
HAL Id: hal-03237208
https://u-paris.hal.science/hal-03237208

Submitted on 24 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Old Paradoxes and New Opportunities for Appetite
Control in Obesity

Léa Montégut, Carlos Lopez-Otin, Christophe Magnan, Guido Kroemer

To cite this version:
Léa Montégut, Carlos Lopez-Otin, Christophe Magnan, Guido Kroemer. Old Paradoxes and New
Opportunities for Appetite Control in Obesity. Trends in Endocrinology and Metabolism = Trends in
Endocrinology & Metabolism , 2021, 32 (5), pp.264-294. �10.1016/j.tem.2021.02.005�. �hal-03237208�

https://u-paris.hal.science/hal-03237208
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


 

 1

Old paradoxes and new opportunities for 

appetite control in obesity 

 

Léa Montégut1,2, Carlos Lopez-Otin3, Christophe Magnan4, and  

Guido Kroemer1-2,5-8 

 

1 Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de 

Paris, Sorbonne Université, INSERM U1138, Institut Universitaire de France, Paris, France;  

2  Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France;  

3  Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de 

Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, 33006, Oviedo, Spain; 

4 Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France. 

5  Unité de Biologie Fonctionnelle et Adaptative, Sorbonne Paris Cité, CNRS UMR8251, Université 

Paris Diderot, Paris, France. 

6 Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France;  

7 Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China;  

8 Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 

Stockholm, Sweden   

 

 

Correspondence: 

Guido Kroemer: kroemer@orange.fr 

  

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1043276021000400
Manuscript_828bc911326bdabc53890c98cb8fef9e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S1043276021000400
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1043276021000400


 

 2

Abstract 

Human obesity is accompanied by alterations in the blood concentrations of multiple 

circulating appetite regulators. Paradoxically, most of the appetite-inhibitory hormones are 

elevated in non-syndromic obesity, while most of the appetite stimulatory hormones are 

reduced, perhaps reflecting vain attempts of regulation by inefficient feedback circuitries. In 

this context, it is important to understand which appetite regulators exhibit a convergent rather 

than paradoxical behavior and hence are likely to contribute to the maintenance of the obese 

state. Pharmacological interventions on obesity should preferentially consist in the 

supplementation of deficient appetite inhibitors or the neutralization of excessive appetite 

stimulators.  Here, we critically analyze the current literature on appetite-regulatory peptide 

hormones. We propose a short-list of appetite modulators that may constitute the best 

candidates for therapeutic interventions.  
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Highlights 

 

 

• Multiple protein and peptide hormones produced outside of the central nervous system control food 

intake. In this review, we postulate that peripheral appetite inhibitors that are actually downregulated 

in human obesity - or conversely appetite stimulators that are upregulated in this condition – should be 

particularly important for the pathogenesis of obesity. 

 

• Paradoxically, most appetite inhibitors (exemplified by leptin) are upregulated in obesity while most 

appetite stimulators (exemplified by ghrelin) are downregulated, perhaps reflecting homeostatic 

adaptation.  

 

• Only three endogenous appetite inhibitors follow a ‘coherent’ pattern and are downregulated in 

obesity. This applies to PP, PYY and VIP.  

 

• Among the numerous appetite-stimulatory hormones only three behave in a ‘coherent’ fashion and 

are upregulated in obesity: ACBP, asprosin and NAMPT.  

 

• Remarkably, these factors, ACBP, asprosin and NAMPT, are phylogenetically ancient (from worms 

to mammals) and are ubiquitously expressed.  

 

• We speculate that ACBP, asprosin and NAMPT may constitute the backbone of a phylogenetically 

ancient appetite-stimulatory system that is causally involved in human obesity.  
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Introduction 

Obesity is the most prevalent pathological condition of the 21st century. In itself a disease, obesity 

predisposes to other pathologies including metabolic syndrome, diabetes, hypertension, 

arteriosclerosis and cancer [1]. Thus, obesity can be viewed as the most important risk factor for 

accelerating the manifestation of age-related diseases, causing a drastic reduction in healthspan and 

lifespan [2-4]. 

Given its socioeconomic impact and its individual consequences, the pathophysiology of obesity has 

come under close scrutiny. Multiple theories have been advanced to explain the mechanisms of 

obesity. Such theories may invoke psychosocial and behavioral parameters, alterations in central 

nervous reward centers, shifted endocrine and neuroendocrine circuitries, as well as changes in the 

composition of the intestinal microbiota affecting the meta-organism [5]. Interestingly, once an 

individual has transited from normal weight through overweight to obesity, the person appears to be 

‘locked’ in the state of pronounced adiposity, meaning that even drastic dieting and exercising usually 

only leads to a transient correction of the body mass [6, 7]. Thus, although the US gives home to more 

than 100 million obese adults, the National Weight Control Registry (http://www.nwcr.ws) monitors a 

rather small number (just above 10,000 cases) of durable weight losers.  

The primary cause of lack of durable weight reduction is the excessive caloric intake observed in 

overweight or obese patients, a tendency that can be explained in part by the weakening of satiation 

after food intake [8]. Control of food intake by central nervous system involves many regions that 

respond to sensory (smell, hearing, sight), endocrine (gastrointestinal hormones, leptin, insulin...) and 

nervous (vagal afferences) signals [9]. Specific centers such as the hypothalamus and the brainstem 

participate in homeostatic control (i.e. in response to calorie deficit or plethora). Other structures 

(ventral tegmental area, nucleus accumbens, striatum...) are more involved in the non-homeostatic 

control of food intake, responding to motivational or reward stimuli [10]. Figure 1 summarizes the 

most important actors involved in this homeostatic control of food intake, mainly detailing the 

hypothalamus towards which many endocrine signals converge. In brief, two major hypothalamic 

populations of neurons were firstly identified to control appetite in the hypothalamic arcuate nucleus 

(ARC): an orexigenic population that secretes agouti-related peptide (AgRP), neuropeptide Y (NPY) 

and γ-aminobutyric acid (GABA), and an anorexigenic population that secretes melanocortin 

(processed from the polypeptide precursor POMC) and cocaine- and amphetamine-regulated transcript 

(CART). These hypothalamic neurons assimilate a wide range of signals such as chemical inputs from 

circulating peptides or neuropeptides, neuronal input from various brain areas [11], and peripheral 

physiological information that is carried by the vagus nerve via the nucleus of the solitary tract (NTS). 

Several other populations of neurons were identified in hypothalamic areas such as the paraventricular 

nucleus (PVN) and lateral hypothalamic area (LHA). Moreover, additional factors such as the 
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neuropeptide kisspeptin, melanin concentrating hormone (MCH), brain derived neurotrophic factor 

(BDNF), and oxytocin play major signaling functions (Figure 1). Beyond this homeostatic control of 

food intake by the hypothalamus, other regions (such as the reward circuits, the cerebral cortex, the 

limbic system…) trigger behavioral and metabolic responses [12]. In addition, neurons close to 

circumventricular organs (CVOs, such as area postrema, subfornical organ, organum vasculosum of 

lamina terminalis or median eminence) are also able to sense blood-borne signals such as homones 

due to the particular anatomy of the blood brain barrier in these CVOs and its highly fenestrated 

capillaries [13]. Finally, non-neuronal cells such as astrocytes, microglia, and tanycytes of the median 

eminence act in close interaction with neurons to contribute to the fine control of energy balance[14]. 

Modulate by all these mechanisms, the activation of anorexigenic neurons activation promotes meal 

termination and activates catabolic pathways, whereas orexigenic neurons circuits will stimulate food 

intake and decrease metabolic energy expenditure [15].  

The central appetite system receives inputs from the periphery at short and long-term. Thus, the 

nutrient composition, duration and volume of a meal as well as the levels of circulating nutrients 

(glucose, fatty acids) and body fat mass are among the many factors that modulate food intake [16]. 

The information from these distant organs is transmitted electrically, by the vagal afferent nerves, and 

chemically, by circulating hormonal factors. Leptin is one of the first hormones that was found to 

modulate food intake and that was explored at the genetic level: sequenced in 1994 by Friedman et al., 

the protein is secreted by adipocytes in quantities proportional to the fat mass and acts as a potent 

appetite inhibitor in mice or patients with defects in the leptin/leptin receptor (R) system [17]. Initially, 

this discovery raised hope for obesity therapy, but it was soon discovered that leptin regulation is 

dysfunctional in obese subjects [18, 19]. Since then, many other factors capable of inflecting or 

inducing hunger have been discovered. While several of them are under clinical investigations, the 

hunt for a magical appetite controller is still under way.  

This review aims at identifying the known stimulators and inhibitors of appetite and their regulation in 

the pathological context of obesity. Given the entanglement of the central circuitries of hunger and 

satiety, we will limit the scope of study to the proteins and peptides that are produced by peripheral 

cells, outside from the central nervous system (Figure 2A) and demonstrate effects when administered 

peripherally while acting on central or peripheral receptors (Figure 2B). Rather than giving a detailed 

description of the mechanism of action for each factor, we seek to understand if their regulatory 

functions are altered in the context of obesity, in order to identify the most reliable candidates as a 

leverage for weight loss in obese subjects. Driven by elementary logics and Occam’s razor (Text Box 

1), we postulate that peripheral appetite inhibitors that actually downregulated in human obesity - or 

conversely appetite stimulators that are upregulated in this condition – should be particularly 

important for the pathogenesis of obesity and hence constitute good targets for therapeutic 

intervention.  



 

 6

 

  



 

 7

Peripheral appetite inhibitors  

Assuming that obesity is linked to the failure of homeostatic circuitries that limit caloric intake, it 

appears logical to identify appetite inhibitors and to supply them to obese patients, hoping to inhibit 

appetite. Indeed, a number of endogenous appetite inhibitors have been identified (Table 1, Figure 3). 

