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 77 
Abstract 78 
 79 
Industrialization has impacted the human gut ecosystem (e.g. through changes in diet or 80 

medical practices), resulting in altered microbiome composition and diversity. Whether 81 

bacterial genomes may also adapt to the industrialization of their host populations remains 82 

largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal 83 

gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations 84 

spanning a range of industrialization. We show that HGTs have accumulated in the 85 

microbiome over recent host generations, and that HGT occurs at high frequency within 86 

individuals. Comparison across human populations reveals that industrialized lifestyles are 87 

associated with higher HGT rates and that the functions of HGTs are related to the level of 88 

host industrialization. Our results suggest that gut bacteria continuously acquire new 89 

functionality based on host lifestyle and that high rates of HGT may be a recent development 90 

in human history linked to industrialization. 91 

 92 

Keywords: human gut microbiome; industrialization; urbanization; lifestyle; horizontal gene 93 

transfer; bacterial genomics; host-microbe interactions; culturomics; antimicrobial resistance; 94 

virulence.  95 
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Introduction 96 
 97 

Transitioning from non-industrialized to industrialized lifestyles is associated with 98 

changes in gut microbiome composition and decreased bacterial species diversity (Brewster 99 

et al., 2019; Hansen et al., 2019; McDonald et al., 2018; Pasolli et al., 2019; Schnorr et al., 100 

2014; Sonnenburg and Sonnenburg, 2019b; Yatsunenko et al., 2012). While the precise 101 

causes of these changes are unknown, factors associated with the development of 102 

industrialized societies such as sanitation, the consumption of processed food, higher 103 

frequency of caesarean section, and increased use of antibiotics likely play key roles in 104 

remodeling the gut microbiome (Sonnenburg and Sonnenburg, 2019a). These perturbations 105 

in the gut ecosystem can occur shortly after individuals transition from non-industrialized to 106 

industrialized areas, and persist for years (Vangay et al., 2018), further confirming that lifestyle 107 

strongly influences the function of our gut microbiome. However, the effects of host and 108 

environmental factors associated with industrialized lifestyles on individual gut bacterial 109 

genomes are poorly characterized.  110 

 111 

Bacteria can use horizontal gene transfer (HGT) to adapt rapidly to unstable 112 

environments through the acquisition of new functions. Mammalian gut bacteria have 113 

experienced frequent HGT events over millions of years of evolution (Hehemann et al., 2010; 114 

Smillie et al., 2011). Previous studies of specific bacterial species showed that HGT can occur 115 

and be conserved in the gut microbiome within a single individual (Coyne et al., 2014; Garud 116 

et al., 2019; Munck et al., 2020; Yaffe and Relman, 2019; Zhao et al., 2019; Zlitni et al., 2020), 117 

especially when there is strong selection for target functions such as antibiotic resistance 118 

(Forsberg et al., 2012; Lopatkin et al., 2017; Modi et al., 2013). Yet it remains unclear whether 119 

HGT can occur broadly enough to impact gut microbiome function over an individual’s lifetime 120 

– such as in response to significant lifestyle changes – or whether microbiomes primarily 121 

acquire new functions through the acquisition of new strains. It was previously observed that 122 

individual bacterial strains can reside within a host microbiome for decades (Faith et al., 2013). 123 

So if the rate of gene transfer is sufficiently rapid, then a microbiome that is ‘stable’ in terms 124 
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of bacterial populations (Faith et al., 2013; Gibbons et al., 2017; Mehta et al., 2018) could 125 

nonetheless evolve in response to host-specific environmental perturbations through HGT, 126 

perhaps in response to changes in host lifestyle. 127 

 128 

In a previous study (Smillie et al., 2011), we found high levels of HGTs in the human 129 

microbiome involving >500bp length sequences with greater than 99% similarity. Those 130 

results lacked the temporal resolution and the diversity in human populations necessary to 131 

address the questions of timescales and host lifestyle. Over short evolutionary timescales, the 132 

substitution rate of many bacterial species typically falls in the range of ~1 SNP/genome/year 133 

(Didelot et al., 2016; Drake, 1991; Duchêne et al., 2016; Zhao et al., 2019). Assuming this 134 

rough molecular clock approximation, and a genome size of 106 bp, the HGTs we detected 135 

using those criteria (>500bp, >99% similarity) were consistent with transfer events that 136 

occurred between 0 and 10,000 years ago (which corresponds to the time during which a 137 

500bp sequence can accumulate a maximum of 1% sequence divergence, i.e. 5 SNPs). 138 

Variations in the molecular clock across species and genomic regions may shorten or expand 139 

this time interval. In any case, our previous results could not constrain the dates of HGT that 140 

occurred more recently than the rise of modern industrialization, dated to the 18-19th century 141 

(Vries and de Vries, 1994). To answer the question of whether commensal strains can 142 

frequently acquire new functionality through HGT within an individual, such that recent 143 

adaptations to industrialization are detectable in contemporary bacterial genomes, more 144 

precise estimates of the rate and extent of HGT are needed. 145 

 146 

Existing reference isolate genomes (Browne et al., 2016; Faith et al., 2013; Forster et 147 

al., 2019; Goodman et al., 2011; Zou et al., 2019) originate almost exclusively from 148 

industrialized populations and, for the vast majority of strains, from different individuals,  149 

making investigation of within-person HGT impossible. Here, we present the Global 150 

Microbiome Conservancy (GMbC) isolate collection, composed of >4,000 cultured, isolated, 151 

and sequenced gut bacteria from diverse industrialized and non-industrialized populations, 152 
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including rich sets of strains from single individuals. We used these genomes to investigate 153 

the rate and patterns of gene transfers that occurred very recently in human history. We show 154 

that HGTs can occur at high and heterogeneous frequency within individuals, and we report 155 

elevated rates of gene transfer in industrialized populations.  156 

 157 

 158 

Results 159 

 160 

A diverse collection of bacterial isolate genomes from worldwide gut microbiomes 161 

We cultured, isolated, and whole-genome sequenced 4,149 gut bacteria from 37 162 

individuals from 14 distinct populations with different levels of industrialization (Fig 1A & B). 163 

Bacteria were isolated from stool samples under anaerobic conditions, using previously 164 

published protocols (Poyet et al., 2019). We combined these new genomes with a set of 3,632 165 

isolate genomes that we recently generated from 11 urban American donors (Poyet et al., 166 

2019), yielding a dataset of 7,781 isolate genomes. We then divided our cohort of 48 167 

individuals according to two different parameters, which we defined as: “urban” vs. “rural” 168 

(based on local population density) (SEDAC Population Estimation Service, 2015), and 169 

“industrialized” vs. “non-industrialized” (based on the Human Development Index at the 170 

country level, HDI) (United Nations Development Program, 2020). For the purposes of this 171 

analysis, we used HDI as a proxy for industrialization because it reflects parameters that are 172 

relevant to health and the microbiome, e.g. the consumption of processed foods, rates of non-173 

communicable diseases, sanitation infrastructure, and health expenditure (United Nations 174 

Development Program, 2020). This classification system yielded four groups of different 175 

lifestyles: rural non-industrialized populations from Tanzania, Cameroon and Ghana; urban 176 

non-industrialized populations from Ghana, Nigeria and Cameroon; rural industrialized 177 

populations from Canada, Finland and the USA; and urban industrialized groups from Finland 178 

and the USA; see Fig 1A & B, Supp. Fig. 1 & Supp. Table 1 for descriptions of population 179 

ethnicity, location, population density, HDI, subsistence strategy, and microbiome 180 
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composition. The non-industrialized rural cohort includes populations with diverse subsistence 181 

strategies, including hunter gatherers, pastoralists, fishermen, and farmers (Fig. 1B).  182 

We grouped our 7,781 isolate genomes into species clusters based on genomic 183 

similarity, using the Mash distance as a proxy for Average Nucleotide Identity (see Methods). 184 

This identified 339 bacterial species across 6 phyla, grouping into 73 known and 88 unknown 185 

genera (Figure 1C & Supp. Tables 2 & 3 for culturing data and genome assembly statistics). 186 

We compared our genome collection to the Unified Human Gastrointestinal Genome (UHGG) 187 

database, which comprises the largest set of human gut bacterial genomes, with the vast 188 

majority being metagenome-assembled genomes from uncultivated bacterial species 189 

(Almeida et al., 2020). We measured genomic distances between our representative genomes 190 

and all UHGG representative genomes with Mash and looked at the number of species that 191 

have not been previously sequenced or cultured. We found that 13% of the species in our 192 

collection represent newly characterized species, and 41% represent newly cultivated species 193 

(Fig. 1D). We sampled a median of 93 isolate genomes and 17 species per individual, covering 194 

a wide range of within-people bacterial taxonomies and in vivo abundances (Fig. 1E and Supp. 195 

Table 4), providing within-person genomic and ecological diversity for high-resolution 196 

investigation of HGTs. 197 

 198 
  199 
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Figure 1 - Assembly of a geographically, phylogenetically and ecologically diverse collection of 201 
human gut bacterial isolate genomes. 202 
(A) Samples were collected from 15 communities in the USA, Canada, Finland, Cameroon, Tanzania, 203 
Ghana, and Nigeria. Red dots show the geographic locations of sampling sites. Participants 204 
represented four different lifestyle categories: 14 urban industrialized (UI) individuals in the USA (Boston 205 
area – various ethnicities), eastern Finland (Kainuu - Finnish people), and southern Finland (Helsinki - 206 
Finnish people); 5 rural industrialized (RI) individuals in the USA (Montana - Northern Plain Tribes 207 
people), arctic Finland (Lapland - Sami people), and the Canadian arctic (Nunavut - Inuit people); 6 208 
urban non-industrialized (UN) individuals in Cameroon (Yaounde - Beti people), Nigeria (Lagos - Igbo 209 
and Yoruba people), and in Ghana (Accra - Ga and Ahafo people); and 23 rural non-industrialized (RN) 210 
individuals in Cameroon (Ngoantet, Center region - Beti people; Mintom, East region - Baka people), in 211 
Tanzania (Arusha region - Hadza and Datoga peoples), and in Ghana (Ampenyi - Central region, Fante 212 
people; Barekuma, Ashanti region - Ashanti people). See Supplementary Table 1 for further information 213 
on the demographics and subsistence strategy of each individual and community recruited in this study 214 
(agriculturalists, hunter-gatherers, farmers, fishermen, etc). (B) Distribution of isolate genomes across 215 
countries, lifestyles and subsistence strategies. For investigating HGT, we completed the GMbC 216 
genome collection with the BIO-ML collection composed of bacterial genomes isolated from individuals 217 
living an industrialized and urban lifestyle in the USA (Boston area - mixture of ethnicities). (C) 218 
Phylogenetic tree of representative genomes of all 339 bacterial species in our isolate genome 219 
collections (GMbC + BIO-ML). The inner ring shows species which, prior to our work, did not have 220 
representative genomes among the cultured bacteria of human gut origin in the UHGG database 221 
(shown in blue). The outer ring shows the distribution of isolate genomes across all species in the 222 
GMbC+BIO-ML collection. The total number of isolate genomes per phylum is shown. (D) Genomic 223 
distance between each representative genome of the GMbC+BIO-ML collection and the closest 224 
representative genome of the UHGG database. Orange dots show results with all UHGG genomes, 225 
which includes metagenome-assembled genomes (MAGs). Green dots show comparisons only with 226 
genomes from cultivated bacteria of human gut origin. The red dash line shows the threshold (D=0.05) 227 
that is classically used to delineate bacterial species. (E) In vivo abundance of all species in the 228 
GMbC+BIO-ML collection, across all individuals. Individuals are colored by lifestyle category (UI in 229 
orange, RI in green, UN in blue and RN in purple). Abundances are represented on a log scale. Species 230 
that were not detected by metagenomic profiling with Kraken2 (species of low abundance or that have 231 
no close representatives in genome collections) are shown as dots; species detected by Kraken2 are 232 
shown as triangles. The in vivo abundance of each species in the isolate collection was calculated by 233 
mapping metagenomic reads against isolate genomes of each species sampled from each individual 234 
(see Methods).  235 
 236 

