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ARTICLE INFO ABSTRACT

Keywords: Localization of damage in conventional brittle materials is the source of a host of undesirable
Metamaterials, quasi-brittleness, duc- effects. In this paper, we show how artificially engineered metamaterials with all brittle con-
tility, micro-cracking, damage, frac- stituents can be designed to ensure that every breakable sub-element fails independently. The
ture, high gradients, phase-field. crucial role in the proposed design is played by high contrast composite sub-structures with

zero-stiffness, furnishing nonlocal stress redistribution. The de-localized cracking of the re-
sulting nominally brittle systems can be linked to the fact that their continuum description is
dominated by gradient rather than classical elasticity. By engineering a crossover from brittle
to effectively ductile (quasi-brittle) behavior, we elucidate the structural aspects distinguishing
macro-cracking-dominated fracture from micro-cracking-dominated damage.

1. Introduction

Brittle materials fail with the development of a system-size crack which originates from a microscopic flaw and
advances by focusing singular stresses near the tip [1, 2]. Such extreme stress localization can be traced to the non-
convexity of the inter-atomic potential [3, 4] leading to softening of elastic response with eventual loss of ellipticity of
equilibrium equations [5, 6]. In applications, brittleness is often a source of undesirable effects from low toughness to

C the catastrophic character of dynamics [7, 8].
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Many ingenious strategies for tempering brittleness and creating effective ductility have been proposed in the
literature, including toughening by micro-cracking [9, 10], rigidity mitigation [11], engaging phase transformations
[12, 13] and utilizing multi-level failure mechanisms [14, 15]. The idea is to avoid the unstable crack propagation
[16] by creating obstacles and dissipation centers [17, 18, 19] that can trap the system in a meta-stable configurations
[20, 21]. It was shown that such crack-channeling mechanisms can be tailored to achieve high energy absorption and
that the resulting nominally brittle artificial materials can rival their natural ductile analogs [22, 23, 24].

In this paper, we propose a fundamentally different approach to fracture de-localization. The idea is to balance
progressive softening of the material by strengthening of the nonlocal interactions ensuring stress redistribution and
preventing strain localization. The task of transmitting nonlocal interactions is assigned to a distributed sub-structure
of effective backbones whose elasticity is bending dominated.

As a proof of principle, we develop here a prototypical model of a mechanical system with nominally brittle con-
stituents at the micro-scale. It is intended to show a crossover from the conventional elastic behavior at small tensile
loading (and no damage) to the bending dominated elastic response at considerable tensile loading (and appreciable

7 damage). We show that such transition ensures that instead of softening induced failure localization, the emerging
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nonlocal elasticity redistributes the stress globally so that every single brittle sub-element breaks independently. The
proposed design, relying on the stabilization of floppy modes by bending, has a bio-mimetic nature as it structurally
imitates some known biological prototypes [25, 26]. The proposed composite structure with variable-connectivity can
be built already using conventional techniques of additive manufacturing.[27].

Our approach is deliberately minimalistic as we deal only with the most simple one-dimensional local (softening)
and nonlocal (bending dominated) elastic sub-structures. The local sub-structure is represented by a chain of springs
with Lennard-Jones type nonconvex potential. The nonlocal sub-structure, is a zero-stiffness pantograph built of in-
extensible but flexible beams connected through pivots [28, 29]. The two sub-structures are coupled in such a way
that in the initial state, where all breakable springs are intact, the whole system is over-constrained [30, 31]. As the
structure is stretched, the geometrical constraints force the breakable elements to fail, and the composite mechanical
system progressively transforms into an under-constrained one with dominating bending (gradient) elasticity. While
we use only the simplest nonlocal sub-structure in our analysis, other intentionally floppy structural designs could be
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De-localizing brittle fracture

used as well [32]. A general analysis of such systems can be found in the theory of high contrast elastic composites
[33, 34]. in whose homogenized continuum representation, the higher-order elasticity appear already at the leading
order bringing into the theory an internal length scale [35, 36, 37].

We recall that, in the absence of a floppy reinforcing sub-structure, a chain of breakable springs loaded in tension
fails abruptly with a formation of a single macro-crack [38]. Here we show that the same system with the reinforcement
breaks gradually and exhibits distributed micro-cracking. The whole process can be interpreted as damage spreading or
even viewed as a propagating phase transition front separating affine and non-affine deformation states. Most remark-
ably, we show that, due to the presence of nonlocal reinforcement, the affine deformation is recovered at a sufficiently
large level of stretching with strain uniformity now being enforced exclusively by bending elasticity. Such re-entrant
homogeneity of deformation distinguishes the nonlocal brittle structure from the conventional local brittle solid, which
cannot "heal’ the developed deformational non-affinity in monotone tension.

