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EMBEDDINGS OF SL(2,Z) INTO THE CREMONA GROUP

JEREMY BLANC AND JULIE DESERTI

November 2, 2018

ABSTRACT. Geometric and dynamic properties of embeddings q2SL) into the Cre-
mona group are studied. Infinitely many non-conjugate emlingd that preserve the type
(i.e. that send elliptic, parabolic and hyperbolic elersemito elements of the same type)
are provided. The existence of infinitely many non-conjagaliptic, parabolic and hyper-
bolic embeddings is also shown.

In particular, a grougis of automorphisms of a smooth surfa8ebtained by blowing-
up 10 points of the complex projective plane is given. Theupr@ is isomorphic to
SL(2,Z), preserves an elliptic curve and all its elements of infiniger are hyperbolic.
2010 Mathematics Subject Classification. — 14E07 (primds).30, 15B36 (secondary).

1. INTRODUCTION

Our article is motivated by the following result on the emtlieds of the groups Sln, Z)
into the group BifP?) of birational maps of??(C): the group Skn,Z) does not embed
into Bir(P?) for n > 4 and Sl(3,7) only embeds linearlyife. in Aut(P?) = PGL(3,C))
into Bir(P?) up to conjugacylPes Theorem 1.4].

It is thus natural to look at the embeddings of(31Z) into Bir(P?). As SL(2,Z) has
almost a structure of free group, it admits many embeddingd#ferent type into BifP?),
and it is not reasonable to look for a classificatioraifembeddings. We thus focus on
embeddings having some geometric properties; among themaist natural ones are the
embeddings whichpreserve the typevoked by Favre inHav, Question 4].

The elements of S(2,Z) are classified into elliptic, parabolic and hyperbolic eders,
with respect to their action on the hyperbolic upper-plaoe dimilarly to their trace,
see8§2.1). The Cremona group BiP?) naturally acts on a hyperbolic space of infinite
dimension §ee[Man, Can3), so there is a notion of elliptic, parabolic and hyperbelie-
ments in this group; this classification can also be deduwed the growth rate of degrees
of iterates ¢ee[DiFa] and 8.3). Note that some authors prefer the term of loxodromic
elements instead of hyperbolic elemerded for exampl¢And, Proposition 2.16]). A
morphism from SI(2,7) to Bir(IP?) preserves the typi it sends elliptic, parabolic and
hyperbolic elements of S2,7) on elements of BiiP?) of the same type. Up to now,
the only known example is the classical embedd@ggSL(2,7) — Bir(P?), which asso-

ciates to a matriv = ‘2 3 the birational ma®s(M), given in affine coordinates by

(X,y) --» (P, xey%) (or written simply(x®y?, x°y%)). In this article, we provide infinitely
many non-conjugate embeddings that preserve the type (@imdobelow):

Both authors supported by the Swiss National Science Fdiondgrant no PPOOR228422 /1.
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Recall that the group SR, Z) is generated by the elemeR&ndS given by

11 0 1
R_{O 1} and S_[_l O]'
Theorem 1. (see83.1) Lete be a real positive number, and set
iy _[(x+ey
95(5) - (ya X)a eE(R) = (—S—FXy’Ey) .

Then®; is an embedding dL(2,7Z) into the Cremona group that preserves the type.
Furthermore, if ande’ are two real positive numbers such tlsat =~ 1, thenf: (SL(2,7))
and@y (SL(2,7)) are not conjugate imBir (P?).
The standard embeddirt is conjugate td;.

This family of embeddingsis a first step in the classificatiball embeddings of S(2,7)
preserving the type. We do not know if other embeddings €gristept one special em-
beddingd_ described in §.1which is a "twist” of the standard embeddifgdefined by:
0_(S) =6s(S) = (y, 1) andb_(R) = (xy. —y) # 65(R) = (xy,y)), in particular if it is possi-
ble to find an embedding where the parabolic elements actdsepring elliptic fibrations.

Question 1.1. Does there exist an embedding of (8LZ) into Bir(IP?) that preserves the
type and which is not conjugate 6o or to somedg?

The last two assertions of Theordnyield to the following question:

Question 1.2.1s the embedding_ rigid? i.e. not extendable to a one parameter family of
non conjugate embeddings ?

Note that some morphisms &, Z) — Bir (P?) preserving the type have been described
([Fav, page 9], CaLd and [Gol]), but that these ones are not embedding, the central invo-
lution acting trivially. See 8.1for more details.

One can also consider elliptic, parabolic and hyperbolibeddings of SI2,7Z) into
Bir(P?). An embeddingd of SL(2,Z) into the Cremona group is said to lediptic if
each element of i is elliptic; 6 is parabolic(respectivelyhyperbolig if each element of
infinite order of imB is parabolic (respectively hyperbolic).

In Sections3.2, 3.3 and 3.4, we prove the existence of an infinite humber of non-
conjugate elliptic, parabolic and hyperbolic embeddingesePropositions3.7, 3.8 3.9
and Corollary3.11). It is possible to find many other such embeddings; we onlg gi
simple way to construct infinitely many of each family.

One can then ask if it is possible to find an embedding of2SL) into the Cremona
group which isregularisable i.e. which comes from an embedding into the group of auto-
morphisms of a projective rational surface. It is easy testauct elliptic embeddings which
are regularisable (see Secti®r?). In Sectiord, we give a way to construct infinitely many
hyperbolic embeddings of $2,Z) into the Cremona group which are regularisable, and
each of the groups constructed moreover preserves anctiptve (one fixing it point-
wise). The existence of regularisable embeddings whickgove the type is still open
(and should contain parabolic elements with quadratic gr@fdegree).

Note that the existence of hyperbolic automorphisms pv@sg@an elliptic curve was
not clear. In Pan Theorem 1.1], it was proved that a curve preserved by anrbgfie
element of BifP?) has geometric genus 0 or 1; examples of genus O (easy to create
by blowing-up) were provided, and the existence of genusrtesuinvariant was raised
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(se€fPan page 443]). The related question of the existence of cuofasthmetic genus 1
preserved by hyperbolic automorphisms of rational sugaeas also raised two years af-
ter in [DFS page 2987]. InicM], the author constructs hyperbolic automorphisms of
rational surfaces which correspond to Coxeter elementst{gperbolic automorphism of
a rational surface corresponds to an element of the Weylpgassociated to the surface),
that preserve a cuspidal (resp. nodal) curve. However, ergeautomorphism of a rational
surface corresponding to a Coxeter element is hyperbotid@es not preserve any curve
([BeKi]).

The following statement yields existence of a group of awtgrhisms preserving a
(smooth) elliptic curve such that every non-periodic eletrie hyperbolic. This is also
possible with free groupssée[Canl Remark 3.2] andBlal]), but the construction is
harder with more complicated groups like @LZ). The method that we describe in Sec-
tion 4 should be useful to create other groups generated by elerokfinite order.

Theorem 2. There exist hyperbolic embeddin@g1,6h2,6n3 of SL(2,Z) into Bir (P?)
such that:

e for each i, the grougdy; preserves a smooth cubic curivec P?;

e the action 0By, ; onr is trivial, the action 0By 2 onT is generated by a translation
of order3 and the action 06,3 onT is generated by an automorphism of orcer
with fixed points;

e fori=1,2,3, the blow-up X— P? of respectivelyL 2, 10, 10 points ofl” conjugates
Bh,i(SL(2,Z)) to a subgroup of automorphisms of Xhe strict transfornt of I
on X% is the only invariant curve; in particular the orbit of anyezhent of }QF is
either finite or dense in the Zariski topology.

Moreover, in cases+ 1,2, we can choos€ to be any smooth cubic curve, and this
yields infinitely many hyperbolic embeddingse{ 2, Z) into Bir (P?), up to conjugacy.

Remark 1.3. In 6 1, 6h 2, 6n 3, the letterh is no parameter but only means "hyperbolic”,
to distinguish them from the other embeddi®gsd_ and{6; }¢cr, defined above.

It could be interesting to study more precisely the orbitg¢haf action of the above
groups, in particular to answer the following questions:

Question 1.4. Are the typical orbits 0By, ; dense in the transcendental topology ?

Question 1.5. Are there some finite orbits iN,-\F?
We finish this introduction by mentioning related results.

The statement offjes Theorem 1.4] for S[3,Z) was generalised inJang, where it
is proven that any finitely generated group having Kazhdproperty (T) only embeds
linearly into Bir(P?) (up to conjugation).

Let us also mentionQalLa Theorem A] which says that if a lattide of a simple Lie
groupG embeds into the group A(&?), thenG is isomorphic to PSQ, n) or PSU1,n)
for somen. If the embedding is not conjugate to a subgroup of the affimeig the
only possibility isG ~ PSQ1,2) ~ PSL(2,R), this latter case being intensively studied
in [CaLd.

Note that our techniques heavily use the special structut (?,Z), and one could
ask similar questions for any lattice of G, R) or PGL(2,R); the behaviour and results
could be very different.



4 JEREMY BLANC AND JULIE DESERTI

Acknowledgement3he authors would like to thank Charles Favre for intergstiom-
ments and suggestions, and Pierre de la Harpe for integediSoussions. Thanks also to
the referees for their helpful remarks and corrections.

2. SOME REMINDERS ONSL(2,7) AND Bir(P?)

2.1. About SL(2,Z). Division algorithm implies that the group $2,7) is generated by
the element® andSgiven by

11 0 1
R:{O 1} and S:[_1 0].