 237 

Individual gut microbiomes harbor extensive recent HGTs  238 

 239 

We first detected and quantified HGT events that occurred recently in human history. 240 

We screened all genomes for large blocks of 100% identical DNA that were shared between 241 

any pairs of genomes of different species, retaining blocks larger than 500bp (hereafter named 242 

“500bp+ HGTs”) or larger than 10kb (“10kb+ HGTs”). HGT is the best explanation for these 243 

observations compared to vertical inheritance, as the expected number of mutations between 244 

highly conserved and vertically inherited ribosomal genes of different species far exceeds the 245 

threshold (0 SNP) used in our heuristic to retain candidate HGTs (Supp. Fig. 2A). 10kb+ HGTs 246 

that do not contain any mutation correspond to events that occurred between 0 and ~100 247 
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years ago: assuming a genome size in the order of 106 bp and molecular clock of 1 248 

SNP/genome/year, it would take 1 year for a 10kb HGT to accumulate 10-2 SNPs, which 249 

corresponds to taking 100 years to experience 1 SNP and to be filtered out from our analysis. 250 

Thus, these 10kb+ HGTs likely occurred over the most recent 2-3 human generations, 251 

including within the sampled individuals. In this study, we focus on transfers occurring between 252 

bacterial species, ignoring within-species gene recombination events. We removed putative 253 

contaminants from the analysis by filtering out HGTs with low relative sequencing coverage 254 

(i.e. compared to the coverage of the two genomes under consideration; see Methods), 255 

resulting in a set of HGTs with median relative coverage of 1.13 (Supplementary Figure 2B). 256 

We found that 90% (7,031/7,781) and 53% (4,096/7,781) of our genomes are involved in at 257 

least one 500bp+ HGT and one 10kb+ HGT, respectively (Fig 2A, Supp. Table 5), covering a 258 

diversity of taxonomic groups (Fig. 2B). HGTs included genes that are involved in a variety of 259 

cellular, metabolic and informational functions (Supp. Fig. 3A), with selfish element and 260 

phage/conjugative transposon functions being enriched in the set of 500bp+ HGTs and 10kb+ 261 

HGTs, respectively (Supp. Fig. 3B). Many of the genes carried by within-person 10kb+ HGTs 262 

segregate at high frequencies in bacterial populations within each host, suggesting potential 263 

fixation (Supp. Fig. 4). However, the majority of transferred genes are found at low frequency, 264 

reflecting their recent acquisition in the population (Supp. Fig. 4). 265 

While HGTs were detected at the level of genomes, we computed HGT counts and 266 

frequencies at the level of species. To measure the HGT count of a given pair of species in a 267 

given pair of individuals, we counted the number of genome pairs that share at least one HGT, 268 

and divided this number by the total number of genome pairs for this species pair in those 269 

individuals to derive the HGT frequency (see Methods). We used this conservative approach 270 

(Smillie et al., 2011) rather than considering the absolute number of distinct blast hits between 271 

two genomes to avoid inflating estimates of HGT frequency, as poor assembly or genomic 272 
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processes such as transposition might result in splitting a single large HGT into many smaller 273 

apparent HGT events.   274 

 275 
 276 
Figure 2 - Diverse human gut bacteria recently engaged in frequent HGT 277 
A) Phylogenomic tree of the 7,781 human gut bacterial isolates that we analyzed in this study, which 278 
were sampled from 15 human populations. The tree has been reconstructed by maximum likelihood 279 
with a multiple sequence alignment of ribosomal protein coding-genes. Branches are colored by phylum 280 
and branch lengths are expressed in expected number of substitutions per site. The inner (purple) and 281 
outer (blue) rings show genomes in which at least 1 HGT larger than 500bp and 10kb was detected, 282 
respectively. B) Networks of within-person HGT frequency derived from 500bp+ (left) and 10kb+ (right) 283 
HGTs. Vertices represent bacterial species and are colored by phylum. Edge width is proportional to 284 
the average within-person  HGT frequency between the two connected species. Colored edges show 285 
within-phylum HGTs, while grey edges represent between-phylum HGTs. 286 
 287 

To test whether these HGTs occurred recently, we compared the frequency and count 288 

of 10kb+ HGTs observed between bacteria isolated from a single individual with that observed 289 

between the same bacteria from different individuals. We hypothesized that if transfers occur 290 

frequently within individual microbiomes, then we would observe higher levels of transfer 291 

between strains isolated from a single host. Alternatively, if transfers rarely occur, i.e. at rates 292 

slower than strain turnover, then we would observe similar levels of HGT between bacteria 293 

regardless of whether they were isolated from the same host. Importantly, both within-person 294 

and between-people HGTs include some background level of more ancient HGT (e.g. very 295 

slowly evolving genomic regions that are still 100% similar over the 10kb+ region) that do not 296 

result from direct sharing between two co-residing species in present microbiomes. Bacterial 297 
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species that share genes directly, however, will only be found in within-person comparisons. 298 

The difference between the within-person and between-people HGTs reflects the very recent 299 

HGTs that occurred within individuals, and thus can be quantified. We found that bacterial 300 

species pairs sampled within individuals are more likely to share recently transferred DNA 301 

than the same species pairs sampled from two different people: using a Poisson distribution, 302 

we compared the observed count of HGT events for pairs of species sampled within individual 303 

people to its expected value based on HGT frequencies of the same species pairs found 304 

between people (Figure 3A, p-value < 2.2x10-308). This comparison allows us to correct for 305 

differences in the number of both genome and individual pairs being sampled between the 306 

two categories (within-person vs. between-people) (See Methods, section “Statistical 307 

analyses”). We also randomly downsampled our data to further control for the unequal 308 

sampling of genomes across individual pairs (see Methods, section “Statistical analyses”), 309 

which confirmed that observed HGT counts within individual people are higher than expected 310 

HGT counts (100 random replicates, Welsh t-test, t=259.56, df=102.44, p-value = 3.3x10-146). 311 

 312 

  313 
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 314 
Figure 3 - HGTs accumulate rapidly within the gut microbiome of individual people 315 
A) HGT frequencies within and between people were computed using the whole set of 7,781 genomes 316 
and were averaged across all within-person and between-people pairs, respectively. Each solid line 317 
represents a bacterial species pair sampled both within and between individuals, and connects HGT 318 
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frequencies in the two categories of pairs of individuals. The order in which lines are displayed is at 319 
random. A null HGT frequency in either within-person or between-people categories means that 320 
no recent HGT was detected across all genome pairs. Differences in HGT frequency are colored 321 
along a gradient from grey (no difference) to red (within-person HGT frequency is higher than between-322 
people) or from grey to blue (between-people HGT frequency is higher than within-person), with darker 323 
colors representing greater differences. The two barplots show the observed total 10kb+ and 500bp+ 324 
HGTs for bacterial species pairs found within individuals (left bars), compared to their expected values 325 
(right bars), based on HGT frequencies of the same species pairs found between people. The p-value 326 
was calculated by comparing the observed to the expected HGT counts with a Poisson distribution. The 327 
number of species and genome pairs for each comparison and category are listed in Supp. Table 6. B) 328 
Association between within-person HGT frequency and phylogenetic distance of pairs of species, 329 
compared to between-people HGT frequency. The top and bottom panels show the associations for 330 
10kb+ and 500bp+ HGTs, respectively. The HGT frequency is plotted using a LOESS regression. 331 
Phylogenetic distances were derived from the phylogenetic tree shown in Figure 2A and are expressed 332 
in number of amino acid substitutions per site in the multialignment of ribosomal proteins. Three species 333 
pairs are placed on the x-axis for illustration. HGT frequencies at distances lower than the smallest 334 
between-species distances (left part of the curves) are extrapolated. Bands represent confidence 335 
intervals calculated from the standard errors. Bars show the average HGT frequencies across all 336 
species pairs in each bin. The within-person HGT frequency is higher than between-people frequency 337 
across phylogenetic distance bins (Fisher’s method to combine p-values - see Methods, section 338 
‘Statistical Analyses’). C) Host generation in which observed HGT0s occurred in our simulation. HGT0s 339 
correspond to HGTs detected in the microbiome in generation 0, at present time. Light green bars show 340 
results obtained when using a Beta probability distribution β(2, 11) the intergenerational transmission 341 
of bacterial species of mean ~0.16. Dark green bars show results obtained with a Beta distribution β(2, 342 
2) of mean 0.5. D) ‘Upset’ plot showing the intersections between the sets of species pairs involved in 343 
within-person HGTs of ARG, CAZyme and virulence genes. Each row corresponds to a function set, 344 
and each column corresponds to an interaction configuration. Empty cells (light-gray) indicate that the 345 
set is not part of the intersection, and filled (black) cells show sets that participate in the intersection. 346 
Barplots on the top and right of the matrix layout show absolute counts of species pairs for each 347 
intersection and each set, respectively. Barplots in the bottom show the relative intersection sizes for 348 
Firmicutes and Bacteroides species pairs. E) Within-person acquisition of genes in Bacteroides vulgatus 349 
genomes over the course of 358 days. The core-SNP phylogenetic tree depicts the relationships 350 
between all B. vulgatus isolates sampled across all individuals in our dataset. The clade colored in blue 351 
shows the isolates that were longitudinally sampled from individual “am”. The IDs of the other individual 352 
hosts are shown next to each corresponding clade of isolates. The tree strongly suggests that am’s 353 
isolates originate from one colonization event. Middle and right panels show gene presence/absence 354 
in all isolate genomes (rows), sorted by sampling times. The right panel is a zoom-in of the set of gene 355 
families (orange box in the middle panel) that were absent in the B. vulgatus pangenome at the first 356 
time point, but were later present within individual am. Supp. Fig. 7 shows similar figures for B. ovatus, 357 
B. longum and A. muciniphila in donor am, and all B. fragilis lineages in donors am, L03, L04, L05, L06 358 
and L07. Supp. Table 9 shows the numbers, IDs and sampling dates of all genomes. F) Within-person 359 
rates of gene gain (left) and loss (right) in the pangenome (expressed as number of events per year). 360 
In each individual, rates were calculated for all pairs of sampling timepoints. Rates were calculated 361 
using the set of gene families absent in the pangenome at the first timepoint, but present in the 362 
pangenome at the later timepoint. Rates of gene gain were heterogeneous, in contrast to SNP-363 
accumulation rates, which are constant within individuals (the molecular clock hypothesis (Zhao et al., 364 
2019)). We controlled for read coverage at the gene level to call for the presence/absence of a gene in 365 
a given genome (see Methods). G) Correlation between within-person rates of gene gain and gene loss 366 
in gut bacterial pangenomes. The blue line represents the linear regression between gene gain and 367 
loss. The yellow line shows the y=x line. 368 
 369 