However, the only agent that has undergone successful Phase 3 evaluation and has recently (Nov. 

2020) been FDA approved is liraglutide, an  injectable glucagon-like peptide-1 (GLP-1) receptor 

agonist that likely acts on the central nervous system to reduce appetite [20].  

 

The leptin axis 

Leptin, the historical satiety factor, and its receptor were cloned by exploring the genomes of 

spontaneously obese and diabetic mice: the ob/ob strain, which lacks leptin and the db/db strain which 

lacks the leptin receptor. These strains exhibit severe hyperphagia and a tendency to develop type-2 

diabetes due to the lack of stimulation of the “leptin axis”. Indeed, the leptin receptor (LepR) is 

involved in all major steps of appetite regulation: binding of Lep on LepR-expressing neurons in the 

NTS amplifies the signal from the vagus nerve in the NTS, while it has activating effects on the 

POMC/CART neurons and inactivating effects on the AgRP/NPY neurons in the hypothalamus, 

inhibits adrenal corticosteroids secretion and increases energy expenditure [21]. 

In humans, genetic defects in the leptin gene or its receptor also cause extreme early-onset obesity 

[22]. The severity of leptin deficiency can be partially reduced by oral leptin supplementation [23]. 

Although extensively studied, these cases of obesity are extremely rare, and only a few dozen cases 

have been reported. Instead, cohort studies reveal a clear positive correlation between plasma leptin 

levels and BMI or subcutaneous fat mass, meaning that obesity is usually accompanied by a 

hyperleptinemia [17]. Leptin levels drop drastically when adipose tissue mass is decreased, increasing 

hunger sensations for as long as one year after bariatric surgery or diet-induced weight loss according 

to one report  [24]. Indeed, the individuals with the highest initial leptin levels have the highest 

chances of regaining weight after diet interventions [25]. The high basal leptin levels found in obese 

patients are thought to cause leptin resistance, rendering leptin treatment inefficient in most obese 

subjects [19]. However, at largely supraphysiological levels, recombinant leptin therapies allow mild 

reduction in appetite which can help with weight maintenance [26]. Co-administration of both leptin 

and amylin might be also a promising approach [27]. 

The increase of an appetite-inhibitory factor in the context of obesity appears paradoxical, especially if 

it assumed that this appetite-inhibitory factor plays a major role in appetite control. However, in view 

of the current knowledge that appetite is regulated by dozens of different factors, the paradox may be 

resolved by invoking a failing homeostatic control. Since obesity causes a deviation in body 
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composition that is sensed by the system, homeostatic mechanisms intended to reduce appetite are 

activated, yet fail either because of resistance mechanisms or because they are superseded in 

importance by the true – yet to be defined – dominant drivers of obesity. Despite the great expectation 

it caused at the end of the twentieth century, leptin proved disappointing as a hormonal therapy for 

obesity. However, the study of its hypothalamic targets helped building the foundations of the current 

knowledge of appetite regulation. Many other hormonal regulators were subsequently found to 

regulate food intake through leptin-related or independent pathways.  

 

Intestinal appetite regulators 

The intestine and the brain are the first organs to sense food intake, making the gut hormones a natural 

starting point to discover appetite-regulatory factors.  

Glucagon-like peptide-1  

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are two of the many peptides derived 

from alternative cleavage of glucagon, which can both affect blood glucose levels. The most studied 

one, GLP-1, is known to increase after a meal proportionally to its caloric content, slow down gastric 

emptying and potentiate the glucose-dependent effects of insulin [28]. Through its receptor GLP-1R, it 

exerts strong anorectic effects at the peripheral level, likely by an action on afferent nerves, but may 

also reach the CNS when its levels are high. These effects have been extensively studied in animals 

and proved to be able to induce durable weight loss [29, 30]. However, neutralization of GLP-1R by 

systemic (i.p. or s.c.) injection of blocking antibodies inhibits high-fat diet induced obesity in mice 

[31], suggesting that the GLP-1/GLP-1R system may have different roles in the in the periphery and in 

the central nervous system (which is not attained by antibodies). In humans, polymorphisms in the 

GLP-1R gene have been linked to obesity-related pathologies such as type-2 diabetes mellitus 

(T2DM) and cardiovascular diseases [32, 33], while the GLP-1 axis appears to be more frequently 

mutated in binge-eating disorders [34]. However, the study of circulating GLP-1 levels in the context 

of obesity leads to inconsistent results: some studies establish a positive correlation between BMI and 

GLP-1 levels [35, 36], others report attenuated GLP-1 responses to meals in obese compared to lean 

subjects [37, 38], and a third set of studies simply finds no significant link between GLP-1 response 

and obesity [39]. Thus, the causative implication of GLP-1 in obesity has not been established. 

Nonetheless, there are multiple GLP1R agonists in the pharmacopeia currently under trial, either alone 

or in combination, for the treatment of obesity and T2DM [40, 41]. Some of them, like liraglutide or 

exenatide are prescribed to diabetic patients, yielding promising weight-loss results beyond their 

insulinotropic effects [42] and liraglutide has recently been FDA approved for the treatment of obesity 

[20]. Dual agonists acting on the receptors for glucagon and glucagon-like peptide-1 are being 
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developed for the treatment of obesity, and MEDI0382 as well as SAR425899 caused weight 

reduction in obese patients with Type 2 diabetes [43, 44]. 

There is now more and more convincing evidence that intestinal peptides like GLP-1 not only regulate 

the quantity of calories ingested but also their quality. In fact, the signaling pathways of these peptides 

(GLP-1 but also GIP) are not only activated in the homeostatic regions of the central nervous system 

(hypothalamus or brainstem), but also in non-homeostatic regions [45, 46] such as certain areas of the 

limbic system (striatum, ventral tegmental area), the hippocampus or the olfactory bulb ,which 

strongly expresses GLP-1 receptors [47]. Thus, these peptides control the quantity of food ingested but 

also participate in our food choices and preferences [48, 49]. It is therefore conceivable that future 

classes of compounds that target receptors of  these peptides (alone, in combination, or in the form of 

di-triagonists) may impact our feeding behavior, thus inducing a preference for, or an aversion to, 

certain types of food with equal caloric intake acting in addition to their effects on homeostatic 

regulation [50] 

 

GIP 

Gastric inhibitory polypeptide (also called glucose-dependent insulinotropic polypeptide, GIP) was 

initially considered as the orexigenic member of the incretin family, given that chemical inhibition of 

the GIP receptor (GIPR) or its genetic deletion in mice protected them from diet and genetically-

induced obesity by reducing food intake and stimulating catabolism. However, its metabolic actions 

are twofold: after a meal, it stimulates insulin release, but in the fasted state, it enhances glucagon 

release [51]. Moreover, in mice activation of GIPR-positive neurons in the hypothalamus reduced food 

intake, suggesting that the role of GIP in central appetite control is complex, in line with the fact that 

GLP-1 positive neurons can co-express GIPR [52]. 

Pharmacological GIPR agonists, especially if combined with GLP-1R agonists, reduce food intake in 

mice [53, 54]. Indeed, dual agonists that activate both GIPR and GLP-1R such as LY3298176 (also 

called tirzepatide) has been shown to reduce body weight in Type 2 diabetes patients [53, 55], 

suggesting that GIP actually may serve as an anorexigen when acting in the presence of GLP-1. A 

phase 3 study that evaluates LY3298176 for the treatment of obesity is underway. 

Increased levels of circulating GIP are measured in obese patients, especially after a meal [51, 56]. 

Genetic perturbations in GIP signaling favor the development of obesity: polymorphisms near the 

GIPR locus are associated to an increased risk of obesity and perturbations in glucose metabolism [57, 

58], while variants in the GIP gene have been linked with increased adiposity [59, 60].  
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Oxyntomodulin  

OXM more recently emerged as an alternative to GLP-1 because of their overlapping activity: OXM 

activates GLP1-R and the glucagon receptor (GCGR), causing both satiation and an increase in energy 

expenditure [61]. Like other anorexigenic gut hormones, OXM strongly increases after bariatric 

surgery. However, its basal level does not seem to be disturbed in obese compared to lean patients, 

suggesting that OXM cannot be involved in the etiology of obesity [62]. Notwithstanding this 

limitation, OXM administration to obese subjects successfully dampened appetite and improved 

energy expenditure, leading to a significant loss in body weight [63]. Such a “dual agonism” is a 

tempting approach to compensate the decrease in energy expenditure usually caused by a decreased 

food intake, but still requires a better understanding of the balance between its metabolic and 

anorexigenic effects.  

 

Cholecystokinin 

Cholecystokinin (CCK), a hormone secreted by the intestine after ingestion of lipids and proteins, 

slows gastric emptying and triggers satiety in a wide variety of species [64]. Its effects are additive or 

even synergic to leptin, perhaps because of the colocalization of LepR and CCK receptors on vagal 

afferent fibers and in the NTS [65], but is also likely to involve to descending projections from the 

hypothalamus to the hindbrain that are activated by leptin acting in the hypothalamus [66]. Rats 

bearing a genetic deletion of CCK receptor are hyperphagic and obese [67]. However, such a clear 

effect has not been reproduced in mice [68]. Despite a dose-dependent acute diminution of meal size 

with CCK administration [69], in the long term, this CCK effect is compensated by an increase in 

meal frequency, and no weight loss is achieved [70, 71]. Other mechanisms, such as the impaired 

vagal sensitivity measured in high-fat diet-fed mice, may contribute to lack of efficacy of CCK in 

animal models [72], as well as in patients [64]. Indeed, obese subjects who durably lose weight 

decrease their post-prandial CCK secretion, even after a stabilization period of a year [24]. 