Remark thaR is of infinite order ancs of order 4. The square &generates the center
of SL(2,Z). Moreover

-1 0

are conjugate b and both have order 3.
A presentation of S[2,7Z) is given by

(R S|S'=(R9’=1 SRS = (RSS)

(see for examplgNew, Chapter 8]). This implies that the quotient of @LZ) by its center
is a free product o%Z./2Z andZ/3Z generated by the classg$ of Sand[RS of RS

PSL(2,z) = (8], RS|[§%= [RS* = 1).

2.2. Dynamic of elements ofSL(2,Z). Recall that the group SR,R) acts on the upper
half plane

-1 1 0 1
RS= { } and SR= { 1 1 }

H={x+iyeC|x,yeR,y> 0}
by Mobius transformations:

SL(2,R) x H— H, ({a b],Z)}—)aZ—i_b

c d cz+d’

The hyperbolic structure dfl being preserved, this yields to a natural notiorebiptic,
parabolic andhyperbolicelements of S[2,R), and thus to elements of & 7Z) (as in
[Ive, 11.8]).

If M is an element of S(2,Z), we can be more precise and check the following easy
observations:

e Miselliptic if and only if M has finite order;
e M is parabolic(respectivelyhyperboliq if and only if M has infinite order and its
trace is+2 (respectivelyt +2).

Up to conjugacy the elliptic elements of &.7) are

RN A B e ) A

in particular an element of finite order is of order 2, 3, 4 or 6.
A parabolic element of S(2,7) is up to conjugacy one of the following

1 a -1 a
[0 1}, [O _1}, acz.
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2.3. Cremona group and dynamic of its elements.Let us recall the following classical
definitions.

Definitions 2.1. A rational mapof the projective plane into itself is a map of the following
type

f: PZ(C) -2 PZ(C)? (X Ly Z) -2 (fO(Xaya Z) . fl(xvyvz) . fZ(Xaya Z))a
where thefi’s are homogeneous polynomials of the same degree withouthom factor.
The degreeof f is by definition: ded = degf;. A birational map fis a rational map

that admits a rational inverse. We denote by(B#) the group of birational maps of the
projective plane into itself; B{i??) is also called theCremona group

The degree is not a birational invariant; ifand g are in Bir(lP?), then in general
deggfgt) # degf . Nevertheless there exist two strictly positive constaritss R such
that for alln the following holds

adegf" < deggf"g 1) < bdegf".

In other words the degree growth is a birational invariaaty® introduce the following
notion ([Fri, RuSh).

Definition 2.2. Let f be a birational map. Théirst dynamical degreef f is defined by
A(f) = lim (degf™)¥/",
There is a classification of birational mapsBsfup to birational conjugation.

Theorem 2.3([Giz, DiFa)). Let f be an element dir (P?). Up to birational conjugation,
exactly one of the following holds.

e The sequencfdegf™),cy is bounded, f is an automorphism on some projective
rational surface and an iterate of f is an automorphism igatdo the identity;

o the sequencédegf") ey grows linearly, and f preserves a rational fibration. In
this case f cannot be conjugate to an automorphism of a pii@gesurface;

e the sequenc@degf™)nen grows quadratically, and f is conjugate to an automor-
phism preserving an elliptic fibration;

¢ the sequencédegf™)ncy grows exponentially.

In the second and third case, the invariant fibration is urigin the first three caseg f)
is equal tol, in the last case (f) is strictly greater thari.

Definitions 2.4. Let f be a birational map df?.
If the sequencédegf™)nc is boundedf is said to beelliptic.
When(degf")nen grows linearly or quadratically, we say thits parabolic
If A(f) > 1, thenf is an hyperbolic map

As we said the Cremona group acts naturally on a hyperbdicespf infinite dimension
([Man, Can3); we can say that a birational map is elliptic, resp. paliaboesp. hyper-
bolic, if the corresponding isometry is elliptic, resp. glaolic, resp. hyperbolic GhHa
Chapter 852]). This definition coincides with the previous on€§n3).

Examples 2.5.Any automorphism oP? or of an Hirzebruch surfadg, and any birational
map of finite order is elliptic.

The map(x:y: z) --» (xy:yz: Z°) is parabolic.

A Hénon map (automorphism @f?)

(x,y) = (y,P(y) —dx), e C*,PcCly],degP>2
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extends to a hyperbolic birational mapf, of dynamical degree déy

Definitions 2.6. Let 8: SL(2,Z) — Bir(P?) be an embedding of §R,Z) into the Cre-
mona group.

We say thaB preserves the typé 6 sends elliptic (respectively parabolic, respectively
hyperbolic) element onto elliptic (respectively parabptespectively hyperbolic) map.

We say thaB is elliptic if each element of iffi is elliptic.

The morphisn® is parabolic(respectivelyhyperbolig if each element of infinite order
of im® is parabolic (respectively hyperbolic).

2.4. The central involution of SL(2,Z) and its image into Bir(P?). The elemen&’ ¢
SL(2,7) is an involution; therefore its image by any embeddngL(2,Z) — Bir(P?) is
a birational involution. As it was proved by Bertini, we hathe following classification:

Theorem 2.7([Ber]). An element of orde2 of the Cremona group is up to conjugacy one
of the following

an automorphism dp?;

a de Jonguéres involution 43 of degreev > 2;
a Bertini involutionig;

a Geiser involutiong.

Bayle and Beauville showed that the conjugacy classes oftitions in Bi[P?) are deter-
mined by the birational type of the curves of fixed points dofifiee genus [BaBd). More
precisely the set of conjugacy classes is parametrised Iscarthected algebraic variety
whose connected components are respectively

e the moduli spaces of hyperelliptic curves of gegyge Jonquieres involutions);

e the moduli space of canonical curves of genus 3 (Geiserttienis);

e the moduli space of canonical curves of genus 4 with vanistiieta character-
istic, isomorphic to a non singular intersection of a cuhidace and a quadratic
cone inP3(C) (Bertini involutions).

The image ofS? can neither be a Geiser involution, nor a Bertini involutionore
precisely, we have the following:

Lemma 2.8. Let6 be an embedding &L(2,Z) into the Cremona group. Up to birational
conjugation, one of the following holds.

e The involutiord(S?) is an automorphism d#?;
o the mapd(S’) is a de Jonquires involution of degre® fixing (pointwisg an el-
liptic curve.

Remark 2.9. The first case is satisfied by the example§31, §3.2 and§3.3. The second
case is also possible, for any elliptic curve (§¢g

Proof. SinceS? commutes with S[2,7) the group G= 6(SL(2,7Z)) is contained in the
centraliser of the involutio®?. If 8(S?) is a Bertini or Geiser involution, the centraliser
of 8(S?) is finite ([BPV2], Corollary 23.6); as a consequend¥S?) is a de Jonquiéres
involution.

Assume thaB(S?) is not linearisable; theB(S?) fixes (pointwise) a unique irreducible
curvel of genus> 1. The group G preservésand the action of G ofi gives the exact
sequence

1-G—-G—-H—=1
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where H is a subgroup of A(ft), G’ containsd(S?) and fixes". Since the genus df is
positive H cannot be equal to/@(S?)), free product ofZ/2Z andZ/3Z. This implies
that the normal subgroup’ ®f G strictly containg/8(S?)) and thus that it is infinite and
not abelian. In particular the group of birational maps fix(pointwise)r is infinite, and
not abelian, thu§ is of genus 14ee[BPV1], Theorem 15). O O

3. EMBEDDINGS PRESERVING THE TYPE AND ELLIPTIGPARABOLIC EMBEDDINGS

3.1. Embeddings preserving the type.Henceforth we will often denote bif1(x,y,2) :
f2(%Y,2) : f3(x,Y,2)) the map

(X: y: Z) - (fl(xvyvz) . fZ(Xaya Z) . fS(vavz))
and by(p(x,y),q(x,y)) the birational map

(xy) ==+ (p(X,¥),a(%,y))
of C2,

Let us begin this section by a property satisfied by all embyegbf SL(2, Z) — Bir (P?)
that preserve the type.

Lemma 3.1. Let 8: SL(2,Z) — Bir(P?) be an embedding that preserves the type. Ei-
ther for all parabolic matrices MP(M) preserves a unique rational fibration, or for all
parabolic matrices MP(M) preserves a unique elliptic fibration.

Proof. Let us recall that a parabolic element of (8lZ) is up to conjugacy one of the
following

1 a _ -1 a
Ta+_|:0 1:|’ Ta_|:0 _1:|, an

For anya # 0, the imaged(T;") of T," preserves a unique fibration @3. Denote byF
the fibration preserved by, given byF : P2 --» PL. Foranya# 0, T,” andT, commute
with T, so thed(T,")’s and thed(T,)’s preserve the fibratioff and7 is the only fibration
invariant by these elements.

LetM be a parabolic matrix. On the one havids conjugate td@;" or T, for someavia
a matrixNy and on the other hand parabolic maps preserve a unique diby&tiusé(M)
preserves the fibration given 58(Ny)~2. In particular ifF defines a rational (respec-
tively elliptic) fibration, thenF8(Ny ) ~* defines a rational (respectively elliptic) one.]

