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Abstract

We model spatially expanding populations by means of a spatial Λ-Fleming Viot process (SLFV)

with selection : the k-parent SLFV. We fill empty areas with type 0 "ghost" individuals, which have

a strong selective disadvantage against "real" type 1 individuals. This model is a special case of the

SLFV with selection introduced in [19, 22] : natural selection acts during all reproduction events,

and the fraction of individuals replaced during a reproduction event is constant equal to 1. Letting

the selective advantage k of type 1 individuals over type 0 individuals grow to +∞, and without

rescaling time nor space, we obtain a new model for expanding populations, the ∞-parent SLFV.

This model is reminiscent of the Eden growth model [13], but with an associated dual process of

potential ancestors, making it possible to investigate the genetic diversity in a population sample.

In order to obtain the limit k → +∞ of the k-parent SLFV, we introduce an alternative construction

of the k-parent SLFV adapted from [38], which allows us to couple SLFVs with different selection

strengths.
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1 Introduction

Population expansions are common events occuring at all biological scales. The growth of a population

in a new environment generates interfaces with distinctive features [27, 30] and specific patterns of

genetic variation [23, 24, 26], both being a consequence of the stochasticity of reproduction at the front,

where local population sizes are small. The models which are used to study expanding populations can

be divided in two main categories : growth models, mostly used to investigate the front features, and

models coming from population genetics, which are more suited to study genetic diversity patterns.
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Experimental approaches suggest that the dynamics of fronts of real expanding populations belongs

to the universality class of the Kardar-Parisi-Zhang (KPZ) equation introduced in [30] (see e.g [27]).

It has been conjectured (and demonstrated in the case of the solid-on-solid (SOS) growth model [6])

that many growth models generate similar interfaces. One of these models is the Eden growth model,

initially introduced on a lattice in [13]. Under this model, each node of the lattice is either occupied or

empty. At each time step, an empty node with at least one occupied neighbour is chosen, and becomes

occupied. There exist alternative update rules for this model [28], as well as off-lattice variants (see

e.g [39]). While this model can be used to study the growth of an expanding population, it is less

suited to study genetic diversity patterns.

Conversely, models used in population genetics are generally associated with tools allowing one to

investigate these patterns. The analysis of the genetic diversity of a population often goes through

modelling the ancestral lineages of a subset of individuals, and studying how these lineages coalesce into

common ancestors [15]. However, most classical population genetics models assume that populations

have constant sizes and that individuals are uniformly distributed over the area of interest. Therefore,

they appear at first ill-suited to model a population during an expansion event. One way to overcome

this consists in filling empty areas with "ghost" individuals, which can reproduce but have a very strong

selective disadvantage against "real" individuals [12, 25]. Under this framework, the reproduction of

"ghost" individuals can be interpreted as a local extinction of real individuals.

Using this idea, it is possible to model a population expansion as the spread of a genetic type

favoured by natural selection. Such a question was already studied by means of different models

including a stochastic component, mostly in one dimension (see e.g [3, 18, 33]). The most classical one

is based on the Fisher-KPP equation [21, 32], in which stochasticity is introduced through a Wright-

Fisher noise term. If 0 ≤ p(t, x) ≤ 1 represents the proportion of individuals of the favoured type at

location x ∈ R at time t ≥ 0, then p(t, x) solves the stochastic Fisher-KPP equation if for x ∈ R and

t > 0,

∂p

∂t
(t, x) = m

2 ∆p(t, x)dt+ s0p(t, x)(1− p(t, x)) +
√

1
pe
p(t, x)(1− p(t, x))W (dt, dx) (1)

where W is a space-time white noise and pe an effective population density. In one dimension, the

stochastic Fisher-KPP equation exhibits travelling wave solutions [35], which describe how does the

advantageous type spreads through space. However, Eq. (1) has no solution in higher dimensions.

Many variants of the deterministic version of the Fisher-KPP equation have been studied, including

versions with individuals having different motilities [8, 9], different growth rates (see e.g [11]), other

diffusion kernels, or other choices for the nonlinearity [5].
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Other models are more individual-based, and are adaptations of classical population genetics mod-

els, such as the Moran model [12, 18, 25] or the stepping-stone model [2, 3, 37]. They generally require

to divide the space into subunits called demes, to which reproduction events are limited and which

are connected by migration.

In this article, we will focus instead on a "reproduction event-based" model allowing us to keep the

spatial continuum : the spatial Λ-Fleming Viot process, or SLFV [4, 14]. Its main feature is that it

models reproduction events affecting whole areas rather than reproduction individual by individual,

by means of a Poisson point process of reproduction events.

The original version of the SLFV does not account for the presence of a selectively favoured genetic

type, but it can be modified in order to incorporate selection : see [22] for different forms of fixed

selection mechanisms, and [7, 10, 31] for ways to introduce fluctuating selection. Our approach will

be based on a version of the SLFV with selection introduced in [22] and rigourously constructed in

[19]. Most of the work on the SLFV with selection involved investigating scaling limits under different

forms of weak selection (see also [16, 17]). However, in our case, since the selectively disadvantaged

individuals do not actually exist, the selection can be considered as very strong. Therefore, we shall

consider a different limit, when selection goes stronger and stronger, and neither time nor space are

rescaled. The limiting model we shall obtain will be close to the off-lattice Eden growth model, hence

we can expect it to generate interfaces similar to the ones observed in real expanding populations.

Moreover, and contrary to the off-lattice Eden growth model, a dual process of potential ancestors

is also associated to it, giving us tools to investigate the genetic diversity patterns observed in an

expanding population. This model therefore constitutes a new model for expanding populations, which

naturally appears as the limit of other well-known processes, and which seems promising in order to

investigate both the front features and the genetic diversity patterns of an expanding population. In

this work, we will focus on the area occupied by the population, but future works will include genetic

diversity inside the expanding population, using for instance tracer dynamics [12, 25].

1.1 The k-parent SLFV and its dual

1.1.1 The k-parent SLFV

All the random objects introduced in this section will be defined over some probability space (Ω,F ,P).

Before presenting the processes we will consider, we need to introduce some notation.

Let d ≥ 1. Let Cc(Rd) be the space of all continuous and compactly supported functions Rd → R,

let C1(R) be the space of all continuously differentiable functions on R, let C1
b (R) be the space of all

bounded functions R → R that are C1 and whose first derivative is also bounded, and let B(Rd) be
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the space of all measurable functions Rd → R.

We start by introducing the state space over which the variant of the SLFV with selection we

consider is defined. Let M̃λ be the space of all measuresM on Rd×{0, 1} such that for all f ∈ Cc(Rd),

∫
Rd×{0,1}

f(x)M(dx, dκ) =
∫
Rd
f(x)dx.

In other words, M̃λ is the space of all measures on Rd × {0, 1} whose marginal over Rd is Lebesgue

measure. By a standard decomposition theorem (see e.g [29], p.561), for all M ∈ M̃λ, there exists

ω : Rd → [0, 1] measurable such that

M(dx, dκ) = ((ω(x)δ0(dκ) + (1− ω(x))δ1(dκ))dx. (2)

Such a ω is not unique, but defined up to a Lebesgue null set. The state space we consider is the set

Mλ of all measures M ∈ M̃λ such that there exists a measurable function ω : Rd → {0, 1} (instead of

ω : Rd → [0, 1]) satisfying (2).

We endow M̃λ andMλ with the topology of vague convergence. Moreover, let DMλ
[0,+∞) (resp.

DM̃λ
[0,+∞)) denote the space of all càdlàgMλ-valued paths (resp. M̃λ-valued paths), endowed with

the standard Skorokhod topology.

Let M ∈ Mλ, and let ω : Rd → {0, 1} be a measurable function satisfying Eq. (2). The function

ω can be interpreted as the indicator function of a measurable set E ⊂ Rd corresponding to the area

occupied by what will be called "type 0" individuals, while Rd\E corresponds to the area occupied by

"type 1" individuals. We will consider that type 0 individuals correspond to the "ghost" individuals

mentionned in the introduction, and type 1 individuals to the "real" individuals. Therefore, type 0

individuals have a strong selective disadvantage against type 1 individuals, and E corresponds to the

area not yet invaded by the real population (up to a Lebesgue null set). In all that follows, any

ω : Rd → {0, 1} such that (2) is true will be called a density of M , and the notation ωM will be used

to denote an arbitrarily chosen density of M .

For all f ∈ Cc(Rd), F ∈ C1(R) and ω : Rd → {0, 1} measurable, we set :

〈ω, f〉 :=
∫
Rd
f(x)ω(x)dx

and we define the function ΨF,f ∈ Cb(Mλ) as :

∀M ∈Mλ,ΨF,f (M) := F

(∫
Rd×{0,1}

f(x)1{κ=0}M(dx, dκ)
)

(3)
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= F

(∫
Rd
f(x)ωM (x)dx

)
= F (〈ωM , f〉) .

For all f ∈ Cc(Rd), we denote the support of f by Supp(f), and for all R ∈ R∗+, we set :

SuppR(f) := {y ∈ Rd : ∃x ∈ Supp(f), ||y − x|| ≤ R}

and VR := Vol(B(0,R)).

In other words, VR is the volume of a ball of radius R, and SuppR(f) is the set of all points which

are at a distance of at most R of a point in the support of f .

For all ω : Rd → {0, 1}, R ∈ R∗+ and x ∈ Rd, we define the functions Θ+
x,R(ω) : Rd → {0, 1} and

Θ−x,R(ω) : Rd → {0, 1} by :

Θ+
x,R(ω) := 1B(x,R)c × ω + 1B(x,R),

Θ−x,R(ω) := 1B(x,R)c × ω.

Θ+
x,R(ω) corresponds to filling the ball B(x,R) with type 0 individuals (or equivalently, emptying the

ball B(x,R) of all real individuals), while Θ−x,R(ω) can be interpreted as filling the ball B(x,R) with

type 1 individuals. Notice that if M ∈Mλ, then Θ+
x,R(ωM ) ∈Mλ and Θ−x,R(ωM ) ∈Mλ.

We now introduce the operator which will be used to define the specific SLFV with selection we

will consider as the solution to a well-posed martingale problem. Let k ∈ N\{0, 1}, and let µ be a

σ-finite measure on R∗+ such that ∫ ∞
0
Rdµ(dR) < +∞. (4)

Let Lkµ be the operator acting on functions of the form ΨF,f with f ∈ Cc(Rd) and F ∈ C1(R), defined

the following way. Let f ∈ Cc(Rd) and F ∈ C1(R). Then, for all M ∈Mλ,

LkµΨF,f (M) :=
∫
Rd

∫ ∞
0

∫
B(x,R)k

1
V k
R
×

 k∏
j=1

ωM (yj)

× F (〈Θ+
x,R(ωM ), f〉)

+

1−
k∏
j=1

ωM (yj)

× F (〈Θ−x,R(ωM ), f〉)

− F (〈ωM , f〉)

 dy1...dykµ(dR)dx.
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In Section 5, it is shown that this operator is well-defined, and that it can be rewritten as

LkµΨF,f (M) =
∫ ∞

0

∫
SuppR(f)

∫
B(x,R)k

1
V k
R
×
[ k∏
j=1

ωM (yj)× F (〈Θ+
x,R(ωM ), f〉)

+ (1−
k∏
j=1

ωM (yj))× F (〈Θ−x,R(ωM ), f〉)

− F (〈ωM , f〉)
]
dy1...dykdxµ(dR).

Intuitively, an interpretation of this operator in terms of reproduction events is the following.

Whenever a reproduction event affects the ball B(x,R), k positions y1, ..., yk are sampled inside the

ball, and we take k individuals occupying each one of these positions. Since the density of type 0

individuals ωM is {0, 1}-valued, we can consider that all the individuals occupying the position y1

(resp. y2, ..., yk) are of type 1− ωM (y1) (resp. 1− ωM (y2), ..., 1− ωM (yk)). If
∏k
j=1 ωM (yj) = 1, then

all the individuals are of type 0, and we fill the ball B(x,R) with type 0 individuals. Conversely, if

1−∏k
j=1 ωM (yj) = 1, then at least one individual is of type 1, and this time we fill the ball B(x,R)

with type 1 individuals. Since type 0 individuals model "ghost" individuals, they are supposed to have

a selective disadvantage against "real" type 1 individuals, hence the exclusion of the case k = 1 which

would not give any advantage to type 1 individuals. Moreover, k can be interpreted as measuring the

strength of the selective advantage of "real" individuals against "ghost" individuals, or in other words,

the capacity of "real" individuals to invade an empty environment.

If k = 2, L2
µ is the operator introduced in [19] to define and characterize the "selection part" of the

SLFV with selection, in the special case for which there are no neutral events and all reproduction

events have an impact of u = 1. Their proof of the existence and uniqueness of the DM̃λ
[0,+∞)-

valued solution to the martingale problem associated to Lkµ can easily be extended to the case k ≥ 2,

by restricting the martingale problem to an increasing sequence of compact subsets of Rd converging

to Rd. In Section 2, we will show that this unique solution is in fact DMλ
[0,+∞)-valued if the initial

value belongs toMλ.

Theorem 1. Let k ≥ 2, and let µ be a σ-finite measure on (0,+∞) satisfying condition (4). For all

M0 ∈Mλ, there exists a unique DMλ
[0,+∞)-valued process (Mt)t≥0 such that M0 = M0 and, for all

F ∈ C1(R) and f ∈ Cc(Rd),

(
ΨF,f (Mt)−ΨF,f (M0)−

∫ t

0
LkµΨF,f (Ms)ds

)
t≥0

is a martingale. Moreover, the process (Mt)t≥0 is Markovian, and the corresponding semigroup is

Feller.
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Definition 2 (Definition of the k-SLFV). Let k ≥ 2, let µ be a σ-finite measure on (0,∞) satisfying

(4), and let M0 ∈ Mλ. Then, the k-parent spatial Λ-Fleming-Viot process (or k-SLFV process) with

initial condition M0 associated to µ is the unique solution to the martingale problem (Lkµ,M0) stated

in Theorem 1. In particular, the k-SLFV is a strong Markov process with càdlàg paths a.s.

By extension, if ω : Rd → {0, 1} is measurable, we will define the k-SLFV process with initial

density ω associated to µ to be the k-SLFV process with initial condition M0 associated to µ, with

M0 ∈Mλ of density ω.

Intuitively, the k-SLFV process can be constructed in the following way. Let M0 ∈ Mλ, and

let µ be a σ-finite measure on (0,∞) satisfying (4). Moreover, let Π be a Poisson point process on

R×Rd× (0,+∞) with intensity dt⊗ dx⊗µ(dr). Initially, the k-SLFV is equal to M0. The dynamics

of the k-SLFV process (Mt)t≥0 is then as follows. If (t, x,R) ∈ Π, a reproduction event happens at

time t in the ball B(x,R). We sample k types according to the type distribution in the ball B(x,R)

at the time t−. We interpret these types as the types of k potential "parents". With probability

1
V k
R

∫
B(x,R)k

 k∏
j=1

ωMt−(yj)

 dy1...dyk,

the k types sampled are 0, so the k potential parents are of type 0. In this case, all the individuals in

the ball B(x,R) die, the k-th potential parent (of type 0) fills the ball B(x,R) with its descendants,

which means that we set :

∀z ∈ B(x,R), ωMt(z) = 1.

