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Abstract

We fabricate high-performance solution-processed SnO, thin-film transistors (TFTs) exhibiting
improved carrier transport features by exposing the ultraviolet/ozone (UV/O3) on the SnO, film
during the pre-annealing stage. The SnO, layer is treated with different UV/O3-exposure times
from 0 to 60 minutes before the post-annealing step. As UV/O3-exposure time increases from 0
to 30 minutes, the M-O-M (M, metal; and O, oxygen) network, mass density, and oxygen
vacancies of films are enhanced. In contrast, the M-O-M network and mass density decrease,
while the oxygen vacancies rather increase when the UV/O3-exposure time reaches 60 minutes
beyond 30 minutes. The SnO, (Sn**) phase, thickness, and surface morphology of SnO, films
are not considerably changed regardless of UV/O3-exposure time. When the UV/O3-exposure
time is 30 minutes, devices demonstrate superior field-effect mobility (10.1 cm? V~! s71) at
approximately two times higher than the TFT without UV/O3-exposure. Furthermore, the SnO,
TFT with UV/Os-exposure time for 30 minutes shows improved subthreshold-swing
characteristics and a high on/off current ratio. These devices are adequate for use in
high-resolution active-matrix LCDs or OLED displays that demand a high field-effect mobility
(>10 cm? V~! s~1) and on/off ratio (>10°).
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1. Introduction

Metal oxide semiconductor-based thin-film transistors
(TFTs) have become important as fundamental devices for
next-generation displays because they exhibit not only out-
standing electron mobility but also high transparency in the
visible light regime compared with conventional silicon (Si)-
based TFTs [1-4]. Among the different metal oxides, binary
oxide semiconductors including indium(IIl) oxide (In,0O3),
zinc oxide (ZnO), and tin(IV) oxide (SnO,) show higher
electrical conductivity than the other insulating ionic com-
pounds [5-7]. Many investigators have recently turned to
Sn-based oxide TFT because indium (In) is toxic, a rare earth
element, and costly [8, 9]. Furthermore, the SnO, semicon-
ductor has many advantages such as a wide optical band gap,
crystallization at relatively low temperatures, and remark-
able charge transport properties via heavy-metal cations
with (n — 1)d"%ns® (n>35) electronic configurations, lead-
ing to the impressive electrical performance of SnO, TFTs
[10-12]. On the other hand, oxide semiconducting mater-
ials can be formed into thin-film by both a vacuum pro-
cess and a solution process [13-16]. From the viewpoint of
vacuum-free deposition, the solution process is cost-effective,
simple, and applicable to spin-coating, inkjet printing, and
meniscus-guided coating, suitable for large-scale produc-
tion [17-20]. The solution-process inevitably requires a pre-
annealing step to evaporate residual solvent on coated films
before post-annealing with a relatively high-temperature to
develop the active layer [21, 22]. The pre-annealing temperat-
ure leads to an endothermal reaction related to the precursor
dissociation and subsequent hydrolysis reaction that gener-
ates M-OH bonding (M, metal; O, oxygen; and H, hydro-
gen) which could be converted to M-O-M network bond-
ing through dehydration and alloying reactions during the
post-annealing step [21-23]. In this regard, researching pre-
annealing treatment is important for improving the electrical
performance of oxide TFTs. However, many studies have
focused on post-annealing treatments such as high-pressure
annealing, ambient gas control, and water vapor annealing
[24-26].

In this study, we fabricated high-performance TFTs by con-
trolling ultraviolet/ozone (UV/O3)-exposure time on solution-
processed SnO, films during the pre-annealing stage. The
change of molecular structure, crystallinity, and morpholo-
gical characteristics of solution-processed SnO; thin-films
with different UV/Os-exposure times from 0 to 60 minutes
was systematically investigated. We observed the enhanced
physical- and chemical characteristics of SnO; films that show
increased mass density, M-O-M network, and oxygen vacan-
cies when the UV/O3-exposure time is 30 minutes. In con-
trast, mass density and M-O-M network decreased, while the
oxygen vacancies rather excessively increased when UV/O3-
exposure time reached 60 minutes beyond 30 minutes. The
crystalline size, thickness, and surface roughness of SnO,
films were similar regardless of UV/Oj3 treatment. The SnO,
TFT with UV/O; treated for 30 minutes demonstrated super-
ior electrical properties with the highest field-effect mobility
of 10.1 cm? V! s~ and on/off current ratio of 1.2 x 10°,

adequate for use in high-resolution active-matrix LCDs or
OLED displays [27].

