }. The vertices {x , yr , xs } induce a
P3 which dominates Zi ∪ Z0 , and so (as in Case 1), Zi ∪ Z0 is a clique. In particular, if Z0 is non-empty, then each element
of Z0 is a universal vertex inG , a contradiction. Thus, wemay assume that Z0 = ∅.

Let t = n − 8 be the number of vertices in Z . If G [Z ] has no isolated vertex, then it is possible to cover all the
edges ofG [Z ]with t cliques by induction. We add the edge x y to every clique to get a family of t cliques that cover all
edges within the graph induced by Z ∪ {x , y }. On the other hand, if Z has an isolated vertex u , then it has exactly one
since α(G ) = 2. We can then cover the edges ofG [Z ] by t − 1 cliques by induction, add the edge x y to each of those
cliques, and add the triangle x yu to get a family of t cliques that cover all edges within the graph induced by Z ∪ {x , y }.
We finally add the two cliques {x } ∪ X and {y } ∪Y and the following six cliques to obtain our desired edge cover:
{x1, y1 } ∪ Z2, {x1, y1 } ∪ Z3, {x2, y2 } ∪ Z1, {x2, y2 } ∪ Z3, {x3, y3 } ∪ Z1, {x3, y3 } ∪ Z2.

Case 3: p = 2
By a similar argument as in Case 2, we use the P3 induced by {x , y1, x2 } to deduce that Z0 is a clique. Also by a similar
argument to that in Case 2, it is possible to cover the edges of G [Z ∪ {x , y }]with t = |Z | = n − 6 cliques. We add
the two cliques {x } ∪ X and {y } ∪Y and the following four cliques to obtain our desired edge cover: {x1, y1 } ∪ Z0,
{x1, y1 } ∪ Z2, {x2, y2 } ∪ Z0, {x2, y2 } ∪ Z1.
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Case 4: p = 1
Again, we apply an inductive argument to get a family of cliques of size |Z | = n−4which covers all edges ofG [Z ∪{x , y }].
Now, since x and y1 are non-adjacent vertices which are complete to Z0 , there can be no P3 in the complement ofG [Z0]
asG isH -free. In other words, Z0 must be a cliqueminus amatching. In particular, Z0 is the union of two cliquesA and
B . Nowwe add the cliquesA ∪ {xx1 },A ∪ {y y1 }, B ∪ {x1y1 } B ∪ {x y } to obtain the desired edge cover.

Case 5: p = 0
In this case, x and y are universal vertices, a contradiction.

Finally, we note that any K4-free graphwith α(G ) = 2 has at most 8 vertices, as R (3, 4) = 9. It is easily checked that
these graphs, presented as their graph6 strings in Figure 4 (see [11] for their complements), satisfy Conjecture 1.

@

A?

A_

BG

BW

Bw

CJ

CK

CL

CN

C]

Cˆ

DJk

DK[

DK{

DLo

DL{

DNw

D]{

D‘K

Dbk

EJaG

EJeg

EJnW

EJqw

EKlw

EK~o

ELpw

ELrw

ELv_

EL~o

E]~o

E‘NG

E‘NW

E‘]o

Eklw

FJvdw

FL]uW

FLr~o

FLvvO

F‘v‘w

Fb]lg

Fbg}w

FjaHw

FkYXw

G}UczW

G]ˆVLo

GJnTUK

F IGURE 4 The graph6 strings of those graphs satisfyingω ≤ 3 and α ≤ 2.

The results of this section imply the following:
Theorem 5.10 LetG be a graph with α(G ) = 2, and letH be any graph on four vertices. IfG isH -free, then ecc(G ) ≤ n .

5.4 | Graph joins

LetG andG ′ be two graphs. the complete join ofG andG ′, denotedG ∨G ′ is the graph obtained by taking the disjoint
union ofG andG ′ and adding all edges in between the two.

It is clear that α(G ∨G ′) = max(α(G ), α(G ′)) and in particular α(G ∨G ′) = 2 if α(G ) = α(G ′) = 2. Therefore, in view
of the conjectures examined here, one natural question is to ask whether ecc(G ∨G ′) ≤ ecc(G ) + ecc(G ′).

The following theorem answers whenG ′ is a particular graph. IfH is a spanning subgraph ofH ′, then we say thatH ′
is a spanning supergraph ofH .
Theorem 5.11 LetG be a graph such that α(G ) = 2. IfH is an induced subgraph ofG andH ′ is any spanning supergraph ofH ,
then ecc(G ∨ H ′) ≤ ecc(G ) + |V (H ′) |
Proof Let x1, x2, . . . xn be the vertices ofG such that x1, .., xk are the vertices ofH inG . Let x ′1, . . . , x ′k the vertices of
H ′ labeled such that xi xj ∈ E (H ) → x ′

i
x ′
j
∈ E (H ′). Let K1, . . .Kp be an optimal edge covering set of cliques for G. For

i = 1 . . . p , consider the following set of vertices inG ∨ H ′ :

K ′i = Ki ∪ {x
′
j such that xj ∈ Ki }.

Similarly for i = 1 . . . k define

K ′′i = {x
′
i } ∪ (G \ N [xi ]) ∪ {x

′
j such that x ′i x ′j ∈ E (H ′) and x ′i x ′j < E (H )}
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Weshow thatK ′′
i
is a clique. By Lemma2.1, (G \N [xi ]) induces a clique. Also, {x ′i }∪{x ′j such that x ′i x ′j ∈ E (H ′) and x ′i x ′j <

E (H )} induces a clique, because if for some j ′1 and j ′2, x ′j ′
1
and x ′

j ′
2
are non-neighbors, then xi , xj ′

1
and xj ′

2
form an

independent set inH , a contradiction. Hence, K ′′
i
is a clique. This gives (p + k ) cliques which cover all edges ofG ∨ H ′.

6 | CONCLUSION

In this work we studied a conjecture that, if α(G ) = 2, then the edge clique cover number ofG is at most |V (G ) | = n . We
have provided the first known linear bound of 2n − θ(√n log n), and showed that under additional structural conditions
the conjecture holds. However, a deeper look into our proof of Theorem 2.4 suggests that perhaps the upper bound
provided by this theorem is nearly tight. The linear bound given in Corollary 2.6 relies on the lower bound for the
Ramsey number R (3, t ), which is known to be tight (ignoring smaller order terms). By taking the complement of a graph
which attains this bound, we have a graphG with α(G ) = 2 and lowest possible clique number. By adding a linear number
of dominating edges, onemay hope to construct an example where the proof technique of Theorem 2.4 is the optimal
way of finding an edge clique cover. Currently, the only known technique for the construction of such ingredient graphs
is the random triangle-free process given by Kim [8]. The exploration of the details of this technique and its applications
to Conjecture 1 is left as an open direction for future research.
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