 370 

 We next controlled for the effect of phylogeny on this result, as more closely-related species 371 

are more likely to engage in HGT (Smillie et al., 2011) and could be unevenly distributed 372 

between within-person and between-people categories. In our data, phylogenetic relatedness 373 
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strongly associates with 10kb+ HGT frequency (Generalized Linear Mixed Effects models 374 

(GLME), N (species pairs) = 3,667, Odds Ratio (OR) = 0.02, CI (95%) = 0.01 - 0.06; combined 375 

with a Likelihood-Ratio Test (LRT), χ2 = 62.96, p-value = 2.1x10-15), but does not confound our 376 

result: the within-individual HGT is significantly higher than the between-people HGT  across  377 

phylogenetic distance bins (Fisher’s method; 𝜒2 = 204.5 and p-value = 7x10-28 for 10kb+ 378 

HGTs; 𝜒2 = 149.1 and p-value = 1.8x10-14 for 500bp+ HGTs) (Figure 3B). In addition, the 379 

higher levels of within-person HGTs are also observed when looking at the larger set of 380 

500bp+ HGTs (Poisson distribution, p-value < 2.2x10-308) (Figure 3A & Supp. Fig. 5J). We also 381 

investigated whether the higher within-person HGT that we observed at the aggregate level 382 

was present in individual populations as well. Performing our analyses for each of the sampled 383 

countries or ethnic groups containing more than 4 individuals separately, we found that this 384 

observation was replicated in each individual group (Supp. Fig. 5A-I). In addition, we controlled 385 

for the effect of the in vitro culturing of bacteria on the quantification of HGTs, as bacteria co-386 

cultured on the same plate or in the presence of antibiotics could experience HGTs that do 387 

not reflect in vivo events. Comparing within-person HGTs for species pairs sampled both 388 

within and between culturing plates, or with and without antibiotics in the culturing media, we 389 

did not find any significant increase in HGT for genome pairs grown on the same plate 390 

(Poisson distribution, total observed within-plate HGT counts vs. total expected counts: p-391 

value = 0.92; Paired Wilcoxon test, within-plate vs. between-plate HGT frequencies: p-value 392 

= 0.64) or in the presence of antibiotics (Poisson distribution, total observed with-antibiotic 393 

HGT counts vs. total expected counts: p-value = 1; Paired Wilcoxon test, with antibiotics vs. 394 

without antibiotics HGT frequencies: p-value = 0.35) (see Methods and Supp. Table 8 for all 395 

statistical comparisons). 396 

 397 

The signal of HGT enrichment within individuals compared to its expected value 398 

suggests that a broad and diverse set of bacterial species very recently engaged in HGT, and 399 

that HGTs can rapidly accumulate in bacterial pangenomes. Strictly speaking, we cannot yet 400 

distinguish between individual transfers that occurred in the host of origin from those that may 401 
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have occurred in a host’s parent or even grandparent. However, host intergenerational co-402 

transmission of species involved in past HGTs must occur to observe ancient HGT events in 403 

today’s microbiome. To be counted in our analyses, these HGTs must also not experience 404 

any mutation. We used a simulation approach to quantify the amount of HGTs in the host of 405 

origin (generation 0, sampled at present time) that would represent past HGT events 406 

originating from previous generations and that would not have experienced any mutation. 407 

Using estimates from our own data (see Methods), we fixed the number of species at each 408 

generation to 200 species, and the probability of engaging in HGT for any pair of species at 409 

each generation to 0.09. We used a previously published rate of mother-to-infant strain 410 

transmission, estimated to be about 16% (Ferretti et al., 2018), to fix the rate of 411 

intergenerational species transmission in our simulations. We also simulated data using a 412 

more extreme rate of 50% of species transmission across generations. We compared the use 413 

of a Uniform to a Beta distribution for estimating the probability of species vertical transmission 414 

from parental host to child, and compared results obtained with a mean transmission 415 

probability of either 16% (Ferretti et al., 2018) or 50%. We ran the simulation across 5 416 

generations, performing 100 replicates, and identified the origin of HGTs observed in the last 417 

generation, at present time. We found that the number of HGTs rapidly decays across 418 

generations (Fig. 3C and Supp. Fig 6). In total, the amount of 100% similar HGTs observed at 419 

present generation that originate from ancient generations is about 3% with the 16% 420 

probability of vertical species transmission, and about 25% when considering the extreme 421 

probability of 50% species transmission. These results strongly suggest that the vast majority 422 

of HGTs being seen in within-person species comparisons occurred during the present 423 

generation, i.e. during the lifetime of each sampled individual. 424 

 425 

 We next investigated whether, within people, bacterial species engage in the transfer 426 

of gene functions that may impact bacterial metabolism or host physiology. To test this, we 427 

looked at within-person transferred genes involved in antibiotic resistance (ARG), 428 

carbohydrate degradation (CAZyme) and virulence. We chose these functions in part because 429 
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they seemed likely to reflect relevant selective pressures in the human host, and also because 430 

there exist well curated databases of annotated genes. We found hundreds of species pairs 431 

engaging in the transfer of at least one of these three functions, with the majority of species 432 

pairs exchanging multiple functions (Fig. 3D), an observation relevant to both Firmicutes and 433 

Bacteroides species pairs (Fig. 3D).  434 

 435 

 436 

Bacterial species acquire genes at high and heterogenous frequency within individual 437 

people 438 

 439 

Next, we hypothesized that if bacteria frequently acquire new genes within each 440 

person, their pangenomes should exhibit strong variations in gene content over time. To 441 

directly measure the rate of within-person gene acquisition, we analyzed the gene repertoires 442 

of isolate genomes that were longitudinally sampled over the course of ~6 to 18 months in two 443 

previous studies: 198 isolate genomes from five species (Bacteroides fragilis, Bacteroides 444 

vulgatus, Bacteroides ovatus, Bifidobacterium longum and Akkermansia muciniphila) sampled 445 

in one individual (Poyet et al., 2019), and 191 Bacteroides fragilis isolate genomes sampled 446 

in five additional people (Zhao et al., 2019) (Fig 3E, Supp. Fig 7 & Supp. Table 9). As strain 447 

replacement between time points can contribute to pangenome diversity, we used SNPs and 448 

phylogenetic reconstructions to restrict our quantification of the dynamics of gene repertoires 449 

to clades of closely related genomes that diversified within their host following initial 450 

colonization of the gut (see Methods, Fig 3E, Supp. Fig 7 and phylogenetic trees reconstructed 451 

in reference (Zhao et al., 2019)). We also controlled for differences in genome set sizes and 452 

genome coverage between time points (see Methods and Supp. Fig 7). To account for 453 

potential errors during the assembly process, we used the read coverage information at the 454 

individual gene level to derive the final gene presence/absence profile of a given genome (see 455 

Methods). We first quantified the rates at which new genes are gained in the pangenome of 456 

these five species between any two time points. For each species in a single individual, we 457 



 

18 

found that the rate of gene acquisition in the pangenome is heterogeneous over time (Fig. 3F), 458 

varying from tens to hundreds of gene gains per year. This suggests that gene transfers do 459 

not accumulate in a clock-like fashion, probably because one HGT event can include a single 460 

gene or a large plasmid. Our results further show that average rates of gene gain in the 461 

pangenome per year are heterogeneous across species : Bacteroides species acquire new 462 

genes in their pangenome at higher rates compared to B. longum and A. muciniphila (238 (+/- 463 

132) genes/year for B. vulgatus, 353 (+/- 412) genes/year for B. ovatus, and 161 (+/- 124) 464 

genes/year for B. fragilis compared to 74 (+/- 25) genes/year for B. longum and 34 (+/- 20) 465 

genes/y for A. muciniphila) (Figure 3F & Supp. Table 10). These rates, which are directly 466 

estimated from longitudinal data, mirror those calculated from our cross-sectional inference in 467 

Figure 3A. Using the set of within-person HGTs, we calculated the average HGT frequency 468 

across all genome pairs involving either B. vulgatus, B. ovatus, B. fragilis, B. longum and A. 469 

muciniphila. We confirmed that Bacteroides species engage more frequently in HGT 470 

compared to B. longum and A. muciniphila, with average HGT frequencies equal to 2.2%, 471 

2.3%, 0.85%, 0.04% and 0.06% for 10kb+ HGTs in B. vulgatus, B. ovatus, B. fragilis, B. 472 

longum and A. muciniphila, respectively, and 8.6%, 10.1%, 6.0%, 0.81% and 1.64% for 473 

500bp+ HGTs, respectively. As expected, rates of gene gains are strongly correlated with 474 

rates of gene loss (Figure 3G; Spearman correlation, S = 1188, rho = 0.76, p-value = 2.3x10-475 

6), ultimately maintaining overall proteome sizes (Mira et al., 2001). Altogether, our results 476 

suggest that a variety of gene functions are horizontally exchanged in the gut microbiome of 477 

each host individual, and at rates that may be sufficiently high to reshape the functions of gut 478 

bacterial populations during an individual’s lifetime. 479 

 480 

 481 

HGT occurs at higher frequency in the gut microbiomes of industrialized populations 482 

 483 

Having found that HGT occurs frequently within individuals, we next investigated the 484 

extent to which HGT rates and functions vary across human populations that have different 485 
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levels of industrialization. For this, we looked at the bacterial species pairs in our dataset that 486 

are shared by pairs of population groups along our gradient of industrialization and 487 

urbanization, which comprises four lifestyle categories (Figure 4A, Supp. Table 1 & 11). This 488 

approach allowed us to compare populations with both major and more modest differences in 489 

lifestyle. This analysis also restricts HGT comparisons to species pairs that are shared 490 

between two host populations. As a consequence, we used a more inclusive definition of HGT 491 

(the set of 500bp+ HGTs) for this analysis to make up for the loss of statistical power that 492 

resulted from comparing populations two at a time. 493 

We found that species pairs sampled in the urban industrialized populations 494 

exchanged genes more frequently than when they occurred in the rural non-industrialized 495 

group. The number of observed HGTs found in species pairs of the urban industrialized group 496 

was compared to the expected number of events, based on the HGT frequency of the same 497 

species pairs in the rural non-industrialized populations, using a Poisson distribution, p-value 498 

< 2.2x10-308) (Figure 4B). These results hold whether averaging both within-person and 499 

between-people HGTs, or only within-person HGTs (Figure 4B). We also randomly 500 

downsampled the data to control for the unequal sampling of genomes across individual pairs 501 

(see Methods, section “Statistical analyses”), which confirmed that observed HGT counts in 502 

the urban industrialized group are higher than expected HGT counts (100 random replicates, 503 