In a continuum framework, the proposed composite structure can be modeled as a softening elastic bar with a
strain gradient term in the energy representing bending elasticity. The resulting continuum model takes the classi-
cal Ginzburg-Landau (GL) form with macroscopic strain playing the role of order parameter [39, 40] and the usual
double-well energy replaced by a Lennard-Jones type potential. A model of this type was considered in [41] under the
assumption that ’bending stiffness’ diminishes with deformation, which cancels the re-entry effect. Another related
model is a strain gradient regularization of damage mechanics [42] with the unrealistic assumption that the nonlocal
stiffness is independent of damage [43].

A conceptual link can also be built with models developed to describe ductile fracture in plastic solids where the
authors use the deformation theory of plasticity and complement the effective local energy by an additive weakly
nonlocal term describing strain gradient hardening [44, 45].

We show that the appropriately calibrated GL continuum model reproduces all the essential features of our pro-
totypical discrete structure, including the propagating damage fronts and the re-entrant behavior. We also consider a
version of the GL model with a constraining linear elastic environment, which is particularly relevant for biological
applications [46]. In this setting, the effectively ferromagnetic interactions implied by bending elasticity compete with
effectively anti-ferromagnetic interactions brought by the elastic background. The resulting mechanically frustrated
system is shown to generate patterns with alternating affine and non-affine behavior.

If the nonlocal reinforcement is removed, the remaining local sub-structure represents a conventional brittle ma-
terial that can be simulated using the gradient damage model [47, 48, 49, 50] or any other version of the phase-field
model of fracture [51, 52, 53, 54]. We show that in this case, neither the distributed damage nor the re-entrant behav-
ior occurs. Even when the elastic environment is present, the broad non-affine zones are absent in this setting, being
replaced by the pattern of highly localized macro-cracks.

The rest of the paper is organized as follows. In Section 2, we introduce the discrete model of the pantograph-
reinforced breakable chain and show that fracture in this system is de-localized. In Section 3, we build a continuum
version of the same system and show that it is fully faithful to its discrete prototype. In Section 4, we study the
case when the continuum model is constrained by an elastic environment and obtain regular patterns of alternating
affine and non-affine behavior. In Section 5, we compare the behavior of the reinforced chain with the behavior of the
corresponding brittle system represented by a phase-field model. In the final Section 6, we present our conclusions.

2. Meta-material design

To motivate further developments, consider a conventional mass-spring chain constrained to remain on a straight
line, see Fig. 1. The goal of this basic pre-model is to mimic the mechanical behavior of a softening nonlinear elastic
material. To this end, we assume that the springs are ’breakable’ and that their mechanical response is described by a
non-convex elastic potential of Lennard-Jones type.

€= o —o— T —o— T —o— T —o— TN —® m=p

Figure 1: A chain of particles connected in series by breakable springs and loaded in tension.

Define the horizontal displacement u; of the mass point with index i. Then the energy of the chain can be then
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De-localizing brittle fracture

written in the form
N-1 P
Es=a Y f(=—) M
i=0

where a = 1/ N is dimensionless reference length. For our numerical illustrations, concerned exclusively with tension,
it will be sufficient to use an analytically convenient expression for the elastic potential f(x) = x*/(2+x2) where x > 0,
see Fig. 2.

0 ‘5 8 1‘0 1‘5 20
Figure 2: The Lennard-Jones-type elastic potential of a 'breakable’ spring f(x) which we use in our numerical experiments
simulating tensile loading. Here £, is the turning point where the affine response of the mass spring chain with nearest
interactions shown in Fig. 1 becomes unstable.

Suppose next that the chain, defined by the energy (1), is stretched quasi-statically in a hard device so thatuy = —€/2
and uy_; = €/2. Here € > 0 is the average strain which will play the role of loading parameter. To find the response
we need to solve the equilibrium equations 0E¢/0u; = 0 with 1 < i < N — 2 for each value of €. Stable equilibria
can be chosen using energy minimizing algorithms mimicking overdamped viscous dynamics. In this framework,
quasi-static loading protocol, implying zero effective viscosity limit, maintains the system in a local minimum of (1)
till it ceases to exist and then during isolated switching events performs the selection of new equilibrium branches [55].
Later in the paper we also discuss the global minimum path which implies at each value of the loading parameter the
absolute energy minimization. This branch selection strategy, which is not realistic in the standard fracture setting, can
be viewed as a parametric description of a quasi-static thermal equilibrium in the zero temperature limit.

05 160

— - homogeneous e — - homogeneous Cr
08F  —— numerics Pras 04 numerics 140
s .
- 120
06 , 03 100 B
/ - -
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4 7 02
60
gq) \ AL
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Figure 3: Mechanical response of a simple chain with breakable springs, see (1) , subjected to quasi-static tensile loading
in a hard device: (a) the equilibrium elastic energy E¢(€) and, (b) the equilibrium stress o(€) = d E,/d¢, (c) the equilibrium
strain profiles ¢,(€). Here N = 50.