O
The standard embeddirg. The classical embedding
8s: SL(2,Z) — Bir(F?), [ . g } (YR, Xy

preserves the typeéefor example Lin, Theorem 7.1]).
For anyM € SL(2,Z), if M is elliptic, 8s(M) is, up to conjugacy, one of the following

birational maps of finite order

11 1 1 1y 1y

X’ y ) y’ Xy ) y7 X ) y7 ) X’ y M
If M is parabolic,8s(M") is, up to conjugacy(xy'd,y), or (y"3/x,1/y) with a in Z so
8s(M) is parabolic. IfM is hyperbolic,M has two real eigenvalugsandu~* such that
It < 1< |y andA(8s(M)) = |u| > 1 and8s(M) is hyperbolic.



8 JEREMY BLANC AND JULIE DESERTI

In [Fav, page 9], a construction of a morphism(8LZ) — Bir(P?) preserving the type
was given, inspired fromGalLd and [Gol]: the quotient ofP! x P! by the involution

(X,y) — (;1(, %) is a rational (singular) cubic surfa@c P2, calledCayley cubic surface

Explicitly, we can assume (by a good choice of coordinates) t
C={(W:X:Y:Z)eP?| XYZ+WY Z+WXZ+WXY=0}
and that the quotient is given by
P! x P! - C,
(Xy) — ((x— DX=y)(1+y): (y=Dy=x)1+x): (xy+1)(x+1)(y+1): (x=1)(y—1)(xy+ 1))-

The involution(x,y) — ()—1(, %,) being the center ds(SL(2,7Z)), the quotient provides

a morphisnBy: SL(2,Z) — Bir(C) ~ Bir(P?) whose kernel is generated B§. The mor-
phism preserves the type, but is not an embedding. It is assilple to deform the con-
struction in order to have similar actions on other cubidaxes éee[Cald).

One first twisting 0Bs. We can "twist” the standard embeddifigin the following way.
Let®_(S) = 8y(S) = (y. ) and_(R) = (xy, ) # 6s(R) = (xy,y). The map_(RS =
0_(R)6_(S) = (¥,—;1() has order 3. Sinc@_ (R) commutes with®_(S?), the relations

of SL(2,Z) are satisfied anfl_ is a morphism from S(2,7Z) into Bir(P?).

Proposition 3.2. The mapd_: SL(2,Z) — Bir(P?) is an embedding that preserves the

type.
The group®s(SL(2,Z)) andB_(SL(2,Z)) are not conjugate in the Cremona group.

Proof. For eachM € SL(2,Z), one ha®_(M) = ay o 85(M) whereay = (£x,ty), and
in particular®_ (M) andBs(M) have the same degree. This observation implies&has
an embedding, and that it preserves the type, Sigc®es.

We now prove the second assertion. Suppose, for contrawljdtiatds(SL(2,7)) is
conjugate toB_(SL(2,Z)); thenBs(R) = (xy,y) is conjugate to some parabolic element
of 8_(SL(2,Z)), which has no root in the group. This implies tfgtR) = (xy,y) or its
inverse is conjugate # (R) = (xy,—y) or8_(RS) = (X—ly, —%) in Bir(P?).

All these elements are parabolic elements of the Cremonggeach of them preserves
a unique rational fibration, which i, y) — y. Sincebs(R) preserves any fibre and both
8_(R), 8_(RS) permute the fibres, neith@(R) nor 65(R1) is conjugate td_(R) or
8_(RS) in Bir(P?). O O

The mapb_ yields a "new” embedding of S2,Z) preserving the type. However, this
map is not very far from the first one, and remaing@i,C*) x SL(2,Z). We construct
now new ones, more interesting. Conjugating the eleméis = (y, )—1() and6s(R) =

(xy,y) by the birational ma %, ﬁ) we get respectivelyy, —x) and (%,y .
More generally, we choose amy C*, and set
X+ €y
0:(S) = (y,— 6:(R) = .
()= (y.%). (R = (22 )

The mapB(R) commutes withBe (S?) = (—x, —y), and
8:(RS = <y—£x’_sx>

€—Xy




EMBEDDINGS OF Sl(2,7Z) INTO THE CREMONA GROUP 9

is of order 3, s®; gives an homomorphism from $2,7Z) to Bir(P?). The mapd; being
conjugate to the standard embedding, we can view this faasila deformation of the
standard embedding. We prove now some technical result®t that the family consists
of embedding preserving the type wheis a positive real number.

Lemma 3.3. We view these maps @t x P, via the embedding,y) — ((x: 1), (y: 1)).

. . 11 10
(|)Wr|t|ngR1:{O 1],R2:[1 l},bothmaps

[ X+ey _ (X e(x+gy)
Be(R1) = <a+xy’8y) and Be(Re) = (a’7£+xy )
have exactly two base-points both belongingPtox P! (no infinitely near point, and
beingp = (g,—1)and p = (—¢,1) (or ((¢:1),(—1:1)) and((—€:1),(1:1))).
(i) Both maps

1 (Eexmy) y (., YEX
B:(Ry) _( P—y ’a) and B:(R) ~ = <£X’s—xy)

have exactly two base-points, being-g(1,€) and g = (—1, —¢€).
(i) If e is a positive real numberand M R;, ... R;;, foriy, ... ik € {1,2}, the following
hold:
e the points g and @ are not base-points & (M), and:(M)({q1,92}) N {p1, p2} = O.
e the points p and p are not base-points d:(M~1), and8;(M~1)({p1, p2}) N

{01,092} = 0.

Proof. Parts(i) and(ii) follow from an easy calculation, it remains to praiie).

LetU, c R?2 ¢ P! x P! (resp. U_ Cc R? C P! x P!) be the subset of point&,y)
with x, y € R, xy > 0 (resp. xy < 0). Wheng is a positive real numbef,p, p2} C U_
and{qz, g2} C U4, which implies that:(R;) (resp.es(Rfl)) is defined at any point df ;.
(resp. ofU_), sinceU, NU_ = 0.

Moreover, the explicit form of the four maps given(in, (ii) shows thaé: (R ) (U;) C Uy
and@: (R 1)(U_) c U_ fori = 1,2. This yields the result. O O

Recall that PigP* x PY) = Zf, @ Zf,, wheref; is the fibre of the projection on thHe
th factor. In particular, any curve oB! x P! has a bidegreéd;,d,) and any element
of Bir(P! x P1) has a quadridegree, which is given by the two bidegrees giuliebacks
of f; andfy, or equivalently by the two bidegrees of the polynomialschtdefine the map.

Remark that the dynamical degree of a birational magf P! x P! is uniquely deter-
mined by the sequence of quadridegreeg'bf

Proposition 3.4. If € is a positive real number, the following hold:

(i) For any M= [ g 3 ] € SL(2,Z), the mapsh:(M) and Bs5(M) have the same

quadridegree as birational maps Bt x P*, which is(|al, |b], |c|,|d]).
(i) The homomorphisr@ is an embedding dL(2,Z) into the Cremona group that
preserves the type.

Proof. Observe first thafi) implies that the kernel & is trivial (sinced (S?) = (—x, —Y)
is not trivial) so thatBs is an embedding, and also implies that the dynamical degree
of 8:(M) andBs(M) are the same for ariyl. This shows thati) implies (ii).

We now prove assertiofi). Since6s(S) = (v, %) and8(S) = (y,—x) are automor-
phisms of P! x P! having the same action on PR x P1), 8;(M) and8s(M) have the
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same quadridegree if and only8f(MS) and6s(MS) have the same quadridegree. The
same holds when we multiply on the lef(M) and6s(M) have the same quadridegree if
and only ifB(SM) andBs(SM) have the same quadridegree.

Recall that SI2,7Z) has the presentatiofR, R§ S* = (RS3 = 1, (RS = (RSS).
It suffices thus to prove thds(M) and 6s(M) have the same quadridegree whdn=
(RS'k...S(RS"2S(RY'1S, for someiy, ...,ix € {+1}. For any indexi; equal to 1, we
replace theSimmediately after by5 ! (sinceS? commutes with all matrices), and obtain
now a product of non-negative powers(@&9S ! = Rand(RS?S. We will write R; = R
andR; = (RS?S, and have

11 10
w5 1] 1)

It is thus sufficient to prove the following assertion:

(x)ifM = [ 2 3 } =R,R, ,...Ry, forsomei,...,ix € {1,2},

then ab,c,d > 0, andBs(M), 6:(M) have both quadridegre@, b, c,d).

We proceed now by induction dn Fork = 1, Assertion(x) can be directly checked:
Both 8s(Ry) = (xy,y) and B¢(Ry) = (%,sy) have quadridegre€l,1,0,1). Both

8s(R2) = (%, xy) and@;(Ry) = (g ngj;yw) have quadridegred, 0,1, 1).
b

d

Now, assume thdk) is true forM = [ i q

a b
a+c b+d

Be(M) = ((x1: %2), (Y1:¥2)) -=» ((PL: P2),(P3: Pa)),

wherePy, P2, Ps, Ps € C[x1,X2,Y1,Y2| are bihomogeneous polynomials, of bidegfad),
(a,b), (c.d), (c.d).
We have thus

},andlet us prove it foRiM = [ atc b+d ]

andR;M = [ ] . By induction hypothesis one has

B:(R1)0:(M) = B (RiM) =

((Xj_ : Xz)7 (yl : yz)) -3 ((P1P4+8P2P3 c PPy + Plpg)7 (8P3 : P4)),
es(RZ)es(M) = es(RZM) =

((x1:%2),(y1:¥2)) --+ ((P1:€P2),(e(PiPs+€P2P3) : PPy + P1P3)).