Conversely, with probability

1− 1
V k
R

∫
B(x,R)k

 k∏
j=1

ωMt−(yj)

 dy1...dyk,

at least one of the k types sampled is 1. As in the other case, all the individuals in the ball B(x,R)

die, but this time the first potential parent to be of type 1 fills the ball B(x,R) with its descendants,

which amounts to setting

∀z ∈ B(x,R), ωMt(z) = 0.

Note that the position of the parent which actually reproduces is then uniformly distributed over the

closure of the region {y ∈ B(x,R) : ωMt−(y) = 0}. The value taken by the density out of the ball

B(x,R) at time t is not affected by this reproduction event. We repeat this for each (t, x,R) ∈ Π.

This construction can be made rigourous using arguments adapted from [38], and will be used in
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Section 2 to complete the proof of Theorem 1.

Remark 3. The k-SLFV process is a special case of the general definition of an SLFV with selection in

[22], with impact parameter u = 1, selection parameter s = 1, and selection function F : x→ x− xk.

Remark 4. The condition (4) on µ matches the standard condition for the existence of the SLFV [4].

It comes from the fact that a point x ∈ Rd is affected by a reproduction event at rate :

∫
Rd

∫ +∞

0
1y∈B(x,R)µ(dR)dy =

∫ +∞

0
VRµ(dR) ∝

∫ +∞

0
Rdµ(dR).

Remark 5. Since the density ωM is only defined up to a Lebesgue null set, the type of individuals

present in a given position y ∈ Rd cannot be uniquely defined. Therefore, even though intuitively we

can first sample parental positions, and deduce parental types from ωM , we cannot formally sample

positions in order to sample parental types.

A particularly interesting feature of this model is that there exists a dual process of potential

ancestors associated to it, which follows the locations of the potential ancestors of a set of individuals.

In other words, the genetic diversity in a sample of the population can be determined by going

backwards in time, and reconstructing the genealogical tree of the sample. For k = 2, the dual process

is analogous to the Ancestral Selection Graph (ASG) [34, 36], but with a spatial structure.

1.1.2 The k-parent ancestral process

All the new objects introduced in relation with the dual process will be defined on a new probability

space (Ω,F ,P ). As before, we let µ be a σ-finite measure on (0,+∞) satisfying condition (4), and

we let ←−Π be a Poisson point process on R× Rd × (0,+∞) with intensity dt⊗ dx⊗ µ(dR).

Let Mp(Rd) denote the set of all finite point measures on Rd, equipped of the topology of weak

convergence. For all Ξ = ∑l
i=1 δξi ∈Mp(Rd), for all x ∈ Rd and R > 0, we define

Ix,R(Ξ) = {i ∈ J1, lK : ||x− ξi|| ≤ R}

and SR(Ξ) = {x ∈ Rd : ∃i ∈ J1, lK : ||x− ξi|| ≤ R}.

In other words, Ix,R(Ξ) is the set of all the indices of the points in Ξ which are at distance at most R

of x, while SR(Ξ) is the set of all the points in Rd which are at distance at most R of a point of Ξ.

Definition 6. Let Ξ0 ∈ Mp(Rd). The k-parent ancestral process (Ξt)t≥0 associated to µ (or equiv-

alently to ←−Π ) and with initial condition Ξ0 is the Mp(Rd)-valued Markov jump process defined as

follows.
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• First, we set Ξ0 = Ξ0.

• Then, for all (t, x,R) ∈ ←−Π , if Ix,R(Ξt−) 6= ∅ and if we write

Ξt− =
Nt−∑
i=1

δξit−
,

we sample k points y1, ..., yk independently and uniformly at random in B(x,R), and we set

Ξt :=
Nt−∑
i=1

δξit−
−

∑
i∈Ix,R(Ξt−)

δξit−
+

k∑
j=1

δyj .

In other words, we remove all the atoms of Ξt− sitting in B(x,R), and we add k atoms at

locations that are i.i.d and uniformly distributed over the ball B(x,R).

This process is well-defined, since Nt is stochastically bounded by the number (Y k
t )t≥0 of particles

in a Yule process with k children and with individual branching rate
∫∞
0 VRµ(dR) < +∞ (see [19] for

a proof in the case k = 2, which can be generalized to the case k ≥ 2).

The k-parent ancestral process solves a martingale problem that we now introduce. For all

F ∈ C1
b (R) and f ∈ B(Rd), we define the function ΦF,f :Mp(Rd)→ R by :

∀Ξ ∈Mp(Rd),ΦF,f (Ξ) = F

(∫
Rd
f(x)Ξ(dx)

)
= F (〈Ξ, f〉).

We now define the operator Gkµ on the set of functions of the form ΦF,f , which will be at the

basis of the martingale problem satisfied by (Ξt)t≥0. Let F ∈ C1
b (R) and f ∈ B(Rd), then for all

Ξ = ∑l
i=1 δξi ∈Mp(Rd), we set :

GkµΦF,f (Ξ) :=
∫
Rd

∫ +∞

0

∫
B(x,R)k

1x∈SR(Ξ) ×
1
V k
R
× F

〈Ξ, f〉 − ∑
i∈Ix,R(Ξ)

f(xi) +
k∑
j=1

f(yj)


−1x∈SR(Ξ) ×

1
V k
R
F (〈Ξ, f〉)

]
dy1...dykµ(dR)dx

This operator is well defined. Indeed, for all Ξ ∈Mp(Rd), by Fubini’s theorem,

|GkµΦF,f (Ξ)| ≤
∫ +∞

0

∫
SR(Ξ)

∫
B(x,R)k

2× 1
V k
R
× ||F ||∞dy1...dykdxµ(dR)

≤ 2||F ||∞ ×
∫ +∞

0
Vol(SR(Ξ))µ(dR)

≤ 2||F ||∞ × Ξ(Rd)×
∫ +∞

0
VRµ(dR)

< +∞
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by Condition (4).

Proposition 7. Let Ξ0 ∈Mp(Rd), and let (Ξt)t≥0 be the k-parent ancestral process of initial condition

Ξ0 associated to µ. Then, for all F ∈ C1
b (R) and for all f ∈ B(Rd), the process

(
ΦF,f (Ξt)− ΦF,f (Ξ0)−

∫ t

0
GkµΦF,f (Ξs)ds

)
t≥0

is a martingale.

Intuitively, the k-parent ancestral process records the locations of the potential ancestors of a given

sample of individuals. However, because densities are only defined up to a Lebesgue null set, it is not

possible to assign uniquely a type to an individual located at x ∈ Rd looking at the value of the density

at this point. Therefore, as in [19], in order to give a duality relation between the k-parent SLFV and

the k-parent ancestral process, we will need to consider a distribution of sampling locations, rather

than fixed locations.

More specifically, for all l ≥ 1 and x1, ..., xl ∈ (Rd)l, we define :

Ξ[x1, ..., xl] :=
l∑

i=1
δxi ∈Mp(Rd).

If Ψ is a density function on (Rd)l, let µΨ be the law of the random point measure ∑l
i=1 δXi , where

(X1, ..., Xl) is sampled according to Ψ. If M ∈Mλ and Ξ = ∑l
i=1 δxi ∈Mp(Rd), we set :

D(M,Ξ) :=
l∏

i=1
ωM (xi).

Notice that for all l ∈ N∗ and for all density function Ψ on (Rd)l,

∫
Mp(Rd)

D(M,Ξ)µΨ(dΞ) =
∫

(Rd)l
Ψ(x1, ..., xl)


l∏

j=1
ωM (xj)

 dx1...dxl

=
∫

(Rd×{0,1})l
Ψ(x1, ..., xl)


l∏

j=1
10(κj)

M(dx1, dκ1)...M(dxl, dκl)

does not depend on the choice of a density ωM of M .

A straightforward adaptation of the proof of Proposition 1.7 in [19] to the case k ≥ 2 leads to the

following proposition.

Proposition 8. Let k ≥ 2. Let M0 ∈ Mλ, let l ∈ N∗, and let Ψ be a density function on (Rd)l. Let

µ be a σ-finite measure on (0,+∞) satisfying (4). Let (Mt)t≥0 be the k-SLFV with initial condition

11



M0 associated to µ and (Ξt)t≥0 be the k-parent ancestral process associated to µ. Then, for all t ≥ 0,

∫
Mp(Rd)

E[D(Mt, ξ)|M0 = M0]µΨ(dξ) = E[D(M0,Ξt)|Ξ0 ∼ µΨ].

Equivalently, for all t ≥ 0,

EM0

∫
(Rd)l

Ψ(x1, ..., xl)


l∏

j=1
ωMt(xj)

 dx1...dxl

 =
∫

(Rd)l
Ψ(x1, ..., xl)EΞ[x1,...,xl]

 Nt∏
j=1

ωM0(ξjt )

 dx1...dxl.

1.2 Construction of the ∞-parent SLFV

Let us now introduce the limit of the k-parent SLFV when k →∞ somewhat informally. We will call

it the∞-parent spatial Λ-Fleming Viot process, or∞-parent SLFV. It will be constructed rigourously

in Section 2 using an alternative construction of the k-parent SLFV inspired by [38], but we now give

an intuitive idea of its definition.

Let µ be a σ-finite measure on (0,+∞) satisfying Condition (4), and let Π be a Poisson point

process on R × Rd × (0,+∞) with intensity dt ⊗ dx ⊗ µ(dR). Let also M0 ∈ Mλ. We start the

∞-parent spatial Λ-Fleming Viot process (M∞t )t≥0, or ∞- parent SLFV, at M∞0 = M0. Then, if

(t, x,R) ∈ Π, as before, we consider that a reproduction event occurs in the ball B(x,R) at time t.

However, this time we do not sample a finite number of potential parents. Instead, we look at the

value of the integral ∫
B(x,R)

(
1− ωM∞t−(z)

)
dz,

which amounts to sampling an infinite number of potential parents over the ball B(x,R) and looking

at the proportion of them which are of the "existing" type (i.e, type 1).

If
∫
B(x,R)

(
1− ωM∞t−(z)

)
dz = 0, we consider that the parent which reproduces is of type 0, and we

set :

∀z ∈ B(x,R), ωM∞t (z) = 1.

Note that in this case, the "parent" which reproduces was "sampled" at a location which is uniformly

distributed over the ball B(x,R).

Conversely, if
∫
B(x,R)

(
1− ωM∞t−(z)

)
dz 6= 0, there is a non negligible number of individuals of type

1 in B(x,R). We impose that it is one of them which reproduces, and in such a way that its offspring

invades the whole region. That is, we set :

∀z ∈ B(x,R), ωM∞t (z) = 0.

12



Again, note that in our interpretation, the location of the parent which actually reproduces is uniformly

distributed over the closure of the region {y ∈ B(x,R) : ωM∞t−(y) = 1}.

As for the k-parent SLFV, the∞-parent SLFV is solution to a martingale problem. However, and

in contrast with the case of the k-parent SLFV, the condition (4) on µ will not be sufficient to ensure

that this solution is unique. Instead, we will need the following stronger condition.

Definition 9. Let ad > 0 such that the minimal number of d-dimensional balls of radius 1 needed to

cover the border of an hypersphere of radius n in d dimensions is bounded from above by ad×nd−1 for

every n ≥ 1. A σ-finite measure µ on R∗+ is said to satisfy Condition (5) if it satisfies Condition (4),

and if there exists R > 0 such that

+∞∑
n=1

(∫ nR

(n−1)R
(R+ r)dµ(dr)

)(
ad × nd−1 + 1

)
< +∞. (5)

Examples of σ-finite measures µ on R∗+ satisfying Condition (5) are the following :

1. Measures µ on R∗+ having a bounded support.

2. Measures µ on R∗+ of the form α× (1 + r)−3d−1dr, with α > 0.

We define the operator L∞ on functions of the form ΨF,f where F ∈ C1(R) and f ∈ Cc(Rd) in the

following way. For all M ∈Mλ, we set :

L∞µ ΨF,f (M) :=
∫ +∞

0

∫
SuppR(f)

[
δ0

(∫
B(x,R)

(1− ωM (z)) dz
)
× F (〈Θ+

x,R(ωM ), f〉)

+
(

1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))
× F (〈Θ−x,R(ωM ), f〉)

−F (〈ωM , f〉)
]
dxµ(dR).

Note that if δ0
(∫
B(x,R) (1− ωM (z)) dz

)
= 1, then for all y ∈ B(x,R) except possibly on a Lebesgue

null set,

Θ+
x,R(ωM )(y) = ωM (y).

In other words, the ball B(x,R) is already completely void of "existing" individuals, and filling it with

"ghost" individuals does not change anything. Therefore, we also have

L∞µ ΨF,f (M) =
∫ +∞

0

∫
SuppR(f)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
[
F (〈Θ−x,R(ωM ), f〉)− F (〈ωM , f〉)

]
dxµ(dR).
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In Section 5, we show that this operator is well-defined, even if µ satisfies Condition (4) rather than

Condition (5). If µ satisfies Condition (5), then the associated martingale problem can be used to

define and fully characterize the ∞-parent SLFV. If µ satisfies only Condition (4), then the ∞-parent

SLFV is still solution to the martingale problem, but we no longer know whether this solution is

unique, as stated in the following theorem. Therefore, we will provide in Section 2 a construction of

the ∞-parent SLFV which does not rely on the martingale problem, and works even if µ only satisfies

Condition (4).

Theorem 10. Let ω : Rd → {0, 1}, let M0 ∈ Mλ, and let µ be a σ-finite measure on (0,+∞)

satisfying Condition (4). Then, the ∞-parent SLFV with initial condition M0 associated to µ defined

in Section 2.2 is a solution to the martingale problem for (L∞µ ,M0).

Moreover, if µ satisfies Condition (5), the martingale problem associated to (L∞µ ,M0) is well-

posed, and the ∞-parent SLFV with initial condition M0 associated to µ is the unique solution to it

in DMλ
[0,+∞).

1.3 Dual of the ∞-parent SLFV

As for the k-parent SLFV, the ∞-parent SLFV also has a dual process of potential ancestors.

Let Ec be the set of Lebesgue measurable and connected subsets of Rd whose Lebesgue measure

is finite. Let Ecf be the set of all finite unions of elements of Ec. If E ∈ Ecf can be written as

E = ∪li=1E
i where for all 1 ≤ i ≤ l, Ei ∈ Ec, we let m(E) = m(E1, ..., El) be the measure on Rd

defined by m(E)(dx) := 1x∈Edx, and we set :

Mcf := {m(E) : E ∈ Ecf}.

Definition 11 (∞-parent ancestral process). Let µ be a σ-finite measure on (0,+∞) satisfying Con-

dition (5). Let ←−Π be a Poisson point process on R+ × Rd × (0,+∞) with intensity dt⊗ dx⊗ µ(dR),

defined on the probability space (Ω,F ,P ).

Let Ξ0 = m(E1
0 , ..., E

l
0) ∈Mcf . Then, theMcf -valued ∞-parent ancestral process (Ξ∞t )t≥0 with initial

condition Ξ0 associated to µ (or equivalently to ←−Π ) is defined in the following way.

First, we set Ξ∞0 = Ξ0. Then, if for all t ≥ 0, we write Ξ∞t as

Ξ∞t = m(Et),
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then for all (t, x,R) ∈ ←−Π , if Et− ∩B(x,R) has a non zero Lebesgue measure,

Ξ∞t = m(Et− ∪B(x,R)).

Moreover, this process is Markovian.

We will show that this process is well-defined in Section 3.