To illustrate the classical brittle fracture with ultimate (lattice scale) strain localization, we simulated a tensile
stretching of the chain with energy (1) and N = 50, see Fig. 3. Our incremental energy minimization approach
involves L-BFGS iterations [56] (imitating gradient flow) until the gradient norm, which we use in our convergence
criterion, is smaller than 107%. We then use the obtained pre-solution as an initial condition in Newton’s method [57],
which then furnishes the final solution. After the loading parameter is increased, the same protocol is repeated.

In Fig. 3 we show separately the equilibrium macroscopic energy, E(€), the equilibrium macroscopic stress ¢(€) =
d E/dé and the equilibrium distribution of the microscopic strain €; = (u;,| —u;)/a at the typical values of the loading
parameter €. As it is well known, the configuration in this case remains homogeneous (affine) till the loading parameter
reaches the value &, where 9 f /de> = 0, see Fig. 2. At this value of loading, the affine elastic branch becomes unstable,
and the stress drops to zero, see Fig. 3(b), as the strain abruptly localizes at the scale of the lattice, see Fig. 3(c). The

0O.U. Salman et al.: Preprint submitted to Elsevier Page 3 of 15
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location of the newly formed localized crack is accidental (controlled by an initial imperfection), and the only result of
the subsequent loading is the increase of its opening, see Fig. 3(c). Note that the dissipation during such a purely brittle
failure process, where essentially only one spring breaks, is considerably smaller than in the case of ductile damage
propagation where each spring can be expected to break individually.

To de-localize brittle fracture illustrated in Fig. 3, we now reinforce the series connection of breakable springs
by a sub-structure shown in Fig. 4. The role of the additional pantograph frame made of inextensible but bendable
beams connected by ideal pivots is to ensure that stress gets uniformly redistributed. While this sub-structure has zero
longitudinal macro-scopic stiffness in the sense that it does not resist affine deformations, the non-affine longitudinal
deformations remain energetically penalized due to the bending of individual beams.

OO

Figure 4: Floppy beam (pantographic) structure reinforcing a chain of breakable springs loaded in tension.

Suppose that such reinforced chain is again constrained to remain on a straight line. We can then write the (bending)
energy of the beams inn the form

N-1 32 2
AT (g u_ = 2u;
E, = 1 i+1 i—1 i i 2
p=a z, 5 <— 2)

2
i=1 a

where A, is a dimensionless length proportional to a with the coefficient depending on the bending stiffness of the
beams [58]. The total energy of the composite system is then

E=Eg+Ejg. (€)

We again load the system in a hard device with € being the loading parameter. No other constraints are imposed,
making the ends of the reinforced structure effectively moment free [59].

1.4 0.5 30
— - homogeneous B A — - homogeneous
1.2 — numerics Iy —— numerics
C 1 B’ 0.4
1k I 7, < - "
Pae rt
o8 [/ : b°'3 1
“ 1\
"ol / A 02fint
04! R ‘\
/ o A 01 A B
021 YA’ A (| S—— B Dy
0 | | L | 0 S e &
0 5 10_ 15 20 0 5 10 s 20
(a) € (b)

Figure 5: Quasi-static response of the composite system with a = 4, = 0.02 : (a) the equilibrium elastic energy E(¢); (b)
the equilibrium stress strain profiles ¢(€); (c) typical strain profiles. Under monotone quasistatic loading the homogeneous
(affine) state A" transforms into an inhomogeneous (non-affine) state A. This transition can be interpreted as the nucleation
of distributed damage at the boundary of the sample. The affine state is recovered when the inhomogeneous state B,
describing a developed damage zone, transforms into the homogeneous state B'. This re-homogenization transformation
would have happened at C if the system followed the global minimum path. Here N = 50.

The mechanical response of the reinforced chain is summarized in Fig. 5. As in the case of a simple chain, the
energy minimizer is affine at sufficiently small values of the loading parameter. However, at a critical value of the
load (point A’), we do not see the formation of an isolated localized crack. Instead the failure process starts with the
formation of a diffuse nucleus representing partially damaged material at one of the boundaries of the sample (transition
A’—A). As the loading continues, a diffuse zone of damage spreads through the structure. This process of successive
micro-cracking is accompanied by a progressive decline of stress. The "de-localized" failure advances from A to B
as more and more springs get broken, see Fig. 5(c). At another critical value of the loading parameter marked by B,

0O.U. Salman et al.: Preprint submitted to Elsevier Page 4 of 15
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the damage abruptly spreads through the remaining, still-intact part of the sample and the deformation becomes again
affine (transition B —B’). The newly acquired homogeneous response remains energy minimizing at larger strains.