To prove(*) for RiM andR;M, it suffices to show that the polynomidPsPs + eP,Ps
andeP,P, + P1P; have no common component. Suppose the converse for carttoadi
and denote by € C|x1,%2,Y1,Yy2] the common component. The polynontiadorresponds
to a curve ofP! x P! that is contracted b§: (M) onto a base-point & (R1) or 6¢(Ry), i.e.
ontop; = (g,—1) or p = (—¢,1) (Lemma3.3). But this condition means thé®: (M))~*
has a base-point gy or p2. We proved in Lemma.3that this is impossible whenis a
positive real number. O O

We now show that this construction yields infinitely many jomacy classes of embed-
dings of SL(2,7) into the Cremona group that preserve the type.

Proposition 3.5. If € and €’ are two real positive numbers witte’ # 1, the two groups
0:(SL(2,Z)) and6¢(SL(2,Z)) are not conjugate in the Cremona group.

The standard embeddir@ is conjugate toB;, but 8_(SL(2,Z)) is not conjugate to
6:(SL(2,Z)) for any positivee € R.
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Proof. The proof is similar to the one of Propositidh2 Assume, for contradiction,

that6:(SL(2,Z)) is conjugate td, (SL(2,Z)); thenBe(R) = (%,sy) is conjugate to

some parabolic element &f (SL(2,Z)), which has no root in the group. This implies

thatf(R) = (%,sy) or its inverse is conjugate & (R) = (’E‘,*fg,s/y) orto8y(RS) =

(%ﬁ;}’,—s’y) in Bir (IP?).
These elements are parabolic elements of the Cremona gracip of them preserves a
unique rational fibration, which i&,y) — y. The action on the basis being different up to
conjugacy (sincee’ # +1), neitherdg (R) nor its inverse is conjugate iy (R) or 8y (RS)
in Bir (IP?).
It remains to show tha_ (SL(2,Z)) is not conjugate t®:(SL(2,Z)) for any positive
€ € R. Every parabolic element &_(SL(2,Z)) without root is conjugate t®_(R) =
(xy,—y), 8_(RS) = (X—ly, —%,) or their inverses, and acts thus non-trivially on the basis o

the unique fibration preserved, with an action of order 2. \&ktlge result by observing
thatBg(SL(2,7Z)) containsg(R) = (X”y sy) , which is parabolic, without root and acting

E+xy’
on the basis with an action which has not order 2. O O

Note thatin all our examples of embeddings preserving the,tthe parabolic elements
have a linear degree growth. One can then ask the followiegttpn (which could yield a
positive answer to Questidnl).

Question 3.6. Does there exist an embedding of (8LZ) into Bir(P?) that preserves the
type and such that the degree growth of parabolic elemeqtsaidratic?

3.2. Elliptic embeddings. The simplest elliptic embedding is given by

Be: SL(2,Z) — Bir(P?), { i g ] — (ax—+by: cx+dy: 2).

We now generalise this embedding. ChongeN and letx: SL(2,Z) — C* be a char-
-1 0
0o -1
and such thagt(S) is equal to 1ihis odd and taif nis even. Then we defirly: SL(2,Z) —
Bir(P?) by

acter such that # (—1)". For simplicity, we choosg such thak (RS = 1,

[ab ax+b Xx(M)y
M= [ c d } ~ (cx+d’ (ex+d)n )
The action on the first component and the fact #®tS?) # 1 imply that 8y, is an

embedding. The degree of all elements being bounded, thedxtirigs are elliptic.

Proposition 3.7. For any ne N, the grou,(SL(2,Z)) is conjugate to a subgroup &lut(Fp),
wherelF}, is the n-th Hirzebruch surface.

The group$Hm(SL(2,Z)) andB,(SL(2,Z)) are conjugate in the Cremona group if and
only if m=n.

Proof. If n= 0, the embeddin¢x,y) — ((x: 1),(y: 1)) of C? into P! x P! = Fo conjuga-
tesBp(SL(2,Z)) to a subgroup of AyiFo).
Forn > 1, recall that the weighted projective spat@, 1,n) is equal to

P(la 1 n) = {(X17X27Z) € C3\{0} (XlaXZaZ) ~ (p-xla HX27UnZ)a pe (C*} .
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The surfaceP(1,1,1) is equal toP?, and the surfaceB(1,1,n) for n > 2 have one
singular point, which ig0: 0: 1).

For anyn> 1, the embeddingx,y) — (x:y: 1) of C?into?(1, 1, n) conjugate®,(SL(2,7Z))
to a subgroup of Ai?(1,1,n)) that fixes the point0 : 0 : 1). The blow-up of this fixed
point gives the Hirzebruch surfad, and conjugates thu&,(SL(2,Z)) to a subgroup
of Aut(Fp).

In all cases > 0, the group preserves the fibratiBn— P* corresponding tox,y) — X.
The action on the basis of the fibration corresponds to timelatel homomorphism SR, Z) —
PSL(2,Z) c PGL(2,C) = Aut(P). This action has no orbit of finite size @*. In par-
ticular, there is no orbit of finite size df,. This shows that the subgroup of AB#)
corresponding t®n(SL(2,Z)) is birationally rigid forn = 1, i.e. that it is not conju-
gate to any group of automorphisms of any other smooth pilegesurface. This shows
thatBm(SL(2,Z)) andB,(SL(2,Z)) are conjugate in the Cremona group only whea n.

O O

3.3. Parabolic embeddings. Recall that the morphisfiy defined in§3.2 can also be

viewed as follow:M = [ 2 3 } — (Z£8 x(M)y); it preserves the fibratiofx,y) — x.
Remembering that(S) =i andx(RS = 1 we have
Bo(S) = (—)—];,iy) and B8o(RS = (%,y) .

We will “twist” 6p in order to construct parabolic embeddings. Recall thg2Sk)

acts viaBg on the projective line; the elemerﬁtzl g acts axx --» g;(jg The group is

countable so a very general point of the line has no isotrapy.P € C(x) be a rational
function with m simple poles anan simple zeroes, whemn > 0, and such that then2
corresponding points d are all on different orbits under the action of @ Z) and have
no isotropy. We denote bfyp = (X,y- P(X)) the associated birational map; it preserves the
fibration and commutes witby(S?) = (x, —Y).

We choose

Bp(S) = Bo(S) = (—)—1( iy) and Bp(RS = dpoBo(RY o b5,

therefore

_ X1
Bp(S) = (—)—1(,iy) and Bp(RS = (%,y-%) .

The mapspp and 8p(S?) commute sBp(RS and Bp(S?) commute too. Then, by
definition ofBp(S) andBp(RS there is a unique morphisép: SL(2,Z) — Bir(C?).
Proposition 3.8. The morphisn®p is a parabolic embedding for any @ C(x).

Proof. The action on the basis of the fibration and the fact@é$?) # id imply that6p is
an embedding. It remains to show that any element of infinieidis sent onto a parabolic
element.

Writing o = 8p(RS andB = 8p(S), it suffices to show that or h3? is parabolic, where

h=Ba"p...a"2pa't, n>1 and i1,...,in € {—1,1}.
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We view our maps acting o' x P1. The fibration given by the projection on the first
factor is preserved bk, which is thus either parabolic or elliptic. The first posi#ip
occurs if the sequence of number of base-pointsafrows linearly and the second if the
sequence is bounded.

Let p € C be a pole or a zero ®@. Let Fy C P! x P! be the fibre of p: 1) and letz ¢
P! x P! be the(countablé union of fibres of points that belong to the orbit(@f: 1) under
the action of SI2,7).

Recall that8p(RS is an automorphism oP? x P1. SetF; = 6o(RS(Fo) andF, =
B8o(RS(F1); remark that/g = 8p(RS(F2). Thendp and its inverse contragyp on a point
of Fp but send isomorphicallf{¥; andF, onto themselves. The mapis the conjugate
of 80(RS by ¢p, so it contractdy and F, on points lying respectively of; and Fp,
but sends isomorphicallly; onto F, and doesn’t contract any other fibre containedin
Similarly a~! contractd andF1 on points lying or andFy and neither contrac nor
any other fibre of.

Each fibre is preserved b§?, but B and B2 sendFy, Fi, F> onto three other fibres
contained irE. Thena®! anda®!B3 send isomorphicalli, onto a fibre contained il \
{F}. By induction om, we obtain that for ank < 0, hk and(hB?)k send isomorphicallfo
onto a curveirk \ {FK}.

Then we note thatt anda ! contractFy on a point contained in one of th, point
sent byp onto an other point not contained in thés. So, by induction om, for anyk > 0
bothh¥ and(h[32)k contracty on a point not contained in tHg’s and for which the fibre
belongs ta>.

For each integek > 0, the fibreFy is contracted by and by (hg?)k = h*(B%) on a
point of Z. Moreover, for each integdr< 0, Fy is sent isomorphically by onto a fibre
contained inZ. SetF/ = h™'(Fp) for all i > 0; we obtain thahk and (h?)¥ contractry
andF/,...,F/ for each integek > 0. This means that the number of base-point&of
and(hB?)¥ is at least equal t&. As h andhp? preserve the fibration, they are parabolic.