2. Methods

2.1. Fabrication process

A schematic for the fabrication process of a coplanar bottom-
gate SnO;, TFT with UV/Oj3 treatment is depicted in figure 1.
A heavily boron-doped p-type Si wafer and thermally grown
100 nm SiO, were used as the gate electrode and gate insulator,
respectively. For the bottom contact structure, 50 nm thick Au
electrodes were deposited on SiO, using e-beam evaporation
and then patterned by the lift-off method to design an active
channel layer with a length of 1 000 pm and width of 100 pm.
The Si/SiO, substrate was cleaned by UV/O3 for 60 minutes
before spin-coating. The solution for the SnO, active mater-
ials was prepared by dissolving 0.025 M of tin(Il) chloride
dihydrate (SnCl, - 2H;0) in ethanol. The prepared solution
was spin-coated at 3000 rpm for 50 s onto a Si/SiO, substrate
followed by pre-annealing at 150 °C for 10 minutes to evapor-
ate the residual solvent. In a previous study, SnO, films coated
with ethanol-based chloride precursor solution dried at 150 °C
demonstrated suitable environmental stability with high dens-
ification [28].

UV irradiation (25 mW cm~2) was conducted with a
low-pressure mercury lamp with two types of light sources
(Jaesung engineering, UVC-30). One had a wavelength of
184.9 nm and an energy of 647 kJ mol~!, and the other had
a wavelength of 253.7 nm and an energy of 472 kJ mol~!.
These two light source energies are larger than the bond-
ing energy of the contaminant organic and hydrogen com-
pounds such as C-C (348 kJ mol~!), C-O (352 kJ mol™!),
C-H (413 kJ mol™!), and O-H (463 kJ mol~!). Moreover,
these light sources continuously produce O3 and oxygen free
radicals (O(’p) and O('D)) through the following reactions
[29, 301:

0, +hv (185 nm) — O (*P) + O (°P) (1)
0,+0(°P) —» 03 )
O; +hv (254 nm) — O ('D) + 0,. A3)

As presented in Equations (1) and (3), Ozone (O3) and
excited singlet atomic oxygen (O(' D)) are strong oxidants and
easily eliminate organic contaminants as volatile byproduct
molecules such as CO,, H,O, and O, [29]. The UV/O3-
exposure time was adjusted at 0, 15, 30, 45, and 60 minutes
to explore the effect of UV/O3-exposure on SnO, film and
obtain the high electrical performance of a SnO, TFT. After
the pre-annealing stage with UV/O3-exposure, post-annealing
was performed at 450 °C for 1 h in a tube furnace with
ambient air to remove organic residues, activate metal oxide
film, and assist crystallization of SnO,. The coated films were
mechanically eliminated in advance before measurement of
the electrical performance in the SnO, TFT for complete
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Figure 1. A schematic for the fabrication process of the coplanar-bottom gate UV/O3-exposed SnO, TFT.
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Figure 2. XPS spectra of (a) Sn 3d and (b) O 1 s state of SnO; films
with different UV/O3-exposure times.

isolation to minimize gate leakage current and fringing effect.
The optical images before and after the isolation of the device
are shown in figure 1.

2.2. Analysis method

x-ray photoelectron spectroscopy (XPS) (ThermoFisher
Scientific, NEXSA) was conducted using a monochromatic
Cu K« (1.5418 A) light source to observe the surface elec-
tronic states and chemical compositions of SnO; films. The
mass density and thickness of the films were investigated with
x-ray reflectivity (XRR) (Panalytical, Empyrean) analysis and

<—— Critical angle
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Figure 3. (a) XRR spectra and (b) GIXD patterns of SnO; films
with different UV/O3-exposure times.

(a)

simulation using commercial software (X Pert Reflectivity).
The crystallization behavior of SnO, films was examined
using grazing incidence x-ray diffraction (GIXD) (Panalyt-
ical, Empyrean). The surface morphology of the films was
obtained through atomic force microscopy (AFM) (NX20,
Pary Systems) in non-contact mode. The electrical properties
of the SnO, TFTs were measured using a source measure unit
(Keithley 2636B, Tektronix) and a probe station (MSTECH,
MST 4000A) under atmospheric pressure in a dark space.