Polymorphisms in the genes coding for CCK or its receptors have been linked to body fat content [73], 

larger meal sizes [74], and higher risk of weight regain [75]. However, BMI and other obesity-related 

indicators do not seem to be related to CCK circulating levels [76], suggesting that CCK is not a major 

contributor to the pathogenesis of obesity.  

 

Peptide YY 

Peptide tyrosine-tyrosine (PYY) is a member of the NPY family [77], but it is mostly secreted in the 

gut upon lipid and protein ingestion in the form of 2 major forms: PYY(1–36) and PYY(3–36) [78]. 

PYY(1–36) binds to Y1, Y2, Y4, and Y5 receptors; PYY(3–36) is a high-affinity ligand for Y2 

receptors with low affinity for Y1 and Y5 receptors [79]. Influenced by a positive control loop with 
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CCK, PYY appears to be co-secreted and have complementary effects with GLP-1 (and OXM) [80]. 

Early studies proved the anorexigenic effect of central and peripheral PYY injections in various 

animal models, as well as in humans [81, 82]. In the context of obesity, PYY variations are coherent 

with the hypothesis that high caloric intake is driven by an excessive appetite: fasting levels and PYY 

meal responses are lower in obese subjects compared to their lean counterparts  and PYY levels 

decrease after diet-induced weight-loss (for a review, see [83]). Of note, polymorphisms in the PYY 

gene or its regulatory regions have been linked to obesity-related phenotypes [84, 85], while high 

circulating PYY levels are seen in restrictive-type anorexia nervosa (AN) [86]. Based on studies that 

confirmed comparable short-term sensitivity to PYY-induced satiation between lean and obese 

subjects [87], larger scale clinical studies were launched by pharmaceutical companies since the early 

2000s. Merck’s Nastech trial was  abandoned due to a lack of results as well as adverse effects such as 

constant nausea for the highest doses [88]. More recently, combination therapies of PYY(3–36) with 

GLP-1R agonists have been successful with less side events in primates [89] and are still under 

clinical investigation (Novo Nordisk trials NCT03707990 and NCT03574584). 

Apolipoprotein A-IV 

Apolipoproteins are a family of proteins that bind to lipids: by regulating their transport, they are key 

actors in lipid metabolism [90]. Among them, apolipoprotein A-IV (Apo-A4) is secreted by the small 

intestine in response to dietary lipids [91]. In rodents, peripheral injection of recombinant Apo-A4, 

suppressed appetite while central injection of anti-Apo-A4 antibody elicited unusual food intake 

during the light period [92]. Mechanistically, Apo-A4 requires and interacts positively with the CCK 

circuits [93] and its secretion is down-regulated by leptin [94].   

Various human studies found associations between variations in the apo-A4 gene and obesity or 

obesity-related traits [95-97]. However, no general trend can be outlined from the few data available 

on the variation of Apo-A4 plasma levels in obesity [98, 99]. This lack of consistency between studies 

may be explained by the influence of sexual hormones [100] but also by a retro-active mechanism in 

the regulation of Apo-A4. Thus, studies in rats and in humans show that Apo-A4 increases 

proportionally to the lipid intake in short term, although a constant high fat diet leads to a return to 

Apo-A4 basal levels within weeks [101]. Moreover, the anorectic response to Apo-A4 is blunted in 

high fat diet-induced obesity of rats [102]. 

Bombesin-like peptides 

The bombesin-like family of peptides is comprised of two anorectic peptides: gastrin-releasing peptide 

(GRP) and neuromedin beta (NMB), which target specific G-coupled receptors (GRP-R and MNB-R, 

GRP-R; a third receptor, bombesin receptor subtype 3, BRS-3, has no known endogenous ligand) in 

order to cause systemic effects that include increased thermogenesis, decreased appetite and inhibition 

of gastric emptying [103]. While GRP-R (and BRS-3) deficient mice tend develop hyperphagia, 
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metabolic imbalance and obesity [104], NMB-R-deficient mice rather manifest impaired adipogenesis, 

which protects them from diet-induced obesity [105]. Observed in a large set of species, the 

anorexigenic effects of bombesin-related peptides seem to be mostly mediated by GRP through 

activation of hypothalamic neurons [104], while NMB regulates food intake through an effect on 

adipose tissue [106].  

The impact of this axis on appetite is confirmed by human genetic studies: polymorphisms in NMB 

are more frequent in obese patients [107-109], and some sequence and copy number variations in the 

GRP gene have been linked to early-onset obesity [110]. Nevertheless, activation of GRP-R was able 

to cause food suppression in lean but not in obese women [111], and sex differences were also 

highlighted in the consequences of a mutation in the NMB gene on long-term caloric intake [112]. 

BRS-3 agonists are currently under investigation with apparently more systematic results in obese 

patients, but its endogenous ligand remains unknown [113], and non-specific effects triggering adverse 

events will have to be taken into account [114]. Altogether, the implication of bombesin-like peptides 

in obesity is far from being fully understood, calling for further investigation before clinical 

applications can be envisioned.  

Secretin 

Historically seen as a digestive peptide that controls gastric acidification and motility, secretin (SCT) 

recently regained interest as an anorexigenic peptide. Previous studies on appetite regulation led to 

conflicting results: meal reduction was achieved upon central and peripheral injection of SCT in mice 

and was accompanied by increased lipolysis [115], but such results are inconsistent with earlier 

findings in rats [116] and sheep [117]. A predominant role in the regulation of lipid metabolism was 

inferred by the fact that SCT-receptor-deficient mice did not modify their eating patterns, but were still 

protected from HFD-induced obesity because of faulty lipogenesis [118]. A study by Li et al. 

reconciled the metabolic and appetite-regulatory effects of SCT with a model of SCTR-expressing 

brown adipocytes, which, once activated, increase thermogenesis and send hormonal signals to the 

hypothalamic appetite control centers [119]. This study also confirmed the effects of SCT-induced 

BAT activation on appetite and energy regulation in seven human subjects, opening the way for the 

use of adipose tissue-based strategies for the regulation of food intake [119]. Further studies, 

especially in the context of obesity, will be needed to elucidate the SCT-mediated crosstalk between 

intestinal and adipose tissues.  

VIP/PACAP  

Vasoactive intestinal peptide (VIP) and adenylate cyclase activating polypeptide 1 (ADCYAP1, 

hereafter referred to as PACAP) are homologous pleiotropic neuropeptides from the glucagon family. 

Highly expressed in the intestinal and central nervous systems, they target the hypothalamic centers of 

food regulation and decrease food intake when administered centrally to vertebrates [120]. Except for 
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one experiment in fish [121], there is no proof that peripheral injection of VIP diminishes caloric 

intake. However, peripheral PACAP administration consistently inhibited food intake in mice [122]. 

This difference can be explained by the fact that VIP and PACAP share the VPAC1 and VPAC2 

receptors, while the PAC1 receptor which mediates appetite inhibitory effects is specific to PACAP 

[122, 123].  

As confirmed by genetic association studies that linked the VIP axis to obesity [124] and PACAP 

polymorphisms to addictive and binge-eating behaviors [125], these two peptides play a role in central 

control of food intake but are not strictly anorexigenic. Indeed, the knockout of both VIP and PACAP 

results in unexpected effects on the metabolism of mice: instead of the expected increase in caloric 

intake, appetite-related hormones are dysregulated, leading to a decrease in food intake and fat mass 

[126, 127]. In a review that reconciles the opposed effects between normal and extreme conditions, 

Gargiulo et al. proposed a model in which a finely regulated feedback loop linking PACAP to the 

control of normal feeding cycles, is broken when overfeeding increases the basal PACAP levels [125]. 

 

Other peripheral anorectic peptides 

Hormones secreted by the pancreas, the liver, or multiple other cell types can participate to the 

regulation of the peripheral metabolic response and affect with appetite and energy homeostasis.  

Insulin 

Insulin secretion increases in response to a meal and the concomitant hyperglycemia, which allows the 

body to manage caloric intake by promoting energy storage and reducing food intake. The short-term 

inhibitory effect of insulin on food intake was first demonstrated experimentally in the 1980s [128]. 

Although the molecular mechanisms have not yet been fully elucidated, it is known that insulin acts in 

the hypothalamus via the inhibition of NPY/AgRP/GABA neurons and the activation of POMC/CART 

neurons, both populations expressing the insulin receptor. Recent results indicate that insulin activates 

POMC neurons via transient receptor potential (TRPC)5 channels [129, 130]. Conversely, insulin 

inhibits NPY/AgRP/GABA neurons through activation of K(ATP) channels, leading to their 

hyperpolarization [130]. 

Like leptin, insulin is believed to act as an adiposity signal, contributing to the long-term brain control 

of body weight in addition to its short-term effects. Thus, a change in plasma leptin or insulin levels is 

detected as an altered state of energy homeostasis and adiposity, to which the brain responds by 

adjusting food intake to restore the basal fat mass level. These long-term effects may partly explain the 

seasonal changes in weight and fat mass. Because of its effect on energy storage and weight gain 

(which is a side effect of insulin therapy for type 2 diabetics), insulin cannot be considered as an 

effective treatment for obesity. However, approaches combining a co-injection of amylin (see 
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“calcitonin-related peptides” below) and insulin (or leptin) may act synergistically to effectively 

reduce food intake and body weight [131, 132].  