O O

Proposition 3.9. When P varies, we obtain infinitely many parabolic embedsling

Proof. Let P,Q € C(x), and suppose th#p(SL(2,Z)) is conjugate t®Bo(SL(2,Z)) by
some birational mag of P! x P1. Thend preserves the fibratiofx,y) — x, which is the
unique fibration preserved by the two groups. Its action enbidisis of the fibration is an
elementp € PGL(2,C) that normalises PSR,Z) c PSL(2,C) = PGL(2,C). This means
thatp € PSL(2,Z). Replacingd by its product with an element &g (SL(2,Z)), we can
thus assume thdt acts trivially on the basis.

This means thad is equal to(x, a(x)”b(’()) for somea,b,c,d € C(x), ad — bc # 0.

c(x)y+d(x)
Since¢ conjugatedp(S) = 0g(S) = (—%,iy) to itself or its inverse, the mag is equal
to (x,a(x)y*!) wherea € C(x), a(—1) = £a(x).
x—1

x—1
The map¢ conjugatedp(RS = <X_X1,y. F)(T;))) to 8o(RY = (X—><17Y' Q((g(;))) or

x=1
to 6g(RS) = (X—Xl,—y- Qég>) in Bir (P! x P1). Assume that

d = (x,a(x)y) wherea € C(x), a(—)—l() = a(x);
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thendBp(R9H~L — (X—le%) ThusBp(RS0 1 = B(RS), resp.8o(RS)

if and only if

a(’?) P a(’?) ( ) (—Xxl)
- x—1\’ resp. - x—1
ax) QP () a(x) 1)
sincea(x) is invariant under the homograpRy- —3 the same holds fo&(:gi This

implies, in both cases, the following condition EmndQ

P(x)P(14x) Q(X)Q(1+x)

P(-0P(S)  Q(=0)Q(F)
We get the same formula whenis equal to(x,a(x)y 1) wherea € C(x), a(—;l() = —a(Xx).
WhenP varies, we thus obtain infinitely many parabolic embeddings [ O

3.4. Hyperbolic embeddings. In this section, we "twist” the standard elliptic embedding
B¢ defined in 8.2to get many hyperbolic embeddings of (RLZ) into Bir(P?). Recall
thatbe is given by

Be: SL(2,Z) — Bir(P?), { ‘2 g ] — (ax+by: cx+dy: 2).

The groupBe(SL(2,Z)) preserves the link, of equatiorz= 0, and acts on it via the natural
maps Sl(2,Z) — PSL(2,Z) C PSL2,C) = Aut(L;).

We choosau € C* such that the poinp = (u: 1: 0) € L, has a trivial isotropy group
under the action of PSR,Z), fix an even integek > 0, and then define a morphism
Bk: SL(2,Z) — Bir(P?) by the following way:

6x(9) Be(S) = (y: —x:2)
O (RS WBe(RSY 1

wherey is the conjugation ofy = (X< : y¥< 1+ 2 : 2 1) by (x+py: y: 2).

Note thaty/ restricts to an automorphism of the affine plane wheg0, commutes
with 8(S%) = (x:y: —2) and acts trivially ori,. Sinceys commutes wittBe(S?) = 6k (),
the elemenBy (RS commutes withBy(S?), and6 is thus a well-defined morphism. The
fact that preserves; and acts trivially on it implies that the action @ and6y onL; are
the same, sy is an embedding.

Lemma 3.10. Let m be a positive integer, and let,a..,am,b1,...,bm € {£1}. The bira-
tional map

Ok(S (RS S"1(RS™)
has degree¥" and exactly2m proper base-points, all lying or,Jwhich are
p,((R9%)(p),(S™(R9%) *(p), (RS2SL(RY™) (p),
- ((R92-.-SL(RY™)I(p), (SM(RYP™--- S1(RS™) L(p),
where the action of RRSe SL(2,Z) on L; is here the action vife or 6.

Proof. The birational mapp has degre& and has an unique proper base-point which is
p=(u:1:0) €Ly the same is true fap~1. Moreover both maps fix any other point of
Lz.
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SinceBe(R9 is an automorphism dP? that moves the poinp onto an other point
of Lz, the mapBy((R9%) = P6s(RY2 Y1 has degred® and exactly two proper base-
points, which argp and8e(RS 2 (p) = ((R9*)~1(p). The mapd(S) being an auto-
morphism ofP?, 8, (S1(RS2) has also degrelé and two proper base-points, which are
pand((R9)~1(p). This gives the result fan= 1.

Proceeding by induction fom > 1, we assume thal,(S"(R92"- .. S2(RS%) has
degreek’™ 2 and exactly tn— 2 proper base-points, all lying dr3, which are

P.((RS®)71(p), (S2(RS®)H(p),..., (S"(RY™---S2(R§®) ~(p).
The mapBy(S1(RS2) 1 = B ((RS )6 (S 1) has degred? and two proper base-
points, which areS’1(p) and (RS (p). These two points being distinct from the
2m— 2 points above, the maf(SP"(RS2 ... 1(R9™) has degred? - k2™2 = k2™,
and its proper base-points are the 2 proper base-poirfig(8f:(RS2) and the image
by (1(R92)~1 of the base-points 0B (Sm(RY2---P2(RS%2). This gives the re-
sult. O O

As a corollary, we get infinitely many hyperbolic embeddingSL(2,7) into the Cre-
mona group.

Corollary 3.11. Let m be a positive integer, and let,a..,am,b1,...,bm € {£1}. The
birational map
Ok(S (RS SP1(R™)
has dynamical degreeR.
In particular, the magBy is an hyperbolic embedding and the set of all dynamical de-
grees oBy(SL(2,Z)) is {1,k k4 K8, ... }.

Proof. Any element of infinite order of 12, Z) is conjugate tg = m(R9". .. P1(RYM
for someay,...,am,b1,...,bm € {£1}. Lemma3.10implies that the degree & (g") is
equal tok’™. The dynamical degree 6f(g) is therefore equal t&*™. O O

4. DESCRIPTION OF HYPERBOLIC EMBEDDINGS FOR WHICH THE CENTRALLEMENT
FIXES (POINTWISE) AN ELLIPTIC CURVE

4.1. Outline of the construction and notation. In this section, we give a general way of
constructing embeddings of &, Z) into the Cremona group where the central involution
fixes pointwise an elliptic curve. Recall that all conjugatasses of elements of order 4 or
6 in Bir(P?) have been classifiedée[Bla3]). Many of them can act on del Pezzo surfaces
of degree 1, 2, 3 or 4.

In order to create our embedding, we will define del PezzasesdX, Y of degree< 4,
and automorphisme € Aut(X), B € Aut(Y) of order respectively 6 and 4, so that
andp? fix pointwise an elliptic curve, and that R¥)®, Pic(Y)P have both rank 1. Note
that we say that a curve fixedby a birational map if it is pointwise fixed, and say that
it is invariant or preservedf the map induces a birational action (trivial or not) on the
curve. Contracting—1)-curves invariant by these involutions (but notdyf3, which act
minimally onX andY), we obtain birational morphism$ — X4 andY — Y4, whereXy, Y
are del Pezzo surfaces on whighandp? act minimally. Lemmat.1below shows thaXy
andY, are del Pezzo surfaces of degree 4 and botthijE3 and Pi(ﬁY4)[32 have rank 2
and are generated by the fibres of two conic bundleXoandY,;. Choosing a birational
map X4 --+ Y4 conjugatinga® to B2 (which exists if and only if the elliptic curves are
isomorphic), which is general enough, we should obtain ahestding of SI(2,Z) such
that any element of infinite order is hyperbolic.
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In order to prove that there is no more relation in the groupegated bya and 3
and that all elements of infinite order are hyperbolic, wecdbs the morphismX — X4
andY — Yz and the action oft andf3 on Pic(X)”‘3 and Pic(Y)Bz (which are generated by
the fibres of the two conic bundles &, andY,; and by the exceptional curves obtained
by blowing-up points on the elliptic curves fixed), and thdxserve that the composition
of the elements does what is expected.

4.2. Technical results on automorphisms of del Pezzo surfaces degree4. Recall
some classical facts about del Pezzo surfaces, that therread find in Pem (see also
[Man]). A del Pezzo surface is a smooth projective surfAseich that the anti-canonical
divisor —Kz is ample. These af! x P, P2 or P2 blown-up at 1< r < 8 points in general
position (no 3 collinear, no 6 on the same conic, no 8 on theesarhic singular at one of
the 8 points). The degree of a del Pezzo suriai® (Kz)?, which is 8 forP! x P1, 9 for
P2 and 9—r for the blow-up ofP? atr points.

Any del Pezzo surfacg contains a finite number df-1)-curves (smooth curves iso-
morphic toP! and of self-intersectior-1), each of these can be contracted to obtain an-
other del Pezzo surface of degfée )2+ 1. These are moreover the only irreducible curves
of Z of negative self-intersection. K is notP?, there is a finite number of conic bundles
Z — P! (up to automorphism d#t), and each of them has exactly-§Kz)? singular fibres.
This latter fact can be find by contracting one component aheangular fibre, which is
the union of two(—1)-curves, obtaining a line bundle on a del Pezzo surface,aspic
to P! x P! or F; and having degree 8.

Lemma 4.1. Let Z be a del Pezzo surface, anddet Aut(Z) be an involution that fixes
(pointwisg an elliptic curve. Denote by : Z — Z, any < ¢ >-invariant birational mor-
phism such that the action on % minimal.