3. Results and discussions

Figures 2(a) and (b) present the XPS spectra of Sn 3d and
O 1 s peaks of SnO, films with different UV/O3-exposure
times. Based on the Sn 3d core level in figure 2(a), the peak
positions of Sn3ds, and Sn3ds;, for all films occurred at
487.4 and 495.8 eV, consistent with the typical SnO, (Sn**)
phase [31, 32]. There was no shift in the binding energy
of Sn peaks irrespective of UV/Os-exposure time, indicating
that UV/Os-exposure on SnO, films during the pre-annealing
stage did not affect the phase transition between SnO, and
SnO. The O 1 s state is divided into three peaks associated
with lattice oxygen (O, denoting the M-O-M network for
the electron path), oxygen-vacancies (Oy, denoting free car-
rier concentration), and hydroxyl groups (Oy, denoting the
electron trap site) at 531.1, 532.0, and 532.8 eV, using Gaus-
sian fitting as depicted in figure 2(b) [33]. As the UV/O3-
exposure time increase, the Oy ratio decreased and the Oy
ratio increased because UV irradiation and the oxidation by
both O; and oxygen-free radicals contribute to decompose the
residual hydrogen compounds and then removed as volatile
products. When the UV/O3-exposure time was 30 minutes, the
Oy ratio was highest because of improved the M-O-M network
formations and reorganization through reduced carbon-based
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Figure 4. AFM images (5 x 5 pum) and corresponding cross-sectional height profiles of SnO; films with different UV/O3-exposure times.
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Figure 5. (a)—(e) Output and (f) transfer characteristics of SnO, TFTs with different UV/O3-exposure times.

content [16]. However, the O, ratio was reduced by eliminat- ~ Table 1. The critical angle, mass density and RMS roughness of the
ing too many hydrogen compounds which could be involved in ~ SnOz films with different UV/Os3-exposure times.

formation of the M-O-M network via condensation reactions  (y/Q;-exposure Critical angle Mass density ~RMS roughness
when the UV/Oj3-exposure time exceeded 30 minutes. Fig-  time (min) (deg) (gem™) (nm)

ure 3(a) illustrates the XRR curves of SnO, films with differ-

ent UV/Os-exposure times and arrow means the point where 0 0.2417 3.17 0.20

.. . . X . 15 0.2420 3.18 0.21
the critical angle was determined using X’Pert Reflectiv- 30 02613 371 0.24
ity software. Accordingly, we extracted the critical angle to 45 0.2680 3’90 0.26
calculate the mass density of SnO; thin-films using following ¢ 0:2 424 3:19 0:32

equation:
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Table 2. The electrical properties of the SnO, TFTs and their standard deviations with different UV/O3-exposure times.

UV/O3-exposure time

(min) Field-eftect mobility (cm?>Vv~ls™h On/off ratio Subthreshold swing (V/decade)
Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
0 5.95 0.43 8.3 x 10° 1.2 x 10° 2.53 0.20
15 6.31 0.59 9.4 x 10° 2.3 x 10° 2.13 0.21
30 9.81 0.57 1.1 x 10° 2.2 % 10° 1.98 0.24
45 6.92 0.64 1.4 x 10° 3.5 x 10* 3.55 0.29
60 5.46 0.84 47 % 10* 1.3 x 10* 3.73 0.45
Table 3. Performance comparison of the various solution-processed SnO, TFTs.
Capacitance
per unit area Annealing Channel
Ref. Gate insulator (nF cm™2) conditions length/width (um)  fisar (em®> V™'s™1)  On/off Ips ratio
This work SiO, 34.5 450 °Cfor 1 h 100/1000 10.1 10°
[38] SiO, 11.5 450 for4 h 100/600 0.37 10°
[39] SiO; 11.5 450 for 4 h 100/600 0.19 10°
[12] SiO, 314 500 for 1 h 5/110 0.23 108
[40] SiO; 34.5 600 for 4 h 100/1000 10.87 107
[41] Al O3 225 450 for 30 min 60/1400 96.4 10°

Oc = A/ pere/T (C))

_ peA
 NuZ

Pm o)
where 6, is the critical angle, \ is the wavelength of x-ray
source (1.5418 A for Cu Kw), p. is the electron density, 7, is
the classical radius of the electron (2.818 x 10~'3 cm), p,,, is
the mass density, A is the atomic weight (150.71 g mol~! for
Sn0,), N, is Avogadro’s number (6.023 x 10?3 mol~'), and
Z is the atomic number (66 for SnO») [34, 35]. While increas-
ing the UV/O3-exposure time from O to 45 minutes, the mass
density of SnO, films increased from 3.17 to 3.90 g cm™3
owing to eliminating organic residue. However, the mass
density of SnO, films decreased to 3.19 g cm~3 when the
UV/O;-exposure time was 60 minutes because the reduced
M-O-M network by hydrogen compounds are excessively
decomposed, as mentioned in the XPS analysis. Regardless
of UV/O3-exposure time, the thickness of all SnO, films was
approximately 4.53 nm 3.6 A, calculated with the periodicity
of the fringes using XRR simulation. These values are sim-
ilar to the thickness analyzed by transmission electron micro-
scopy (TEM) in a previous study [11]. We conducted GIXD
analysis to investigate the crystallinity of SnO, films with
different UV/O3-exposure times, as depicted in figure 3(b).
All diffraction peaks well-matched a tetragonal rutile SnO,
pattern (JCPDS 41-1445) and had almost the same shape
irrespective of UV/O3-exposure time. The crystallite size of
the films was obtained using the Scherrer formula; all films
had a similar crystal size of approximately 7 & 0.8 A. Fig-
ure 4 illustrates the AFM images and corresponding height
profile of SnO, films with different UV/O3-exposure times.
The root-mean-square (RMS) roughness increased from 0.20