 

Pancreatic polypeptide 

The pancreatic polypeptide (PP) is secreted postprandially by PP cells in the islets of Langerhans. PP 

belongs to the family of NPY and causes central anorectic effects through Y4 and Y5 receptors. PP 

secretion is impaired in ob/ob mice [133]. PP injections limit food intake and weight gain in both 

leptin-competent and leptin-deficient mice [134]. The translation of these findings to humans is not 

perfect, with reports of diminished food intake at short term [135] but no differences in hunger ratings 

in another study [136]. Nonetheless, consistent diminution of PP levels is confirmed in syndromic 

obesity such as the Prader-Willi Syndrome (PWS) [137], in non-syndromic obese patients [138] and in 

large-scale studies, with negative correlations between PP levels and fat mass/BMI [139]. Conversely, 

in patients with anorexia nervosa, the PP response to a meal is abnormally high [140]. Despite 

diverging reports on its variations upon weight loss [24, 141, 142], in the context of obesity, PP 

follows a trend that fits an increase in hunger and sensitivity to PP treatment does not seem to be 

compromised [143]. In conclusion, PP appears as a good candidate for an anti-obesity drug, though 

with the limitations of its short half-life in circulation and the complexity of its interactions with the 

NPY and PYY receptor networks [144].  

Calcitonin-related peptides 

The family of calcitonin-related peptides (CRP) is comprised of peptides that are primarily secreted in 

the pancreas and in the brain: amylin (also called islet amyloid peptide, IAPP), adrenomedullin 

(ADM), calcitonin (CT) and calcitonin gene-related peptide (CGRP). Each of them has been studied 

and will be presented separately, but they share two receptors, the CT-receptor (CTR) and CT-like 

receptor (CLR), which makes them highly interdependent [145].  

Amylin is released by β-cells of the pancreas along with insulin. After an abnormal increase in the 

early phase of the disease, amylin blood levels are durably decreased in diabetes and amylin analogues 

have been approved for diabetes treatment [146]. In terms of food intake, amylin decreases meal sizes 

when administered centrally and peripherally, with no resistance effects known on long-term, through 

a direct central activation of CTR as well as the potentiation of CCK circuits [147]. Different 

analogues with increased effects are currently under preclinical and clinical investigation, either alone 

or in combination [27]. In the context of obesity, basal amylin levels tend to increase, but the post-

prandial rise is maintained and no desensitization to its anorexic effect has been reported [132]. Upon 

weight loss, amylin levels reportedly decrease [24], adding up to many other hunger signals.   

Adrenomedullin is a ubiquitous peptide with multiple functions including growth, endocrine 

regulation, neurotransmission and antimicrobial activity [148, 149]. Evidence for altered ADM 
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function was found in fa/fa obese rats [150]. Peripheral injections of ADM inhibit gastric emptying 

and decrease food intake in rats [151]. In human, variations in the gene for ADM receptor were linked 

to a smaller BMI [150]. Long-term studies found associations between weight gain and high plasma 

levels of ADM in women but not in men [152]. These cues indicate a role for ADM in body weight 

regulation, although it is not univocally anorexigenic. 

The calcitonin related polypeptide alpha (CALCA) encodes for the last two members of the family, 

CT and CGRP. Elevated plasma levels of their common prepropeptide, procalcitonin, has been 

associated to higher BMI in the general population [153], but differential effects occur for each 

peptide. On one hand, calcitonin has been most intensively studied for its calcium-related properties, 

but recent evidence from knockout studies in mice describes it as potentially orexigenic and lipogenic 

[154]. In addition, CT levels are positively correlated with BMI in elderly women [155]. On the other 

hand, CGRP is a neuropeptide of clinical interest for migraine treatments, which may contribute to 

appetite regulation [156]. CGRP neurons in the PVN are key mediators of anorexia [157, 158]. Food 

consumption can be reduced in mice upon peripheral injection of CGRP [159] or a long-lasting 

analogue, but these observations may result from indirect effects such as the activation of GLP-1 

secretion [160].  

Altogether, the CRP family definitely plays a role in appetite regulation and acts at the central and 

peripheral levels. Given the wide spectrum of their biological roles and the complexity of their 

interactions, it may be difficult to develop CRP analogues for a specific obesity treatment, and further 

studies are required to precisely understand their appetite inhibitory effects.  

Apelin 

Apelin (APLN) is a 77 amino-acids protein belonging to the family of adipokines. It is mainly 

produced by adipocytes but also by gastric mucosa and Kupffer cells in the liver [161]. Several active 

forms arise from this common precursor and are detected in bloodstream (13, 17 or 36 amino acids). 

Apelin is the ligand of the former orphan APJ receptor, a seven-transmembrane G-protein-coupled 

receptor. APJ is widely distributed in various tissues (heart, blood vessels, stomach, etc.)  including 

the central nervous system, especially in the hypothalamus. APLN appears to be pleiotropic, with 

evidence of dietary inhibition in rodents (mice and rats) when a synthetic analogue, pyroglutamylated 

apelin-13, is administered centrally [162]. However, the doses and routes of administration may lead 

to conflicting results on dietary intake [163]. The duration of treatment may affect treatment efficacy, 

since peripheral administration of apelin-13 for 28 days induced a decrease in food intake and body 

weight in obese Swiss mice on high-fat diet [164]. 

In parallel with insulin, APLN rises in response to blood glucose increase and has a glucose-lowering 

effect. Recently, APLN analogues showed encouraging preclinical results, with a strong insulinotropic 

effect and food intake suppression mice. [165]. Across studies, APLN plasma level are consistently 
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increased in obese patients compared to their lean counterparts, possibly to compensate or delay their 

insulin resistance [166]. 

 

Fibroblast growth factor 21 

Fibroblast growth factor 21 (FGF21) is secreted in the liver upon sugar ingestion. It has been found to 

correct genetic and diet-induced obesity in mice [167], to decrease food intake and to limit sweet 

preference in mice and non-human primates [168].  Metabolically, it stimulates glucose uptake and 

thermogenesis in the BAT and fatty acid oxidation in the liver through the activation of hypothalamic 

and adrenal circuits which release corticosterone [169]. Accordingly, variants in the human FGF21 

locus are associated with increased carbohydrate preference in adults [170] as well as with total 

macronutrient intake [171]. However, circulating FGF21 is positively correlated with BMI and high 

levels are associated with metabolic syndrome and T2DM  [172, 173]. Seen as a protective mechanism 

against nutrient-induced hepatotoxicity [174], the FGF21 axis seems to be overactive in obese 

patients. Thus, FGF21 exemplifies yet another appetite inhibitor that cannot be involved in the 

etiology of obesity since it is upregulated (rather than downregulated). Despite this pattern of 

dysregulation, many FGF21 analogues are under trial to treat obesity, diabetes and their comorbidities. 

Some of them lead to moderate weight loss [168, 175], but their main effect appears to be the 

limitation of hepatic lipid accumulation [176], establishing FGF21 analogues as candidates for the 

treatment of non-alcoholic fatty liver disease. 

Nesfatin 

Nesfatin is a broadly expressed peptide derived from the protein nucleobidin-2, the anorectic effects of 

which were discovered in the early 2000s when it was injected peripherally into mice and rats. These 

effects are leptin-independent and rely on activation of the vagus nerve and on direct hypothalamic 

signaling, leading to the inhibition of NPY neurons and the activation of the melanocortin system 

[177, 178]. Metabolically, it enhances glucose-induced insulin secretion [179]. In line with this, a 

polymorphism of the NUCB2 gene is associated with a decreased risk of T2DM (in heterozygosity) as 

well as of obesity (in homozygosity) [180, 181]. However, nesfatin can be detrimental when 

overexpressed: in mice, genetically-induced overexpression leads to insulin resistance, increased body 

mass and fat deposition in the liver upon high-fat diet [179]. Such a dysregulation is observed in 

human obesity: while nesfatin appears to be negatively correlated with BMI in normal-weight subjects 

[182], several in obese cohorts studies show either positive [183], negative [182] or no correlations 

[184]. The variation of the ratio between cerebral and plasma nesfatin may explain the observed 

differences: an exaggerated secretion in the plasma may not systematically result in the accumulation 

of the anorexigenic peptide in the brain [185]. 
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Oxytocin 

Oxytocin, the “social hormone”, falls into the scope of this review because it triggers anorectic 

responses when injected peripherally into rodents [186]. In humans, central and metabolic effects of 

oxytocin complement each other to induce weight loss: they include snacking reduction, improved 

insulin sensitivity, fatty acid oxidation and increased energy consumption [187]. Oxytocin signaling is 

crucial for weight regulation: genetic defects in oxytocin receptor have been linked to precocious 

obesity [188], while, on the contrary, patients with PWS have significantly lower oxytocin-expressing 

neurons and are moderately sensitive to oxytocin-driven weight loss [189, 190]. Not all studies agree 

on the variations of oxytocin in obese patients, with reported positive and negative correlations 

between oxytocin levels and body or fat mass [191]. Nevertheless, intranasal oxytocin treatments of 

non-syndromic obese patients yielded promising results even in the case of high basal levels of this 

hormone [192, 193].   
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Peripheral appetite stimulators  

As a general rule, in pharmacology, receptor agonists/activators have more side effects than receptor 

antagonists/inhibitors, calling for the identification of appetite-stimulatory pathways (Table 2, Figure 

4) that might be overactivated in obesity and hence constitute attractive targets for therapeutic 

intervention.  

 

Ghrelin and intestinal factors 

Ghrelin 

The historical counterpart of leptin, ghrelin, is a hormone that apparently rises upon fasting and 

declines upon satiation. Its receptor (growth hormone secretagogue receptor, GHSR) is expressed 

centrally, directly activating the AgRP/NPY orexigenic neurons in the hypothalamus, and peripherally, 

for example in the adipose tissues where it increases fat storage. Strong orexigenic effects are seen in 

animal models and lead to obesity when ghrelin is chronically administrated [194], while selective 

inhibition of ghrelin signaling in the brain leads to hypophagia and resistance to high-fat diet-induced 

weight gain [195]. Translation of these clear-cut observations into human treatments proved 

disappointing. On one hand, ghrelin inactivation by recombinant or endogenous antibodies lead to 

moderate weight loss [196]. On the other hand, supraphysiological doses of ghrelin are necessary to 

increase hunger [197, 198]. Moreover, a large number of studies revealed a negative correlation 

between ghrelin levels and BMI in humans (reviewed in [199]). With the notable exception of PWS 

patients, who have abnormally high ghrelin levels [200], the (paradoxically) lower levels of ghrelin 

observed in non-syndromic obesity indicate yet another feedback mechanism that is thwarted by the 

general hormonal deregulation associated with obesity.  