Then, 7 is a del Pezzo surface of degéeandPic(Z4)° = Zf1 ¢ Zf,, where {, f2 cor-
respond to the fibres of the two conic bundigsr, : Z4 — P! (defined up to automorphism
of PY) that are invariant byo. Moreover

f1+f2=—Kz4, fi-f,=2 and PiC(Z)G:Zl’]*(fl)@Zn*(fz)@ZEl@“'@ZEr

where B, ...,E; are the r irreducible curves contracted loy(in particular, n only con-
tracts invariant(—1)-curves.

Proof. SinceZ is a del Pezzo surfacg, is also a del Pezzo surface. éscts minimally on
Z4 and fixes an elliptic curve, we have the following situatifidgBe Theorem 1.4]): there
exists a conic bundfa; : Z, — P! such thatyo = T4, o induces a non-trivial involution on
each smooth fibre afy, and exchanges the two components of each singular fibrehwhi
meet at one point. The restriction of to the elliptic curve is a double covering ramified
over 4 points, which implies that there are four singularefibrThe surfacé, is thus the
blow-up of four points orf'; or P! x P, and has therefore degree 4. The fact that there are
exactly two conic bundlesy, To: Z4 — P? invariant byo, that Pi¢Zy)° is generated by the
two fibres, thatf; + fo = —Kz, and thatf; - f, = 2 can be checked ifBla2, Lemma 9.11].

It remains to observe that all points blown-up ipyare fixed byo. If n blows-up an
orbit of at least two points o4 invariant bya, the points would be on the same fibre
of ;. The transform of this fibre o# would then contain a curve isomorphiclké and
having self-intersectior —2; this is impossible on a del Pezzo surface. [ O

Lemma 4.2. Fori = 1,2, let X be a projective smooth surface, Witfil% 4, and letg; €
Aut(X;) be an involution which fixes an elliptic curfe C X;. Lettg: X; — P! be a conic
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bundle such thatto; = 17 and let i, G; C X; be two sections af; of self-intersection-1,
intersecting transversally into one point.

Then, X, X, are del Pezzo surfaces of degreand the following assertions are equi-
valent:

(1) There exists an isomorphispn X; — Xz which conjugates to 02, which sends
F1,G1 onto i, and G respectively and such thapd = 11;

(2) The points ofP! whose fibres byg are singular are the same for=t 1,2, and
T[1(F1 N Gl) = T[2(F2 N Gz).

Proof. Fori = 1,2, we denote by;: Xi — 1 the birational morphism that contracts, in
each singular fibre af, the(—1)-curve that does not intersdgt The curven;i(F) is equal
to the exceptional sectida of the line bundlat: F; — P, with = Tlmfl. Sincen;(G;)
intersectsE into exactly one point, it is a section of self-intersect&nin particular, the
four points blown-up byj; lie onn;(G;). Contractings onto a point of??, n;(G;j) becomes
a conic ofP? passing through the five points blown-up by the birationalphsmX; — P?;
this implies that no 3 are collinear and thus tKais a del Pezzo surface of degree 4.

Itis clear that the first assertion implies the second orentiains to prove the converse.
The second assertion implies that(G1) NE = n2(G2) NE, and this yields the existence
of an automorphism df that send$)1(G1) ontonz(Gz) and that preserves any fibre of
1. We can thus assume thgt(G1) = n2(Gz), which implies that the four points blown-up
by ni andn; are the same. The isomorphigntan be chosen gs= r]glo ni. The mapp
conjugate®; to 02 because, for eadho; is the unique involution that preserves any fibre
of 14 and exchanges the two components of each singular fieefdr example Bla2,
Lemma 9.11)). O O

4.3. Actions on the Picard groups ofa and 3. We now describe the actions afand3
on PigX) and PigY).

Proposition 4.3. Let X be a del Pezzo surface of degfg)? < 4, and leta € Aut(X) be
an automorphism of ordes such thatPic(X)® = ZKx and such that® fixes pointwise an
elliptic curve. Letny : X — X4 be a birational morphism, so that® acts minimally on X,
and let f, f2 € Pic(X) be the divisors corresponding to the two conic bundles pwhbich
are invariant bya® (seeLemma4.1). Then, one of the following occurs:

(i) (Kx)2 = 3, nx contracts a curve E anda, o act onPic(X)® as
11 1 0 1 0
1 0 O and 1 1 1
-2 0 -1

relatively to the basi$fi, f2,E1) (up to an exchange of; ffz).
(ii) (Kx)? =1, nx contracts &, E, E3, anda, o act onPic(X)O‘3 as

1 3 1 1 1 4 3 2 2 2
3 4 2 2 2 3 01 1 1 1
2 -4 -2 -2 -1 and —4 -2 -2 -1 -2
2 -4 -1 -2 -2 4 2 -2 -2 -1
2 -4 -2 -1 -2 4 2 -1 -2 -2

relatively to the basi¢fy, f2, E1, Ez, E3) (up to a good choice of EE;, Ez and an exchange
of fl, fz).

Proof. Let E C X be any(—1)-curve invariant bya. The divisorE + a(E) + o?(E) is
invariant bya and thus equivalent tsKx for some integes. Computing the intersection
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with Kx and the self-intersection, we obtait8 = s(Kx )2 and—3+6(E-a(E)) = (Kx)?.
This gives two possibilities:

(i) (Kx)?=3, s=-1, E-a(E)=1
(i) (Kx)>=1, s=-3, E-a(E)=2

In case(i), nx is given by the choice of ongé-1)-curve E; invariant bya®. Since
E;-a(E1) = 1, the divisorE;s + a(E1) corresponds to a conic bundle dhandXs. Up
to renumbering, we can say thit=E; + a(E;) andf, = E1+cx2(E1). This means that
C((El) = f1 — Ey, GZ(El) = fo — Ey, C((fl) =f1+f—2E anda(fz) = f1.

In case(ii ), there are three curvég, E,, E3 contracted by)x. We first choos&;, and
then choosd) = 1g(a(E1)) = —2Kx —a(Ey) (wherelig is the Bertini involution of the
surface). Sinc&), does not intersedf;, we can contradE;, E5, and another curvis to
obtain ano3-equivariant birational morphisix — X;, whereX; is a del Pezzo surface of
degree 4. This choice gives us two conic bundlgd; on X;, which we also see oKa,
invariant bya®. We now compute(Ez). We haven(E3) - E3 = 2,

G(Eg) -E1=E3- GZ(E;L) =E3- (—3Kx —E1— G(El)) =E3- (—Kx —E1+ Eé) = l7
a(Ez)-E, = E3-0%(E)) = E3-(—2Kx —E1) = 2.

This implies thati(E3) = af] + bf;, — E; — 2E, — 2E3, for some integera, b. Computing
the intersection with-Kx we find 1=2a+2b—1—-2—2=2(a+b) — 5, which means that
a+b= 3. Computing the self-intersection, we obtain thdt= 2ab—1—4—4=4ab—9,
soab= 2. Up to an exchange df, f;, we can assume that= 1,b = 2, and obtain that
a(Es) = fi+2fé— E;— ZEé— 2E3 = —2Kx — (fi— Ejp).

We now callE; the (—1)-curve f; — E}, which does not interseé; or E3. We take
fi = f{ and f, = f{ + f; — 2E), so thatfy, f> are conic bundles, with intersection 2, and
—Kyx = f1 + fo — E; — E> — E3. The contraction oEy, E, Ez is aa3-equivariant birational
morphismX — X4 and f1, f, correspond to the two conic bundlesXy invariant bya?3.
With this choice, we can compute

a(Er) =18(Ep) =18(f1— E2) = —2Kx — (f1 — E2),

a?(E1) = —3Kx —a(E1) — E; = —Kx — (f1 — E2) — E; = —2Ky — (f2 — E3),
a(Es) = —2Ky — (f] —E1) = —2Kx — (f1 — Ey),

a?(Eg) = —3Kx — 0(E3) — Es = —Kx — (f1 — E1) — Ez = —2Kyx — (f1 — E»).

This yields the equalitie§; = —2Kx + E; — a(E3) and f = —2Kx + E3 — az(El), E, =
(X_Z(Eg) +2Kx — f1, and a straightforward computation gives, with the fouragguns above,
a'(fj) anda'(Ep) fori, j =1,2. O O

Proposition 4.4. Let Y be a del Pezzo surface of degfe)? < 4, and letp € Aut(Y)
be an automorphism of order such thatPic(Y)? = ZKy and thatp? fixes pointwise an
elliptic curve. Letny: Y — Y, be a birational morphism, so th@f acts minimally on ¥,
and let f, fo € Pic(Y) be the divisors corresponding to the two conic bundles pthat
are invariant byB? (seeLemmad.1). Then, one of the following occurs:

(i) (Ky)? = 2, ny contracts two curves £ E, and acts onPic(Y)Bz as

1 2 1 1
2 1 1 1
-2 -2 -2 -1
-2 -2 -1 -2
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relatively to the basi¢fi, fo,E1, Ep).
(i) (Ky)2 =1, ny contracts g, Ep, E3, and acts onPic(Y)[32 as

3 4 2 2 2
4 3 2 2 2
-3 -3 -3 -2 -2
-3 -3 -2 -3 -2
-3 -3 -2 -2 -3

relatively to the basi$fi, fz, E1, Eo, E3).
Remark 4.5. The second case, numerically possible, does not esasfDols] or [Bla3)).