to 0.32 nm with increasing UV/Osz-exposure time up to
60 minutes. Nevertheless, this small surface damage did not
affect the electrical properties of the SnO, TFT since values
of RMS roughness differed only slightly in the angstrom-range
and the TFTs are fabricated with bottom-contact structure. The
values of critical angle, mass density, and RMS roughness of
SnO; films with different UV/O3-exposure times were sum-
marized in table 1.

Figures 5(a)—(e) exhibit the output characteristics of SnO,
TFTs with different UV/Os-exposure times (Ips—Vpg curves
at Vgg from —30 to +30 V with an increment of 10 V). All
devices exhibited conventional n-type semiconductor beha-
vior and a normally-turned-on state regardless of UV/O3-
exposure time. Changes in the transfer characteristics (Ips—
Vis) of SnO, TFT were observed with respect to UV/O3-
exposure time, as depicted in figure 5(f). All the TFTs were
operated in the saturation regime by applying a constant
Vps of +30 V. As UV/O3-exposure time increased, the off-
current increased and turn-on voltage (Von) shifted slightly
negatively from —26 to —28 V as free carrier concentration
increased, associated with O,. Furthermore, the subthreshold
swing characteristics (SS) improved from 2.44 (0 minutes) to
1.83 V/decade (30 minutes) due to reduced organic-based con-
tent, whereas SS deteriorated to 4.31 V/decade (60 minutes)
since an excessively increased O, ratio leads to many oxygen
deficiency defects and a high off-current [36, 37]. The field-
effect mobility was estimated from the following conventional
MOS transistor saturation mobility equation:

2L <avim>2

Hsar = WC; 8VGx

(6)

where Cj is the gate insulator capacitance per unit area and
L and W are the channel length and width. While increasing
UV/O;-exposure time from O to 30 minutes, the extracted
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field-effect mobility increased from 6.27 to 10.1 cm? V—! s~!
because of the enhanced M-O-M network and mass density
of SnO, films, leading to the highest on-current (on/off ratio
of 1.2 x 10%). In contrast, the field-effect mobility decreased
to 4.31 cm? V™! s~! owing to the reduced M-O-M network
and high oxygen deficiency defects. The electrical character-
istics of the SnO, TFT for different UV/Os-exposure times
are summarized in table 2 with both means and standard devi-
ations deduced from 20 devices for each condition. Table 3
shows the performance comparison of the various solution-
processed SnO, TFTs with the different fabrication processes.
The device of this work exhibits higher field-effect mobility
than other studies with a fabrication process analogous to ours
(same gate insulator and similar post-annealing temperature).
In addition, there is similar field-effect mobility with ours in
spite of high post-annealing temperature for a long time. If
UV/Os-exposure is applied to other SnO, TFTs with high-k
gate insulator or high post-annealing temperature, the elec-
trical performance would be improved as in this work.

4. Conclusion

High-performance solution-processed SnO, TFTs were fab-
ricated by the controlling of UV/O3-exposure on films dur-
ing the pre-annealing stage. We identified the optimal UV/O3-
exposure time for suitable electrical characteristics of SnO,
films. When the UV/O3-exposure time was 30 minutes, the
SnO, TFTs exhibited the highest electrical performance com-
pared to TFTs without UV/Os-exposure, with field-effect
mobility of 10.1 cm? V! s~! and on/off ratio of 1.2 x 10 res-
ulting from the enhanced M-O-M network, mass density, and
oxygen vacancies of films. In contrast, the SnO, TFTs treated
with UV/O3 exposure time for 60 minutes show inferior field-
effect mobility of 6.15 cm?> V~! s~! and on/off ratio of
2.2 x 10%, which is lower than TFTs without UV/O3-exposure,
because M-O-M network and mass density decreased and oxy-
gen vacancies were excessively increased. Furthermore, signi-
ficant changes were not observed in the SnO, (Sn**) phase,
thickness, or surface morphology of SnO, films irrespective
of UV/Os-exposure time. The SnO, TFT exposed to UV/O3
for 30 minutes during the pre-annealing stage demonstrates
superior electrical performance, adequate for use in high-
resolution active-matrix LCDs or OLED displays that demand
a high field-effect mobility (>10 cm? V~! s~!) and on/off ratio
(>10°).
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