Welsh t-test, t=225.04, df=154.8, p-value = 1.2x10-196). To check whether these effects were 504 

driven by outlier individuals rather than population-level differences, we shuffled membership 505 

of individuals across groups – either by shuffling the lifestyles of individuals or pairs of 506 

individuals – and re-ran the analysis; the true urban industrialized cohort still had significantly 507 

higher rates of HGT than the randomly created groups (1,000 permutations each, p-values < 508 

0.001, see Supp. Fig. 8). This effect also holds when restricting the analysis to each type of 509 

subsistence strategy (e.g. hunter-gatherer, pastoralist or farmer) within the rural non-510 

industrialized cohort, which we compared individually to the urban industrialized group (Supp. 511 

Fig 9).  512 
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Along our lifestyle gradient (Figure 4A), we consistently found that HGTs are much 513 

more frequent among the industrialized and/or urban populations across all pairwise group 514 

comparisons (Figure 4C & Supp. Fig. 10). This effect was observed across different 515 

comparison metrics, such as the average difference in HGT frequency, and the count and 516 

proportion of species pairs with higher HGT frequency (Figure 4D-F).  517 

  518 
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 519 

Figure 4 - Higher HGT frequency in the gut microbiomes of industrialized populations. 520 
(A) We compared the HGT frequency of all species pairs shared between groups of populations with 521 
different lifestyles, along a gradient of industrialization and urbanization. Comparisons were performed 522 
for all group pairs, using all available species pairs for the two groups under comparison. The number 523 
of species pairs sampled for each pair of population groups is shown. For each given species pair in a 524 
group, the average HGT frequency was calculated, using all within-person and between-people pairs. 525 
See Supp. Table 1 for population groupings. (B) Comparison of HGT frequencies for pairs of species 526 
sampled in both the urban industrialized and rural non-industrialized groups, averaged across all pairs 527 
of people (both within-person and between-people HGTs). Each line of the paired line plot represents 528 
a species pair sampled in both groups, and a null HGT frequency for a given group means that no 529 
recent HGT was detected across all genome pairs. The order in which lines are displayed is at random. 530 
Differences in HGT frequency between the two groups are colored along a gradient from grey (no 531 
difference) to purple (HGT frequency is higher in the urban industrialized populations) or from grey to 532 
green (HGT frequency is higher in the rural non-industrialized populations), darker colors representing 533 
higher differences. The barplots show the observed total HGT of bacterial species pairs found in the 534 
urban industrialized populations (left bar), compared to their expected value (right bar) based on HGT 535 
frequencies of the same species pairs sampled in the rural non-industrialized group. The left barplot 536 
shows HGT counts when considering all pairs of people, and the one on the right shows HGT counts 537 
from within-person HGTs only. Observed and expected HGT counts were compared with a Poisson 538 



 

22 

distribution (*: p-value < 2.2x10-308) The number of species pairs and genomes for each comparison 539 
and category are listed in Supp. Table 11. (C) We compared HGT counts with all lifestyle pairs (panel 540 
(A)). For lifestyle pairs involving the urban industrialized group (UI, left barplot), we computed the 541 
observed total HGTs of bacterial species pairs sampled in both groups, and generated an expected 542 
total HGT value for the UI group. The ratios of observed vs. expected HGT counts for the UI group were 543 
computed for each lifestyle pair, and are shown relative to the UI group. We used the same approach 544 
for lifestyle pairs involving the rural industrialized group (RI, middle barplot) and the urban non-545 
industrialized group (UN, right barplot). See Supp. Figure 10 for the comparison of all raw HGT counts. 546 
For each cohort pair, observed and expected HGT counts were compared with a Poisson distribution 547 
(*: p-value < 2.2x10-308). (D) Heatmap of the average difference in HGT frequency across all lifestyle 548 
pairs. Columns are compared against rows, with positive differences indicating higher HGT frequencies 549 
in lifestyles described in columns. (E) Heatmap of the difference in the absolute count of bacterial 550 
species pairs with higher HGT frequency, across all lifestyle pairs. Columns are compared against rows, 551 
with positive counts indicating a higher number of bacterial species pairs with higher HGT frequency in 552 
lifestyles described in columns. Species pairs with no HGT observed in neither category of lifestyle pairs 553 
were excluded from the counts. (F) Heatmap of the proportion of bacterial species pairs with higher 554 
HGT frequency, across all lifestyle pairs. Columns are compared against rows, with proportions higher 555 
than 50% indicating a higher proportion of bacterial species pairs with higher HGT frequency in lifestyles 556 
described in columns. Species pairs with no HGT observed in neither category of lifestyle pairs were 557 
excluded from the counts. 558 

 559 

 560 

We then controlled for different microbial and ecological factors that could confound 561 

this effect of lifestyle on HGT frequencies, such as bacterial phylogeny, bacterial cell-wall 562 

architecture and, more importantly, differences of species abundances between cohorts. We 563 

hypothesized that pairs of highly abundant species in a given ecosystem would have a higher 564 

probability of gene exchange compared to pairs involving at least one low-abundance species, 565 

independent of their phylogenetic distance. This hypothesis has never been directly tested 566 

because datasets that paired in-depth genomic sampling with accurate abundance estimates 567 

did not yet exist. To test the abundance hypothesis, we generated metagenomic data for the 568 

stool samples from which we had cultured bacterial isolates, and calculated the average 569 

abundance of each bacterial species within each person by mapping metagenomic reads 570 

against the isolate genomes (see Methods and Fig. 1E). To test for the effect of cell-wall 571 

architecture, we used reference Gram staining data for each bacterial species as a proxy of 572 

cell wall architecture, in order to separate gram-positive monoderm bacteria (single 573 

cytoplasmic membrane and a thick peptidoglycan layer) from gram-negative diderm bacteria 574 

(two membranes surrounding a thin peptidoglycan layer). We used generalized linear mixed 575 

effects (GLME) models combined with likelihood-ratio tests (LRTs) on the complete dataset to 576 

measure the effect of host lifestyle on HGT frequencies while also accounting for the 577 
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aforementioned factors (see Methods). We confirmed a significant association between 578 

lifestyle and HGT frequency (N (species pairs) = 10,104; OR for the industrialized lifestyle = 579 

1.99; CI (95%) = 1.96 - 2.03; LRT, χ2 = 6629.4, p-value < 2.2x10-308). We also found that 580 

species abundance is a strong determinant of HGT (N (species pairs) = 10,104; OR for lowly 581 

abundant species = 0.40; CI (95%) = 0.39 - 0.43; LRT, χ2 = 3225.4, p-value < 2.2x10-308) even 582 

after accounting for the effect of other factors in the GLME models (Fig. 5A). Abundant bacteria 583 

are more likely to engage in HGT with other abundant bacteria, which is consistent with the 584 

canonical mechanisms of HGT (e.g. conjugation, transformation, and transduction (Thomas 585 

and Nielsen, 2005)) which involve cell-to-cell contact or access to free DNA in the 586 

environment. In addition, we found that Gram-negative bacteria engage more frequently in 587 

HGTs than Gram-positive bacteria (N (species pairs) = 10,104; OR for Gram-negative bacteria 588 

= 9.2; CI (95%) = 6.6 - 12.8; LRT, χ2 = 166.3, p-value = 4.7x10-38, Figure 5B). This intriguing 589 

result motivates further investigation to understand the mechanisms driving increased rates of 590 

HGT between intestinal Gram-negative bacteria.  591 

  592 
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 593 
Figure 5 - Highly abundant bacteria and Gram-negative bacteria are associated with higher rates 594 
of HGT. 595 
A) Contribution of bacterial species abundance to HGT frequency, measured with 500bp+ HGTs. The 596 
individual effect of abundance was measured with a GLME model (p-value < 2.2x10-308, see Methods) 597 
and plotted using a LOESS regression. HGT frequency is plotted for different species abundance bins. 598 
Bacterial abundances were calculated for each species in each individual by mapping metagenomic 599 
reads against individual isolate genomes (see Methods). We used the distribution of bacterial 600 
abundances within individual people (Fig. 1E) to define a threshold of 1% relative abundance to 601 
separate highly and lowly abundant bacteria (see Methods). Our results hold using a 5% threshold to 602 
define high abundance (GLME, OR for lowly abundant species = 0.47; CI (95%) = 0.45 - 0.48; LRT, χ2 603 
= 2668.1, p-value = 1.5x10-71). B) Contribution of cell wall architecture on HGT frequency, measured 604 
with 500bp+ HGTs. The effect of cell wall architecture was measured with a GLME model and plotted 605 
with a LOESS regression. We used Gram staining as a proxy to call for monoderm or diderm bacteria 606 
(see Methods). 607 
 608 

 609 

Functions of recent HGTs reflect host lifestyle 610 

 611 

We reasoned that if HGT can rapidly occur in response to changes in host lifestyle, 612 

then the type of genes being transferred should reflect the selective pressures associated with 613 

different populations (Brito et al., 2016). We first compared the profile of HGTs across broadly 614 

defined functional categories using species pairs found across different lifestyles. We found 615 

significant differences in HGT functions, with the rural non-industrialized cohort having the 616 
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most different profile compared to other lifestyles (Figure 6, chi-square Goodness-of-fit test, 617 

p-values < 0.001).  618 

We then focused on genes involved in key functions that likely differ across 619 

populations, such as antibiotic resistance, carbohydrate active enzyme (CAZyme), and 620 

virulence genes. We also looked at genes involved in the function of mobile genetic systems 621 

(such as phages, plasmids and transposons). We found that gut bacteria in industrialized 622 

populations tend to have higher rates of gene exchange for genes involved in plasmids and 623 

transposons (Supp. Fig. 12A, two-proportions Z-tests, corrected p-values < 0.001). This 624 

finding is consistent with the elevated rates of HGTs that we observed in the gut microbiomes 625 

of these individuals (Figure 4). In almost all comparisons, non-industrialized cohorts, who 626 

generally consume larger amounts of non-digestible fiber (Makki et al., 2018; Smits et al., 627 

2017), harbored gut bacteria that exchanged CAZyme genes at higher frequencies than 628 

individuals living in industrialized and/or urban regions (Figure 6). High transfer rates of 629 

antibiotic resistance genes were also found in the gut microbiomes of both urban and rural 630 

non-industrialized populations, which correlates with the higher environmental prevalence of 631 

antibiotic resistance genes (ARGs) in low- and middle-income countries (Hendriksen et al., 632 

2019; Pehrsson et al., 2016). This is further consistent with studies showing that antimicrobial 633 

resistance is increasing in livestock from low- and middle-income regions (Van Boeckel et al., 634 

2019).  635 

  636 
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 637 

Figure 6 - Functions of recently transferred genes are associated with host lifestyle.  638 
Genes within HGTs were annotated using a variety of reference gene function databases (see Methods) 639 
to compare functional profiles of transferred genes across our gradient of industrialization and 640 
urbanization. Profiles of COG functional categories were compared using chi-square Goodness-of-fit 641 
tests (***: p-values < 0.001) ; HGT frequencies for ARG, CAZyme, and virulence genes were compared 642 
for all lifestyle pairs using two-proportion Z-tests followed by Bonferroni correction for multiple tests (**: 643 
p-values < 0.01; ***: p-values < 0.001). For a given cohort pair of different lifestyles, functions were 644 
averaged across all pairs of individuals in each cohort. In addition, for any given cohort comparison, 645 
frequencies of HGT functions were calculated using only species pairs that were sampled in both 646 
cohorts. Because sets of co-sampled species change across pairwise cohort comparisons, the 647 
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functional HGT profile of a given cohort differs slightly from one cohort pair to another. However, these 648 
differences are non-significant (Levene’s test for Homogeneity of Variance, p-value = 0.17, see Supp. 649 
Fig. 11), suggesting that our functional HGT profiles are not biased by differences in species sampling. 650 
 651 