Remark 12. Note that the case Et− ∩ B(x,R) = B(x,R) is equivalent to Et− ∪ B(x,R) = Et−, and

hence does not correspond to a visible jump of (Ξ∞t )t≥0.

For all M ∈Mλ with density ω and for all Ξ = m(E) ∈Mcf , we set :

D̃(M,Ξ) := δ0

(∫
E

(1− ω(x)) dx
)
.

If we know the value of D̃(M,Ξ) for all Ξ ∈ Mcf , since ω is {0, 1}-valued, we know the value of ω

everywhere up to a Lebesgue null set, and so we have completely characterized M . Therefore, the

following duality result shows that the solution to the martingale problem associated to L∞µ is unique.

Proposition 13. Let µ be a σ-finite measure on (0,+∞) satisfying Condition (5). Let M0 ∈ Mλ,

and let (M∞t )t≥0 be a solution to the martingale problem associated to (L∞µ , δM0). Then, for all t ≥ 0

and for all E0 ∈Mcf ,

EM0

[
D̃(M∞t ,m(E0))

]
= Em(E0)

[
D̃(M0,Ξ∞t )

]
,

where (Ξ∞t ) is the ∞-parent ancestral process of initial condition m(E0) associated to µ. Equivalently,

for every t ≥ 0, if ωt et ω0 are {0, 1}-valued densities of M∞t and M0,

E
[
δ0

(∫
E0

(1− ωt(x)) dx
)]

= Em(E0)

[
δ0

(∫
Et

(1− ω0(x)) dx
)]

.

1.4 Structure of the paper

In Section 2, we construct the∞-parent SLFV rigorously, by introducing a coupling between a sequence

of k-parent SLFV processes with the same initial conditions. We also show the first part of Theorem 10,

i.e, that the ∞-parent SLFV is a solution to the martingale problem associated to L∞µ . In Section 3,

we first demonstrate that the∞-parent ancestral process is well defined, and we then show that it can

be characterized as the unique solution to a specific martingale problem. Section 4 is devoted to the

proof of the duality relation between the ∞-parent SLFV and the ∞-parent ancestral process stated
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in Proposition 13. The second part of Theorem 10 is then a direct consequence of Proposition 13.

Section 5 contains technical lemmas used throughout the paper.

2 The ∞-parent SLFV

2.1 Alternative construction of the k-parent SLFV

In order to construct the ∞-parent SLFV rigorously, we start by introducing an alternative construc-

tion of the k-parent SLFV, based on a variant of its dual. It relies on the sampling of parental locations

along with reproduction events, and is an adaptation of the concept of parental skeleton presented in

Section 2.3.1 of [38].

In all that follows, let µ be a σ-finite measure on (0,+∞) satisfying Condition (4). Let U = B(0, 1)N,

and let ũ be the law of a sequence of i.i.d random variables (Pn)n≥1 uniformly distributed over B(0, 1).

We will call an element of U a sequence of potential parents. Let us now extend the Poisson point

process Π considered earlier by adding to each event a countable sequence of locations of potential

parents. Indeed, let Πc be a Poisson point process on R× Rd × (0,+∞)× U with intensity

dt⊗ dx⊗ µ(dR)⊗ ũ(d(pn)n≥1).

Then for all (t, x,R, (pn)n≥1) ∈ Πc,

• as before, t can be interpreted as the time at which the reproduction event occurs, and we can

see B(x,R) as being the area affected by the reproduction event.

• For all n ≥ 1, x+R× pn is uniformly distributed over the ball B(x,R), and can be interpreted

as the location of the n-th potential parent sampled, if at least n potential parents have to be

sampled.

We start by defining the variant of the k-parent ancestral process, on which the alternative con-

struction of the k-parent SLFV is based.

Definition 14 (Quenched k-parent ancestral process). Let k ≥ 2, let Ξ0 ∈Mp(Rd), and let t̃ ≥ 0. The

k-parent ancestral process (ΞΠc,t̃,Ξ0

k,t )t≥0 associated to Πc, started at time t̃ and with initial condition

Ξ0 is theMp(Rd)-valued Markov jump process defined as follows.

• First, we set ΞΠc,t̃,Ξ0

k,0 = Ξ0.

• Then, for all (t, x,R, (pn)n≥1) ∈ Πc such that t ≤ t̃, recalling that for Ξ = ∑l
i=1 δξi ∈ Mp(Rd),
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Ix,R(Ξ) = {i ∈ J1, lK : ||x− ξi|| ≤ R}, if

Ix,R(ΞΠc,t̃,Ξ0

k,(t̃−t)−
) 6= ∅,

then for all 1 ≤ l ≤ k, we set

yl := x+R× pl

and ΞΠc,t̃,Ξ0

k,t̃−t := ΞΠc,t̃,Ξ0

k,(t̃−t)− −
∑

x′∈Ix,R(ΞΠc,t̃,Ξ0
k,(t̃−t)−)

δx′ +
k∑
l=1

δyl .

It is straightforward to check that this process has the same distribution as the k-parent ancestral

process associated to µ and with initial condition Ξ0. Its interest is twofold. First, conditionally on

Πc, (ΞΠc,t̃,Ξ0

k,t )t≥0 is completely deterministic. Moreover, if for all Ξ = ∑l
i=1 δxi ∈ Mp(Rd), we denote

the set of atoms of Ξ by

A(Ξ) := {xi : i ∈ J1, lK},

then the process satisfies the following property, which will be useful in the coupling that we will

introduce later.

Lemma 15. Let 2 ≤ k ≤ k′, let Ξ0 ∈ Mp(Rd), let t̃ ≥ 0, and let Πc be a Poisson point process on

R× Rd × (0,+∞)× U with intensity dt⊗ dx⊗ µ(dR)⊗ ũ(d(pn)n≥1).

Then, for all t ≥ 0,

A(ΞΠc,t̃,Ξ0

k,t ) ⊆ A(ΞΠc,t̃,Ξ0

k′,t ).

In particular, for all t ≥ 0 and x ∈ Rd,

A(ΞΠc,t̃,δx
k,t ) ⊆ A(ΞΠc,t̃,δx

k′,t ).

Remark 16. Since A(Ξ) is a set, if there exists i 6= j such that xi = xj , then xi appears only once in

A(Ξ).

Intuitively, the idea behind this lemma is the following. Since the coupled k-parent and k′-parent

ancestral processes are based on the same extended Poisson point process of reproduction events, their

evolutions are determined by the same reproduction events. Moreover, since k′ ≥ k, all the potential

parents which are involved in the dynamics of the k-parent ancestral process are also potential parents

for the k′-ancestral process. Therefore, we can consider that the k-parent ancestral process is embedded
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in the k′-parent ancestral process.

We now introduce an alternative way of constructing the k-parent SLFV, by associating it to the

extended Poisson point process Πc.

Definition 17 (Quenched k-parents SLFV). Let k ≥ 2, and let ω : Rd → {0, 1} be a measurable

function. The k-parent SLFV (MΠc,ω
k,t )t≥0 associated to Πc and of initial density ω is the Mλ-valued

Markov process defined as follows.

• First, we set ωΠc,ω
k,0 = ω.

• Then, for all t ≥ 0 and for all x ∈ Rd, we set

ωΠc,ω
k,t (x) :=

∏
y∈A(ΞΠc,t,δx

k,t
)

ω(y). (6)

• We conclude by setting for all t ≥ 0,

MΠc,ω
k,t := ((ωΠc,ω

k,t (x)δ0(dκ) + (1− ωΠc,ω
k,t (x))δ1(dκ))dx.

(ωΠc,ω
k,t )t≥0 will be called the density of the k-parent SLFV associated to Πc and of initial condi-

tion ω.

Note that ωΠc,ω
k,t (x) in Eq. 6 is thus equal to 1 if and only if all potential ancestors at time 0 of the

individuals at x at time t are of type 0, i.e are all ghosts.

We show below that this process corresponds to another way of constructing the k-parent SLFV

using the parental skeleton, and in particular, that (MΠc,ω
k,t )t≥0 ∈ DMλ

[0,+∞). This alternative

construction will allow us to couple SLFV processes with different numbers of potential parents, using

the same Poisson process. However, even though it is possible to define the k-parent SLFV for an

initial condition M ∈ Mλ instead of an initial density ω of M , this coupling can only be used if all

processes are constructed using the same initial density.

Proof. In order for the process to have a chance to correspond to the k-parent SLFV, we first need to

check that

(MΠc,ω
k,t )t≥0 ∈ DMλ

[0,+∞).

Let t ≥ 0. Since ω is {0, 1}-valued, by definition ωΠc,ω
k,t is {0, 1}-valued. Moreover, the values

taken by ω are changed over balls of the form B(x,R) in order to compute ωΠc,ω
k,t . Therefore, as ω is

measurable, ωΠc,ω
k,t is measurable as well, and we obtain that for all t ≥ 0, MΠc,ω

k,t ∈Mλ.
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We now show that the process is càdlàg. Let f ∈ Cc(Rd), and let

tf := max{t′ < t : ∃R > 0, ∃x ∈ SuppR(f),∃(pn)n≥1 ∈ U, (t′, x,R, (pn)n≥1) ∈ Πc}.

Since there exists C > 0 such that for all R > 0,

Vol(SuppR(f)) ≤ C ×
(
Rd ∨ 1

)
,

the support of f is affected by reproduction events at rate

∫ ∞
0

V ol(SuppR(f))µ(dR) ≤ C ×
∫ ∞

0

(
Rd ∨ 1

)
µ(dR)

< +∞

as µ satisfies Condition (4), and thus we obtain that tf < t. Therefore, s →
〈
ωΠc,ω
k,s , f

〉
is constant

over [tf , t), and we can conclude.

Lemma 18. Under the notation of Definition 17, (MΠc,ω
k,t )t≥0 has the same distribution as the k-parent

SLFV associated to µ and with initial density ω.

Proof. We set M0 = MΠc,ω
k,0 , and we use the characterization of the k-SLFV by the duality relation in

Proposition 8.

Let l ∈ N∗, let Ψ be a density function on (Rd)l, and let t ≥ 0. Then,

EM0

∫
(Rd)l

Ψ(x1, ..., xl)

 l∏
j=1

ωΠc,ω
k,t (xj)

 dx1...dxl


=
∫

(Rd)l
Ψ(x1, ..., xl)EM0

 l∏
j=1

ωΠc,ω
k,t (xj)

 dx1...dxl

=
∫

(Rd)l
Ψ(x1, ..., xl)EM0

 l∏
j=1

∏
y∈A(Ξ

Πc,t,δxj
k,t

)

ω(y)

 dx1...dxl

=
∫

(Rd)l
Ψ(x1, ..., xl)EM0


∏

y∈A(Ξ
Πc,t,

∑l

j=1 δxj
k,t

)

ω(y)

 dx1...dxl

=
∫

(Rd)l
Ψ(x1, ..., xl)EΞ[x1,...,xl]

 ∏
y∈A(Ξt)

ω(y)

 dx1...dxl,

with (Ξt)t≥0 the k-parent ancestral process associated to µ with initial condition Ξ[x1, ..., xl]. We used

the definition of the quenched k-parent SLFV to pass from line 2 to line 3, and the fact that ω is
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{0, 1}-valued to pass from line 3 to line 4.

Writing Ξt = ∑Nt
j=1 ξ

j
t , we obtain

EM0

∫
(Rd)l

Ψ(x1, ..., xl)

 l∏
j=1

ωΠc,ω
k,t (xj)

 dx1...dxl


=
∫

(Rd)l
Ψ(x1, ..., xl)EΞ[x1,...,xl]

 Nt∏
j=1

ω(ξjt )

 dx1...dxl.

This concludes the proof.

This lemma has two direct consequences. First, (MΠc,ω
k,t )t≥0 is Markovian. Moreover, since this

process isMλ-valued, we have proved the second part of Theorem 1, that is, that the unique solution

to the martingale problem characterizing the k-parent SLFV isMλ-valued.

The interest of the coupling lies in the fact that given a sequence of coupled k-parent SLFV

constructed using the same extended Poisson point process Πc, their corresponding densities, as con-

structed in Definition 17, satisfy the following property.

Lemma 19. Let 2 ≤ k < k′, and let ω : Rd → {0, 1} be a measurable function. Let Πc be a Poisson

point process on R× Rd × (0,+∞)× U with intensity dt⊗ dx⊗ µ(dR)⊗ ũ((pn)n≥1).

Then, for all t ≥ 0 and x ∈ Rd,

ωΠc,ω
k′,t (x) ≤ ωΠc,ω

k,t (x).

In particular, for all t ≥ 0 and x ∈ Rd, (ωΠc,ω
k,t (x))k≥2 converges to some ω∞t (x) ∈ {0, 1} as k → +∞.

Proof. Let t ≥ 0 and x ∈ Rd. By Lemma 15,

A(ΞΠc,t,δx
k,t ) ⊆ A(ΞΠc,t,δx

k′,t ).

Therefore, as ω is {0, 1}-valued,

ωΠc,ω
k′,t (x) =

∏
y∈A(ΞΠc,t,δx

k′,t )

ω(y)

≤
∏

y∈A(ΞΠc,t,δx
k,t

)

ω(y)

≤ ωΠc,ω
k,t (x).

The second part of the lemma is a consequence of the fact that (ωΠc,ω
k,t (x))k≥2 is a non-increasing

{0, 1}-valued sequence.
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2.2 Definition of the ∞-parent SLFV

We can now define the ∞-parent SLFV.

Definition 20. Let M0 ∈ Mλ with density ω : Rd → {0, 1}. The ∞-parent spatial Λ-Fleming Viot

process, or ∞-parent SLFV, with initial density ω associated to the extended Poisson point process Πc

is theMλ-valued process (M∞t )t≥0 defined the following way.

First, we set M∞0 = M0. Then, for all t ≥ 0 and x ∈ Rd, we set

ω∞t (x) := lim
k→+∞

ωΠc,ω
k,t (x)

and we set

M∞t (dx, dκ) := (ω∞t (x)δ0(dκ) + (1− ω∞t (x))δ1(dκ))dx.

Πc will be called the associated extended Poisson point process, and (ω∞t )t≥0 will be called the density

of the ∞-parent SLFV associated to Πc and of initial density ω.

In its more general form, the ∞-parent SLFV is defined for an initial condition M0 ∈ Mλ and a

σ-finite measure µ. However, we construct it using a density ω of M0, and an extended Poisson point

process Πc, and in the following, we will need both the initial density and the extended Poisson process

used in order to prove some properties satisfied by the ∞-parent SLFV. Therefore, we considered two

complementary definitions of the process, one based on the initial condition and the measure µ, and

the other one based on the initial density and the extended Poisson point process, both definitions

corresponding to the same process. In the following, we will use one or the other of the two definitions,

depending on whether the initial density and extended Poisson point process used to construct the

process are needed or not.

As in the proof of Definition 17, we can show that (M∞t )t≥0 ∈ DMλ
[0,+∞).

Lemma 21. Under the notation of Definition 20, (M∞t )t≥0 is Markovian.

Proof. First, notice that the definition of (M∞t )t≥0 implies that we only need to demonstrate that

(ω∞t )t≥0 is Markovian.

Let 0 ≤ s ≤ t and let x ∈ Rd. Our goal is to show that

ω∞t (x) = lim
k̃→+∞

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ω∞s (x′).
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Indeed, if this result is true, since A
(
ΞΠc,t,δx
k̃,t−s

)
depends on events occuring during the interval [s, t], it

is independent from (ω∞s′ )0≤s′≤s and we can conclude.