Proof. LetE C Y be any(—1)-curve invariant by3?. The divisorE + B(E) is invariant by
B and thus equivalent teky for some integes. Computing the intersection witky and
the self-intersection, we obtain2 = s(Ky)2 and—2+ 2(E - B(E)) = s?(Ky)?. This gives
two possibilities:

(i) (KY)2:25 s=-1 E-B(E)=2
(i) (Ky)’=1, s=-2 E-B(E)=3
In case(i), there are two curveB;, E; contracted byny, andB(E) = —Ky — E; for
i =1,2. Moreoverf; — E; is also a—1)-curve fori = 1,2, soB(fi) = B(E1) + B(fi— E1) =
—Ky —E; — Ky — (fi — E1) = —2Ky — f;.
In case(ii), there are three curvés, E», E3 contracted by)y, andB(E;) = —2Ky — E;
fori=1,2,3. As before, we fin@( fi) = —4Ky — fi. O O

4.4. Automorphisms of del Pezzo surfaces of orde6, resp. 4 — description of a and
B.

Automorphisms of del Pezzo surfaces of oéler We now give explicit possibilities for
the automorphism € Aut(X) of order 6.
Case |

X = {(w:x: y:2) €P(3,1,1,2) \A/2:23+uxf+x6+y6}

a((w:x:y:z)=(w:X: —wy:2)
for some genergl € C so that the surface is smooth and where- €23, The surface
is a del Pezzo surface of degree 1, anfixes pointwise the elliptic curve given ky= 0.
Whenp varies, all possible elliptic curves are obtained. The rahRic(X)® is 1 (see
[Dols, Corollary 6.11]).

Casel ll
X = {(w:x:y:z) ep? ‘ Wx2+\/\/3+y3+z3+uwyz=0},

a((w:x:y:2z) = (W:—x:wy: w’z),
wherep € C is such that the cubic surface is smooth. The surface is aedldsurface
of degree 3p° fixes pointwise the elliptic curve given by= 0, anda acts on this via a
translation of order 3. Whepvaries, all possible elliptic curves are obtained. The maink
Pic(X)% is 1 (see[Dols, Page 79]).

Case lll

X:{(w:x:y:z)e]P’3‘vv3+x3+y3+(x+uy)22:0},

a((w:x:y:z)=(ww:x:y:—2),
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wherep € C is such that the cubic surface is smooth. The surface is agdeldsurface
of degree 32 fixes pointwise the elliptic curve given tw= 0, anda acts on it via
an automorphism of order 3 with 3 fixed points. Whewaries the birational class of
a changes (because the isomorphism class of the curve fixed bganges) but not the
isomorphism class of the elliptic curve fixed by. The rank of Pi¢X)% is 1 (see[Dols,
Page 79)).

Automorphisms of del Pezzo surfaces of odler We now give explicit possibilities for
the automorphisrf € Aut(Y) of order 4.

Y:{(W:x:y:z)e]P’(271717l)

4
WP —x* = [yay+2+12 = 0}

B((w:x:y:z))=(w:ix:y:2z),
wherep e C\{0,1}. The surface is a del Pezzo surface of degree Bdixeés pointwise
the elliptic curve given by = 0. Whenp varies, all possible elliptic curves are obtained.
The rank of Pi€Y)P is 1 (see[Dols, last line of page 67] o§la3]).
There are other possibilities of automorphigdnaf order 4 of rational surfaceé such
thatp? fixes an elliptic curve, but none for which the rank of ®i{? is 1 (see[Bla3]).

4.5. The map X4 --» Y, that conjugatesa® to 2. We now fixa € Aut(X), B € Aut(Y),
automorphisms of order 6 and 4 respectively, which act mafiynon del Pezzo surfaces
X andY, so thata® andp? fix (pointwise) elliptic curve$'x ¢ X andly C Y, which are
isomorphic (as abstract curves).

We denote bynx: X — X4 andny: Y — Yz two birational morphisms to del Pezzo
surfaces of degree 4, so that andB? act minimally onXs andY respectively. We denote
by f1, f2 € Pic(Xa) C Pic(X), respectively byf;, f; € Pic(Ys) C Pic(Y), the two divisors
corresponding to the two conic bundles invariantly respectively byB?.

We will choose two pointg1, g2 € Nx (M'x) C X4, and denote by: Z4 — X4 the blow-up
of these two points.

Lemma 4.6. For some good choice of gap, there exists a birational morphisth; Z, — Yy
satisfying the following properties:

(1) the morphisnt’ is the contraction of the strict transforms of the two irrehle
curves equivalent to; foassing through gand ¢ onto two points §, ), € ny (Fy);

(2) the mapp = 't~ conjugates® to B2 (i.e. pa® = B2¢);

(3) neither g nor o is blown-up bynx, and neither § nor o, is blown-up byny;

(4) identifying f, fo with t(f1),1"(f2) € Pic(Zs) and f], f; with T*(f;),17"(f}) €
Pic(Z4), we have the following relations iRic(Zs):

fp =11, fl = fa,
fo = fé—|—2f]/_—2ET/, féz fo+ 2, — 2E;,
ETZZfi—ET/, E-[/:Zf]_—E'[7

where g, Ey € Pic(Z4) correspond to the exceptional divisorstadindt’ respec-
tively, which are the sum of two exceptional curves.

Proof. Denote byrt: X4 — P! and1t: Y4 — P! the morphisms whose fibres afeand fl
respectively. As it was already observed in the proof of Lerdni, bothT, 1@ are conic
bundles, with four singular fibres, and the four singulardtheorrespond to the four branch
points of the double coverings nx(M'x) — P! andrt: nv(Fy) — PL. Sincelx andly
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are isomorphic elliptic curves, we can assume that the fointp are the same for both
morphisms. Denote bg C P! the union of the image by of the points blown-up by,
the image by’ of the points blown-up by)y, and the points corresponding to singular
fibres ofrt (or 17).

We define a closed subsétC I'x x 'x consisting of pairgqi,gz) that we "do not
want”, and denote by its complement. The closed sub&gts the union of the pairs
(a1,02) such thatt(qgs) or 1(gp) belongs taA. Observe tha¥ is a finite union of curves of
I'x x 'x (of bidegreg0,1) or (1,0)).

Choosing(a1,q2) € U, such thatyy, gz are on distinct fibres oft, we can define a bira-
tional morphisnt’: Z4 — W which contracts the strict transforms of the fibreswathich
pass througly; andgz. The mapd = 't~ conjugatesx® to a biregular automorphism
of W, which preserves any fibre of the conic buntdige = rd 2. In fact, ¢ is a sequence
of two elementary links of conic bundles. It remains to shbattfor a good choice of
(q1,02) € U, the triplet(W, iy, da¢ 1) is isomorphic toY, 1¢, 32), using Lemma.2

Let E; C X4 be a(—1)-curve which is a section af; we fix a birational morphism
Hx : X4 — P2 which contract€; and all(—1)-curves lying on fibres oft that do not in-
tersectEy, which we callEs,...,Es. The fibres offt correspond to lines dP? passing
through the poinp1 = px(Ei1), the curves equivalent té correspond to conics passing
throughp = px(E2), ..., ps = Ux(Es). For any pair(gi,gz), we denote byC C Xy (re-
spectivelyD C X,) the strict transform of the conic @ passing througips, p2, p3, a1, o2
(respectivelyps, pa, Ps,d1,d2), and denote b, D’ C W their strict transforms bg. The
curvesC, D are sections oft and intersect into three pointsp, gp, r € X4. The cur-
vesC', D' are sections ofty of self-intersection-1, and intersect into one point, which
isd(r) € W. The isomorphism class of the tripl@V, Tiy, dad 1) is given byriy (¢(r)) € P*
(Lemma4.2), equal tor(r) € PL. Fixing g, and choosing one of the two possibilities
for r, on the fibre given by the isomorphism class(¥fty,3%), the curve<C, D can be
chosen as the conics passing respectively thrquglpz, ps, g1, r and ps1, ps, Ps, di, I,
soqp is uniquely defined. This gives us two irreducible curVgd/, of bidegreg(1,1) in
I'x x ['x, which are thus not containedVh Choosing a general point®f NU, the triplet
(W, Ty, dad 1) is isomorphic ta Y, Ty, B?).

The fact thatnx does not blow-um; or gz and thatny does not blow-um; or ¢, is
given by the fact thatt(q;) = 1¢(¢f) ¢ Afori =1,2.

It remains to show the relations in P#a). The equalitiesf; = f; andE; + Ey = 2f;
are given by the construction of . The adjunction formula, and the fact thakx, =
f1 4+ f2, —Ky, = f] + f; yields —Kz, = f1 + fo — E; = f{ + f; — Ey and the remaining
equalities. O O

4.6. The hyperbolic embeddings.Now we have the magp: X4 --+ Y4 constructed in
§4.5above, which conjugates® to B2, the group generated loyandp is a subgroup of the
Cremona group, which is isomorphic to & Z) if and only if there is no other relation
than the obvious % a® = p* = a®p2 which arise by construction. We compute the action
of a, B on PidX), Pic(Y), and on a surfacg which dominate, Y, where botto, 3 act.
This surface exists if the group generated by the action tf baps on the elliptic curve
fixed by a® andf? is a finite subgroup of automorphisms of the curve (whichue tior
example when eithex or f3 fixes the curve), and if it does not exist, we can also compute
the action on the limit of the Picard groups obtained.
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MY
1N

Proposition 4.7. For j = 1,2,3, choosex € Aut(X) as an automorphism of ordérof a
del Pezzo surface X, which is respectively given in casedr Ill of §4.4 such thai®
fixes pointwise an elliptic curvex, and choos§d as an automorphism of orddrof a del
Pezzo surface Y of degr@ewhich fixes pointwise an elliptic cur¥g isomorphic tol x,
(which implies thatr® and B? are conjugaté. This yields, with the above construction,
a hyperbolic embedding, : SL(2,Z) C Aut(Z) C Bir(Z) ~ Bir(P?) which preserves an
elliptic curvel” isomorphic tol x andly.