 652 

We found that the Datoga - Tanzanian pastoralists who primarily raise cattle and 653 

consume high levels of meat and dairy products from their animals - had the highest levels of 654 

ARG transfers (Supp. Fig. 12B). Like other pastoral farmers in northern Tanzania, they 655 

administer antibiotics to their herds (Caudell et al., 2017; Sieff, 1999). Our results suggest that 656 

these recent agricultural practices rapidly altered the fitness landscape in the guts of the 657 

Datoga people and have already impacted the patterns of gene transfers within their 658 

microbiomes. As the use of commercial antimicrobials is now widespread among pastoralist 659 

populations in developing countries, similar effects may occur in many populations worldwide 660 

with broader impact on the spread of antimicrobial resistance outside the clinic.  661 

 662 
 663 
 664 
Discussion 665 

 666 

This article reports the first large-scale genomic investigation of the effects of 667 

industrialization and urbanization on HGTs in the human gut microbiome. To accurately 668 

measure HGT frequency, we cultured and isolated gut bacteria to generate high quality 669 

genome assemblies. In addition, to identify the most recent HGTs and investigate effects of 670 

host lifestyle, we generated an extensive diversity of isolate genomes within individuals and 671 

between people, but also from diverse human populations. Taken together, our results 672 

suggest that HGT occurs frequently within the gut microbiome of each person, and is 673 

particularly rampant in industrialized populations. These results indicate that transitioning to 674 

industrialized (and urban) lifestyles resulted in an increase in gene transfers within the gut 675 

microbiome. We can speculate that increased population density and/or perturbations in the 676 

gut ecosystem associated with the consumption of processed foods and increased sanitation 677 

more frequently promote gene exchange in the gut microbiome. The overall elevated 678 
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frequency of HGTs in industrialized microbiomes could also indirectly result from the shifts in 679 

microbiome composition that occur when transitioning to industrialized lifestyles (Vangay et 680 

al., 2018), resulting in new assortments of species that frequently exchange genes. However, 681 

our analyses captured an intrinsic response of bacterial genomes to industrialization, as our 682 

HGT estimates were calculated for pairs of species that were present across different 683 

lifestyles, in all pairs of population groups under comparison. 684 

Our study has limitations. First, our sampling design did not allow us to quantify rates 685 

of gene acquisition in non-industrialized individuals. Many non-industrialized populations have 686 

seasonal variations in diet and social activities, which are reflected in seasonal variations in 687 

microbiome compositions (Smits et al., 2017). It is likely that variations in these environmental 688 

factors also impose varying selective pressures on gut bacteria. Investigating such effects on 689 

the frequency and patterns of HGTs would greatly contribute to our understanding of how the 690 

gut microbiome responds to lifestyle. Second, we did not examine the mechanisms by which 691 

lifestyle-associated factors may drive increased HGT in the gut microbiome of industrialized 692 

populations.   693 

Microbiome perturbations that occur during adaptation to industrialization are 694 

hypothesized to contribute both to the establishment of low-grade chronic intestinal 695 

inflammation in healthy individuals and to the higher incidence of inflammation-associated 696 

diseases of the industrialized world, such as inflammatory bowel disease (Sonnenburg and 697 

Sonnenburg, 2019b). Inflamed environments drive changes in species composition by 698 

favoring the bloom of oxygen-tolerant and pathogenic species that are particularly prone to 699 

engage in HGT (Zeng et al., 2017), such as Enterobacteriaceae. In a mouse colitis model, 700 

Salmonella enterica and Escherichia coli were previously shown to bloom and to engage in 701 

HGT (Stecher et al., 2012). Further investigations are needed to illuminate how inflammation 702 

could drive the increase in HGT in the industrialized microbiome.   703 

Numerous studies have investigated how changes in diet and clinical practices, such 704 

as fecal microbiota transplants (Li et al., 2016; Smillie et al., 2018), impact the composition of 705 

the gut microbiome. But inferring mechanistic understanding from compositional changes is 706 
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difficult. Our study reveals that HGT within the gut microbiome reflects the unique selective 707 

pressures of each human host. Thus, HGT patterns can be used to identify selective forces 708 

acting within each individual and thereby to gain a more mechanistic understanding of these 709 

events. Our results also show that whole genome sequencing data provides information on 710 

individual microbiome function at a level of precision that popular approaches, such as 16S 711 

amplicon and metagenomic sequencing, cannot achieve. Finally, the high rate of HGT in the 712 

human gut may be a recent development in response to the industrialized lifestyle, 713 

accompanied by changes in the function of genes being exchanged. We may not yet fully 714 

appreciate the consequences of these potential shifts in HGT frequency and function for 715 

human health. 716 

 717 
  718 
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 719 

STAR★Methods 720 
 721 
Key Resources Table 722 
 723 
REAGENT or RESOURCE SOURCE IDENTIFIER 

Bacterial Strains 

From GMbC individuals This paper, see Supp Table 
2  

dbGaP Study ID: 38715 
Accession: 
phs002235.v1.p1 

From USA individuals of the 
Boston area   

Poyet et al., 2019 NCBI 
BioProject PRJNA544527 

Critical Commercial Assays 

DNeasy PowerSoil Kit Qiagen Cat No./ID: 12955-4 

DNeasy UltraClean 96 
Microbial Kit 

Qiagen Cat No./ID: 10196-4 

Nextera® DNA Sample 
Preparation Kit  

Illumina Cat No./ID: FC-121-1031 

Deposited Data 

Metagenomes and isolate 
genomes from GMbC 
individuals 

This paper dbGaP Study ID: 38715 
Accession: phs002235.v1.p1 

Metagenomes and isolate 
genomes from USA 
individuals   

Poyet et al., 2019 NCBI 
BioProject PRJNA544527 

Software and Algorithms 

cutadapt (version 1.12) Martin, 2011 https://cutadapt.readthedocs
.io/en/stable/ 

Trimmomatic (version 0.36) Bolger et al., 2014 http://www.usadellab.org/cm
s/?page=trimmomatic 

SPAdes (version .3.9.1) Bankevich et al., 2012 https://github.com/ablab/spa
des 

SSPACE (version 3.0) Boetzer et al., 2011 https://github.com/nsoranzo/
sspace_basic 

GapFiller (version 1-10) Nadalin et al., 2012 https://sourceforge.net/proje
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cts/gapfiller/ 

BBmap (version 37.68)  https://jgi.doe.gov/data-and-
tools/bbtools/ 

Prokka (version 1.12) Seemann, 2014 https://github.com/tseemann
/prokka 

CheckM (version 1.0.7) Parks et al., 2015 https://github.com/Ecogeno
mics/CheckM/wiki 

Mash (version 1.1.1) Ondov et al., 2016 https://mash.readthedocs.io/
en/latest/ 

micropan R package Snipen and Liland, 2015 https://cran.r-
project.org/web/packages/mi
cropan/index.html 

Diamond (version 0.8.22.84) Buchfink et al., 2015 http://www.diamondsearch.o
rg/index.php 

Mafft (version 7.310) Nakamura et al. 2018 https://mafft.cbrc.jp/alignme
nt/software/ 

BMGE (version 1.12) Criscuolo and Gribaldo, 
2010 

ftp://ftp.pasteur.fr/pub/genso
ft/projects/BMGE/ 

Seaview (version 4.7) Gouy et al. 2010 http://doua.prabi.fr/software/
seaview 

FastTree (version 2.1.10) Price et al., 2010 http://www.microbesonline.o
rg/fasttree/ 

Roary (version 3.11.2) Page et al., 2015 https://github.com/sanger-
pathogens/Roary 

Gubbins (version 2.2.0) Croucher et al., 2015 https://sanger-
pathogens.github.io/gubbins
/ 

SNP-sites (version 2.4.1) Page et al., 2016 https://github.com/sanger-
pathogens/snp-sites 

Blastn (version 2.6.0) Camacho et al., 2009 https://ftp.ncbi.nlm.nih.gov/bl
ast/executables/blast+/LATE
ST/ 

Trim Galore (version 0.5.0)  https://github.com/FelixKrue
ger/TrimGalore 

Fastuniq (version 1.1) Xu et al. 2012 https://sourceforge.net/proje
cts/fastuniq/ 

BWA (version 0.7.13) Li and Durbin 2009 https://github.com/lh3/bwa 

Kraken2 (version 2.0.8-beta) Wood et al. 2019 https://github.com/DerrickW
ood/kraken2/wiki 
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Bracken (version 2.5) Lu et al. 2017 https://github.com/jenniferlu
717/Bracken 

vegan R package  https://cran.r-
project.org/web/packages/ve
gan/index.html 

Prodigal (version 2.6.3) Hyatt et al., 2010 https://github.com/hyattpd/Pr
odigal 

vsearch (version 2.3.4) Rognes et al., 2016 https://github.com/torognes/
vsearch 

eggNOG-mapper Huerta-Cepas et al., 2017 http://eggnogdb.embl.de/#/a
pp/emapper 

InterProScan (version 5.36-
75.0) 

Jones et al., 2014 https://www.ebi.ac.uk/interpr
o/search/sequence/ 

Hmmer3 (version 3.1b2) Mistry et al., 2013 http://hmmer.org/ 

lme4 R package Bates et al., 2015 https://cran.r-
project.org/web/packages/lm
e4/index.html 

lmtest R package  https://cran.r-
project.org/web/packages/lm
test/index.html 

Other 

NCBI Genome database  ftp://ftp.ncbi.nlm.nih.gov/gen
omes/ 

RiboDB database Jauffrit et al., 2016 https://umr5558-
bibiserv.univ-lyon1.fr/ 

Resfam database Gibson et al., 2014 http://www.dantaslab.org/res
fams 

dbCAN database Yin et al., 2012 http://bcb.unl.edu/dbCAN/ 
 724 
 725 
Resource Availability 726 
 727 
Lead Contact 728 
Further information and requests for resources and reagents should be directed to and will 729 
be fulfilled by the Lead Contact, Eric J Alm. 730 
 731 
Materials Availability 732 
Bacterial strains generated in this study are available upon request to the Lead Contact, Eric 733 
J Alm. 734 
 735 
 736 
 737 



 

33 

Data and Code Availability 738 
Newly generated data (raw reads and genome assemblies for GMbC isolates and shotgun 739 
metagenomic data for GMbC individuals) will be made available online on the dbGaP server 740 
upon acceptance of this manuscript (Study ID: 38715; Accession: phs002235.v1.p1). 741 
Metagenomes and isolate genomes of USA individuals from the Boston area are available on 742 
the NCBI (BioProject PRJNA544527). 743 
 744 
Scripts and command lines used to process the sequencing and genomic data are available 745 
at https://github.com/almlab/GMbC_HGTs 746 
  747 
HGT data (genomic coordinates, species, individual host, length, functional annotations) are 748 
available on the Open Science Framework at https://osf.io/pr2fw/ 749 
 750 
 751 
Experimental Model and Subject Details 752 
 753 