Two directions may be helpful to better control ghrelin effects on appetite. The first one is the 

discovery that acylation by ghrelin O-acyl-transferase (GOAT) is necessary to appetite-inhibitory 

ghrelin activity, which led in the past decade to the development of GOAT inhibitors still under study 

[201, 202]. Importantly, only non-acylated, but not acylated, ghrelin increases with fasting, shedding 

doubts on the participation of ghrelin in a ‘hunger reflex’ [203]. The second one is the alternative 

posttranslational product of the ghrelin gene, obestatin. First seen as an appetite suppressor with 

effects opposed to ghrelin, it is now more often described as a metabolic regulator that modulates 

insulin sensitivity and adiposity through GHSR-dependent mechanism [204]. Most studies report that 

obestatin levels are downregulated in obesity and T2DM, as well as a negatively correlated with BMI, 

making it a possible (but controversial) target for the treatment of obesity and diabetes [205].  
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Motilin 

Motilin is secreted between meals and stimulates peristaltic waves following the pattern of migrating 

motor complex (MMC) contractions: its peak provokes the entry into phase III (the maximum of 

mechanical and electrical activity causing active peristalsis for 5-10 min), which may induce the 

feeling of hunger through vagal nerve activation [206]. The administration of motilin or erythromycin, 

an antibiotic that also acts as a motilin receptor agonist, induces premature MMC phase III and 

increases the declared appetite in healthy subjects [207]. Given the potential role of motilin and gastric 

motility in driving hunger, plasma levels of obese patients have been compared to their lean 

counterparts under fasted or refed conditions, yielding alternatively higher or lower levels [207, 208]. 

However, obese subjects seem to lack a clear motilin peak and MMC phase III induction across 

studies, indicating an impairment of gastric motility. One genome-wide association study indicated 

that single nucleotide polymorphisms in the motilin gene are among the mutations that are most 

strongly associated with extreme obesity [209].  

 

Adipose tissue peptides 

Adiponectin 

Adiponectin is an adipocyte-secreted hormone that is obesogenic in mice, and which genetic 

inactivation leads to resistance to HFD-induced obesity. The absence of adiponectin led to a decrease 

in food intake, increased energy expenditure, insulin desensitization and reduction in adiposity [210]. 

In a multi-ethnic meta-analysis spanning more than 45,000 subjects, alleles involved in the diminution 

of adiponectin levels were strongly associated with lower BMI but also with an increased risk of 

T2DM and insulin resistance [211]. In effect, lower adiponectin levels have been consistently 

measured in obese patients and shown to be inversely correlated with BMI and fat mass [212]. 

Therefore, the obesity-associated decrease in adiponectin can be interpreted as an attempt of metabolic 

adaptation to increase energy intake, resulting in limited effects on feeding behavior and adipose tissue 

accumulation, though deleterious consequences in terms of insulin resistance and hypertension.  

Asprosin  

Another adipokine, called asprosin, is secreted upon fasting. Subcutaneous injection of this factor into 

mice stimulated food intake, likely through central effects because peripherally injected asprosin 

crosses the blood-brain barrier  [213]. Its main metabolic effect is to trigger glycogenolysis in the 

liver, thus elevating circulating glucose levels during fasting, but it is also able to directly activate 

orexigenic AgRP neurons [214]. Asprosin levels are associated with high BMI and insulin resistance: 

it was found to be upregulated in obese versus lean individuals in most recent studies, with one 

exception in obese children [215, 216]. The Marfan lipodystrophy syndrome, associated with severe 

leanness, originates from mutations in the FBN1 gene, which codes for asprosin as well as a structural 
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protein called Fibrilin1 [217]. Other polymorphisms in the asprosin-coding part of FBN1 have been 

associated with decreased asprosin plasma levels and hypophagic, extremely underweight and 

lipodystrophic phenotypes [213]. Interestingly, one study on anorexia nervosa patients found elevated 

levels of asprosin in patients with bulimic behaviors, reflecting a possible detrimental adaptation to 

their reduced caloric intake [218]. Altogether, asprosin is a peptide whose variations reliably dictate 

the alimentary behavior and metabolic resilience in both lean and obese subjects, making it a new 

potential target for obesity treatments. 

 

Ubiquitously secreted proteins 

NAMPT 

Nicotinamide phosphoribosyltranferase (NAMPT, also known as Visfatin) is a ubiquitous intracellular 

enzyme that contributes to nicotinamide adenine dinucleotide (NAD+) synthesis, conferring it with 

important metabolic and nutrient-sensing. Beyond its enzymatic activity, NAMPT is secreted by a 

large number of cells. Its endocrine role is the subject of much debate, especially in the 

pathophysiology of obesity [219]. A central effect of circulating NAMPT can be hypothesized, based 

on the fact that, in chicks and rats, central injections of NAMPT activate hypothalamic circuits and 

increase food intake [220, 221]. Given that adipose tissue-specific Nampt knockout is sufficient to 

render mice completely resistant to HFD-induced obesity and to improve their glucose tolerance, 

adipocytes appear to contribute to the obesogenic effects of NAMPT [222]. Human studies tend to 

confirm the orexigenic role of NAMPT as its plasma level is increased in obesity [223]. Notably, a 

rare allelic form of NAMPT was found to be protective against extreme obesity in a cohort enrolling 

more than 6000 subjects  [224], raising hopes for targeting NAMPT as a suitable strategy against 

obesity.  

 

ACBP 

Acyl-coenzyme A binding protein (ACBP), also called diazepam binding inhibitor (DBI), is a 

ubiquitous protein that is present in the cytoplasm of all nucleated cells, where it affects long-chain 

fatty acyl-CoA esters metabolism and mitochondrial fatty acid oxidation. Upon autophagy induction, 

for instance in response to fasting, ACBP is secreted from cells and the consequent rise in extracellular 

and circulating ACBP activates orexigenic and lipogenic responses in mice. Thus, the intravenous or 

intraperitoneal injection of ACBP causes an immediate (30 min) hyperphagic response that does not 

require the binding of ACBP to acyl-coenzyme A (because mutant proteins losing this function 

conserve their potential to stimulate appetite), yet requires the function of the γ-aminobutyric receptor 

(GABA) A receptor (GABAAR) because mice bearing a mutation in this receptor abolishing its 

interactions with ACBP fail to mount a hyperphagic response [225]. Transgenic expression expression 
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of ACBP in hepatocytes is sufficient to cause significant weight gain and an increase in adiposity in 

mice [226]. Conversely, antibody-mediated inactivation of circulating ACBP is anorexigenic, meaning 

that it reduces hyperphagy in starved mice and leptin-deficient ob/ob mice as it reduces weight gain of 

mice fed a high-fat diet or increases weight loss when obese mice are switched from a high-fat to a 

normal diet [226]. Thus, the relocation of ACBP from the intracellular to the extracellular space can be 

viewed as a cellular sensor of nutrient scarcity that triggers appetite. It appears improbable that 

peripherally administered ACBP acts on the central nervous system to induce appetite because central 

injection of ACBP or its peptide fragments (in particular the octadecaneuropeptide, ODN) is 

anxiogenic and anorexigenic [227, 228]. Thus, intracerebroventricular injection of ODN into the 

fourth ventricle inhibits the swallowing reflex controlled by the brainstem [229]. Similarly, 

intraparenchymal unilateral injection of OP into the arcuate nucleus of the hypothalamus reduces food 

intake. These effects are not mediated by GABAAR but rather by ODN-GPCR signaling, since they 

are blunted by co-treatment with a selective ODN-GPCR antagonist [230, 231]. Moreover, the 

orexigenic effects of intraperitoneally injected ACBP can be blunted by a glucose clamp, again 

pleading against a direct central nervous action of ACBP  [226].  

Dampened ACBP signals may be linked to insufficient food intake, as indicated by lower ACBP levels 

in patients with anorexia nervosa [226, 232] and by a predisposition to weight gain after antipsychotic 

treatment for patients bearing a polymorphism in the gene coding for the γ2 subunit of GABAAR 

[233]. Overexpression of ACBP is found in the tissues and the plasma of rodent models of obesity 

[234], as well as in human obese cohort studies, in which circulating ACBP levels strongly correlate 

with BMI.  Thus, the obesity-induced overexpression of this orexigenic factor potentially drives a 

feed-forward mechanism to increase food consumption and to sustain the self-maintenance of obesity 

[235].  
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Conclusions and Perspectives  

Although obesity has become the most prevalent pathological conditions afflicting humanity, its 

pathophysiology has not been elucidated to a level that would facilitate its management. Thus, a whole 

economic sector promises a myriad of diets or exercise regimens, psychosocial interventions, 

supplements of micronutrients or specific concoctions, though without tangible results. Bariatric 

surgery has major side effects and often provides only transient benefits. Pharmacological 

interventions have also been unsuccessful because anti-obesity drugs were either ineffective or 

produced major side effects precluding their general use [236]. In particular, anorexiants that targeted 

central-nervous appetite control have turned out to induce psychiatric side effects including suicide 

[237]. For this reason, peripheral appetite regulatory circuitries may offer new opportunities for an 

etiological treatment of obesity.  