By definition of the ∞-parent SLFV,

ω∞t (x) = lim
k→+∞

ωΠc,ω
k,t (x).

Using Lemma 46 from Section 5, we obtain

ω∞t (x) = lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ωΠc,ω
k,s (x′).

Let k̃ ≥ 2. By Lemma 19 and since for all k ≥ 2, ωΠc,ω
k,s is {0, 1}-valued,

ω∞t (x) ≤ lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ωΠc,ω
k,s (x′)

≤
∏

x′∈A
(
ΞΠc,t,δx
k,t−s

) lim
k→+∞

ωΠc,ω
k,s (x′)

≤
∏

x′∈A
(
ΞΠc,t,δx
k,t−s

)ω∞s (x′).

Here we used Lemma 47 to pass from the first to the second line, and the definition of the ∞-parent

SLFV to pass from the second to the third line.

Since this is true for all k̃ ≥ 2,

ω∞t (x) ≤ lim
k̃→+∞

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ω∞s (x′).

Then, starting back from the equation

ω∞t (x) = lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ωΠc,ω
k,s (x′),

as for all x ∈ Rd,
(
ωΠc,ω
k,s (x′)

)
k≥2

is decreasing, we obtain that

ω∞t (x) ≥ lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ω∞s (x′)

and we can conclude.
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2.3 Characterization via a martingale problem

Let M0 ∈Mλ with density ω : Rd → {0, 1}. We recall that the operator L∞µ is defined by

L∞µ ΨF,f (M) =
∫ +∞

0

∫
SuppR(f)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
[
F (〈Θ−x,R(ωM ), f〉)− F (〈ωM , f〉)

]
dxµ(dR).

The goal of this section is to demonstrate the following result, which is also the first part of Theorem 10.

Proposition 22. Let (M∞t )t≥0 be the ∞-parent SLFV with initial density ω, associated to Πc. Then,

for all F ∈ C1(R) and f ∈ Cc(Rd),

(
ΨF,f (Mt)−ΨF,f (M0)−

∫ t

0
L∞µ ΨF,f (Ms)ds

)
t≥0

is a martingale.

In other words, (M∞t )t≥0 is a solution of the martingale problem (L∞µ ,M∞0 ), but this solution is

not necessarily unique. In fact, we will show in Section 4 that this solution is unique when µ satisfies

the stronger Condition (5), but the question of uniqueness when µ does not satisfy Condition (5)

remains open.

We start by justifying why the operator L∞µ is a suitable candidate for an operator characterizing

the limit k → +∞ of the k-parent SLFV.

Lemma 23. Let ω : Rd → [0, 1], and let x ∈ R. Then, for all R > 0,

δ0

(∫
B(x,R)

(1− ω(z)) dz
)

= lim
k→+∞

1
V k
R

∫
B(x,R)k

 k∏
j=1

ω(yj)

 dy1...dyk.

Proof. For all k ≥ 2,

1
V k
R

∫
B(x,R)k

 k∏
j=1

ω(yj)

 dy1...dyk =
(

1
VR

∫
B(x,R)

ω(y)dy
)k

.

As V −1
R
∫
B(x,R) ω(y)dy ∈ [0, 1],

lim
k→+∞

1
V k
R

∫
B(x,R)k

 k∏
j=1

ω(yj)

 dy1...dyk = 1

⇐⇒ 1
VR

∫
B(x,R)

ω(y)dy = 1

⇐⇒
∫
B(x,R)

(1− ω(z)) dz = 0.
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Moreover,

lim
k→+∞

1
V k
R

∫
B(x,R)k

 k∏
j=1

ω(yj)

 dy1...dyk = 0

⇐⇒ 1
VR

∫
B(x,R)

ω(y)dy < 1

⇐⇒
∫
B(x,R)

(1− ω(z)) dz > 0,

and we can conclude.

Let F ∈ C1(R) and f ∈ Cc(Rd). For all M ∈Mλ,

|F (〈ωM , f〉)| ≤ max{F (x) : x ∈ [−Vol(Supp(f)),Vol(Supp(f))]}, (7)

which means in particular that for all x ∈ Rd and for all R > 0,

|F (〈Θ+
x,R(ωM ), f〉)| ≤ max{F (x) : x ∈ [−Vol(Supp(f)),Vol(Supp(f))]}

and |F (〈Θ−x,R(ωM ), f〉)| ≤ max{F (x) : x ∈ [−Vol(Supp(f)),Vol(Supp(f))]}.

Therefore, a direct consequence of the dominated convergence theorem is the following lemma.

Lemma 24. Let M ∈Mλ, and let (Mn)n∈N ∈Mλ such that Mn converges vaguely to M . Then, for

all x ∈ Rd and for all R > 0,

F (〈ωMn , f〉) −−−−−→n→+∞
F (〈ωM , f〉)

F (〈Θ+
x,R(ωMn), f〉) −−−−−→

n→+∞
F (〈Θ+

x,R(ωM ), f〉)

F (〈Θ−x,R(ωMn), f〉) −−−−−→
n→+∞

F (〈Θ−x,R(ωM ), f〉).

In contrast with LkµΨF,f , the function L∞µ ΨF,f is not continuous. However, we have the following

result.

Lemma 25. Let M ∈Mλ, and (Mn)n∈N ∈Mλ such that Mn converges to M in the topology of vague

convergence. Assume that there exists a density ω of M and densities ωn of Mn for all n ∈ N such

that :

∀n ∈ N, ∀z ∈ Rd, ω(z) ≤ ωn(z).

Then,

lim
n→+∞

L∞µ ΨF,f (Mn) = L∞µ ΨF,f (M).
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Proof. First, since (Mn)n∈N converges vaguely to M , by Lemma 24, for all R > 0 and for all

x ∈ SuppR(f),

F (〈Θ−x,R(ωn), f〉) −−−−−→
n→+∞

F (〈Θ−x,R(ω), f〉).

Then, let R > 0 and n ∈ N. Since for all z ∈ B(x,R), ω(z) ≤ ωn(z),

∫
B(x,R)

(1− ω(z)) dz ≥
∫
B(x,R)

(1− ωn(z)) dz.

Moreover, since

lim
n→+∞

∫
B(x,R)

(1− ωn(z)) dz =
∫
B(x,R)

(1− ω(z)) dz

≥
∫
B(x,R)

(1− ωn(z)) dz,

if lim
n→+∞

∫
B(x,R) (1− ωn(z)) dz = 0, then for all n ∈ N,

∫
B(x,R) (1− ωn(z)) dz = 0, and thus :

lim
n→+∞

δ0

(∫
B(x,R)

(1− ωn(z)) dz
)

= δ0

(∫
B(x,R)

(1− ω(z)) dz
)
.

Conversely, if lim
n→+∞

∫
B(x,R) (1− ωn(z)) dz 6= 0, since δ0(•) is continuously equal to 0 over R∗+,

lim
n→+∞

δ0

(∫
B(x,R)

(1− ωn(z)) dz
)

= δ0

(∫
B(x,R)

(1− ω(z)) dz
)
.

We conclude by using the dominated convergence theorem.

In order to prove Proposition 22, we will need the following result, which illustrates in which sense

the ∞-parent SLFV can be considered as the limit k → +∞ of the k-parent SLFV.

Lemma 26. Let (M∞t )t≥0 be the ∞-parent SLFV with initial density ω associated to Πc. Then, for

all t ≥ 0, (MΠc,ω
k,t )k≥2 converges vaguely to M∞t as k → +∞.

Proof. Let t ≥ 0, and let ω∞t be the density of the ∞-SLFV with initial density ω associated to Πc,

considered at time t. Let f ∈ Cc(Rd). Then f is integrable and

∀x ∈ Rd, f(x)ωΠc,ω
k,t (x) −−−−→

k→+∞
f(x)ω∞t (x)

∀x ∈ Rd,
∣∣∣f(x)ωΠc,ω

k,t (x)
∣∣∣ ≤ |f(x)|.
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Therefore, by the dominated convergence theorem,

lim
k→+∞

∫
Rd
f(x)ωΠc,ω

k,t (x)dx =
∫
Rd
f(x)ω∞t (x)dx

and lim
k→+∞

∫
B(x,R)

f(y)ωΠc,ω
k,t (y)dx =

∫
B(x,R)

f(y)ω∞t (y)dy.

We now consider f̃ ∈ Cc(Rd × {0, 1}). Then, there exists f0, f1 ∈ Cc(Rd) such that

∀(x, κ) ∈ Rd × {0, 1}, f̃(x, κ) = f0(x)1{0}(κ) + f1(x)1{1}(κ).

Therefore, for all k ≥ 2,

∫
Rd×{0,1}

f̃(x, κ)MΠc,k
k,t (dx, dκ) =

∫
Rd
f0(x)ωΠc,k

k,t (x)dx+
∫
Rd
f1(x)

(
1− ωΠc,k

k,t (x)
)
dx

−−−−→
k→+∞

∫
Rd
f0(x)ω∞t (x)dx+

∫
Rd
f1(x) (1− ω∞t (x)) dx

=
∫
Rd×{0,1}

f̃(x, κ)M∞t (dx, dκ)

and we conclude that (MΠc,ω
k,t )k≥2 converges vaguely to M∞t as k → +∞.

Lemma 27. Let (M∞t )t≥0 be the∞-parent SLFV of initial condition M0, constructed using the initial

density ω and Πc. Then, for all F ∈ C1(R) and f ∈ Cc(Rd), for all l ≥ 1, for all 0 ≤ t1 < ... < tl ≤ t < t+s,

for all h1, ..., hl ∈ Cb(Mλ),

lim
k→+∞

E
[(

ΨF,f (Mk
t+s)−ΨF,f (Mk

t )−
∫ t+s

t
L∞µ ΨF,f (Mk

u )du
)
×
(

l∏
i=1

hi(Mk
ti)
)]

= 0.

Proof. For all k ≥ 2, we set (Mk
u )u≥0 = (MΠc,ω

k,u )u≥0 the k-parent SLFV associated to Πc and with

initial condition ω. Moreover, for all u ≥ 0, let ωku be a density of Mk
u .

Let l ≥ 1, 0 ≤ t1 < ... < tl ≤ t < t+ s and h1, ..., hl ∈ Cb(Mλ). Then, for all k ≥ 2,

E
[(

ΨF,f (Mk
t+s)−ΨF,f (Mk

t )−
∫ t+s

t
L∞µ ΨF,f (Mk

u )du
)
×
(

l∏
i=1

hi(Mk
ti)
)]

=E
[(

ΨF,f (Mk
t+s)−ΨF,f (Mk

t )−
∫ t+s

t
LkµΨF,f (Mk

u )du
)
×
(

l∏
i=1

hi(Mk
ti)
)]

+ E
[(∫ t+s

t
LkµΨF,f (Mk

u )− L∞µ ΨF,f (Mk
u )du

)
×
(

l∏
i=1

hi(Mk
ti)
)]

.
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Since (Mk
u )u≥0 is solution to the martingale problem associated to (Lk, δMk

0
), the above is equal to

0 + E
[(∫ t+s

t
LkµΨF,f (Mk

u )− L∞µ ΨF,f (Mk
u )du

)
×
(

l∏
i=1

hi(Mk
ti)
)]

.

From Lemmas 40 and 41 in Section 5, we can apply the dominated convergence theorem to

E
[(∫ t+s

t
|LkµΨF,f (Mk

u )− L∞µ ΨF,f (Mk
u )|du

)
×
(

l∏
i=1
|hi(Mk

ti)|
)]

,

and we obtain

lim
k→+∞

E
[(

ΨF,f (Mk
t+s)−ΨF,f (Mk

t )−
∫ t+s

t
L∞µ ΨF,f (Mk

u )du
)
×
(

l∏
i=1

hi(Mk
ti)
)]

=E
[(∫ t+s

t
lim

k→+∞

(
LkµΨF,f (Mk

u )− L∞µ ΨF,f (Mk
u )
)
du

)
×
(

lim
k→+∞

l∏
i=1

hi(Mk
ti)
)]

,

assuming that the different limits exist.

Now, let k ≥ 2 and u ∈ [t, t+ s]. We have

LkµΨF,f (Mk
u )− L∞µ ΨF,f (Mk

u )

=
∫ ∞

0

∫
SuppR(f)

(
F (〈Θ+

x,R(ωku), f〉)− F (〈ωku, f〉)
)

×

∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
dy1...dyk − δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)
+
(
F (〈Θ−x,R(ωku), f〉)− F (〈ωku, f〉)

)
×

δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)
−
∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
dy1...dyk

 dxµ(dR)

=
∫ ∞

0

∫
SuppR(f)

(
F (〈Θ+

x,R(ωku), f〉)− F (〈Θ−x,R(ωku), f〉)
)

×

∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
dy1...dyk − δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

) dxµ(dR).

The term inside the integral is bounded in absolute value, by Lemma 37 in Section 5. Moreover, as

(Mk
u )k≥2 converges vaguely to M∞u by Lemma 26, we can apply Lemma 24 and we obtain

lim
k→+∞

F (〈Θ+
x,R(ωku), f〉)− F (〈Θ−x,R(ωku), f〉) = F (〈Θ+

x,R(ω∞u ), f〉)− F (〈Θ−x,R(ω∞u ), f〉).
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Therefore, we have to show that

lim
k→+∞

∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
dy1...dyk − δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)
= 0.

We cannot apply directly Lemma 23, because the density also depends on k. However,

∣∣∣∣∣∣
∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
dy1...dyk − δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∫
B(x,R)k

 k∏
j=1

ωku(yj)
VR

−
k∏
j=1

ω∞u (yj)
VR

 dy1...dynk

∣∣∣∣∣∣
+
∣∣∣∣∣δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)
− δ0

(∫
B(x,R)

(1− ω∞u (y)) dy
)∣∣∣∣∣

+

∣∣∣∣∣∣
∫
B(x,R)k

k∏
j=1

(
ω∞u (yj)
VR

)
dy1...dyk − δ0

(∫
B(x,R)

(1− ω∞u (y)) dy
)∣∣∣∣∣∣ .

We can apply Lemma 23 to the third term. Since for all y ∈ Rd, ω∞u (y) ≤ ωku(y), we showed in the

proof of Lemma 25 that

lim
k→+∞

∣∣∣∣∣δ0

(∫
B(x,R)

(
1− ωku(y)

)
dy

)
− δ0

(∫
B(x,R)

(1− ω∞u (y)) dy
)∣∣∣∣∣ = 0.

Regarding the first term, we distinguish two cases. If V −1
R
∫
B(x,R) ω

∞
u (y)dy = 1, since

∫
B(x,R)

ω∞u (y)
VR

dy ≤
∫
B(x,R)

ωku(y)
VR

dy ≤ 1,

we obtain that in fact for every k ≥ 2

∫
B(x,R)k

k∏
j=1

ωku(yj)
VR

−
k∏
j=1

ω∞u (yj)
VR

 dy1...dynk = 0.