Study cohorts 754 
Stool samples from 37 individuals recruited worldwide as part of the Global Microbiome 755 
Conservancy project (microbiomeconservancy.org) were obtained from Inuit individuals in 756 
Canadian Arctic, Sami and Finnish individuals in Finland, Beti and Baka individuals in 757 
Cameroon, Hadza and Datoga individuals in Tanzania, individuals from the North Plain Tribes 758 
in Montana (USA), Igbo and Yoruba individuals in Nigeria and Ashanti, Fante, Ga and Ahafo 759 
individuals in Ghana. Written informed consent was obtained from all participants. Research 760 
& ethics approvals were obtained from the MIT IRB (protocol #1612797956), but also in each 761 
sampled country prior to the start of sample collection, from the following local ethics 762 
committees: Chief Dull Knife College (Montana), protocol #FWA00020985; Comite National 763 
d’Ethique de la Recherche pour la Sante Humaine (Cameroon), protocol 764 
#2017/05/901/CE/CNERSH/SP; Nunavut Research Institute (Canada), protocol #0205217N-765 
M; National Institute for Medical Research (Tanzania), protocol #NIMR/HQ/R.8a/Vol. IX/2657; 766 
Coordinating Ethics Committee of Helsinki and Uusimaa Hospital District (Finland), protocol 767 
#1527/2017; Cape Coast Teaching Hospital Ethical Review Committee (Ghana), protocol 768 
#CCTHERC/RS/EC/2016/3; Committee on Human Research, Publication and Ethics of the 769 
Komfo Anokye Teaching Hospital (Ghana), protocol #CHRPE/AP/398/18; National Health 770 
Research Ethics Committee of Nigeria (Nigeria), protocol #NHREC/01/01/2007-29/04/2018. 771 
 772 
Sample collection 773 
Participants produced a fecal sample in a sterile container that was immediately returned to 774 
researchers in the field. Raw stool was diluted 1:5 in 25% pre-reduced (anaerobic) glycerol 775 
solution containing acid-washed glass beads, and were immediately homogenized and 776 
aliquoted into cryogenic 2mL tubes. Stool samples aliquoted in cryoprotectant were 777 
immediately flash frozen in the field at -196C, using a cryoshipper tank. Samples were then 778 
shipped to MIT for processing, culturing and storage. 779 
 780 
Isolate genome dataset 781 
In this study, we sequenced the genome of 4,149 gut bacterial isolates that we cultured from 782 
the stool sample of 37 individuals. We completed our genome dataset with the 3,632 isolate 783 
genomes of the BIO-ML collection that we previously generated from 11 USA individuals 784 
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recruited in the Boston area (Poyet et al., 2019), providing a dataset of 48 individuals from 15 785 
populations. 786 
 787 
Supplementary Table 1 contains metadata information about each subject enrolled in this 788 
study; Supplementary Table 2 contains metadata for each of the 7,781 isolates, and 789 
Supplementary Table 9 provides information about the genomes that were used in the 790 
longitudinal analysis. 791 
 792 
 793 
Method Details 794 
 795 
DNA extraction, library construction and Illumina sequencing for shotgun 796 
metagenomics 797 
We used the DNeasy PowerSoil Kit (Qiagen) with manufacturers’ protocols to extract microbial 798 
genomic DNA from stool samples. Genomic DNA libraries were constructed from 1.2ng of 799 
cleaned DNA using the Nextera XT DNA Library Preparation kit (Illumina) according to the 800 
manufacturer’s recommended protocol, with reaction volumes scaled accordingly. Prior to 801 
sequencing, libraries were pooled by collecting equal quantity of each library from batches of 802 
94 samples. Insert sizes and concentrations of each pooled library were determined using an 803 
Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). Paired-end sequencing (2x150-bp 804 
reads) was performed using an Illumina NextSeq 500 instrument (Illumina Inc) at the Broad 805 
Institute. 806 
 807 
Culturing and isolation of bacterial isolates 808 
To culture and isolate the 4,149 bacterial strains generated in this study, we used stool 809 
samples collected from 37 individuals across 14 human populations. To obtain an exhaustive 810 
representation of the diversity of human gut bacteria, human fecal samples were processed 811 
anaerobically at every step in a chamber, using gas monitors controlling physico-chemical 812 
conditions (5% Hydrogen, 20% Carbon dioxide, balanced with Nitrogen). Human fecal 813 
samples were diluted in pre-reduced PBS (with 0.1 % L-cysteine hydrochloride hydrate). 814 
Diluted samples were then plated onto pre-reduced agar plates and incubated anaerobically 815 
at 37°C for 7 to 14 days. Both general (nonselective) and selective media were used to culture 816 
diverse groups of organisms. We used different culturing media, combined with antibiotic, acid, 817 
and ethanol treatments to isolate 4,149 bacterial strains. See Supplementary Table 2 for 818 
culturing media used in this study and other metadata for each isolate. After incubation, 819 
bacteria were isolated by picking individual colonies with an inoculation loop. They were 820 
streaked onto a second pre-reduced agar plate to increase colony purity. After 2 days of 821 
incubation at 37°C, one colony was re-streaked again onto third agar plate for 2 additional 822 
days of incubation. One colony from each individual streak was then inoculated in liquid media 823 
in a 96-well culture plate. After 2 days of anaerobic incubation at 37°C, the taxonomy of the 824 
isolate was identified using 16S rRNA gene Sanger sequencing (starting at the V4 region). 825 
We first amplified the full 16S rRNA gene by PCR (27f 5’-AGAGTTTGATCMTGGCTCAG-3’ - 826 
1492r 5’-GGTTACCTTGTTACGACTT-3’) and then generated a ~1kb long sequence by 827 
Sanger reaction (u515 5’-GTGCCAGCMGCCGCGGTAA-3’). All isolates are stored in -80°C 828 
freezers in a pre-reduced cryoprotectant glycerol buffer. 829 
 830 
 831 
 832 
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DNA extraction, library construction and Illumina sequencing of Whole Genomes 833 
We used the DNeasy UltraClean96 MicrobioalKit (Qiagen) and the PureLinkPro96_gDNAkit 834 
(Invitrogen) kits to extract whole genome DNA from isolate colonies, following manufacturers’ 835 
protocols. Genomic DNA libraries were constructed from 1.2ng of DNA using the Nextera XT 836 
DNA Library Preparation kit (Illumina), following the manufacturer’s protocol, with reaction 837 
volumes scaled accordingly. Prior to sequencing, we pooled on average 250 samples with 838 
equal quantities of DNA. Insert size and concentration of each pooled library were determined 839 
using an Agilent Bioanalyzer DNA 1000 kit (Agilent Technologies). Paired-end (2x150bp) 840 
reads sequencing was performed using an Illumina NextSeq 500 instrument (Illumina Inc) at 841 
the Broad Institute. 842 
 843 
Draft assembly and annotation of whole genome sequences 844 
All parameters used to generate whole genome assemblies from 2x150bp paired-end data 845 
and used to perform downstream genomic analyses are embedded in the method descriptions 846 
below. 847 
 848 
Briefly, reads were first demultiplexed using in-house scripts. We used cutadapt v1.12 (Martin, 849 
2011) to remove barcodes and Illumina adapters (with parameters -a CTGTCTCTTAT -A 850 
CTGTCTCTTAT). We used Trimmomatic v0.36 (Bolger et al., 2014) for the quality filtering of 851 
data (with parameters PE -phred33 LEADING:3 TRAILING:3 SLIDINGWINDOW:5:20 852 
MINLEN:50). Reads were assembled de novo into contigs using SPAdes v.3.9.1 (Bankevich 853 
et al., 2012) (with parameter --careful). To iteratively improve genome assemblies, we used 854 
SSPACE v3.0 (Boetzer et al., 2011) and GapFiller v1-10 (Nadalin et al., 2012) to scaffold 855 
contigs and to fill sequence gaps (with default parameters). Scaffolds smaller than 1kb were 856 
removed from genome assemblies. We aligned all reads back to the assembly to compute 857 
genome coverage using BBmap v37.68 (https://jgi.doe.gov/data-and-tools/bbtools/) and the 858 
covstats option (with default parameters). The final assemblies were annotated using Prokka 859 
v1.12 (Seemann, 2014) (with default parameters).   860 
 861 
Assessing assembly quality 862 
We measured genome assembly statistics using CheckM v1.0.7 (Parks et al., 2015) (with 863 
parameters lineage_wf --tab_table -x fna Prokka_annotations/). All summary and quality 864 
statistics can be found in Supplementary Table 3. The median assembly completeness of all 865 
7,781 genomes is 99.33%, the median contamination is 0.3%, the median scaffold N50 is 866 
144kb, and the median coverage is 120X. 867 
 868 
Clustering genomes into species 869 
We used whole genomic information to group genomes into species clusters. We used an 870 
open-reference approach and computed all-against-all genomic distances using Mash (Ondov 871 
et al., 2016) (with default parameters). A Mash distance lower than 0.05 is equivalent to using 872 
an Average Nucleotide Identity higher than 95 %, which is a standard threshold for delineating 873 
species (Konstantinidis and Tiedje, 2005). We used an unsupervised hierarchical clustering 874 
approach to group genomes that had Mash distances <= 0.05 into taxonomic units using the 875 
bClust function from the micropan R package (Snipen and Liland, 2015). We then measured 876 
the genetic distance between the representative genome of each species cluster (defined as 877 
the genome with the highest N50) and 79,226 non-contaminated complete and draft genomes 878 
downloaded from the NCBI FTP repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/) on March 879 
27th, 2017. Clusters with a Mash distance to NCBI genomes lower than 0.05 were assigned 880 
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the taxonomy of the closest reference genome (we manually curated Mash results to assign 881 
a taxonomy to each cluster when NCBI taxonomies were incomplete or incorrect). All genome 882 
taxonomies are compiled in Supplementary Table 2 & 3. 883 
 884 
Phylogenetic reconstructions 885 
To reconstruct the phylogenomic tree of all 7,781 genomes, we first built a concatenated 886 
alignment of 47 nearly universal and single-copy ribosomal protein families. We used Diamond 887 
v0.8.22.84 (Buchfink et al., 2015) (with parameters blastx —more-sensitive -e 0.000001 —id 888 
35 —query-cover 80) to BLAST all 7,781 proteomes against the RiboDB database (v1.4.1) of 889 
bacterial ribosomal protein genes (Jauffrit et al., 2016). We excluded proteins bL17, bS16, 890 
bS21, uL22, uS3 and uS4, as they were not sufficiently distributed across all genomes. In 891 
each RiboDB gene family, we excluded genomes that contained gene duplicates. Then, we 892 
aligned all protein families individually with Mafft v7.310 (Nakamura et al., 2018) (with 893 
parameter —auto). We filtered out misaligned sites using BMGE v1.12 (Criscuolo and 894 
Gribaldo, 2010) (with parameters -t AA -g 0.95 -m BLOSUM30) and concatenated all individual 895 
alignments using Seaview v4.7 (Gouy et al., 2010). We reconstructed the phylogenomic tree 896 
using FastTree v2.1.10 (with parameters -lg –gamma) (Price et al., 2010). To reconstruct 897 
phylogenetic trees of B. vulgatus, B. ovatus, B. longum and A. muciniphila (Figure 3 and Supp. 898 
Fig 7), we reconstructed the alignment of core protein-coding genes with Roary v3.11.2 (Page 899 
et al., 2015), removed recombining regions with Gubbins v2.2.0 (Croucher et al., 2015), 900 
extracted SNPs with SNP-sites v2.4.1 (Page et al., 2016) and inferred the tree with FastTree. 901 
 902 
Detection of HGTs 903 
We looked for gene transfers that occurred between genomes of different bacterial species. 904 
We used Blast (blastn, v2.6.0) (Camacho et al., 2009) to systematically detect blocks of DNA 905 
that are shared by two genomes of different species. We retained blast hits with 100% 906 
similarity and that are larger than 500bp. To further increase the likelihood of looking at transfer 907 
events that occurred on timescales compatible with human lifetime, we focused many of our 908 
analyses on transferred blocks that are larger than 10kb. To remove putative contaminants 909 
from our set of blast hits when calculating HGT frequencies, we removed HGTs that involve 910 
contigs with both k-mer assembly coverage lower than 3 (as provided by SPAdes) and a 911 
relative read coverage lower than 0.2 compared to the average genome coverage in at least 912 
one of the two compared genomes.  913 
 914 
Calculating HGT counts and frequencies 915 
To avoid inflating estimations of HGT counts and frequencies, we did not consider the absolute 916 
number of distinct blast hits between two genomes, as poor assembly or genomic processes, 917 
such as transposition, might result in splitting a single large HGT into many smaller apparent 918 
HGT events. Instead, we used a conservative approach to quantify HGTs that was previously 919 
published (Smillie et al., 2011), defining the HGT count as the number of between-species 920 
genome pairs that share at least one HGT (either one 500bp+ or 10kb+ HGT). To measure 921 
the frequency of HGT between two species, we then divided the HGT count by the total 922 
number of between-species genome pairs. 923 
 924 
Simulation of HGT transmission across host generations 925 
To simulate the fraction of 100% similar HGTs seen in the present generation 0 (HGT0s) that 926 
would result from HGT events that occurred in past generation, we simulated a population of 927 
constant size with N species in each individual. As the median number of species in the 928 
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microbiome of our sampled individuals is 187 based on Kraken2 metagenomic profiles, we 929 
fixed N=200. At each generation, each pair of species had an H% probability to engage in 930 
HGT. In our dataset, the average proportion of species pairs engaging in HGT is 0.885. We 931 
then chose to fix H to 9%. In a previous report (Ferretti et al., 2018), the intergenerational 932 
mother-to-infant rate of strain transmission was found to be 16%. In our simulation, we 933 
compared a 16% rate of species transmission to the next host generation to a more extreme 934 
rate of 50%. So each species had a probability to transmit into the next generation drawn from 935 
one of four possible distributions: 936 