Here, we reviewed an extensive list of appetite regulators that are produced in peripheral locations and 

then regulate food intake through a variety of mechanisms that may be peripheral (for instance by 

effects on vagal afferences, by effects on other (neuro)endocrine factors, or by metabolic effects on 

major organs including the liver and adipose tissue) or central (by direct effects on appropriate brain 

centers). Of note, manipulation of some of appetite regulators mentioned here yields ambiguous 

results. Thus, neutralization of GIPR and GLP-1R by systemically injected antibodies (that in 

principle cannot cross the blood-brain barriers) inhibits diet-induced obesity in mice, but injection of 

dual agonists of GIPR and GLP-1R (which reach the brain) has marked anorexigenic effects, both in 

preclinical and clinical settings (Table 1). Similarly, injection of ACBP/DBI into the brain has 

anorexigenic effects, contrasting with the orexigenic consequences of its intravenous or intraperitoneal 

injection. These results underscore the fact that brain-permeable and –impermeable agonist and 

antagonists may have rather distinct effects. Future preclinical research should explore this conjecture, 

which, if correct, will affect the development of drugs for the treatment of obesity.  

In this review, we attempted to identify those endogenous appetite inhibitors that are reduced in the 

circulation of obese patients as well as those appetite stimulators that are increased, driven by the 

believe that pharmacological manipulations of such mediators would have particularly high chances to 

be successful. Obviously, this rationale has some major caveats that result from persistent 

uncertainties: Are the methods used for the quantification of factors accurate? This question is 

particularly pertinent when distinct peptide fragments act on different receptors (as found for PYY) or 

post-translational modifications affect the bioactivity of appetite regulators (as illustrated for acylated 

ghrelin). Is the measurement of the factor in the plasma/serum physiologically relevant?  This question 

is legitimate, taking into account that some of the factors mostly act as paracrine, not endocrine, 

factors (as gastrointestinal peptides that locally act on vagal afferences) and have a short half-live. 

Does the measurement occur during the dynamic phase of obesity (i.e., the phase with weight gain) or 
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the static phase of obesity (i.e., the phase with stable weight and energy balance)? Unfortunately, 

longitudinal studies that would distinguish these phases are uncommon, but would be useful to 

distinguish possible differences in the role of appetite regulators in weight gain versus weight 

maintenance. Could alterations in circadian rhythms affecting peripheral appetite regulators contribute 

to the development of obesity? Again, the clinical exploration of disease-related, time-dependent 

fluctuations of appetite regulators is in its infancy. Finally, could deregulations in food preferences 

(for instance for high-sugar items, which likely are intrinsically obesogenic) be dictated by peripheral 

appetite regulators? Thus, specific factors (such as GIP and GLP) could determine a qualitative rather 

than a quantitative disequilibrium in food intake that contributes to the obese phenotype.  

 

As summarized here, most factors that are generally considered as endogenous appetite inhibitors 

(such as leptin and many others) are increased in obese patients, and most endogenous appetite 

stimulators (such a ghrelin and many others) are reduced in non-syndromic obesity, likely reflecting a 

failing homeostatic circuitry that translates into this ‘paradoxical’ pattern. Thus, at difference with 

normal physiology (before obesity occurs), in which appetite stimulators or inhibitors participate in 

homeostatic pathways to limit caloric uptake (Figure 5A), once obesity has established, such 

circuitries appear to be unable to link excessive caloric intake and body mass to a reduction of appetite 

stimulatory hormones (or an increase in appetite inhibitor effects). Instead, they are replaced by 

disease amplifying feedforward loops in which excessive adiposity stimulates appetite (or suppresses 

appetite inhibition) (Figure 5B). Hypothetically, these latter feedforward loops would be truly 

pathogenic and would be accompanied by a ‘coherent’ pattern, i.e. an increase in appetite stimulators 

or a decrease of appetite inhibitors.  

For this reason, it is important to identify peripheral modulators of appetite that behave in a ‘coherent’ 

rather than ‘paradoxical’ fashion. Thus, it may be advisable to concentrate research efforts on appetite 

inhibitors that are indeed reduced (not increased or unaltered) in obese subjects and to investigate 

whether their artificial supplementation (or, alternatively, the administration of agents that have 

agonistic effects on their receptors) would be able to reduce excessive caloric uptake. Similarly, it 

appears logical to neutralize appetite-stimulatory factors that are ‘coherently’ elevated (rather than 

‘paradoxically’ reduced or unaltered) in obesity.  

Apparently, only three endogenous appetite inhibitors follow a ‘coherent’ pattern: PP, PYY and VIP 

(Table 1). Given the fact that these potential anorexiants also have multiple other functions outside of 

appetite control, which would yield side effects, it will be important to choose among these agents the 

one that is the most ‘specific’ appetite controller. Using this criterion, which however is based on 

scarce knowledge, it appears that PP would be the best candidate for development. Nonetheless, at this 

point no active clinical trials are recruiting patients for PP administration.   
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Among the numerous appetite-stimulatory hormones that have been characterized over the past three 

decades, only three behave in a ‘coherent’ fashion: ACBP, asprosin and NAMPT (Table 2). These 

three factors are the only appetite-stimulatory effects with a ubiquitous expression pattern (Fig. 2A) 

and that are also phylogenetically ancient (Fig. 6). Thus, ACBP is the sole protein factor secreted by 

yeast (Saccharomyces cerevisiae) upon starvation and stimulates sporulation, which is the only 

possibility for yeast cells to search for new food sources. ACBP also stimulates pharyngeal pumping 

and nutrient uptake in the nematode Caenorhabditis elegans [238]. Asprosin/FBN1 possesses an 

orthologue in nematodes. NAMPT has a functional homologue, PNC-1, in yeast [239] and nematodes, 

where this protein can be secreted and has cell non-autonomous developmental functions [240]. It 

appears intriguing that such ubiquitous, phylogenetically ancient factors may be particularly important 

for the pathogenesis of human obesity.  

In a highly speculative scenario (see Outstanding Questions), one or several among these three factors 

would have evolved to generate the ‘core’ of appetite control, which would have been complemented 

during evolution by many additional factors (that do not exist in invertebrates). However, only the 

‘core’ is indeed endowed with the capacity to impose long-term deviations from normal body mass. 

Among these three putative ‘core’ appetite stimulators (ACBP, asprosin and NAMPT), the one that 

apparently has the most specific relationship to obesity is ACBP, in thus far that it is both an 

orexigenic factor and stimulates lipo-anabolism. In contrast, since asprosin binds to the insulin 

receptor, this factor may be expected to play a major role in glucose metabolism. Moreover, NAMPT 

is an enzyme that participates to the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a vital 

cofactor of many enzymes, suggesting that NAMPT inhibition might result in major side effects. As a 

possible strategy, ‘core’ appetite stimulators might be inactivated by blocking antibodies or by the 

blockade of their receptors. However, clinical trials that would explore this possibility are still elusive 

(Text Box 2). 

 

In summary, well over two dozen peptide hormones participate in peripheral appetite control. 

However, in human obesity, the serum concentrations of only three appetite inhibitors are reduced and 

only three appetite stimulators are enhanced, contrasting with all the other factors that often exhibit an 

inverse, paradoxical behavior. We surmise that this ensemble of six hormones constitutes the short list 

of agents that are the best potential targets for pharmacological interventions on appetite control.  
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Outstanding questions 

 

• A systematic longitudinal analysis of changes in the plasma concentration of neuroendocrine appetite 

regulators is still elusive.  

 

• It remains to be determined which appetite regulators contribute to the dynamic phase of obesity 

(i.e., the phase with weight gain) versus the static phase of obesity (i.e., the phase with stable weight 

and energy balance).  

 

• It is important to explore the question as to whether appetite regulatory neuroendocrine factors 

determine food preferences and hence influence the quality of ingested food items beyond the quantity 

of calories.  

 

• The optimal strategy to control appetite by pharmacological interventions is an open conundrum.   
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Text Box 1: Coherent versus paradoxical patterns of peripheral appetite regulators in obesity: 

We propose to distinguish two patterns in the variation of appetite controlling regulators as they occur 

in human obesity.  

We refer to a “paradoxical” pattern when obesity is associated with the increase of measurable 

concentrations of appetite-inhibitory factors or a decrease in the levels of appetite-stimulatory factors. 

Indeed, such factors are either misclassified (for instance as a result of differences between humans 

and rodents, taking into account that most studies on appetite control are performed in mice or rats) or 

their variations cannot be the cause of obesity. At best, their fluctuation constitutes a futile attempt of 

the organism to return from the pathological (obese) state to the physiological (lean) condition. Of 

note, most known appetite regulators follow this pattern, as prominently exemplified by leptin (an 

appetite inhibitor that increases in non-syndromic obesity) or ghrelin (an appetite stimulator that 

usually is reduced in obese subjects). It can be attempted to shift the problem to aberrant responses to 

such mediators (“leptin resistance” or “ghrelin sensitivity”). Moreover, it can be postulated that 

without the “paradoxical” behavior of such mediators, obesity actually would be worse.  

We consider that appetite stimulatory molecules that increase in obesity or appetite inhibitor that 

decrease follow a “coherent” pattern, because such variations may indeed explain the development of 

obesity and the maintenance of the obese state. Hence, they are potentially involved in the causation 

of obesity. For this reason, we suggest that appetite regulators that respect a “coherent” pattern should 

be considered as prime targets for therapeutic interventions on obesity.  
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Text Box 2: Outstanding clinical trials for the modulation of core appetite regulators: 

Clinical trials for the treatment of obesity have been hampered for long because obesity has only 

recognized by the American Medical Association as a “disease” in 2013. For this reason, most clinical 

trials have been dealing with the treatment of comorbidities of obesity such as type-2 diabetes and 

non-alcoholic fatty liver disease. Moreover, the standards for safety are particularly stringent for 

clinical trials designed to achieve weight loss, because obesity (as opposed to, for example, cancer) is 

not considered as an acutely life-threatening condition. The clinical management of obesity demands a 

combination of pharmacological treatments with nutritional and behavioral interventions (diet & 

exercise), requiring compliance by the patient. The problem of compliance can be overcome by 

monitoring drug administration (or by providing injectable drugs), as well as continuous measuring of 

cardiometabolic parameters. However, it is notoriously difficult to induce and maintain stable 

modifications of eating habits and physical (in)activity.  