Conversely, assume V −1
R
∫
B(x,R) ω

∞
u (y)dy < 1. Since,

∫
B(x,R)

ωku(y)
VR

dy −−−−→
k→+∞

∫
B(x,R)

ω∞u (y)
VR

dy,

there exist 0 < M < 1 and k′ ≥ 2 such that :

∀k ≥ k′,
∫
B(x,R)

ωku(y)
VR

dy ≤M.
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Therefore,

∣∣∣∣∣∣
∫
B(x,R)k

k∏
j=1

(
ωku(yj)
VR

)
−

k∏
j=1

(
ω∞u (yj)
VR

)
dy1...dyk

∣∣∣∣∣∣ =

∣∣∣∣∣∣
(∫

B(x,R)

ωku(y)
VR

dy

)k
−
(∫

B(x,R)

ω∞u (y)
VR

dy

)k∣∣∣∣∣∣
−−−−→
k→+∞

0,

and we can conclude.

We can now show that the ∞-parent SLFV is solution of the martingale problem introduced in

the Proposition 22.

Proof. (Proposition 22) Let F ∈ C1(R) and f ∈ Cc(Rd). For all k ≥ 2, we set (M∞t )t≥0 = (MΠc,ω
k,t )t≥0.

Let l ≥ 1, let 0 ≤ t1 < ... < tl ≤ t < t+ s, and let h1, ..., hl ∈ Cb(Mλ). By Lemma 27,

lim
k→+∞

E
[(

ΨF,f (Mk
t+s)−ΨF,f (Mk

t )−
∫ t+s

t
L∞µ ΨF,f (Mk

u )du
)
×
(

l∏
i=1

hi(Mk
ti)
)]

= 0.

Since (Mk
t+s)k≥2 (resp. (Mk

t )k≥2) converges vaguely to M∞t+s (resp. M∞t ) by Lemma 26, we can

apply Lemma 24 and we obtain

lim
k→+∞

ΨF,f (Mk
t+s) = ΨF,f (M∞t+s)

and lim
k→+∞

ΨF,f (Mk
t ) = ΨF,f (M∞t ).

Moreover, by Lemma 25, for all u ∈ [t, t+ s],

lim
k→+∞

L∞µ ΨF,f (Mk
u ) = L∞µ ΨF,f (M∞u ),

which is uniformly bounded in M ∈ Mλ by Lemma 41 in Section 5. Since for all i ∈ J1, lK,

hi ∈ Cb(Mλ),

∀i ∈ J1, lK, lim
k→+∞

hi(Mk
ti) = hi(M∞ti ).

Therefore, by Eq.(7) and by Lemmas 40, 41 in Section 5, we can apply the dominated convergence

theorem and obtain

E
[(

ΨF,f (M∞t+s)−ΨF,f (M∞t )−
∫ t+s

t
L∞µ ΨF,f (M∞u )du

)
×
(

l∏
i=1

hi(M∞ti )
)]

= 0.

29



We conclude that

(
ΨF,f (M∞t )−ΨF,f (M∞0 )−

∫ t

0
L∞µ ΨF,f (M∞u )du

)
t≥0

is indeed a martingale.

3 The ∞-parent ancestral process : definition and characterization

3.1 Definition and first properties

In order to show that the ∞-parent ancestral process (Ξ∞t )t≥0 introduced in Definition 11 is well-

defined, we start by observing that the only reproduction events affecting Ξ∞t are the ones intersecting

its border Ξ∞t \Ξ̊∞t . Therefore, it is sufficient to consider only the reproduction events affecting its

border, or the ones affecting a well-chosen space containing it.

Figure 1: Initial state of the ∞-parent ancestral process (dashed line), and a covering of its border by
balls of radius R̃.

In order to control the rate at which the ∞-parent ancestral process jumps, we start by taking

R̃ > 0 satisfying some condition which will be introduced later, and we cover the border Ξ∞0 \Ξ̊∞0 of

Ξ∞0 with balls of radius R̃ (see Figure 1). Then, informally, whenever a reproduction even overlaps

what we will call the R̃-covering :

• if this reproduction event has a radius of at most R̃, it is included in the ball of same center but

of radius R̃. We add this ball of radius R̃ to the covering.

• Otherwise, we cover the border of the area of the reproduction event by balls of radius R̃, and

we add these balls to the covering.
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See Figure 2 for an illustration of this dynamics.

(a) Reproduction event (grey line) affecting the
∞-parent ancestral process at time t > 0.

(b) The ∞-parent ancestral process is updated,
and a covering of the border of the reproduction
event by balls of radius R̃ is added to the R̃-
covering process.

(c) Since the R̃-covering process is bigger than the
border of the∞-parent ancestral process, it can be
affected by reproduction events (grey line) which
do not intersect the ∞-parent ancestral process.

(d) Updated R̃-covering process after a reproduc-
tion event affecting it while not intersecting the
∞-parent ancestral process.

Figure 2: Illustration of the dynamics of the∞-parent ancestral process (dashed line) and its associated
R̃-covering process.

Note that since the covering contains the border Ξ∞t \Ξ̊∞t of Ξ∞t but is not equal to it, there are

more reproduction events affecting the R̃-covering than reproduction events affecting Ξ∞t .

Constructed this way, the R̃-covering contains only balls of radius R̃, each one being overlapped

by a reproduction event at rate ∫ ∞
0

V1(R̃+ r)dµ(dr).

Moreover, since the covering is constructed using the same Poisson point process as for (Ξ∞t )t≥0, at

any time t the current state of the covering contains the border Ξ∞t \Ξ̊∞t of Ξ∞t . Since the rate at

which (Ξ∞t )t≥0 jumps is bounded by the rate at which the covering we just constructed is updated,

we can show that (Ξ∞t )t≥0 is well-defined by controlling the rate at which new balls are added to the

R̃-covering.
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Let us now define the border covering process we just introduced rigorously.

Definition 28 (Border covering process). In the notation of Definition 11, let R̃ > 0 be such that

µ satisfies Condition (5). Let x1, ..., xN ∈ Rd, N ≥ 1 such that initially the border of Ξ0 is entirely

covered by the N balls of radius R̃ (B(xi, R̃))1≤i≤N . Then, the R̃-covering process (Ct)t≥0 associated

to (Ξ∞t )t≥0 is constructed in the following way.

First, we set C0 = {x1, ..., xN : 1 ≤ i ≤ N}. Then, for all (t, x,R) ∈ Π̃, if Ct− ∩ B(x,R) 6= ∅, let

n ∈ N∗ such that (n − 1)R̃ ≤ R ≤ nR̃. We construct a covering of the border of B(x,R) by at most

ad × nd−1 balls of radius R̃, and Ct is obtained by adding the center of these balls to Ct−.

The interest of the border covering process lies in the fact that, as we argued earlier, for all t ≥ 0,

Ξ∞t \Ξ̊∞t ⊆ Ct.

Therefore, the jump rate of Ξ∞t is bounded above by

Card(Ct)×
∫ ∞

0
V1(R̃+ r)dµ(dr).

Lemma 29. In the notation of Definitions 11 and 28, (Card(Ct))t≥0 is bounded from above by (Yt)t≥0

the number of particles in a branching process in which each particle branches independently of the

others at rate ∫ ∞
0

V1(R̃+ r)dµ(dr),

and in which at each branching event, the number of descendants is equal to ad×nd−1 + 1, n ≥ 1 with

probability ∫ nR̃
(n−1)R̃(R̃+ r)dµ(dr)∫∞

0 (R̃+ r)dµ(dr)
.

Moreover, for all t ≥ 0, Yt < +∞ p.s, and E[Yt] < +∞.

Proof. How to construct the branching process (Yt)t≥0 from (Ct)t≥0 is clear. The jump rates and

transition probabilities come from the fact that for any point x ∈ Ct and for all n ≥ 1, the ball

B(x, R̃) is affected by a reproduction event of radius (n− 1)R̃ ≤ R ≤ nR̃ at rate

∫ nR̃

(n−1)R̃
V1(R̃+R)dµ(dR),

and such a reproduction event generates ad × nd−1 new balls in the border covering process.
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Then, if Φ is the probability generating function of the number of descendants,

Φ′(1) =
+∞∑
n=1

(∫ nR̃

(n−1)R̃
V1(R̃+ r)dµ(dr)

)
× (ad × nd−1 + 1) < +∞

since µ satisfies Condition (5). Therefore, by Theorem III.2.1 in [1], Yt is finite for all t ≥ 0 a.s, and

E[Yt] < +∞ for all t ≥ 0.

We can then conclude that (Ξ∞t )t≥0 is well-defined using the fact that the jump rate of Ξ∞t is

bounded from above by

Yt ×
∫ ∞

0
V1 × (R̃+R)dµ(dR) < +∞ p.s .

3.2 Characterization via a martingale problem

The goal of this section is to introduce how to characterize the ∞-parent ancestral process as the

unique solution to a martingale problem.

In all that follows, let F ∈ C1
b (R) and f ∈ B(Rd). We extend the definition of the function ΦF,f

to the space of measures m(E) ∈Mcf , setting

ΦF,f (m(E)) :=F
(∫

Rd
f(x)m(E)dx

)
=F

(∫
E
f(x)dx

)
.

Moreover, for all E ∈ Ecf and R > 0, we set

SR(E) := {x ∈ Rd : ∃y ∈ E, ||x− y|| ≤ R}.

Note that this definition is reminiscent of the definition of SR(Ξ) with Ξ ∈Mp(Rd).

Let µ be a σ-finite measure on R∗+ satisfying Condition (5). We define the operator G∞µ on functions

of the form ΦF,f the following way. For all m(E) ∈Mcf , we set

G∞µ ΦF,f (m(E)) :=
∫ ∞

0

∫
SR(E)

F (〈m(E ∪B(x,R)), f〉)− F (〈m(E), f〉) dxµ(dR).

We show in Section 5 that this operator is well-defined, and give some properties that it satisfies. The

∞-parent ancestral process is then solution to the following martingale problem.

Proposition 30. Let µ be a σ-finite measure on (0,+∞) satisfying Condition (5). Let Ξ0 ∈ Mcf ,

and let (Ξ∞t )t≥0 be the ∞-parent ancestral process associated to µ with initial condition Ξ0.
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Then, for all F ∈ C1
b (R) and for all measurable function f : Rd → {0, 1}, the process

(
ΦF,f (Ξ∞t )− ΦF,f (Ξ∞0 )−

∫ t

0
G∞µ ΦF,f (Ξ∞s )ds

)
t≥0

is a martingale.

Proof. Let (Ft)t≥0 be the filtration generated by (Ξt)t≥0, and let 0 ≤ s ≤ t.

By Lemma 43 in Section 5,

E
[

ΦF,f (Ξ∞t )− ΦF,f (Ξ∞0 )−
∫ t

0
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs]

is well-defined, and

E
[

ΦF,f (Ξ∞t )− ΦF,f (Ξ∞0 )−
∫ t

0
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs]
=E

[
ΦF,f (Ξ∞t )− ΦF,f (Ξ∞s )−

∫ t

s
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs]
+ E

[
ΦF,f (Ξ∞s )− ΦF,f (Ξ∞0 )−

∫ s

0
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs]
=E [ΦF,f (Ξ∞t )|Ξ∞s ]− ΦF,f (Ξ∞s )−E

[∫ t

s
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Ξ∞s ]+ ΦF,f (Ξ∞s )− ΦF,f (Ξ∞0 )

−
∫ s

0
G∞µ ΦF,f (Ξ∞u )du

since (Ξ∞u )u≥0 is Markovian. Let (Ξ̃u)u≥0 be another ∞-parent ancestral process associated to µ, this

time with initial condition Ξ∞s . Then,

E
[

ΦF,f (Ξ∞t )− ΦF,f (Ξ∞0 )−
∫ t

0
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs]
=E [ΦF,f (Ξ∞t )|Ξ∞s ]− ΦF,f (Ξ∞s )−E

[∫ t−s

0
G∞µ ΦF,f (Ξ̃u)du

∣∣∣∣Ξ∞s ]+ ΦF,f (Ξ∞s )− ΦF,f (Ξ∞0 )

−
∫ s

0
G∞µ ΦF,f (Ξ∞u )du.

By Lemmas 43 and 44 in Section 5,

E
[∫ t−s

0
G∞µ ΦF,f (Ξ̃u)du

∣∣∣∣Ξ∞s ] =
∫ t−s

0
E
[
G∞µ ΦF,f (Ξ̃u)

∣∣∣Ξ∞s ] du
=
∫ t−s

0

d

dv
E
[
ΦF,f (Ξ̃v)

∣∣∣Ξ∞s ]∣∣∣∣
v=u

du

=E
[
ΦF,f

(
Ξ̃t−s

)
|Ξ∞s

]
−E

[
ΦF,f

(
Ξ̃0
)
|Ξ∞s

]
=E [ΦF,f (Ξ∞t )|Ξ∞s ]− ΦF,f (Ξ∞s ).
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Therefore, we obtain

E
[

ΦF,f (Ξ∞t )− ΦF,f (Ξ∞0 )−
∫ t

0
G∞µ ΦF,f (Ξ∞u )du

∣∣∣∣Fs] = ΦF,f (Ξ∞s )− ΦF,f (Ξ∞0 )−
∫ s

0
G∞µ ΦF,f (Ξ∞u )du

and we can conclude.

4 Uniqueness of the solution to the martingale problem character-

izing the ∞-parent SLFV

In order to show the uniqueness of the solution to the martingale problem characterizing the∞-parent

SLFV, we first need to extend the set of functions over which the operators L∞µ and G∞µ are defined.

4.1 Extended martingale problem for the ∞-parent SLFV

For all α ∈ R, we set Fα : x → δα(x), and for all E ∈ Ecf , we set fE : x → 1x∈E . Let µ a σ-finite

measure on (0,+∞) satisfying Condition (4), and let M0 ∈ Mλ. The goal of this section is to prove

the following result.

Lemma 31. Let M be a solution to the martingale problem associated to (L∞µ , δM0). Then, for all

E ∈ Ecf , (
ΨFVol(E),fE (Mt)−ΨFVol(E),fE (M0)−

∫ t

0
L∞ΨFVol(E),fE (Ms)ds

)
t≥0

is a martingale, where ΨFVol(E),fE : M ∈Mλ → ΨFVol(E),fE (M) is the function defined by

∀M ∈Mλ,ΨFVol(E),fE (M) : = FVol(E) (〈ωM , f〉)

= δVol(E) (〈ωM , f〉)

= δ0 (Vol(E)− 〈ωM , f〉) .

This lemma is a direct consequence of the following lemma.

Lemma 32. Let M be a solution to the martingale problem associated to (L∞µ , δM0). Then, for all

E ∈ Ecf , for all l ≥ 1, for all 0 ≤ t1 < ... < tl ≤ t < t+ s, for all h1, ..., hl ∈ Cb(Mλ),

E
[(

ΨFVol(E),fE (Mt+s)−ΨFVol(E),fE (Mt)−
∫ t+s

t
L∞µ ΨFVol(E),fE (Mu)du

)
×
(

l∏
i=1

hi(Mti)
)]

= 0

Let E ∈ Ecf . Let (FVol(E)
n )n∈N ∈ C1(R) and (fEn )n∈N ∈ Cc(Rd) be two sequences satisfying the
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following conditions.