If the simplest model of a breakable chain produces conventional localized fracture with an abrupt drop of stress
and low dissipated energy, the model of a nonlocally reinforced chain shows an unusual de-localized fracture with a
gradual decrease of stress and higher energy dissipation (compare the areas under the response curves in Fig. 3(b) and
Fig. 5(b)). In other words, instead of breaking in two parts, as it is anticipated from a brittle system, the reinforced
chain with breakable springs fragments uniformly into N equal parts.

3. Continuum model

To build the simplest (quasi) continuum approximation for the discrete model shown in Fig. 4 we need to consider
a limit of small a and construct the lowest order asymptotically equivalent continuum energy functional still carrying
a micro-scopic length scale a [60]. A straightforward expansion gives [61]

1 12
E= /0 ( fle) + 7‘5’2> dx, “)

where u(x) is the continuum longitudinal displacement field and € = «’ is the corresponding uniaxial strain. The energy
density (4) maintains the additive structure of its discrete analog (3) with the first term representing the breakable
springs and the second term describing the energy of bending. In our numerical illustrations we continue to use a
particular function f(¢) = £2/(2 + £7) and the parameter A, will again represent the dimensionless atomic length
scale. To model the system loaded in a hard device we again set u(0) = —£/2, u(1) = £/2 where £ > 0 is the
imposed strain. Given that the boundaries of the bar are moment free we assume that «’/(0) = /(1) = 0. Under
these assumptions the homogeneous (affine) configuration WOx) = (¢ /2)(2x — 1) is an equilibrium state at all £ which,
however, is expected to become unstable due to strain induced softening of the energy f.

To investigate the stability limits of the homogeneous state we write a linear equation for the displacement pertur-
bation s(x) in the form

02 f

L@ =0 ®)

2.
—ApsTT +
The corresponding boundary conditions are: s(0) = s(1) = s”(0) = s”’(1) = 0. The system becomes linearly unstable
when

02
a_é(g) = —22(nm)?, (6)

with unstable mode s(x) ~ sin(nzx). The solutions of (6) for the chosen potential f(g) and different values of 4, are
illustrated in Fig. 6(a).

If 4, is sufficiently small, the homogeneous (affine) configuration is stable in the two domains: for sufficiently
small loadings £ < €7 and for sufficiently large loadings £ > £7*, see Fig. 6(b), with the same critical mode number
n, = 1 for both instabilities, see Fig. 6(c). This result suggests the existence in the interesting range of small A; of
a re-entrant, isola type bifurcation [62]. When dimensionless parameter A, is large (large bending modulus or small
system size), the affine state is stable for all values of the loading parameter € which means that the failure takes place
gradually and uniformly throughout the whole system.

The energy minimizing inhomogeneous (non-affine) configurations can be found by solving the nonlinear equilib-
rium equation

2 f

LN
! 0€?

@' =0 7
with the boundary conditions on u(x) formulated above. The whole set of solutions can be obtained in quadratures and
analyzed in full detail. In particular, one can show that at £ the non-affine branch of equilibria with n = 1 bifurcates
from the homogeneous state subcritically and then reconnects to it also subcritically at £7*; the same branch contains
all nontrivial globally minimizing configurations. These general observations are illustrated in Fig. 7(a,b).
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Figure 6: Linear stability of the homogeneous state in a model of nonlocally reinforced chain: (a) bifurcation points, (b)
critical strains £ and & (c) critical wave number n,.
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Figure 7: The response of the nonlocally reinforced chain : (a) equilibrium energy-strain relations showing the two lowest
energy branches, (b) the corresponding stress-strain relations, (c) typical equilibrium strain profiles for the mode n = 1.
The inset in (a) shows the nucleation of the diffuse damage zone near the boundary of the sample (transition A’'>A). In
point B the non-affine state transforms into the affine state (transition B—B'); along the global energy minimization path
the same re-entry type transformation would take place in point C. The metastable equilibria corresponding to n =2 are
not reachable from the affine state under the assumption of overdamped dynamics. Here A, = 0.02.

The structure of the energy minimizing strain fields can be seen in Fig. 7(c). Instead of sharp displacement dis-
continuities, characterizing brittle fracture, we observe diffuse damage zones. Instead of sharp transition zones char-
acterizing conventional phase transitions, we observe broad transition layers separating the *phases’ of broken springs
where 9% f /de? < 0 and the dominating elasticity is of the bending (gradient) type, from the ’phases’ of intact springs
where 0% f /0g? > 0 and the dominating elasticity is still of the classical type.

The abrupt nucleation of the first domain of non-affinity takes place at £/ > £.. In the linear regime the corre-
sponding instability has a system size but then it partially localizes near the sample boundary in the nonlinear regime
(transition A’— A). As the applied strain £ increases, the non-affine phase proliferates towards the other boundary of the
sample while becoming progressively more inhomogeneous as successive springs continue to break. The affine state
is recovered through the discontinuous event which marks the complete annihilation of the non-affine phase (transition
B—B’), see Fig. 7(c).