The notion of a “core” of appetite-modulatory factors that exhibit a “coherent” behavior, suggesting a 

causative implication in obesity, is rather new. Appetite-inhibitory agents that are reduced in human 

obesity have been supplemented in clinical trials. This applies to subcutaneous injections of PP 

(https://www.clinicaltrials.gov NCT01052493, NCT02221765), as well as oral, nasal or intravenous 

administration of PYY (e.g. NCT00331175, NCT00537420, NCT00822705, NCT00940134), that 

were completed in the past, showing that appetite control can be achieved (see Table 1). However, 

specific inhibitors of appetite stimulators such as asprosin, NAMPT and ACBP have not yet been 

evaluated in clinical trials for the treatment of obesity. For this, it would be necessary to develop 

specific receptor antagonists or humanized neutralizing antibodies that are currently not yet available.  
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Tables 

Table 1. Appetite inhibitory hormones with peripheral metabolic effects 

Hormone In vivo Genetic perturbations in human General trend in obesity Human studies Ref. 

Adrenomedullin 

(ADM) 

Central injections reduce food intake in 

rodents  

Deficient ADM signaling in fa/fa rats  

rs574603859 polymorphism in ADM 

receptor is associated with a smaller BMI  

Increased in women  ADM antibody, which increases 

long-term plasma ADM, is in 

phase II trial for the treatment of 

sepsis with a good safety profile  

[150-152, 

241]   

Amylin 

 

Daily subcutaneous injection of apelin 

analogue decreases food intake and body 

weight in rodents  

Antagonists increase food intake  

Greater occurrence of a missense mutation 

in subjects with T2DM  

Increased   Amylin agonists decrease food 

intake in obese patients, alone or 

in combination  

[132, 147, 

242, 243] 

Apelin (APLN) APLN analogues have glucose-lowering and 

appetite suppressive effects in mice 

Single-nucleotide polymorphisms are 

associated with obesity in women cohorts  

Increased  APLN analogue under clinical 

trial for type II diabetic patients 

(NCT02724566) 

[165, 244-

247] 

Apolipoprotein 

A-IV 

(Apo-A4) 

Peripheral injections reduce meal sizes in 

rats 

Apo-A4 polymorphisms linked to obesity in 

adult and elderly populations  

Increased / Decreased  

  

-  [95-99, 

248] 

Cholecystokinin 

(CCK) 

CCK-1R deficiency causes hyperphagy and 

obesity in rats but not in mice.   

Acute peripheral reduction of food intake in 

rodents with long-term tolerance to CCK. 

CCK alleles associated with increased meal 

size in obese carriers 

Homozygous polymorphism in the promoter 

of CCK type A receptor is associated with 

body fat mass 

Unchanged 

Postprandial secretion is 

increased after bariatric 

surgery  

 

CCK terminal octapeptide 

reduces meal size and duration 

in lean men 

[67, 68, 

70, 71, 73, 

74, 76, 

249, 250] 

Fibroblast growth 

factor 21 

(FGF21) 

Peripheral injections decrease food intake 

and reverse obesity in mice  

Variants in FGF21 gene associated with 

carbohydrate and global intake  

Increased  FGF21 analog induces weight 

loss in T2DM patients  

[167, 168, 

170-173] 

Glucose-

dependent 

insulinotropic 

polypeptide 

(GIP) 

Augmenting GIPR signaling, especially in 

combination with GLP-1R signaling, 

reduces food intake in mice. 

However, GIPR deficient mice strains are 

resistant to obesity. Inhibition of GIPR by 

means of a systemically injected antibody 

reduces high-fat diet-induced weight gain  

GIP neutralization decreases weight gain in 

animal models [251]. 

Polymorphisms in the GIP receptor gene are 

linked to obesity, increase BMI and visceral 

fat accumulation  

Increased post-prandial 

responses, likely as a result 

of exaggerated meal size  

Systemic infusion increases 

hunger and subcutaneous fat 

metabolism in lean but not obese 

subjects  

Tirzepatide, a dual agonist of 

GIPR and GLP-1R biased 

towards GIPR, induces weight 

loss in T2DM obese subjects 

(phase 3 clinical trial 

NCT03954834) 

[31, 39, 

53, 54, 56-

60, 251-

254] 

Glucagon-like 

peptide 1 

Peripheral injections of GLP-1 or agonist 

reduces feeding in rodents. 

GLP-1 circuits are more frequently mutated 

in binge-eating population. 

Increased / Decreased / 

Unchanged 

GLP-1R agonists induce weight 

loss by diminution of food 

[29-31, 

34-39, 
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(GLP-1) However, inhibition of GLP-1R by means of 

a systemically injected antibody reduces 

high-fat diet-induced weight gain  

GLP1R mutations associated with obesity intake in numerous human 

studies 

255-257] 

Gastrin-releasing 

peptide (GRP) 

Peripheral injections acutely decrease food 

intake in primates and mice  

GRP-R deficient mice have increased meal 

size and gain more weight than their WT 

counterpart  

Rare single variants or copy number variants 

in Grp-R are found in inheritable forms of 

obesity  

-  Intravenous injection decreases 

food intake in healthy men 

[110, 258-

261] 

Insulin (INS) Intracereboventricular or intracarotid 

infusion decreases food intake in non-human 

rodents  

Mutations of insulin are rare causes of 

diabetes diagnosed in childhood or 

adulthood but may explain cases of neonatal 

diabetes  

Increased  Common T1DM treatment.  [128, 262-

264] 

Leptin 

(LEP) 

Leptin injections decrease food intake and 

increase energy expenditure in rodents 

Mice strains deficient for LEP (ob/ob) or its 

receptor (db/db) are morbidly obese  

Rare genetic defects in leptin or its receptor 

cause early-onset obesity  

Increased  Leptin replacement therapy is 

effective to compensate genetic 

leptin deficiency  

Resistance occurs in other cases 

of obesity  

[17-19, 

21-23, 26, 

265] 

Nesfatin Peripheral injections decrease food intake in 

rodents 

Whole-body overexpression in mice has no 

effect on food intake and increases the 

obesogenic effect of a high fat diet  

Whole-body knockout mice have increased 

food intake and body weight 

Nucb2 polymorphisms are associated with 

protection against obesity 

Increased / Decreased  -  [177-181, 

183, 266, 

267] 

Neuromedin beta 

(NMB) 

Peripheral injections reduce food intake in 

rats, although less potently than GRP  

NBR-deficient mice are partially resistant to 

diet-induced obesity  

NBR antagonism decreases adipocytes 

differentiation  

Nmb polymorphisms occur more frequently 

in obese patients 

 

- - [105, 107, 

108, 268] 

Neurotensin 

(NT) 

Peripheral injections of NT or long-term 

analog acutely reduce food intake in rodents 

NT-deficient mice are protected from high 

fat diet-induced abdominal fat accumulation 

and obesity  

The NT/GLP-1 pathway is more frequently 

mutated in binge-eating population  

Polymorphisms in NT receptor 1 are 

associated with addictive behaviors  

Increased  

  

Ongoing clinical trials on the 

appetite regulating effect of NT 

alone or in combination with 

GLP-1 (NCT03522792, 

NCT04186026) 

[34, 269-

272] 

Oxyntomodulin  

(OXM) 

Peripheral injections inhibit food intake and 

reduce weight in rats  

Cf. GLP-1, GLP1R polymorphisms are 

associated with obesity. 

Unchanged  Administration to lean and 

obese humans decrease food 

intake and appetite ratings  

Many analogs are tested alone or 

in combination with GLP-1  

[62, 273-

275] 
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Oxytocin  

(OXT) 

Peripheral injections reduce food intake and 

body weight in animal models of obesity 

Variants in the OXT receptor gene are 

associated with increased risk of early-onset 

obesity  

Increased in most studies / 

decreased 

 

Obese patients significantly lose 

weight upon intranasal oxytocin 

treatment  

[187, 188, 

193, 276] 

Pituitary 

adenylate cyclase-

activating peptide 

(PACAP) 

Peripheral injections reduce food intake in 

mice and fish 

Adcyap1-/- mice strains have reduced sweet 

and carbohydrates intake  

Mutations in PACAP receptor ADCYAP1R1 

are associated with addictive behaviors  

-  Clinical studies with PACAP as 

of migraine inducer 

(NCT03881644, …) 

[121, 122, 

127, 277] 

Pancreatic 

polypeptide 

(PP) 

Genetic overexpression lowers food intake 

and protects mice from obesity  

ob/ob mice lack PP-producing cells and their 

weight gain can be limited by peripheral PP 

injections  

PWS syndromic obesity is associated with 

decreased PP secretion, and food intake can 

moderately be diminished by PP injections 

Higher copy number of PP receptor Npy4R 

is associated with increased BMI  

Decreased  PP infusion decreases short-term 

food intake in lean and obese 

subjects. 