The surface Z is obtained by blowing-up respectiiglyl 0 and 10 points on a smooth
cubic curve of?? isomorphic to”, and the action 08, (SL(2,Z)) onT is respectively the
identity, a translation of ordeB8 and an automorphism of ord&with fixed point. There
is no curve of Z distinct from which is invariant byon; (SL(2,Z)). The curved can be
chosen to be any elliptic curve for5 1,2.

(1)

Proof. In casej = 1, we take(f1, f2,E1, Ep, E3) as a basis of P((X)“S, whereE;, E, E3
are the three curves contractedrpy, andfy, f, correspond to the fibres of the two conic
bundles invariant by on X4. Applying Propositiort.3 o preserves the submodule gen-
erated byfi, f2, E, whereE = E; + E, + E3 is the divisor contracted hyy, and its action
relatively to this basis is

1 3 3
3 4 6
—2 -4 -5

In casesj = 2,3, we take(fi, f2,E) as a basis of P(O()“S, whereE = E; is the (ir-
reducible) divisor contracted hyx, and f1, fo correspond to the fibres of the two conic
bundles invariant byr® on X4. Applying Proposition4.3 the action ofa on Piqx)o‘3
relatively to this basis is

0 1 0
1 1 1
0 -2 -1

(for a good choice ofq, f2, E).
In each of the three cases, we takg 5, E;, E)) as a basis of P )®, whereE], E) are

the divisors contracted hyy, andf;, f; correspond to the fibres of the two conic bundles
invariant byB? onYs. Applying Propositior4.4, B preserves the submodule generated by
f1, f5,E', whereE’ = Ef + E; is the divisor contracted byy and its action relatively to
this basis is

1 2 2

2 1 2

-2 -2 -3



EMBEDDINGS OF Sl(2,7Z) INTO THE CREMONA GROUP 23

We denote byt : Z — X the blow-up of the points corresponding to the points blown-
up byt andny (seeDiagram ()), and denote again their exceptional divisor&hyandE’.
Similarly, we denote byt : Z — Y the blow-up of the points corresponding to the two
points blown-up byt” andny, and denote again their exceptional divisorsehyandE.
Since X4 andY, are del Pezzo surfaces of degree 4, they are obtained byrigew 5
points of P2, all lying on the smooth cubic being the imagelgf or M'y. This implies
thatZ is the blow-up of 12 points dP? if i = 1 and of 10 points oP? if i = 2,3, all points
belonging to the smooth cubic curve. Moreover, bothndp lift to automorphisms oZ.

We denote by the same name the pull-backs of the divigorfs, E, E/, E; onZ. Recall
thatE; is the sum of twg —1)-curves. The action af in casej = 1, a in casej € {2,3}
andp in each case on the subvectorsp@tef Pic(Z) ® R generated byf, f2,E,E’ E;)
are respectively

1 3 3 00 0 1 00O 5 10 0 6 8
3 4 6 00 1 1 1 00 2 50 2 4
-2 -4 -5 00(,]0 -2 -1 0 O and 0O 01 0 O
0O 0O 010 0O 0 010 -2 -6 0 -3 -4
0O 0O 001 0O O 0601 -4 -8 0 -4 -7

relatively to this basis. The first two matrices are obtainechuse fixes the curvé x, and
becaus&’, E; correspond to points dfx which are not blown-up bgx (Lemma4.6). The
second matrix is obtained applying again Lemdn@ which yields the equationfy = f,

fo = f,+2f] — 2By, Er = 2f; — Ey. One easily checks that the only element3/of
which are fixed bya and3 are the multiples of the canonical divisor, corresponding t
[1,1,—1,—1,—1]. This implies that any curv€ C Z invariant by the group is a multiple
of the elliptic curvel'z C Z (strict transform off x andl'y). This curve having negative
self-intersectionC has to be equal tbz.

By construction, we hava® = * = 1 andB? = a®. We have to prove that no other
relation holds, and that any element of infinite order cqroesls to a hyperbolic element
of Aut(Z). Writing p; = ap andp, = 2B, this corresponds to show that for any sequence
(i1,...,in) with ix € {1,2}, the elemenp;,, - - - - pi, is a hyperbolic element of A(Z).

To show this, we look at the action af B on the orthogonalp = K+ of the canonical
divisorK € W C Pic(Z) in W. We choose a basis W, made of orthogonal eigenvectors
of B.

If j=1,thebasisis [1,0,0,-1,0],[2,1,0,—-1,-2],[3,1,-2,-1,-2],[4,2,—-2,—2,—3] >,
which has signature —2, —2, —2, 2> and the actions af, a2, B relatively to it are respec-
tively

o -1 -2 -2 0 -2 -1 -2 -1 0 0 O
-2 -2 -3 -4 -1 -2 0 -2 0 -1 00
-1 0 -2 -2 \|’| -2 -3 -2 -4}’ 0O 010

2 2 4 5 2 4 2 5 0O 0 0 1

We denote byH the fourth basis vector, which is the only one with positigeare, and
compute by induction om the vectorH, = pj, ---- - pj;(H) for n > 0 (with Ho = H).
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—an
o —bn
Writing H, = c
—Cn
ln
ana bn7 Cn7 én
14
2) i
ln

where the last one will yield the result, implying thag

of Aut(Z) of dynamical degree (3).
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, we prove by induction on the following inequalities:

0

6
5Cn

2ay
3"

vV Vv VIV

pi, is a hyperbolic element

Note that(2) is easily checked fon = 0, sincelp = 1, agp = bp = co = 0. We assume
the result true fon and prove it fom+ 1. We haveH,, 1 = pi,,, (Hn) = a'*2fB(Hy), which

is equal to

—bn+2ch — 205

—2ap — 2bn + 3ch — 40,
—an+2¢h — 2,

2an + 2bp — 4cn + 54,

or

—2bn+Cn— 20n

—an — 2bp— 20

—2ap — 3bn + 2ch — 40y
2an + 4bp — 2¢n + 504

We deduce the inequalitie®, 1, bni1, Cnhi1, o1 > 0 directly froma,, b, > 0 and
ln > cp > 0. Computing/n 1 — 2an1 = fn + 282y, We obtain, 1 > 2an1. We compute
then 9,1 — 6cy 1 to see that it is positive, and obtain eithed 3 8c, + 4a, + 10b, >
(13—-8- %)én + 4ap+ 10by > 0 or ¢y + 2¢, + 2b, — 2a, > 0. To get @), it remains to see
thatln,1 > 500 — 4Ch = 300+ 4(20n — Cn) > 300 > (3)™L.

For j = 2,3, the situation is similar, with other data. The basis is ro¥t,0,0,—1,0],
[2,1,0,—1,-2],[8,2,—-2,—-2,-5],[9,3,—2,—3,—6] >, which has signature —2,—2,—6,6 >
and the actions afi, a2, B relatively to it are respectively

-2 -9 -18 -24 -2 -6 -18 -21 -1 0 0 O
-6 —-20 -36 -51 -9 -20 -54 -66 0 -1 0 O
-6 —-18 -35 -48 |’ -6 -12 -35 —42 |’ 0O 010

7 22 42 58 8 17 48 58 0O 001

We again denote bl the fourth basis vector, which is the only one with positigeare,
and compute by induction amthe vectorH, = pj,, pi,(H) for n> 0 (with Ho = H).

—an
Writing H, = _2” , we prove by induction on the following inequalities:
—en
In
anvbnacnaén Z O
(3) lh > Cn
én 2 1015

where the last one will yield the result, implying thag
of Aut(Z) of dynamical degree- 10.

Again, (3) is easily checked fon = 0, sincelp = 1, ap = by = co = 0. We assume the
result true fom and prove it fom+- 1. We haveHn 1 = pi,,,(Hn) = ainHB(Hn), which is
equal to

pi, is a hyperbolic element
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—2an — 9bn + 18cy — 240y, —2ap — 6bn+ 18cy — 214,
—6an, — 200, 4 36¢, — 514 or —9a, — 200, + 54c, — 660y
—6ap — 180, + 35c, — 480y, —6ap — 120, + 35c, — 424y,

Tan + 22b, — 42ch + 580y 8a, + 17b, — 48cy + 58,

We deduce the inequalitie®, 1, bni1, Cni1, o1 > 0 directly froma,, b, > 0 and
ln > €y > 0. Sinceln 1 — cny1 IS either equal t@, + 4by — 7b, + 106, or to 2a, + 5by, —
13c, + 16¢y, it is positive. To getd), it remains to see that

Uny1 > 580y — 48ch = 100y + 48({n — Cn) > 100, > (10)"L,
O O
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