The behavior of the continuum model is both qualitatively and quantitatively similar to what we have seen in the
discrete model, see Fig. 5. In particular, in both models we observe the abrupt emergence and subsequent prolifera-
tion of the non-affinity zones which contain inhomogeneously ruptured springs as well as the abrupt recovery of the
affine state as the rupture process saturates. The non-affine ’phase’, stabilized by bending (gradient) elasticity, does
not distinguish between individual micro-cracks and can be viewed at the macro-scale as the domain of developed
damage. We can therefore conclude that the subject of damage mechanics is the delocalized micro-cracking emerg-
ing when the competing localized macro-cracking is inhibited due to nonlocal stress redistribution conducted by an
under-constrained system of stress transmitting beams.

4. Elastic background

To show that the de-localized damage can also appear in the form of periodic spatial patterns, we now assume that
our reinforced breakable chain is coupled to an elastic background. For analytical transparency we assume again that
the parameter a is sufficiently small and adopt the quasi-continuum description encapsulated in (4).

0O.U. Salman et al.: Preprint submitted to Elsevier Page 6 of 15
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Under the assumption that the elastic background is uniformly pre-stretched with the same strain £ as we apply on
the boundaries of the chain, we can write the energy of the system in the form [63, 64]

2

1 i
E = / fle)+ =L + 1 u—u’(x))? ) dx, 8)
0 2 2/13

where u’(x) = (£/2)(2x — 1) and 4, is a new dimensionless length scale characterizing the strength of the coupling
between the breakable system and the linear elastic background. Note that in the expression (8) the elastic energy of

the background proper is effectively subtracted.

8
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Figure 8: Linear stability limits for the reinforced chain coupled with an elastic background: (a,d) bifurcation points, (b,e)
critical strains (€%, £**); (c,f) critical modes n,. Parameters: in (a-c) 4, = 0.02. In (d-f) 4, = 0.25.

The instability/bifurcation condition for the homogeneous state takes the form

2
o)t + ﬂ(g)(nz)z +Loo 9)
0€? A%
As in the problem without foundation, we obtain again that there are upper and lower critical strains £ and £7* which
again correspond to the same mode number n,, however, now we can have n, # 1, see Fig. 8. If we neglect the discrete-
ness of the thresholds, we can write the approximating formulas 02 f /de2(€,) = —2(A;/4,) and n, = 7~ (A;4,)~1/2.
The dependence of solutions of (10) on parameters 4; and 4, is shown in Fig 8(a,d) while the bifurcation thresholds
€ and £;* are illustrated in Fig 8(b,e). One can see that the non-affinity can be suppressed if the bending stiffness 4, is
sufficiently large or if 4, is small which means that the foundation-induced nonlocality is sufficiently strong. The wave
number of the unstable mode tends to zero when either 4, or 4, disappears: the former case implies the disappearance
of bending rigidity while the latter means the dominance of the elastic foundation, see Fig. 8(c,f).
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Figure 9: Pantograph reinforced chain coupled to an elastic foundation: (a) strain-stress relation along the first unstable
branch showing the abrupt transition A'=A; (b) stable and unstable equilibrium profiles associated with the transition

A'>A. Parameters: 4, =0.0167, 4, = 0.45.
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To reveal the post-bifurcational behavior we use the same boundary conditions as above, solve numerically the

nonlinear equilibrium equation

0> f 1
22"+ =W - —=u-u’(x) = 0. (10)
02 A2
2

and then trace the loading dependence of the response using the continuation algorithm [65]. The equation (10) de-
scribes the intricate interplay between the localization tendency due to nonconvexity of the energy f (u”), the coarsening
effect of gradient elasticity which represents in this problem elastic interaction of the ferromagnetic-type, and the mi-
crostructure refinement favoring anti-ferromagnetic type interactions due to the elastic background [64]. The ensuing
competition leads to the formation of finite scale periodic patterns which we illustrate in Fig. 9-11.

A detailed description of the first nucleation event at € = 5: is shown in Fig. 9. The abrupt drop of stress at point A’
indicates that the homogeneous state gets replaced by the islands of diffuse damage (transition A’—A). Since the linear
instability at £} corresponds to n = 4, the emerging non-affine configuration is characterized by three symmetrically

placed damage zones: one inside the sample and two on the boundaries, see Fig. 9(b).

0.04 T T T T T T T 0.5 T T T T T T T
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y n=4 ——
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-0.08 0 05 1 15 2 25 3 385 4 0 05 1 15 2 25 3 35 4
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Figure 10: Quasi-static loading of a reinforced chain coupled to an elastic foundation: (a) the energy difference between
the non-affine equilibrium configurations and the corresponding unstable affine configuration; (b) macroscopic strain-stress
relations along different equilibrium branches; The transitions C'—»C, B'>B and F—F’ are the equilibrium branch switching
events taking place along the global minimization path. Parameters: A, =0.0167, 4, = 0.45.

