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ARTICLE

Neurocognitive modeling of latent memory
processes reveals reorganization of hippocampal-
cortical circuits underlying learning and efficient
strategies
Kaustubh Supekar1,4✉, Hyesang Chang1,4, Percy K. Mistry1,4, Teresa Iuculano 1,2 & Vinod Menon 1,3✉

Efficient memory-based problem-solving strategies are a cardinal feature of expertise across a

wide range of cognitive domains in childhood. However, little is known about the neurocog-

nitive mechanisms that underlie the acquisition of efficient memory-based problem-solving

strategies. Here we develop, to the best of our knowledge, a novel neurocognitive process

model of latent memory processes to investigate how cognitive training designed to improve

children’s problem-solving skills alters brain network organization and leads to increased use

and efficiency of memory retrieval-based strategies. We found that training increased both the

use and efficiency of memory retrieval. Functional brain network analysis revealed training-

induced changes in modular network organization, characterized by increase in network

modules and reorganization of hippocampal-cortical circuits. Critically, training-related changes

in modular network organization predicted performance gains, with emergent hippocampal,

rather than parietal cortex, circuitry driving gains in efficiency of memory retrieval. Our findings

elucidate a neurocognitive process model of brain network mechanisms that drive learning and

gains in children’s efficient problem-solving strategies.
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Early childhood is an important period for the acquisition
of core competence in academically relevant cognitive
domains1–6. Numerical problem-solving is one such

domain of required core competence in modern societies: skills
in this cognitive domain are important not only for professional
success, health, and well-being later in life, but also for overall
economic growth and prosperity in society at large4,6,7. Beha-
vioral research has shown that the acquisition of numerical
problem-solving skills in children is characterized by increased
use of efficient memory retrieval-based strategies4. However,
little is known about the neurocognitive mechanisms that
underlie the acquisition of efficient memory retrieval-based
problem-solving strategies. Here we investigate how cognitive
training designed to improve children’s problem-solving skills
alters brain network organization and leads to increased use
and efficiency of memory retrieval-based problem-solving
strategies. We developed, to the best of our knowledge, a novel
neurocognitive process model to assess latent problem-solving
strategies, and provide quantitively rigorous insights into how
children develop specialized brain networks and acquire effi-
cient problem-solving strategies, overcoming methodological
limitations of previous studies. This knowledge has the poten-
tial to substantially advance our understanding of how brain
network plasticity supports efficient learning in children and
has implications for developing approaches for enhancing core
competence in educational practice.

A key feature of the development of numerical problem sol-
ving is a shift from the use of inefficient counting to efficient
memory-based strategies. For example, children learn arithmetic
facts by progressing from frequent use of counting, through
intermediate strategies, until they are eventually able to directly
retrieve the answer from memory8–11. Typically, such changes
are observed over the course of one or two years of
schooling12,13, making it difficult to disentangle the contribu-
tions of learning from normative brain development. To address
this, we used a short-term cognitive training program14 to
investigate how learning dynamically alters the mix of strategies
used, whether it improves the efficiency with which memory-
based strategies are applied11,15,16, and how these changes are
related to learning-related reorganization of the functional brain
networks in children. Our cognitive training program, adapted
from MathWise17,18, combined conceptual instruction with
speeded retrieval of math facts and involved 22 lessons of
increasing difficulty delivered over 8 weeks (see “Methods” for
details). The training program centered on improving number
knowledge and relations within and between numerical opera-
tions that facilitate the use of sophisticated counting procedures
and memory-retrieval-based processes. A strategic practice
component was included in the training program to promote
the use of efficient problem-solving strategies, which then likely
facilitates the formation and strengthening of long-term mem-
ory representations of math facts.

There is now growing evidence that learning involves changes
in brain network organization19–28, including changes in modular
architecture that guides efficient information flow in the brain to
support adaptive behavior20,29–31. For instance, 6 weeks of motor
sequence learning in adults leads to reduced functional integra-
tion between motor and visual modules and disengagement of
cognitive control hubs in frontal and cingulate cortices, which
suggests that acquisition of motor skills enhances specialization of
sensorimotor subsystems20. Whether changes in modular net-
work architecture also drive children’s acquisition of numerical
problem-solving skills is not known. Considering that mathe-
matical problem solving and learning involve distributed neural
systems32–36, a more comprehensive understanding of how
interactions between multiple brain networks dynamically change

with skill acquisition and give rise to specialized functional
modules37,38 is critically needed.

Building on recent advances in systems neuroscience models of
numerical information processing35, the current study investigated
functional reorganization of a network of brain regions important
for numerical problem solving in children, including parietal,
frontal, and ventral temporal-occipital regions1,13,32,34,39–43, as well
as hippocampal and parahippocampal regions within the medial
temporal lobe (MTL) learning and memory system, important for
children’s math fact learning13,39,40,44–46. We used quantitative
network connectivity analysis to investigate functional brain net-
work reorganization in relation to learning gains and increases in
the use of efficient problem-solving strategies. Task-relevant func-
tional connectivity associated with numerical problem solving was
examined, contrasting Addition (e.g., 3+ 4= 7) and Control (e.g.,
7= 7) conditions to control for low-level perceptual processing and
motor responses during numerical problem solving. Pairwise
associations in connectivity strengths between all nodes were used
to construct functional networks before and after training. We
assessed training-induced changes in global modular brain network
organization as well as changes in brain network organization at the
regional level focusing on core functional circuits associated with
mathematical learning in children: the MTL and the posterior
parietal cortex (PPC). This approach allowed us to examine whe-
ther and how cognitive training leads to dissociable changes in the
modular organization of MTL and PPC brain networks in children
and identify functional circuits critically involved in the acquisition
of memory-based strategies in numerical problem solving.