[133-135, 

137, 138, 

142, 143, 

278] 

Peptide YY 

(PYY) 

Peripheral injections decrease food intake in 

rodents and macaques  

Central administration is orexigenic  

Q62P mutant is found in familial forms of 

obesity and has impaired in vivo satiative 

effect  

Other variants in Pyy, its regulatory regions 

and in its receptor Npy2R are associated with 

obesity  

Decreased  Intravenous infusion decreases 

the caloric intake from a buffet  

One clinical study yielded 

inconclusive results  

Ongoing clinical trials alone or 

in combination with GLP-1 

(NCT03707990 and 

NCT03574584) 

[81-85, 88, 

279-281] 

Secretin 

(SCT) 

Peripheral injections decrease food intake 

and increase lipolysis in mice but not in 

other animal models 

SCT-receptor knockout mice are resistant to 

high fat diet-induced obesity  

- - Intravenous secretin infusion in 

humans induces activation of 

brown fat 

[115-119] 

Vasoactive 

intestinal peptide 

(VIP) 

Central administration decreases food intake 

in vertebrates  

Vip-/- mouse strain has reduced food intake 

and weight gain, as well as abnormal levels 

of GLP-1, leptin, PYY, adiponectin and 

insulin  

The VIP pathway is associated with obesity 

in a genome-wide analysis study  

Decreased Clinical studies of VIP in the 

context of migraine (most recent 

NCT03989817, 

NCT04260035…) 

[123, 124, 

126, 282] 
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Table 2. Appetite stimulatory hormones with peripheral metabolic effects  

Hormone In vivo Genetic perturbations in human General trend in obesity Human studies Ref. 

Acyl-CoA 

binding protein  

(ACBP) 

Peripheral injections are orexigenic and 

obesogenic in mice.  Antibody-mediated 

neutralization and knockout are anorexigenic 

A polymorphism (rs279858) in GABAA 

receptor predisposes to weight gain after 

treatment with antipsychotics.  

Increased  

 

-  [226, 233] 

Adiponectin Peripheral injections increase food intake 

after refeeding in mice. Adiponectin-

deficient mice have decreased food intake 

and increased energy expenditure.  

Serum adiponectin levels are decreased in 

ob/ob mice and restored in POMC-deficient 

obese mice 

Adiponectin-decreasing allelic variations are 

associated with lower BMI and decreased 

appetite  

Decreased  Numerous adiponectin-increasing 

molecules have been tested for their 

insulin-sensitizing properties  

[210, 211, 

283-286] 

Asprosin Subcutaneous injection into mice stimulated 

food intake. Its antibody-mediated 

neutralization decreases appetite and body 

weight in obese mice. 

Peripheral injections cause hyperglycemia 

and hyperlipidemia with no changes in body 

weight  

Mutations in the Fbn1 gene cause the 

Marfan syndrome, associated with extreme 

thinness and hypophagia  

 

Increased / Inconsistent 

results in children  

-  [213, 215, 

217, 287-

291] 

Ghrelin Peripheral injections increase food intake 

and are obesogenic at long term in rodents  

Ghrelin-receptor-deficient mice strains are 

hypophagic and resistant to high-fat diet-

induced obesity  

Ghrelin is upregulated in patients with 

Prader-Willi syndrome  

Rare allelic forms of preproghrelin may be 

protective against fat accumulation  

Decreased  Appetite and food intake is 

increased upon high but not 

physiological doses  

Anti-ghrelin vaccination studies led 

to marginal weight loss  

[194-200, 

292] 

Motilin 

(MLN) 

Peripheral injections stimulate food intake in 

rats  

Extremely high doses inhibit feeding, 

probably due to nausea  

rs2274459 polymorphism in the MLN gene 

is associated with an increased odds-ratio for 

obesity  

Absence of MLN peak 

during MMC phase III 

coupled to increased / 

decreased levels at 

baseline 

Motilin receptor agonist 

erythromycin increases appetite 

[206, 208, 

209, 293-

296] 

Nicotinamide 

phosphoribosyl-

transferase 

(NAMPT) 

Central injections have orexigenic effects in 

chicks  

NAMPT-deficient mice are resistant to high-

fat diet-induced obesity  

rs10487818, a rare polymorphism in Nampt, 

may be protective against obesity  

Increased  -  [220, 222-

224] 
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Legends to Figures 

 

Figure 1. Central control of food intake. The central nervous system integrates mechanical, nervous, 

hormonal and metabolic signals from the periphery via the nucleus of the solitary tract (NTS), which 

receives afferent signals from the vagal nerve, and via direct binding of messenger peptides on their 

receptors located in different neuronal population within the arcuate (ARC) nucleus of hypothalamus. 

In turn, neuronal projections to other populations located in lateral hypothalamic area (LHA), 

paraventricular nucleus (PVN) or ventromedian nucleus (VMN) together with other brain areas 

involved in nutrient sensing and reward will lead to finely control food intake and feeding behavior. 

Neurons from circumventricular organs such as area postrema (AP), median eminence (ME), 

subfornical organ (SFO) and the organum vasculosum of the lamina terminalis (OVLT) are also able 

to sense blood-borne signals. AgRP: agouti related peptide; BDNF: brain derived neurotrophic factor; 

CART: cocaine/amphetamine related transcript; CRH: corticotrophin releasing hormone; GABA: 

gamma aminobutyric acid; NAc: Nucleus Accumbens; NPY: neuropeptide Y; MCH: melanin 

concentrating hormone; NTS: nucleus of the solitary tract; POMC: proopiomelanocortin; TRH: 

thyroid releasing hormone; VTA: ventral tegmental area. 

Figure 2. Expression patterns of peripheral appetite modulators and their receptors. Results on protein 

expression levels (www.proteinatlas.org) were listed for appetite inhibitory (red protein symbols) or 

stimulatory (blue protein symbols) peptides (A) and their receptors (B) in different human tissues, as 

determined by immunohistochemistry. Asterisks mark those proteins that rhythmically change their 

expression level in at least two distinct tissues from mice, according to the CircaDB database 

(http://circadb.hogeneschlab.org/mouse).  

Figure 3. Central targets of major anorexigenic factors. Leptin is secreted by the white adipose tissue 

and acts through its receptor LepR both peripherally, on the vagal afferences, and centrally. It 

potentiates the input from the vagal nerve in the NTS, activates anorexigenic neurons in the 

hypothalamus and inhibits the orexigenic response. The pancreatic polypeptide (PP) and the intestinal 

peptide YY (PYY) share the family of Y-receptors and exert their anorexigenic effects through vagal 

and hypothalamic regulation. Cholecystokinin, in a positive control loop with PYY, exerts most of its 

function by vagal nerve activation though its receptor CCK-1R. Finally, glucagon-like peptide-1 

(GLP-1) activates the vagal nerve, increases the integration of its signals by the NTS and exerts direct 

anorexigenic actions on hypothalamic nuclei though a leptin-independent pathway which relies on the 

GLP-1R receptor. AgRP: Agouti-Related Peptide; CART: cocaine- and amphetamine-regulated 

transcript; CRH: Corticotropin-releasing hormone ; DMH: dorsomedial hypothalamic; GABA: γ-
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aminobutyric receptor; LHA: lateral hypothalamic area; NPY: Neuropeptide Y; NT: Neuropeptide T; 

OXT: oxytocin ; PACAP: Pituitary adenylate cyclase-activating polypeptide; POMC: pro-

opiomelanocortin; PVH: paraventricular hypothalamic; VMH: ventromedial hypothalamic nuclei. 

Figure 4. Central targets of major orexigenic factors. Ghrelin activates orexigenic signals in the 

hypothalamus and inhibits the vagal nerve response though the growth-hormone secretagogue receptor 

(GHSR). Adipocyte-secreted factors, adiponectin and asprosin, respectively mediate POMC/CART 

neurons inhibition though the adiponectin receptor 1 (AdipoR1) and AgRP/NPY neurons activation 

through a GHSR-independent pathway (unknown receptor). Soluble factors such as NAMPT and 

ACBP have been proven to mediate the activation of the lateral hypothalamic area (LHA), but whether 

this activation is direct or indirect remains to be understood. AgRP: Agouti-Related Peptide; CART: 

cocaine- and amphetamine-regulated transcript; DMH: dorsomedial hypothalamic area;  GABA: γ-

amino butyric acid; GH: growth hormone; LHA: lateral hypothalamic area; MCH: Melanin-

concentrating hormone;  NPY: Neuropeptide Y; POMC: pro-opiomelanocortin; PVH: paraventricular 

hypothalamic; VMH: ventromedial hypothalamic nuclei. 

Figure 5. Peripheral appetite-regulatory circuitries. A. In the normal starvation response, appetite-

stimulatory hormones are upregulated or appetite-inhibitory mediators are downregulated, causing a 

raise in appetite and feeding that ultimately abolishes the starvation-elicited alterations in appetite-

relevant hormones, thus closing a homeostatic feedback loop.  B. In obesity, this feedback loops fails 

and may be superseded in importance by disease amplifying feedforward loops that involve either 

appetite stimulators that are upregulated or appetite inhibitors that are downregulated due to an 

increase in adiposity.  

Figure 6. Phylogenomic analysis of genes related to appetite (green for inhibitors, orange for 

stimulators). Numbers represent functional copies of each gene. Black stands for no-copies. Numbers 

were obtained from orthology tables at Ensembl. Where stated, these numbers were corrected using 

published results, manual annotation of genomic assemblies or specific databases, such as Wormbase. 

SCER - Saccharomyces cerevisiae; HVUL - Hydra vulgaris; CELE - Caenorhabditis elegans; DMEL 

- Drosophila melanogaster; NFUR - Nothobranchius furzeri; CAUR - Carassius auratus; XTRO - 

Xenopus tropicalis; GGAL - Gallus gallus; CLUP - Canis lupus familiaris; BTAU - Bos primigenius 

taurus; SSCR - Sus scrofa; HGLA - Heterocephalus glaber; RNOR - Rattus norvegicus; MMUS - 

Mus musculus; CJAC - Callithrix jacchus; MMUL - Macaca mulatta; PTRON - Pan troglodytes; 

HSAP - Homo sapiens. * Genetically, OXM and GLP-1 are identical; ** Values change depending on 

gender (male/female). *** One functional copy, five additional copies seem to have underwent a 

pseudogenization proccess. **** Wormbase annotates additional members (~7 for ACBP and ~30 for 

INS). Their functionality remains elusive.  
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