In Fig. 10(a) we show the strain dependence of the difference between the macroscopic energy of the affine con-
figuration f(€) and the macroscopic energy of the bifurcated (non-affine) configuration E(€) from (8). The non-affine
branches corresponding to different mode numbers # cross and all of them eventually reconnect with the affine branch.
The macroscopic stress ¢(€) = d E /d¢ along the corresponding solutions of (10) is shown in Fig. 10(b).

6 . . . . 05 ———— —
homogeneous — -
ned ——

5
04

05
homogeneous — -
n=4 ——

N e \ s —

03

(a)o 02 04X 06 08 1(b)005 s 2§25 3 35 A(C) ’ } v (d) ° €

Figure 11: Branch switching events along the reversible global minimum path for the reinforced chain on elastic foundation
foundation. Symmetry is lost during the C—C’ transition and is recovered during the B'>B transition. Parameters:

4, =0.0167, A, = 0.45.

As the loading parameter £ increases, the domains of non-affinity grow till the strain threshold is reached when the
remaining affine domains abruptly disappear and the homogeneous state gets restored. In Fig. 11, we illustrate some
of the equilibrium branch-switching events taking place along the corresponding global minimization path. First, the
non-symmetric configuration C* which is nucleated at point G, see Fig. 10(a), and corresponds to n = 3, undergoes
a transformation C’— C to the symmetric configuration corresponding to n = 4. As a result the second surface-
bound damage zone appears, see Fig. 11(a,b). Then, we observe the reverse transition B’—B from the symmetric
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configuration with n = 4 to the nonsymmetric configuration with n = 3. As the symmetry is lost one of the surface-
bound diffuse damage zone disappears appears as it is illustrated in Fig. 11(c,d). Finally, the affine configuration is
recovered when the symmetric state F with n = 4 abruptly transforms into the homogeneous state, see Fig. 10(a). We
remark that the analysis of the global minimization path was presented above only for completeness of the picture.
While the dissipation free nature of this path obviously fails to describe macroscopic material failure, it may still be
relevant for the modeling of slowly loaded quasi-reversible cohesive biological systems.

To summarize, our analysis shows that, despite the brittle nature of the constituents, the material response of
the reinforced chain is incompatible with the conventional scenario of highly localized cracking. Instead, our model
predicts the emergence of de-localized damage zones which, in the presence of elastic background, advance from
multiple sources. To show that in the case of conventional brittle cracking the elastic background cannot generate
by itself similar pseudo-ductile response, we present in the next Section a detailed study of the chain with breakable
elements coupled to the same elastic foundation but with the pantograph sub-structure removed.

5. Brittle fracture

For continuum representation of a simple chain with breakable elements, we use a phase-field computational ap-
proach [53, 49, 66]. In such theories, which also have the basic GL structure, the linear elastic stiffness degrades with
damage described by a scalar variable [47]. The square of the gradient of this internal variable is usually chosen to
control the energy cost of the ensuing non-affinity [67].

Suppose that the implied damage variable is a(x) with @ = 0 (¢ = 1) corresponding to unbroken (fully broken)
state. If the elastic environment is first neglected, we can then write the continuum energy of the system in the form

1 1 12
E=/"<—gw§+hmnuim¥>dx (11)
o \ 2 2

In (11), the first term, quadratic in strain, describes the linear elasticity of unbroken springs. The second term, inde-
pendent of strain, is the energetic price of breaking. The third, regularizing term, penalizes the inhomogeneity of the
phase-field a(x) and brings into the theory an internal length scale 4.

To find in this case the equilibrium mechanical response, we need to solve the system of nonlinear Euler-Lagrange
equations

AVA — O
{(g(a)u ) B 12

-2’ + %Z—i(u’)z +- =0

Our numerical experiments with the discrete chain shown in Fig. 1 will be matched if we assume that g(a) = (1 — a)?,
h(a) = a? and choose the boundary conditions in the form u(0) = —€/2 and u(1) = €/2. Since the discrete theory does
not operate with the phase-field variable a(x) directly, we choose at the ends the simplest natural boundary conditions
a’'(0) = &’(1) = 0. The homogeneous solution, representing in this case the principal branch of equilibria, is then
described by the formulas: u°(x) = (£/2)(2x — 1), a°(x) = £2/Q2 + &2).

Denote by s(x) ~ sin(nzx) an admissible small perturbation of the displacement field u°(x) and by o(x) ~ cos(nzx)
the analogous perturbation of the phase-field «°(x). Then the linear stability conditions for the principle branch of
equilibria can be written as

() = — 48202 f /0% (8) (13)
 2U0f [0e(@)E — 02 [0X(E))

where we introduced the effective elastic energy f(¢) = £2/(2 + £2) which is obtained from the energy density %(1 -
a)?€? + a? by the adiabatic elimination of the phase-field variable (using the relation a = a°).