(A) FVol(E)
n −−−−−→

n→+∞
FVol(E) pointwise and in L1,

(B) fEn −−−−−→n→+∞
fE pointwise and in L1,

(C) ∀n ∈ N,∀x ∈ R, 0 ≤ FVol(E)
n (x) ≤ 1 and FVol(E)

n (Vol(E)) = 1,

(D) ∀n ∈ N,∀x ∈ Rd, 0 ≤ fEn (x) ≤ 1 and ∀z ∈ E, fEn (z) = 1,

(E) ∀n ∈ N, FVol(E)
n is increasing over (−∞,Vol(E)] and decreasing over [Vol(E),+∞),

(F) ∀n ∈ N,Vol(Supp(fEn )\E) ≤ n−1, and Supp(fEn+1) ⊆ Supp(fEn )

(G) ∀n ∈ N, FVol(E)
n

(
Vol(E) + n−1

)
≥ 1− n−1 and FVol(E)

n

(
Vol(E)− n−1

)
≥ 1− n−1.

First, we observe that since FVol(E) and (FVol(E)
n )n∈N∗ are bounded by one (by Hypothesis (C)),

for all M ∈Mλ and n ∈ N∗

∣∣∣ΨFVol(E),fE (M)
∣∣∣ ≤ 1 (8)∣∣∣Ψ

F
Vol(E)
n ,fE

(M)
∣∣∣ ≤ 1 (9)∣∣∣Ψ

F
Vol(E)
n ,fEn

(M)
∣∣∣ ≤ 1 (10)

Moreover, there exists CE > 0 such that for all R > 0,

Vol(SR(E)) ≤ CE ×
(
Rd ∨ 1

)
, (11)

where we recall that SR(E) is defined by

SR(E) := {x ∈ Rd : ∃y ∈ E, ||x− y|| ≤ R}.

Therefore, we have the following lemma.

Lemma 33. There exists CE2 > 0 such that for all M ∈Mλ and n ∈ N∗,

∣∣∣L∞µ ΨFVol(E),fE (M)
∣∣∣ ≤ CE2∣∣∣L∞µ Ψ

F
Vol(E)
n ,fE

(M)
∣∣∣ ≤ CE2∣∣∣L∞µ Ψ

F
Vol(E)
n ,fEn

(M)
∣∣∣ ≤ CE2 .
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Proof. Let M ∈Mλ.

∣∣∣L∞µ ΨFVol(E),fE (M)
∣∣∣ ≤ ∫ ∞

0

∫
SR(E)

∣∣∣∣∣1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
)∣∣∣∣∣

×
∣∣∣FVol(E)

(
〈Θ−x,R(ωM ), f〉

)
− FVol(E) (〈ωM , f〉)

∣∣∣ dxµ(dR)

≤
∫ ∞

0

∫
SR(E)

2dxµ(dR)

≤2×
∫ ∞

0
CE ×

(
Rd ∨ 1

)
µ(dR)

<+∞

since µ satisfies Condition (4). Here we passed from line 1 to line 2 using the fact that FVol(E) is

bounded by 1, and from line 2 to line 3 using Eq. (11).

Setting CE2 = 2CE ×
∫∞

0

(
Rd ∨ 1

)
µ(dR), we obtain

∣∣∣L∞µ ΨFVol(E),fE (M)
∣∣∣ ≤ CE2 .

Similarly, we can show that for all n ∈ N∗,

∣∣∣L∞µ Ψ
F

Vol(E)
n ,fE

(M)
∣∣∣ ≤ CE2

and
∣∣∣L∞µ Ψ

F
Vol(E)
n ,fEn

(M)
∣∣∣ ≤ CE2 .

This lemma, along with Eqs. (8, 9, 10, 11), will allow us to use the dominated convergence theorem

in the proof of Lemma 32.

Since by Hypothesis (A) the sequence (FVol(E)
n )n∈N∗ converges pointwise to FVol(E), we obtain that

∀M ∈Mλ,ΨF
Vol(E)
n ,fE

(M) −−−−−→
n→+∞

ΨFVol(E),fE (M). (12)

We want to show a similar result regarding
(
Ψ
F

Vol(E)
n ,fEn

(M)
)
n∈N∗

.

Lemma 34. For all M ∈Mλ,

Ψ
F

Vol(E)
n ,fEn

(M)−Ψ
F

Vol(E)
n ,fE

(M) −−−−−→
n→+∞

0.

Proof. Let M ∈Mλ. We distinguish two cases.

Case 1 :
∫
E ωM (z)dz = Vol(E).
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Let n ∈ N∗. Then, since by Hypothesis (D) we have E ⊆ Supp(fEn ),

Vol(E) ≤ 〈ωM , fEn 〉 ≤ Vol(E) +
∫
Supp(fEn )\E

fEn (z)ωM (z)dz

≤ Vol(E) + Vol(Supp(fEn )\E)

≤ Vol(E) + 1
n

using Hypotheses (D) and (F). Therefore, since FVol(E)
n is decreasing over [Vol(E),+∞) by Hypothesis

(E),

FVol(E)
n (Vol(E)) ≥ Ψ

F
Vol(E)
n ,fEn

(M) ≥ FVol(E)
n (Vol(E) + 1

n
)

or, in other words,

1 ≥ Ψ
F

Vol(E)
n ,fEn

(M) ≥ 1− 1
n

by Hypothesis (C) and (G). Moreover,

Ψ
F

Vol(E)
n ,fE

(M) = FVol(E)
n

(∫
E
ωM (z)dz

)
= FVol(E)

n (Vol(E))

= 1

by Hypothesis (C), and we can conclude.

Case 2 :
∫
E ωM (z)dz < Vol(E).

Let N ∈ N∗ such that N−1 ≤ 2−1×(Vol(E)−
∫
E ωM (z)dz). Then, for all n ≥ N , using Hypotheses

(D) and (F),

0 ≤ 〈ωM , fEn 〉 ≤
∫
E
ωM (z)dz +

∫
Supp(fEn )\E

ωM (z)dz

≤
∫
E
ωM (z)dz + Vol(Supp(fEn )\E)

≤
∫
E
ωM (z)dz + 1

n

≤
∫
E
ωM (z)dz + 1

N

≤1
2 ×

∫
E
ωM (z)dz + 1

2 ×Vol(E)

<Vol(E),
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so by Hypothesis (E),

Ψ
F

Vol(E)
n ,fEn

(M) −−−−−→
n→+∞

0.

Moreover, since 〈ωM , fE〉 < Vol(E), again by Hypothesis (E),

Ψ
F

Vol(E)
n ,fE

(M) −−−−−→
n→+∞

0,

and we can conclude.

We now prove a similar result involving L∞µ .

Lemma 35. For all M ∈Mλ,

L∞µ Ψ
F

Vol(E)
n ,fE

(M)− L∞µ ΨFVol(E),fE (M) −−−−−→
n→+∞

0,

L∞µ Ψ
F

Vol(E)
n ,fE

(M)− L∞µ Ψ
F

Vol(E)
n ,fEn

(M) −−−−−→
n→+∞

0.

Proof. Let M ∈Mλ, and let n ∈ N∗. We have

L∞µ Ψ
F

Vol(E)
n ,fE

(M)− L∞µ ΨFVol(E),fE (M)

=
∫ ∞

0

∫
SR(E)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
(
FVol(E)
n

(
〈Θ−x,R(ωM ), fE〉

)
− FVol(E)

n

(
〈ωM , fE〉

))
dxµ(dR)

−
∫ ∞

0

∫
SR(E)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
(
FVol(E)

(
〈Θ−x,R(ωM ), fE〉

)
− FVol(E)

(
〈ωM , fE〉

))
dxµ(dR)

=
∫ ∞

0

∫
SR(E)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
(
FVol(E)
n

(
〈Θ−x,R(ωM ), fE〉

)
− FVol(E)

(
〈Θ−x,R(ωM ), fE〉

))
dxµ(dR)

+
∫ ∞

0

∫
SR(E)

(
1− δ0

(∫
B(x,R)

(1− ωM (z)) dz
))

×
(
FVol(E)

(
〈ωM , fE〉

)
− FVol(E)

n

(
〈ωM , fE〉

))
dxµ(dR).

By Eq. (12), for all x ∈ Rd and R > 0,

FVol(E)
n

(
〈Θ−x,R(ωM ), fE〉

)
− FVol(E)

(
〈Θ−x,R(ωM ), fE〉

)
−−−−−→
n→+∞

0

and FVol(E)
(
〈ωM , fE〉

)
− FVol(E)

n

(
〈ωM , fE〉

)
−−−−−→
n→+∞

0.
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Therefore, using the bounds from the proof of Lemma 33, we can apply the dominated convergence

theorem and obtain

L∞µ Ψ
F

Vol(E)
n ,fE

(M)− L∞µ ΨFVol(E),fE (M) −−−−−→
n→+∞

0.

We can similarly show that

L∞µ Ψ
F

Vol(E)
n ,fE

(M)− L∞µ Ψ
F

Vol(E)
n ,fEn

(M) −−−−−→
n→+∞

0

using Lemma 34 instead of Eq. (12).

We can now prove Lemma 32, from which we will directly deduce Lemma 31.

Proof. (Lemma 32) Let l ≥ 1, let 0 ≤ t1 < ... < tl ≤ t < t+ s and let h1, ..., hl ∈ Cb(Mλ). Let n ∈ N∗.

Then,

ΨFVol(E),fE (Mt+s) =ΨFVol(E),fE (Mt+s)−Ψ
F

Vol(E)
n ,fE

(Mt+s)

+ Ψ
F

Vol(E)
n ,fE

(Mt+s)−Ψ
F

Vol(E)
n ,fEn

(Mt+s) + Ψ
F

Vol(E)
n ,fEn

(Mt+s)

ΨFVol(E),fE (Mt) =ΨFVol(E),fE (Mt)−Ψ
F

Vol(E)
n ,fE

(Mt)

+ Ψ
F

Vol(E)
n ,fE

(Mt)−Ψ
F

Vol(E)
n ,fEn

(Mt) + Ψ
F

Vol(E)
n ,fEn

(Mt),

and for all u ∈ [t, t+ s],

L∞µ ΨFVol(E),fE (Mu) =L∞µ ΨFVol(E),fE (Mu)− L∞µ Ψ
F

Vol(E)
n ,fE

(Mu)

+ L∞µ Ψ
F

Vol(E)
n ,fE

(Mu)− L∞µ Ψ
F

Vol(E)
n ,fEn

(Mu) + L∞µ Ψ
F

Vol(E)
n ,fEn

(Mu).

Since M is a solution of the martingale problem associated to (L∞µ , δM0), for all n ∈ N∗,

E
[(

Ψ
F

Vol(E)
n ,fEn

(Mt+s)−Ψ
F

Vol(E)
n ,fEn

(Mt)−
∫ t+s

t
L∞µ Ψ

F
Vol(E)
n ,fEn

(Mu)du
)
×
(

l∏
i=1

hi(Mti)
)]

= 0.

Therefore, since all the equations written above are true for all n ∈ N∗,

E
[(

ΨFVol(E),fE (Mt+s)−ΨFVol(E),fE (Mt)−
∫ t+s

t
L∞µ ΨFVol(E),fE (Mu)du

)
×
(

l∏
i=1

hi(Mti)
)]

= lim
n→+∞

E
[(

ΨFVol(E),fE (Mt+s)−Ψ
F

Vol(E)
n ,fE

(Mt+s)
)
×
(

l∏
i=1

hi(Mti)
)]

+ lim
n→+∞

E
[(

Ψ
F

Vol(E)
n ,fEn

(Mt+s)−Ψ
F

Vol(E)
n ,fE

(Mt+s)
)
×
(

l∏
i=1

hi(Mti)
)]
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− lim
n→+∞

E
[(

ΨFVol(E),fE (Mt)−Ψ
F

Vol(E)
n ,fE

(Mt)
)
×
(

l∏
i=1

hi(Mti)
)]

− lim
n→+∞

E
[(

Ψ
F

Vol(E)
n ,fE

(Mt)−Ψ
F

Vol(E)
n ,fEn

(Mt)
)
×
(

l∏
i=1

hi(Mti)
)]

− lim
n→+∞

E
[(∫ t+s

t
L∞µ ΨFVol(E),fE (Mu)− L∞µ Ψ

F
Vol(E)
n ,fE

(Mu)du
)
×
(

l∏
i=1

hi(Mti)
)]

− lim
n→+∞

E
[(∫ t+s

t
L∞µ Ψ

F
Vol(E)
n ,fE

(Mu)− L∞µ Ψ
F

Vol(E)
n ,fEn

(Mu)du
)
×
(

l∏
i=1

hi(Mti)
)]

under the condition that all these limits exist.

By Eq. (12), Lemma 34 and Lemma 35, all the terms inside the expectations converge to 0 when

n→ +∞. Using the bounds given by Eq. (8), (9), (10) and Lemma 33, we can apply the dominated

convergence theorem and obtain the desired result.

4.2 Extended martingale problem for the ∞-parent ancestral process

In this section, we prove the following result.

Lemma 36. Let µ be a σ-finite measure on (0,+∞) satisfying Condition (5). Let Ξ0 ∈Mcf , and let

(Ξ∞t )t≥0 = (m(Et))t≥0 be the ∞-parent ancestral process associated to µ with initial condition Ξ0.

Then, for all measurable function f : Rd → {0, 1},

(
Φδ0,f (Ξ∞t )− Φδ0,f (Ξ∞0 )−

∫ t

0
G∞µ Φδ0,f (Ξ∞s )ds

)
t≥0

is a martingale, where Φδ0,f : M ∈Mcf → Φδ0,f (Ξ) is the function defined by

∀m(E) ∈Mcf ,Φδ0,f (m(E)) := δ0

(∫
E
f(x)dx

)
.

Proof. Let (Ft)t≥0 be the filtration generated by (Ξ∞t )t≥0. Let (Fn)n∈N∗ ∈ C1
b (R) be a sequence of

functions converging pointwise to δ0 such that

(A) ∀n ∈ N∗, Fn is increasing on R− and decreasing on R+,

(B) ∀n ∈ N∗, Fn(0) = 1 and ∀x ∈ R, 0 ≤ Fn(x) ≤ 1,

(C) ∀n ∈ N∗, Supp(Fn) ⊆ [−n−3, n−3].

The interest of this sequence lies in the fact that for all n ∈ N∗ and for all measurable function
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f : Rd → {0, 1}, (
ΦFn,f (Ξ∞t )− ΦFn,f (Ξ∞0 )−

∫ t

0
G∞µ ΦFn,f (Ξ∞s )ds

)
t≥0

is a martingale.

Let f : Rd → {0, 1} be a measurable function, and let 0 ≤ s ≤ t. Φδ0,f is bounded by 1, and by

Hypothesis (B), the functions (ΦFn,f )n∈N∗ are bounded by 1 as well. Moreover, since u → Vol(Ξ∞u ))

is increasing, and as there exists Ct > 0 such that for all R > 0,

Vol(SR(Ξ∞t )) ≤ Ct ×
(
Rd ∨ 1

)
,

we can deduce that for all u ∈ [0, t] and for all n ∈ N∗, by Hypothesis (B),

∣∣∣G∞µ ΦFn,f (Ξ∞s )
∣∣∣ ≤ ∫ ∞

0
2×Vol(SR(Ξ∞s ))µ(dR)

≤
∫ ∞

0
2×Vol(SR(Ξt))µ(dR)

≤ 2Ct ×
∫ ∞

0

(
Rd ∨ 1

)
µ(dR).

Similarly, we obtain that

∣∣∣G∞µ Φδ0,f (Ξ∞s )
∣∣∣ ≤ 2Ct ×

∫ ∞
0

(
Rd ∨ 1

)
µ(dR).