● U(0.16), a uniform distribution with a 16% chance of vertical transmission into offspring 937 
● U(0.5), a uniform distribution with a 50% chance of vertical transmission into offspring 938 
● 𝚩(2,11), each species probability to transmit into offspring was chosen from a Beta 939 

distribution with parameters ⍺ = 2 and β = 11 940 
● 𝚩(2,2), each species probability to transmit into offspring was chosen from a Beta 941 

distribution with parameters ⍺ = 2 and β = 2 942 
 943 

We chose a Beta distribution to allow for some species to have an increased probability to 944 
transfer into later generations, even though the overall average was fixed at ~16% for 𝚩(2,11) 945 
and 50% for 𝚩(2,2).  946 
We then run the simulation across 5 generations, and recorded the generation of origin of 947 
each HGT. At the last generation (generation 0, corresponding to the generation at present 948 
time), we calculated the fraction of observed HGTs in the microbiome that occurred at each 949 
generation. We run 100 simulation replicates for each possible distribution of vertical 950 
transmission of strains into offspring. Simulations were run in Python. 951 
 952 
Calculating gene gain and loss rates in the pangenome 953 
We used Prokka gene annotations and Roary to reconstruct the core-genome alignment and 954 
the host individual-specific gene repertoires for B. vulgatus, B. ovatus, B. longum and A. 955 
muciniphila genomes that were longitudinally sampled in individual am (Poyet et al., 2019), 956 
and for B. fragilis genomes that were longitudinally sampled in individuals L01, L03, L04, L05, 957 
L06, L07 (Zhao et al., 2019). Note that individual am from (Poyet et al., 2019) and L01 from 958 
(Zhao et al., 2019) are the same individual. We used the following options with Roary: -e -n -959 
z -i 90 -cd 95. We restricted our analysis to closely-related genomes that diversified within the 960 
host of origin upon colonization of the gut: genomes from individual am differed by 111, 42, 961 
2,328 and 338 SNPs for B. vulgatus, B. ovatus, B. longum and A. muciniphila, respectively. 962 
When looking at genomes from all host individuals, isolate genomes differed by 68,746, 963 
202,262, 51,064 and 33,793 SNPs, respectively. In addition, all B. fragilis genomes from the 964 
same individual differed by less than 100 SNPs, while those from different individuals differed 965 
by more than 10,000 SNPs (Zhao et al., 2019). This pattern suggests that we are only including 966 
closely-related genomes, limiting the potential impact of co-colonization of different major 967 
lineages or strain replacement on the analysis of the dynamics of gene gain and loss over 968 
time. We filtered genomes that had genome completeness as measured by CheckM below 969 
99% out of the gene tables. For each species within each individual, we excluded genomes 970 
with low average coverage. With the final set of genomes, we checked whether the genome 971 
coverage was different across time points, as this could bias estimations of gene 972 
presence/absence profiles and gene gain/loss rates in pangenomes. We found that, for each 973 
species within each individual, genome coverage was homogenous across time points 974 
(Kruskal-Wallis tests, see Supp. Fig 7, panel j). Genome assemblies used to calculate gene 975 
gain and loss rates for each species within each individual is listed in Supplementary Table 9. 976 
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Because of assembly errors, genes truly ‘present’ in a genome may not have been detected 977 
in the assembly by Prokka, and were later called ‘absent’ by Roary. We confirmed the 978 
presence and absence of genes in a given genome by mapping reads of each genome onto 979 
each gene sequence inferred by Prokka. For genes initially called ‘absent’ in a given genome 980 
but ‘present’ in other genomes, we used a representative sequence of this gene for mapping. 981 
To call for the presence of a gene in a genome, genes must be covered by a minimum of 20 982 
reads over 90% of their length, and have a minimum relative coverage of 0.2 compared to the 983 
average genome coverage. To call ‘present’ a gene that was initially called ‘absent’, the gene 984 
was also required to have less than 30% ambiguous mappings to be called ‘present’, in 985 
addition to the criteria listed above.  986 
To measure rates of gene gain and loss in the pangenome of each species between two 987 
timepoints, we identified the set of gene families that were absent in all genomes at initial 988 
sampling and present in at least 1 genome at the later time point. We repeated this procedure 989 
for all pairs of time points, and we normalized the rates of gene gain and loss to a number of 990 
events per year. We employed the same strategy for calculating rates of gene loss. When 991 
measuring differences in pangenome gene repertoires between two timepoints, we 992 
downsampled genomes at each timepoint to perform comparisons with the same number of 993 
genomes.   994 
 995 
Analysis of metagenomic data 996 
Metagenomic data were quality-filtered with Trim Galore v0.5.0 and Trimmomatic (same 997 
options as with isolate genomic sequencing data), dereplicated with FastUniq v1.1 (Xu et al., 998 
2012) (default parameters) and mapped against the hg38 human reference genome with BWA 999 
v0.7.13 (Li and Durbin, 2009) (default options) to remove human reads. We used Kraken2 1000 
v2.0.8-beta (Wood et al., 2019) with default options and the Kraken2 database to call for 1001 
taxonomies. We then used Bracken v2.5 (Lu et al., 2017) to refine Kraken2 taxonomic profiles 1002 
at the species level, with the following options: -t 20 -k 35 -l 150. We rarefied the OTU (species) 1003 
table, by downsampling reads to the minimum number of reads among all samples. We 1004 
measured beta-diversities with the Bray-Curtis dissimilarity metric using the ‘vegdist’ function 1005 
from the ‘vegan’ R package. Metagenomic data were not used to reconstruct metagenome-1006 
assembled genomes, as only genome assemblies generated from isolate bacteria were 1007 
analyzed in this study. 1008 
 1009 
Measuring the abundance of isolate genomes 1010 
We measured average species abundances of isolates within each individual host. For 1011 
species with more than five isolate genomes per individual, we randomly selected 5 genomes 1012 
to compute the average abundance. For species with less than five isolate per individual, we 1013 
used all isolates to calculate the average abundance. We mapped metagenomic data 1014 
generated from the same individual host against each isolate genome, and used the per base 1015 
coverage K, the average read length L, the size of each genome S and the total number of 1016 
reads T in the shotgun data to calculate the relative abundance A of each genome in the 1017 
metagenome with A = (K*S/L) / T. We used a threshold of 1% to define lowly and highly 1018 
abundant bacteria. 1019 
 1020 
Assigning Gram stain to bacterial species 1021 
We used Gram staining data from reference microbiology databases (ATCC 1022 
(http://www.lgcstandards-atcc.org/en.aspx), DSMZ (https://www.dsmz.de/) & the Microbe 1023 
Directory database (https://microbe.directory)) and from publications characterizing the 1024 
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phenotype of bacterial isolates to assign a consensus Gram stain to each of our bacterial 1025 
species. Species with contradictory Gram staining information or with unknown taxonomy 1026 
were excluded from the analysis of the correlation between HGT frequency and cell wall 1027 
architecture. Our data recapitulate what we know from the literature (Garrity, 2005; Krieg et 1028 
al., 2011): Bacteroidetes are Gram-; Bifidobacterium are Gram+; Firmicutes are Gram+, to the 1029 
exception of Negativicutes species, which are known diderm bacteria, and of a few other 1030 
species; Fusobacterium are Gram-; Akkermansia are Gram-; Proteobacteria are Gram-.  1031 
  1032 
Annotating transferred genes 1033 
Functional annotation followed the basic approach described previously (Brito et al., 2016). 1034 
Briefly, CDS were assigned to all 500bp+ HGTs using Prodigal v2.6.3 (Brito et al., 2016; Hyatt 1035 
et al., 2010) in metagenome mode to capture gene fragments. The resultant CDS were 1036 
dereplicated and clustered at 90% nucleotide identity using vsearch v2.3.4 (Rognes et al., 1037 
2016). These gene centroids were used for subsequent functional annotation steps. Both 1038 
eggNOG-mapper (Huerta-Cepas et al., 2017) and InterProScan v5.36-75.0 (Jones et al., 1039 
2014) were used to assign putative function predictions to gene centroids. For additional 1040 
classification of antibiotic resistance genes and carbohydrate active enzymes, hmmer3 v3.1b2 1041 
(Mistry et al., 2013) was used with the Resfam (Gibson et al., 2014) and dbCAN (Yin et al., 1042 
2012) hmm databases with a cutoff e-value of 1e-5 and score of 22. Text mining with a set of 1043 
regular functional annotations that we previously used (Brito et al., 2016) was employed to 1044 
determine the assignment of genes into the following categories: phage, plasmid, 1045 
transposons, and antibiotic resistance.  1046 
 1047 
Quantification and Statistical Analyses 1048 
 1049 
When the R output of a p-value calculation equalled to 0, we used the smallest double-1050 
precision machine number, which is 2.2*10-308. Such p-values are shown with an asterisk in 1051 
figures. 1052 
 1053 
Comparing HGT frequencies and counts 1054 
Statistical analyses were performed in R. When comparing HGTs between two categories, 1055 
e.g. within-person vs. between-people or Urban industrialized vs. Rural non-1056 
industrialized, the numbers of genome and individual pairs for any pair of bacterial 1057 
species that were sampled are different between the two categories. This difference in 1058 
sampling could interfere with comparisons of HGT frequencies.  To correct for differences 1059 
in sampling, we employed the following approach. Consider the comparison of within-person 1060 
to between-people HGTs: we calculated, for each species pair, the observed within-person 1061 
HGT count (corresponding to the number of within-person genome comparisons with at least 1062 
1 HGT) and the expected within-person HGT count based on the between-people HGT 1063 
frequency of the same species pair. We then summed observed and expected HGT counts 1064 
across all species pairs and compared the observed total HGT count within individual people 1065 
to its expected value based on the amount of transfer seen between individuals, and 1066 
calculated a p-value using the Poisson distribution (ppois R function). The same approach 1067 
was used to compare HGT counts of the same species pairs found in different cohorts that 1068 
have different lifestyles (Figure 4), for instance to compare counts of HGT in the Industrialized 1069 
& Urban cohort to the Non-industrialized & Rural cohort. This approach allows us to control 1070 
for differences in the number of genome, species and individual pairs sampled between two 1071 
compared cohorts (within-person vs. between-people or Industrialized & Urban vs. Non-1072 
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industrialized & Rural). Note that when measuring the effect of lifestyle on HGT, observed 1073 
HGTs, expected HGTs and p-values were calculated for each pair of cohorts (4 lifestyle 1074 
categories, 6 cohort pairs in total). Also, as this analysis is a-symmetrical, we also performed 1075 
all our tests in the other direction, i.e. testing whether the observed between-people HGT count 1076 
is lower than the expected between-people HGT count based on within-person HGT 1077 
frequencies (118,210 vs. 671,160, p-value < 2.2*10-308); and whether the observed Rural & 1078 
Industrialized HGT count is lower than the expected count based on Urban & Industrialized 1079 
HGT frequencies (42,254 vs. 66,276, p-value < 2.2*10-308). 1080 
 1081 
We also controlled for the effect of including multiple genome pairs of the same species pairs 1082 
sampled in individuals when comparing total observed and expected HGT counts. We 1083 
downsampled our dataset by randomly drawing a single genome pair per species pair and per 1084 
individual pair. We run this control for the comparison of within-person to between-people 1085 
HGTs, and for the comparison of Urban & Industrialized (UI) to Rural & Non-industrialized 1086 
(RN) HGTs. For each comparison, we run 100 random replicates. For each replicate, we 1087 
calculated the total observed and expected HGT counts for the within-person category or the 1088 
UI group, as described above. We then compared the distributions of observed and expected 1089 
HGTs with a Welsh t-test. 1090 
 1091 
Calculating the frequency of transferred genes within bacterial populations 1092 
The population frequency of a given mobile gene carried by a 10kb+ HGT detected in a given 1093 
species and in a given individual was calculated by counting the number of genomes carrying 1094 
this mobile gene, divided by the total number of genomes of this species in this individual. 1095 
Only species with a minimum of 10 genomes in each individual were included. 1096 
 1097 
Controlling for the effect of phylogeny on within-person vs. between-people HGT 1098 
To measure the difference between within-person and between-people HGT across 1099 
phylogenetic distance bins (Fig 3B), we compared for each separate bin the total observed 1100 
within-person HGT count across all species pairs to its expected count value based on the 1101 
between-people HGT frequencies of the same species pairs in that bin, with a Poisson 1102 
distribution. P-values were then combined into a single p-value with Fisher’s method (‘sumlog’ 1103 
function from the ‘metap’ R package). 1104 
 1105 
Controlling for the effect of in vitro culturing 1106 
To control for the effect of in vitro culturing on the estimation of within-person HGTs and its 1107 
comparison with between-people HGTs, we used our set of 10kb+ HGTs to test (i) whether 1108 
within-person HGTs are more frequent when genome pairs are sampled from the same vs. 1109 
different culturing plates and (ii) for genome pairs isolated from the same plate, whether HGTs 1110 
are more frequent when genome pairs are sampled from a media containing antibiotics. These 1111 
tests control for (i) HGTs that may occur during the culturing on the plate and (ii) HGTs that 1112 
may be triggered by antibiotics present in the media. We compared HGTs for all bacterial 1113 
species pairs from each individual host that were sampled in both categories of each of the 1114 
aforementioned variables being tested. As we are comparing HGTs for genome pairs from the 1115 
same species pairs sampled from the same individual, we do not need to control for 1116 
differences in bacterial phylogenetic distances or abundances. We compared the total 1117 
observed HGT counts for genome pairs cultured within the same plate to its total expected 1118 
value based on the HGT frequency of genome pairs of the same species being cultured from 1119 
different plates, using a Poisson distribution. We used the same approach for genome pairs 1120 
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being grown on antibiotic-containing media vs. without antibiotics. We also correlated 1121 
observed to expected HGT counts for each species pair using a Pearson correlation. Finally, 1122 
we also compared within-plate to between-plate HGT frequencies and with-antibiotics vs. 1123 
without-antibiotics HGT frequencies using paired Wilcoxon tests. All results are shown in 1124 
Supplementary Table 8. 1125 
 1126 
Permutation test to compare HGTs from populations with different lifestyles 1127 
We also used a permutation test to compare HGTs in two cohorts of different lifestyles. We 1128 
defined the statistic S = (HGTcounts_observed - HGTcounts_expected) / 1129 
HGTcounts_expected. For the more industrialized and urban cohort, HGTcounts_observed > 1130 
HGTcounts_expected. We tested if the difference between observed and expected counts is 1131 
higher with real data than under a null hypothesis. We computed the null distribution of S by 1132 
rearranging the lifestyle labels of either each individual participant, or each pair of participant 1133 
before calculating average HGT frequencies. The value of S obtained with real data was then 1134 
compared to the null distribution to calculate the p-value. Null distributions of S for these tests 1135 
are shown in Supplementary Figure 8. 1136 
 1137 
Measuring the effect of bacterial phylogeny, abundance and cell-wall architecture on 1138 
HGT 1139 
The effect of phylogeny on HGT frequency was measured using Generalized Linear Mixed 1140 
Effects (GLME) models, assuming an intercept that is different for each pair of species. We 1141 
also accounted for the effects of bacterial abundance and cell-wall architecture (Gram-1142 
negative vs. Gram-positive) in the models. We used the lme4 R package (Bates et al., 2015) 1143 
(glmer function) to fit the GLME models, and used Likelihood Ratio Tests (with the lmtest 1144 
package and the lrtest function) to calculate the p-value for phylogeny. Confident intervals for 1145 
odds ratios were calculated with the Wald method.  1146 
 1147 
We defined the following variables: 1148 