The A, dependence of the solutions of (13) is illustrated in Fig. 12(a). We find that always n, = 1, see Fig. 12(c).
The A, dependence of &, can be found from the equation

0% f /o€ (E,)
of /de(E,)

E.(482 — 2in?) + i =0. (14)
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Figure 12: Phase-field model of brittle fracture: stability limits for the homogeneous state. Dependence on the regular-
ization parameter A, of: (a) bifurcation points; (b) critical strains £,; (c) critical modes n,.

which for our choice of the function f(¢) reduces to /ﬁnz = 36‘_62 — 2, see Fig. 12(b). Note that in contrast to the case
of the pantograph-reinforced chain shown Fig. 4, the affine configuration never re-stabilizes after the initial instability
because the system remains singularly broken, see Fig. 12(b). Such response, however, is in full agreement with the
behavior of the simple breakable chain shown in Fig. 1.
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Figure 13: Overdamped phase-field model of brittle fracture is used to simulate the quasi-static stretching of an initially
homogeneous brittle bar: (a) macroscopic energy-strain relation, crack nucleation takes the form of A'—A transition; (b)
macroscopic stress-strain relation; (c,d) strain and damage profiles before and after the A'>A transition. Here 4, = 0.158

The representation of fracture localization in the phase-field model is illustrated in Fig. 13, where we show solutions
of the nonlinear system (12) obtained by using Newton’s method with arc-length continuation implemented as in [65].

The stretching response of this continuum system is basically the same as of the corresponding discrete model:
a single crack forms abruptly (A’—A transition in Fig. 13(a,b)). The fact that the crack forms on one of the bound-
aries is due to a small bias due to the phase-field related boundary conditions. The subsequent loading leads to the
increase of the amplitude of the localized strain. The only noteworthy difference between the behavior of the original
discrete system and its continuum analog is a somewhat excessive smearing out of the crack caused by the phase-field
regularization, see Fig. 13(c,d)

Given that our phase-field model reproduces adequately the mechanical response of a simple breakable chain we
can consider next the behavior of the same chain coupled to an elastic background. The dimensionless energy in this
case reads

1
E= [ @) + @)+ B + - ) ax, (15)
0 2

and to find equilibrium configurations we need to solve the nonlinear system

g’y = zw=u") =0
2.1 4 1 /12/ 208 | oh (16)
—ﬂl(l +§(u) £+£ =0.

If the boundary conditions are kept the same as in the problem without the background, we obtain the same homo-
geneous solution and can define the same effective energy density f(e). In terms of this function, the linear stability
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Figure 14: Phase-field modeling of a brittle bar coupled to an elastic environment: linear stability analysis; (a,d) bifurcation
points; (b,e) critical strains £ and £*; (c,f) instability mode numbers #n* and n**. In (a-c) 4, = 0.05 and in (d-f) 4, = 0.34.

condition can be written in the form

2
A fE) o A1 [of Joe,) o
—;f(_‘zc) + ey -2L [—f/_e(e"’) - —J;(gc)] = 0. (17
A & de A5 & E. de
The critical mode number n, can be found from the equation
_ 2 _
Mo SE) S A [6f/06(6 ) _ S ]
2 127 & = 1 ¢ -
n.mw)  =—|(— + —(£ — |- —(& 18
(n.) @ te®|/ | —5 (@) (18)

In Fig. 14(a,d) we illustrate the parametric dependence of the solutions of (18). Due to the presence of elastic
background the re-entry behavior of the affine configuration is recovered with the two critical strains £” and £"* rep-
resenting, respectively, the lower and upper limits of stability for the homogeneous state, see Fig. 14 (b,e). However,
in contrast to the case of the pantograph-reinforced chain, the critical mode number n,(£7) is now different from the
critical mode number n, (EZ‘*), see Fig. 14 (c,f). This is because the re-stabilization (healing) of the affine state at large
levels of stretching is of different physical origin in our two cases: the bending induced weak nonlocality in the case
of the pantograph-reinforced chain and the elastic foundation induced strong nonlocality in the case of the elastically
embedded chain.

Figure 15: Brittle bar on elastic foundation: (a) Macroscopic stress strain response showing the discontinuous transition
from affine to non-affine state at the critical strain & (transition A’>A); (b,c) strain and phase-field profiles before and
after the transition. Parameters: A, = 0.158, 4, = 0.34.

The first branch switching event (transition A’—A) is shown in detail in Fig. 15. During this symmetry breaking
transition we observe nucleation of two localized cracks, one inside the domain and one on the boundary, see Fig.
15(b,c). As aresult of subcritical bifurcation, the principal branch (affine configuration) is replaced by the branch with
n = 3, and this transition is accompanied by an abrupt stress drop, see Fig. 15(a).