Since µ satisfies Condition (4), both quantities are finite. Therefore, by Fubini’s theorem, for all

n ∈ N∗,

E
[

Φδ0,f (Ξ∞t )− Φδ0,f (Ξ∞0 )−
∫ t

0
G∞µ Φδ0,f (Ξ∞u )du

∣∣∣∣Fs]
=E [Φδ0,f (Ξ∞t )− ΦFn,f (Ξ∞t )| Fs] + E [ΦFn,f (Ξ∞0 )− Φδ0,f (Ξ∞0 )| Fs]

+
∫ t

0
E
[
G∞µ ΦFn,f (Ξ∞u )− G∞µ Φδ0,f (Ξ∞u )

∣∣∣Fs] du
+ E

[
ΦFn,f (Ξ∞t )− ΦFn,f (Ξ∞0 )−

∫ t

0
G∞µ ΦFn,f (Ξ∞u )du

∣∣∣∣Fs] .
Using Proposition 30, we obtain that

E
[

Φδ0,f (Ξ∞t )− Φδ0,f (Ξ∞0 )−
∫ t

0
G∞µ Φδ0,f (Ξ∞u )du

∣∣∣∣Fs]
=ΦFn,f (Ξ∞s )− ΦFn,f (Ξ∞0 )−

∫ s

0
G∞µ ΦFn,f (Ξ∞u )du

+ E [Φδ0,f (Ξ∞t )− ΦFn,f (Ξ∞t )| Fs] + E [ΦFn,f (Ξ∞0 )− Φδ0,f (Ξ∞0 )| Fs]
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+
∫ t

0
E
[
G∞µ ΦFn,f (Ξ∞u )− G∞µ Φδ0,f (Ξ∞u )

∣∣∣Fs] du.
Since this is true for all n ∈ N∗,

E
[

Φδ0,f (Ξ∞t )− Φδ0,f (Ξ∞0 )−
∫ t

0
G∞µ Φδ0,f (Ξ∞u )du

∣∣∣∣Fs]
= lim
n→+∞

ΦFn,f (Ξ∞s )− lim
n→+∞

ΦFn,f (Ξ∞0 )− lim
n→+∞

∫ s

0
G∞µ ΦFn,f (Ξ∞u )du

+ E [Φδ0,f (Ξ∞t )− ΦFn,f (Ξ∞t )| Fs] + E [ΦFn,f (Ξ∞0 )− Φδ0,f (Ξ∞0 )| Fs]

+
∫ t

0
E
[
G∞µ ΦFn,f (Ξ∞u )− G∞µ Φδ0,f (Ξ∞u )

∣∣∣Fs] du,
under the condition that all these limits exist.

First, since ΦFn,f converges pointwise to Φδ0,f ,

lim
n→+∞

ΦFn,f (Ξ∞s )− ΦFn,f (Ξ∞0 ) = Φδ0,f (Ξ∞s )− Φδ0,f (Ξ∞0 ),

and by the dominated convergence theorem,

lim
n→+∞

E [Φδ0,f (Ξ∞t )− ΦFn,f (Ξ∞t )| Fs] = lim
n→+∞

E [Φδ0,f (Ξ∞0 )− ΦFn,f (Ξ∞0 )| Fs] = 0.

Moreover, since for all n ∈ N∗,

∫ s

0

∣∣∣G∞µ ΦFn,f (Ξ∞u )
∣∣∣ du ≤ 2s× Ct ×

∫ ∞
0

(
Rd ∨ 1

)
µ(dR),

again by the dominated convergence theorem, we obtain

lim
n→+∞

∫ s

0
G∞µ ΦFn,f (Ξ∞u )du =

∫ s

0
G∞µ Φδ0,f (Ξ∞u )du.

Then, let n ∈ N∗. Recalling that Ξ∞u is also denoted m(Eu),

∫ t

0
E
[
G∞µ (Ξ∞u )− G∞µ (Ξ∞u )

∣∣∣Fs] du
=
∫ t

0
E
[∫ ∞

0

∫
SR(E)

(Fn (〈m(Eu ∪B(x,R)), f〉)− δ0 (〈m(Eu ∪B(x,R)), f〉)) dxµ(dR)
∣∣∣∣∣Fs

]
du

+
∫ t

0
E
[∫ ∞

0

∫
SR(E)

(δ0 (〈m(Eu), f〉)− Fn (〈m(Eu), f〉)) dxµ(dR)
∣∣∣∣∣Fs

]
du.
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Since for all x ∈ Rd, u ∈ [0, t] and R > 0,

lim
n→+∞

Fn (〈m(Eu ∪B(x,R)), f〉) = δ0 (〈m(Eu ∪B(x,R)), f〉)

and lim
n→+∞

Fn (〈m(Eu), f〉) = δ0 (〈m(Eu), f〉) ,

using the dominated convergence theorem, we obtain that

lim
n→+∞

∫ t

0
E
[
G∞µ ΦFn,f (Ξ∞u )− Φδ0,f (Ξ∞u )

∣∣∣Fs] = 0,

and we can conclude that

E
[

Φδ0,f (Ξ∞t )− Φδ0,f (Ξ∞0 (Ξ∞0 )−
∫ t

0
G∞µ Φδ0,f (Ξ∞u )du

∣∣∣∣Fs]
=Φδ0,f (Ξ∞s )− Φδ0,f (Ξ∞0 (Ξ∞0 )−

∫ s

0
G∞µ Φδ0,f (Ξ∞u )du.

4.3 Uniqueness of the solution to the martingale problem characterizing the ∞-

parent SLFV

We now use the extended martingale problem in order to prove Proposition 13, i.e, that the∞-parent

ancestral process is the dual of the ∞-parent SLFV.

Proof. (Proposition 13) For all t ≥ 0, let ωt be a density ofM∞t . Let (Et)t≥0 such that (Ξ∞t )t≥0 = (m(Et))t≥0.

For all s, t ≥ 0, we set :

F (s, t) = EM0

[
Em(E0) [D(M∞s ,Ξ∞t )]

]
.

Then,

F (s, t) = EM0

[
Em(E0) [Φδ0,1−ωs(Ξ∞t )]

]

and by Lemma 36,

F (s, t) = EM0

[
Em(E0) [Φδ0,1−ωs(Ξ0)]

]
+ EM0

[
Em(E0)

[∫ t

0
G∞µ Φδ0,1−ωs(Ξ∞u )du

]]
.
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By Fubini’s theorem, we obtain

F (s, t) = F (s, 0) +
∫ t

0
EM0

[
Em(E0)

[
G∞µ Φδ0,1−ωs(Ξ∞u )

]]
du.

Then,

F (s, t) = Em(E0)
[
EM0

[
D̃(M∞s ,Ξ∞t )

]]
= Em(E0)

[
EM0

[
ΨFVol(Et),fEt (M∞s )

]]
,

and by Lemma 31,

F (s, t) = Em(E0)
[
EM0

[
ΨFVol(Et),fEt (M∞0 )

]]
+ Em(E0)

[
EM0

[∫ t

0
Ψδ

FVol(Et),fEt
(M∞u )du

]]
= F (0, t) + Em(E0)

[
EM0

[∫ t

0
ΨFVol(Et),fEt (M∞u )du

]]
.

Again by Fubini’s theorem, we obtain

F (s, t) = F (0, t) +
∫ t

0
EM0

[
Em(E0)

[
L∞µ ΨFVol(Et),fEt (M∞u )

]]
du.

Combining both expressions for F (s, t), by Lemma 4.4.10 in [20], we obtain :

F (t, 0)− F (0, t)

=
∫ t

0

(
EM0

[
Em(E0)

[
L∞µ Ψ

FVol(Et−u),fEt−u
(M∞u )

]]
− EM0

[
Em(E0)

[
G∞µ Φδ0,1−ωu(Ξ∞t−u)

]])
du.

Let u ∈ [0, t]. We have

G∞µ Φδ0,1−ωu(Ξ∞t−u)

=
∫ ∞

0

∫
SR(Et−u)

(
δ0

(∫
Et−u∪B(x,R)

(1− ωu(z)) dz
)
− δ0

(∫
Et−u

(1− ωu(z)) dz
))

dxµ(dR)

and

L∞µ Ψ
FVol(Et−u),fEt−u

(M∞u ) =
∫ ∞

0

∫
SR(Et−u)

(
1− δ0

(∫
B(x,R)

(1− ωu(z)) dz
))

×
[
δ0
(
Vol(Et−u)− 〈Θ−x,R(ωu),1Et−u〉

)
− δ0

(
Vol(Et−u)− 〈ωu,1Et−u〉

)]
dx

=
∫ ∞

0

∫
SR(Et−u)

(
1− δ0

(∫
B(x,R)

(1− ωu(z)) dz
))
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×
[
δ0
(
Vol(Et−u)− 〈Θ−x,R(ωu),1Et−u〉

)
− δ0

(∫
Et−u

(1− ωu(z)) dz
)]

dx.

For all R > 0 and x ∈ SR(Et−u),

δ0
(
Vol(Et−u)− 〈Θ−x,R(ωu),1Et−u〉

)
= δ0

(
Vol(Et−u)−

∫
Et−u\B(x,R)

ωu(z)dz
)

= δ0

(
Vol(Et−u ∩B(x,R)) +

∫
Et−u\B(x,R)

(1− ωu(z)) dz
)
.

Since x ∈ SR(Et−u), Vol(Et−u ∩B(x,R)) 6= 0, and hence

δ0
(
Vol(Et−u)− 〈Θ−x,R(ωu),1Et−u〉

)
= 0.

Moreover, notice that

δ0

(∫
Et−u∪B(x,R)

(1− ωu(z)) dz
)

= δ0

(∫
Et−u

(1− ωu(z)) dz
)
× δ0

(∫
B(x,R)

(1− ωu(z)) dz
)
.

Therefore,

L∞µ Ψ
FVol(Et−u),fEt−u

(M∞u )

=
∫ ∞

0

∫
SR(Et−u)

δ0

(∫
B(x,R)

(1− ωu(z)) dz
)
× δ0

(∫
Et−u

(1− ωu(z)) dz
)
dxµ(dR)

−
∫ ∞

0

∫
SR(Et−u)

δ0

(∫
Et−u

(1− ωu(z)) dz
)
dxµ(dR)

=
∫ ∞

0

∫
Rd
1x∈SR(Et−u) ×

[
δ0

(∫
Et−u∪B(x,R)

(1− ωu(z)) dz
)
− δ0

(∫
Et−u

(1− ωu(z)) dz
)]

dxµ(dR),

which is equal to G∞µ Φδ0,1−ωu(Ξ∞t−u). Thus

F (t, 0) = F (0, t)

i.e EM0

[
Em(E0)

[
D̃(M∞t ,Ξ∞0 )

]]
= EM0

[
Em(E0)

[
D̃(M∞0 ,Ξ∞t )

]]
⇐⇒ EM0

[
Em(E0)

[
δ0

(∫
E0

(1− ωt(x)) dx
)]]

= EM0

[
Em(Et)

[
δ0

(∫
E0

(1− ω0(x)) dx
)]]

.

Therefore

EM0

[
δ0

(∫
E0

(1− ωt(x)) dx
)]

= Em(E0)

[
δ0

(∫
Et

(1− ω0(x)) dx
)]

and we can conclude.
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Finally, we can prove the second part of Theorem 10, i.e, the uniqueness of the solution to the

martingale problem satisfied by the ∞-SLFV when µ satisfies Condition (5). The first part of this

theorem was proved in Section 3 (Proposition 22).

Proof. (Theorem 10)

Let (M1
t )t≥0 and (M2

t )t≥0 two solutions to the martingale problem (L∞µ , δM0). Then, due to the

form of the operator L∞µ , there exists densities (ω1
t )t≥0 and (ω2

t )t≥0 of (M1
t )t≥0 and (M2

t )t≥0 such that

∀t ≥ 0,∀x ∈ Rd, ω1
t (x) ∈ {0, 1} et ω2

t (x) ∈ {0, 1}.

Then, let t ≥ 0, let E ∈ Ecf and let (Ξ∞t )t≥0 be the ∞-parent ancestral process associated to m(E).

We have

PM0

(
δ0

(∫
E

(
1− ω1

t (x)
)
dx

)
= 1

)
= EM0

[
δ0

(∫
E

(
1− ω1

t (x)
)
dx

)]
= EM0

[
D(M1

∞,Ξ∞0 )
]

= Em(E)
[
D(M0,Ξ∞t )

]
by Proposition 13

= EM0

[
D(M2

∞,Ξ∞0 )
]
by the same proposition

= EM0

[
δ0

(∫
E

(
1− ω2

t (x)
)
dx

)]
= PM0

(
δ0

(∫
E

(
1− ω2

t (x)
)
dx

)
= 1

)
,

using Proposition 13 to pass from line 2 to line 3, and from line 3 to line 4. We can conclude

(M1
t )t≥0 = (M2

t )t≥0.

5 Technical lemmas

5.1 Properties of the operators Lkµ and L∞µ

The goal of this section is to show that the operators Lkµ and L∞µ introduced in Section 1 are well-

defined, as well as to prove some properties they satisfy.

In all that follows, let F ∈ C1(R), f ∈ Cc(Rd), andM ∈Mλ. Let ω : Rd → {0, 1} be a measurable

function, let µ be a σ-finite measure on R∗+ satisfying Condition (4), and let k ≥ 2. Since f is of

compact support, there exist constants C1, C2 > 0 such that for all R > 0,

Vol(SuppR(f)) ≤ C2 ×
(
Rd ∨ 1

)
, (13)
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and for all ω̃ : Rd → {0, 1} measurable,

∣∣∣〈1B(x,R) × ω̃, f〉
∣∣∣ ≤ C1 × ||f ||∞ ×

(
Rd ∧ 1

)
. (14)

Lemma 37. For all x ∈ Rd and for all R > 0,

∣∣∣〈Θ+
x,R(ω), f〉 − 〈ω, f〉

∣∣∣ ≤ ||f ||∞ ×Vol(Supp(f))

and
∣∣∣〈Θ−x,R(ω), f〉 − 〈ω, f〉

∣∣∣ ≤ ||f ||∞ ×Vol(Supp(f)).

Proof. Let x ∈ Rd and R > 0.

∣∣∣〈Θ+
x,R(ω), f〉 − 〈ω, f〉

∣∣∣ ≤ ∣∣∣〈1B(x,R)c × ω, f〉+ 〈1B(x,R), f〉 − 〈1B(x,R)c × ω, f〉 − 〈1B(x,R) × ω, f〉
∣∣∣

≤
∣∣∣〈1B(x,R) × (1− ω) , f〉

∣∣∣
≤
∣∣∣∣∣
∫
B(x,R)

(1− ω(y))× f(y)dy
∣∣∣∣∣

≤
∫
B(x,R)

|f(y)|dy

≤||f ||∞ ×Vol(Supp(f)).

We can similarly show the corresponding result for
∣∣∣〈Θ−x,R(ω), f〉 − 〈ω, f〉

∣∣∣ .
Lemma 38. For all R > 0, for all x ∈ Rd\SuppR(f),

〈Θ+
x,R(ω), f〉 − 〈ω, f〉 = 〈Θ−x,R(ω), f〉 − 〈ω, f〉 = 0

Proof. Let R > 0, and let x ∈ Rd\SuppR(f),

∣∣∣〈Θ+
x,R(ω), f〉 − 〈ω, f〉

∣∣∣ =
∣∣∣〈1B(x,R) × (1− ω), f〉

∣∣∣
≤
∫
B(x,R)

|f(y)|dy

=0

since x ∈ Rd\SuppR(f). Similarly,

∣∣∣〈Θ−x,R(ω), f〉 − 〈ω, f〉
∣∣∣ =

∣∣∣〈1B(x,R) × ω, f〉
∣∣∣

≤
∫
B(x,R)

|f(y)|dy

=0

48



for the same reason, and we can conclude.