● phylogeny: Continuous variable. Phylogenetic distance between two species derived 1149 
from the phylogenomic tree shown in Fig. 2A. 1150 

● abundance: Discrete variable. Abundance category for each pair of species in each 1151 
sampled host individual, derived from the abundance category of each individual 1152 
species. We used a threshold of 1% relative abundance to classify species as highly 1153 
or lowly abundant in each individual. 1154 

● gram_staining: Discrete variable. Gram staining category for each pair of species 1155 
derived from the individual Gram staining of each individual species. 1156 

● hgt_freqs: Continuous variable. Average within-person HGT frequency for each 1157 
individual species pair. Average within-person HGT frequencies were calculated for 1158 
each population separately, to account for population-level differences. 1159 

● species_pairs: Discrete variable. Names of species pairs. Because we calculated 1160 
within-person HGT frequencies on a per-population basis, a given species pair can be 1161 
represented multiple times in the model. We accounted for this by considering the 1162 
variable species_pairs as a random effect term in the GLME models. 1163 

 1164 
We fitted the following models, with HGT frequencies either derived from the dataset of 10kb+ 1165 
HGTs or from the dataset of 500bp+ HGTs: 1166 
 1167 
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model1=glmer(hgt_freqs ~ phylogeny + abundance + gram_staining + (1|species_pairs), 1168 
family="binomial") 1169 
model2=glmer(hgt_freqs ~ abundance * gram_staining + (1|species_pairs), 1170 
family="binomial") 1171 
 1172 
To assess whether phylogeny is significantly contributing to HGTs, we performed the following 1173 
LRT: 1174 
 1175 
Phylogeny: LRT_phylogeny = lrtest(model1, model2) 1176 
 1177 
To measure the effect of lifestyle on HGT with the dataset of 500bp+ HGTs, while controlling 1178 
for the effects of phylogeny, abundance and cell-wall architecture, we defined the discrete 1179 
variable ‘lifestyle’ as the level of host industrialization associated with the sampled species 1180 
pair (i.e. ‘industrialized’ or ‘non-industrialized’), and run the following GLME models: 1181 
 1182 
model3=glmer(hgt_freqs ~ phylogeny + abundance + gram_staining + lifestyle + 1183 
(1|species_pairs), family="binomial") 1184 
model4=glmer(hgt_freqs ~ abundance + gram_staining + lifestyle + (1|species_pairs), 1185 
family="binomial") 1186 
model5=glmer(hgt_freqs ~ phylogeny + gram_staining + lifestyle + (1|species_pairs), 1187 
family="binomial") 1188 
model6=glmer(hgt_freqs ~ phylogeny + abundance + lifestyle + (1|species_pairs), 1189 
family="binomial") 1190 
model7=glmer(hgt_freqs ~ phylogeny + abundance + gram_staining + (1|species_pairs), 1191 
family="binomial") 1192 
 1193 
We run the following LRTs to evaluate the contribution of each factor to HGT:  1194 
Phylogeny: LRT_phylogeny = lrtest(model3, model4) 1195 
Abundance: LRT_abundance = lrtest(model3, model5) 1196 
Cell-wall architecture: LRT_cell-wall = lrtest(model3, model6) 1197 
Lifestyle: LRT_lifestyle = lrtest(model3, model7) 1198 
 1199 
Comparing functional profiles of HGTs 1200 
Profiles of COG functional categories were compared using a chi-square Goodness-of-fit test 1201 
(chisq.test function). HGT frequencies of phage, plasmid, transposon, ARG, CAZyme and 1202 
Virulence genes were compared between host populations of different lifestyles (Figure 6) 1203 
using two-proportions Z-tests (prop.test function), and a Bonferroni correction for multiple tests 1204 
(p.adjust function).  1205 
 1206 
 1207 
 1208 
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