After this initial collective nucleation event, the equilibrium configurations with larger number of localized cracks
(n = 3,...,7) appear sequentially till finally at sufficiently large value of the loading parameter the strain localization
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abruptly disappears and the damage becomes uniformly distributed. The corresponding solutions of the nonlinear
system (16) are illustrated in Fig. 16 where we show the macroscopic energy for different equilibrium branches (rather
the energy difference between the affine and the non affine configurations) and the corresponding stress-strain relations.
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|

Figure 16: Brittle bar on elastic foundation: (a) the energy difference between the affine and various non-affine configu-
rations ; (b) the corresponding macroscopic strain-stress response. Parameters: 4, = 0.158, 4, = 0.34.
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Figure 17: Phase-field modeling of a brittle bar on elastic foundation: strain (first column) and phase-field (second column)
profiles before and after various equilibrium (energy minimizing) transitions, see Figs. 16(a,b). The third column shows
the stress-jump at the crossing points. Parameters: 4, =0.158, 1, = 0.34.

The non-affine branches in Fig. 16 describe the successive failure patterns developing in the process of quasi-static
stretching. The nature of these patterns is illustrated in Fig. 17 where, for the sake of easier comparison with Fig. 11,
we show again the succession of transitions along the global minimum path.

The transition B’—B shows how the non-symmetric, two-crack configuration, which is a deformed version of
the first non-affine configuration A nucleated at G, transforms into the symmetric three-crack configuration with one
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localized crack in the center and two localized cracks close to the boundaries. Then, the transition C’—C breaks the
symmetry again creating a three-crack configuration with two localized cracks inside and one localized crack on the
boundary. The symmetry is again recovered during the transition D’—D when the four-crack configuration emerges
with two localized cracks inside and two localized cracks on the boundaries. Finally, after yet another symmetry
breaking transition E’—E the affine configuration is recovered at F.

Our analysis shows that in the phase-field model of a stretched brittle bar, cracks remain localized even in the
presence of an elastic background. Their number increases with stretch till the state is reached when localized cracks
disappear because the system response becomes entirely dominated by the elastic background. Despite the presence of
such a background, the extended damage zones containing distributed micro-cracks do not appear, and, instead, failure
takes the form of a pattern built of smeared out but sharply isolated displacement discontinuities. In this sense, the
reinforcement through an elastic embedding is not equivalent to the reinforcement brought about by floppy bending
dominated sub-structure. Such sub-structure is, therefore, a crucial element of the proposed failure de-localization
design.

6. Conclusions

While some natural materials break with the formation of a single macro-crack, others exhibit diffuse macro-
cracking. The difference is reflected in the nomenclature of fracture and damage mechanics. Since both of these
failure modes may become relevant in the same applications, it is of interest to design artificially engineered materials
that can switch from one mode to another.

With this aim in view, we proposed in this paper a conceptual design of a high-toughness, pseudo-ductile meta-
material with nominally brittle sub-elements. The idea is to transform a brittle structure, which normally fails with
the formation of highly localized cracks, into an apparently ductile structure exhibiting de-localized damage. The
desired nominal ductility is achieved by coupling a conventional brittle sub-structure with a reinforcing floppy sub-
structure that can transmit bending-dominated nonlocal elastic interactions. It is now feasible to 3D print the implied
high-contrast composite networks with inextensible but bendable elements.

To demonstrate the main effect, we solved a series of rather elementary model problems showing how the presence
of a floppy sub-structure can suppress strain localization and induce the formation of diffuse zones of micro-cracking.
The analysis is based on the asymptotically equivalent continuum theory of GL type with strain as the order parameter.
Since the local part of the corresponding GL energy is represented by a single-well potential with sub-linear growth,
the nonlocal (gradient) term becomes relevant 'volumetrically’ even though there is a small coefficient in front of it.
This is unusual given that in the conventional theory of phase transitions, similar term is only important in narrow
transition zones. In tensile loading, the proposed GL model reproduces adequately the behavior of the original dis-
crete model, including the intriguing re-entrant bifurcation. The presence in the space of the loading parameters of a
finite range where the mechanical response of the system is non-affine may be of interest to applications. It implies
that under monotone driving, the appropriately designed meta-material can produce a transient, information-carrying
failure pattern that first comes out but then gets erased.

The discussed prototypical design of the pantograph-reinforced mass-spring chain serves only as a proof of concept.
The industrially relevant 3D brittle meta-materials, reinforced by bending dominated floppy networks, would still
have to be designed. Future work in this direction must also include the account of irreversibility of damage and the
development of rigorous finite strain continuum approximation accounting for both *local’ and ’nolocal’ sub-structures.
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