Lemma 39. For all x ∈ Rd and for all R > 0,

∣∣∣F (〈Θ+
x,R(ω), f〉

)
− F (〈ω, f〉)

∣∣∣ ≤ C1 × ||f ||∞ ×
(
Rd ∧ 1

)
× C(F, f)

and
∣∣∣F (〈Θ−x,R(ω), f〉

)
− F (〈ω, f〉)

∣∣∣ ≤ C1 × ||f ||∞ ×
(
Rd ∧ 1

)
× C(F, f)

where

C(F, f) = sup
z∈[−||f ||∞Vol(Supp(f)),||f ||∞Vol(Supp(f))]

∣∣F ′(z)∣∣ .
Proof. Let x ∈ Rd and R > 0. First, we notice that as in the proof of Lemma 37, we only need to

show the result for Θ+
x,R(ω).

By Taylor-Lagrange inequality and by Lemma 37,

∣∣∣F (〈Θ+
x,R(ω), f〉

)
− F (〈ω, f〉)

∣∣∣ ≤ ∣∣∣〈Θ+
x,R(ω), f〉 − 〈ω, f〉

∣∣∣× C(F, f)

≤
∣∣∣〈1B(x,R) × (1− ω) , f〉

∣∣∣× C(F, f)

≤ C1 × ||f ||∞ ×
(
Rd ∧ 1

)
× C(F, f)

by Eq. (14).

We can now show that the operator Lkµ is well-defined.

Lemma 40. The operator Lkµ is well-defined. Moreover, the function LkµΨF,f :Mλ → R is bounded.

Proof. Let M ∈Mλ. Then

∣∣∣LkµΨF,f (M)
∣∣∣

≤

∣∣∣∣∣∣
∫
Rd

∫ ∞
0

∫
B(x,R)k

1
V k
R
×

 k∏
j=1

ωM (yj)

× (F (〈Θ+
x,R(ωM ), f〉

)
− F (〈ωM , f〉)

)
dy1...dykµ(dR)dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫
Rd

∫ ∞
0

∫
B(x,R)k

1
V k
R
×

 k∏
j=1

(1− ωM (yj))

× (F (〈Θ−x,R(ωM ), f〉
)
− F (〈ωM , f〉)

)
dy1...dykµ(dR)dx

∣∣∣∣∣∣
≤
∣∣∣∣∣
∫
Rd

∫ ∞
0

∫
B(x,R)k

1
V k
R
×
(
F
(
〈Θ+

x,R(ωM ), f〉
)
− F (〈ωM , f〉)

)
dy1...dykµ(dR)dx

∣∣∣∣∣
+
∣∣∣∣∣
∫
Rd

∫ ∞
0

∫
B(x,R)k

1
V k
R
×
(
F
(
〈Θ−x,R(ωM ), f〉

)
− F (〈ωM , f〉)

)
dy1...dykµ(dR)dx

∣∣∣∣∣
≤
∣∣∣∣∣
∫ ∞

0

∫
SuppR(f)

∫
B(x,R)k

1
V k
R
×
(
F
(
〈Θ+

x,R(ωM ), f〉
)
− F (〈ωM , f〉)

)
dy1...dykdxµ(dR)

∣∣∣∣∣
+
∣∣∣∣∣
∫ ∞

0

∫
SuppR(f)

∫
B(x,R)k

1
V k
R
×
(
F
(
〈Θ−x,R(ωM ), f〉

)
− F (〈ωM , f〉)

)
dy1...dykdxµ(dR)

∣∣∣∣∣ .
49



Using Lemma 39,

∣∣∣LkµΨF,f (M)
∣∣∣

≤
∫ ∞

0

∫
SuppR(f)

∫
B(x,R)k

2
V k
R
× C1 × ||f ||∞ ×

(
Rd ∧ 1

)
× C(F, f)dy1...dykdxµ(dR).

≤
∫ ∞

0
2Vol(SuppR(f))× C1 × ||f ||∞ ×

(
Rd ∧ 1

)
× C(F, f)µ(dR),

and by Eq. (13),

∣∣∣LkµΨF,f (M)
∣∣∣

≤
∫ ∞

0
2C1C2 × ||f ||∞ × C(F, f)×

(
Rd ∧ 1

)
×
(
Rd ∨ 1

)
µ(dR)

≤2C1C2||f ||∞ × C(F, f)×
∫ ∞

0
Rdµ(dR)

<+∞

since µ satisfies Condition (4).

The second part of the lemma is a direct consequence of the fact that

2C1C2||f ||∞ × C(F, f)×
∫ ∞

0
Rdµ(dR)

does not depend on the choice of M .

A consequence of this lemma and of Lemma 38 is that for all M ∈ Mλ, LkµΨF,f (M) can be

rewritten as :

LkµΨF,f (M) =
∫ ∞

0

∫
SuppR(f)

∫
B(x,R)k

1
V k
R
×
[ k∏
j=1

ωM (yj)× F (〈Θ+
x,R(ωM ), f〉)

+ (1−
k∏
j=1

ωM (yj))× F (〈Θ−x,R(ωM ), f〉)

− F (〈ωM , f〉)
]
dy1...dykdxµ(dR).

We now prove that the operator L∞µ is well-defined.

Lemma 41. The operator L∞µ is well-defined. Moreover, the function L∞µ ΨF,f :Mλ → R is bounded.

Proof. Let M ∈Mλ. Then,

∣∣∣L∞µ ΨF,f (M)
∣∣∣
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≤
∫ ∞

0

∫
SuppR(f)

∣∣∣∣∣
(

1− δ0

(∫
B(x,R)

1− ωM (z)dz
))
×
[
F
(
〈Θ−x,R(ωM ), f〉

)
− F (〈ωM , f〉)

]∣∣∣∣∣ dxµ(dR)

≤
∫ ∞

0

∫
SuppR(f)

C1 × ||f ||∞ ×
(
Rd ∧ 1

)
× C(F, f)dxµ(dR)

≤
∫ ∞

0
V ol(SuppR(f))C1 × ||f ||∞ ×

(
Rd ∧ 1

)
× C(F, f)dxµ(dR)

≤C1C2C(F, f)× ||f ||∞ ×
∫ ∞

0

(
Rd ∧ 1

)
×
(
Rd ∨ 1

)
µ(dR)

≤C1C2C(F, f)× ||f ||∞ ×
∫ ∞

0
Rdµ(dR)

<+∞

since µ satisfies Condition (4). Here we used Lemma 39 to pass from the second to the third line, and

Lemma 37 to pass from the fourth to the fifth line.

As before, the second part of the lemma is the consequence of the fact that

C1C2C(F, f)× ||f ||∞ ×
∫ ∞

0
Rdµ(dR)

does not depend on the choice of M .

5.2 Properties of the operator G∞µ

In all the following, let µ be a σ-finite measure on R∗+ satisfying Condition (5), let F ∈ C1
b (R) and let

f ∈ B(Rd).

Lemma 42. The operator G∞µ is well-defined, and the function G∞µ ΦF,f is bounded.

Proof. Let m(E) ∈Mcf . Then,

∣∣∣G∞µ ΦF,f (m(E))
∣∣∣ ≤ ∫ ∞

0

∫
SR(E)∪SuppR(f)

|F (〈m(E ∪B(x,R)), f〉)− F 〈m(E), f〉)| dxµ(dR)

≤
∫ ∞

0

∫
SR(E)∪SuppR(f)

2||F ||∞dxµ(dR)

≤2||F ||∞
∫ ∞

0
Vol(SR(E) ∪ SuppR(f))µ(dR)

≤2||F ||∞
∫ ∞

0
Vol(SuppR(f))µ(dR)

≤2||F ||∞
∫ ∞

0
C2 ×

(
Rd ∨ 1

)
µ(dR)

<+∞,

since µ satisfies Condition (4).
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Lemma 43. Let Ξ ∈ Mcf , and let (Ξt)t≥0 be the ∞-parent ancestral process associated to µ with

initial condition Ξ. Then, for all t ≥ 0,

E
[∫ t

0
G∞µ ΦF,f (Ξs)ds

]
=
∫ t

0
E
[
G∞µ ΦF,f (Ξs)

]
ds.

Proof. Let t ≥ 0, and let R̃ > 0 such that µ satisfies Condition (5). Then, since u → Vol(Ξu) is

increasing,

E
[∫ t

0

∣∣∣G∞µ ΦF,f (Ξs)
∣∣∣ ds] ≤2||F ||∞ ×E

[∫ t

0

∫ ∞
0

Vol(SR(Ξs))µ(dR)ds
]

≤2||F ||∞ ×E
[∫ t

0

∫ ∞
0

Vol(SR(Ξt))µ(dR)ds
]

≤2||F ||∞ × t×E
[∫ ∞

0
Ct ×Vol(B(0,R))µ(dR)

]
,

with (Ct)t≥0 being the R̃-covering process associated to (Ξt)t≥0. Therefore,

E
[∫ t

0

∣∣∣G∞µ ΦF,f (Ξs)
∣∣∣ ds] ≤2||F ||∞ × t×

∫ ∞
0

V1 ×
(
R̃+R

)d
µ(dR)×E [Ct]

≤2||F ||∞ × t×
∫ ∞

0
V1 ×

(
R̃+R

)d
µ(dR)×E [Yt] ,

where Yt is the branching process associated to (Ct)t≥0 introduced in Section 3. Hence

E
[∫ t

0

∣∣∣G∞µ ΦF,f (Ξs)
∣∣∣ ds] <+∞.

We conclude by applying Fubini’s theorem.

Lemma 44. Let Ξ ∈ Mcf , and let (Ξt)t≥0 be the ∞-parent ancestral process associated to µ with

initial condition Ξ. Then, for all t ≥ 0,

E
[
G∞µ ΦF,f (Ξt)

]
= d

du
[ΦF,f (Ξu)]

∣∣∣∣
u=t

.

Proof. Let t ≥ 0. We have

d

du
E [ΦF,f (Ξt)]

∣∣∣∣
t=0

=G∞µ ΦF,f (Ξ),

so for all s ∈ [0, t],

E
[
G∞µ ΦF,f (Ξs)

]
=E

[
d

du
E [ΦF,f (Ξt)|Ξs]

∣∣∣∣
t=s

]
.
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Since F ′ is bounded, by the dominated convergence theorem,

E
[
G∞µ ΦF,f (Ξs)

]
= d

du
E [E [ΦF,f (Ξt)|Ξs]]

∣∣∣∣
t=s

= d

du
E [ΦF,f (Ξt)]

∣∣∣∣
t=s

and we can conclude.

5.3 Properties of the densities of coupled k-parent SLFVs

The goal of this section is to prove technical lemmas about the density of coupled k-parent SLFVs,

which will be used in Section 3 in order to construct the ∞-parent SLFV.

In all that follows, let µ be a σ-finite measure on (0,+∞) satisfying Condition (4), and let Πc be

a Poisson point process on R× Rd × (0,+∞)× U with intensity

dt⊗ dx⊗ µ(dR)⊗ ũ (d(pn)n≥1) .

Lemma 45. For all k ≥ 2, for all 0 ≤ s ≤ t and for all x ∈ Rd,

A
(
ΞΠc,t,δx
k,t

)
=

⋃
x′∈A

(
ΞΠc,t,δx
k,t−s

)A
(
ΞΠc,s,δx′
k,s

)
.

Proof. Let k ≥ 2, let 0 ≤ s ≤ t and let x ∈ Rd. Let y ∈ A
(
ΞΠc,t,δx
k,t

)
. Then, we can construct a chain

of reproduction events linking the point x at time t to the point y at time 0. We can split it into two

chains :

• one linking the point x at time t to a point y′ ∈ Rd at time s,

• one linking the point y′ at time s to the point y at time 0.

Therefore, y′ ∈ A
(
ΞΠc,t,δx
k,t−s

)
and y ∈ A

(
ΞΠc,s,δy′
k,s

)
, which means that

y ∈
⋃

x′∈A
(
ΞΠc,t,δx
k,t−s

)A
(
ΞΠc,s,δx′
k,s

)
.

Conversely, let y belonging to this set. It means that there exists x′ ∈ A
(
ΞΠc,t,δx
k,t−s

)
such that

y ∈ A
(
ΞΠc,s,δx′
k,s

)
. Therefore, we can construct two chains of reproduction events, linking the point

x at time t to the point x′ at time s, and the point x′ at time s to the point y at time 0. Hence

y ∈ A
(
ΞΠc,t,δx
k,t

)
, and we can conclude.
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Lemma 46. For all k ≥ 2, for all 0 ≤ s ≤ t and for all x ∈ rd,

ωΠ,ω
k,t (x) =

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ωΠc,ω
k,s (x′).

Proof. Let k ≥ 2, let 0 ≤ s ≤ t and let x ∈ rd. By definition,

ωΠc,ω
k,t (x) =

∏
y∈A

(
ΞΠc,t,δx
k,t

)ω(y) (15)

and ∏
x′∈A

(
ΞΠc,t,δx
k,t−s

)ωΠc,ω
k,s (x′) =

∏
x′∈A

(
ΞΠc,t,δx
k,t−s

) ∏
y∈A∈

(
Ξ

Πc,tδx′
k,s

)ω(y). (16)

Since by Lemma 45

A
(
ΞΠc,t,δx
k,t

)
=

⋃
x′∈A

(
ΞΠc,t,δx
k,t−s

)A
(
ΞΠc,s,δx′
k,s

)
,

the same terms appear in both products. However, some terms may appear more than once in Eq.

(16), while they can appear only once in Eq. (15). But ω is {0, 1}-valued, so for all y ∈ Rd and j ∈ N∗,

ωj(y) = ω(y), and we can conclude.

Lemma 47. For all k̃ ≥ 2, for all 0 ≤ s ≤ t and for all x ∈ Rd,

lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ωΠc,ω
k,s (x′) ≤

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

) lim
k→+∞

ωΠc,ω
k,s (x′).

Proof. Let k̃ ≥ 2, let 0 ≤ s ≤ t and let x ∈ Rd. Since both quantities are {0, 1}-valued, we only need

to show that if

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

) lim
k→+∞

ωΠc,ω
k,s (x′) = 0

then

lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ωΠc,ω
k,s (x′) = 0.

Assume that the first equality is true. Then, there exists x′ ∈ A
(
ΞΠc,t,δx
k̃,t−s

)
such that lim

k→+∞
ωΠc,ω
k,s (x′) = 0.

But since
(
ωΠc,ω
k,s (x′)

)
k≥2

is decreasing and {0, 1}-valued, there exists k′ ≥ 2 such that for all k ≥ k′,
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ωΠc,ω
k,s (x′) = 0. Therefore, for all k ≥ k′,

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ωΠc,ω
k,s (x′) = 0,

which means that

lim
k→+∞

∏
x′∈A

(
ΞΠc,t,δx
k̃,t−s

)ωΠc,ω
k,s (x′) = 0.
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