Recent functional brain imaging studies suggest a key role for
the MTL, and particularly its hippocampal subdivision, in the
longitudinal development of children’s numerical problem-
solving skills13,40,45,47. The hippocampus is thought to be parti-
cularly important for early stages of learning and memory
consolidation48,49 as well as binding of information together49–55,
such as associating addends with sums in addition problems.
More broadly, while the intraparietal sulcus (IPS) subdivision of
the PPC has been specifically implicated in visuospatial repre-
sentation and manipulation of numerical quantity in children and
adults1,42,43,56–61, the hippocampus has been linked to learning
and memory across different cognitive domains besides
mathematics62. Consistent with this view, functional coupling
between the hippocampus and frontoparietal brain regions
has been linked to the use of memory-based problem-solving
strategy and training-related arithmetic performance gains in
children13,39,45,46,56,63. Notably, hippocampal connectivity has
been shown to more strongly predict learning gains in numerical
problem-solving skills than IPS connectivity46. Based on the
theoretical framework that skill acquisition during development
involves selective strengthening of functional circuits37,38 and the
domain-general role of the MTL in learning, we hypothesized that
learning-related functional reorganization would be driven by
modular changes in MTL circuitry. The alternate hypothesis is
that learning-related functional reorganization is selectively dri-
ven by modular changes in domain-specific IPS circuitry asso-
ciated with numerical and visuospatial processing.

To assess children’s use of efficient problem-solving strategies,
we developed, to the best of our knowledge, a novel neurocog-
nitive process model of latent memory processes, which overcome
several limitations of extant approaches. First, our computational
modeling approach overcomes limitations inherent in assess-
ments of problem-solving strategies using subjective verbal
reports64, which can be biased by the nature of the instructions
and queries, and by expectations of what constitutes desirable
responses65–69. Second, this limitation is further confounded in
fMRI studies by the inherent difficulties of assessing strategy
use with verbal reports in the scanner13,44–46,70,71, thereby
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necessitating an additional problem-solving session outside the
scanner in which children may not consistently use the same
strategies. Computational modeling allowed us to more directly
assess strategy use during fMRI task performance and provide
clear insights into the procedural and chronometric dynamics of
each strategy, without acquiring additional data outside the
scanner. Third, circumventing issues associated with averaging all
items in other approaches, our computational models address
item-level heterogeneity and variability in task difficulty, allowing
for more robust comparisons of pre- and post-training frequency
and efficiency of strategy use. Lastly, compared to unidimensional
overt behavioral measures such as accuracy and reaction time,
multidimensional latent cognitive measures derived from com-
putational models provide a set of fine-grained measures of
individual differences in neurocognitive processes associated with
problem solving72,73. Thus, dynamic cognitive modeling may
have greater sensitivity to detect individual differences in
numerical problem solving than overt behavioral measures, and
thereby better characterize sources of individual differences in
learning and brain plasticity.

Our cognitive process-based computational model (see
“Methods” for details) probed children’s use and efficiency of
problem-solving strategies in an unsupervised manner, for each
individual on a trial-by-trial basis. Briefly, we modeled the
problem-solving process as a mixture model of two latent stra-
tegies: memory retrieval and counting strategies—each as a dis-
tinct drift–diffusion process74. This model inferred which of these
two strategies best explains performance (the joint distribution of
accuracy and reaction time) on a trial-by-trial level, accounting
for the variability in item difficulty levels across trials, for each
individual. In this model, the selection of memory retrieval or
counting strategy was characterized by the probability of shifting
away from a primary, memory retrieval strategy, to an alternate
counting strategy in a two-step strategy-selection process,
dependent on both individual-level retrieval propensity and item-
specific effects. The rate of evidence accumulation of the
drift–diffusion process, based on a combination of individual
level and item difficulty parameters unique to each strategy,
determined the efficiency of a given strategy.

To further validate our model, we additionally implemented a
second joint neurocognitive process model that jointly char-
acterizes changes in problem-solving strategies and changes in
brain circuits. This model, which integrates psychometric mea-
surement, cognitive process modeling, and brain network analy-
sis, was implemented within a hierarchical Bayesian inference
framework75. By characterizing behavior using multiple dimen-
sions of neurocognitive processes, our approach allowed us to
more precisely measure training-induced changes in use and
efficiency of memory-based strategies, and how changes in spe-
cific latent model parameters related to changes in brain network
organization of functional circuits.

We hypothesized that cognitive training, focused on improving
numerical problem-solving skills through strengthening retrieval
of math facts, would lead to learning gains and changes in
modular organization at the large-scale network level as well as at
the regional level anchored in the hippocampus, rather than the
IPS. We predicted that cognitive training would enhance hippo-
campal network modular segregation, as measured by lower levels
of diversity coefficient76, and the degree of this functional reor-
ganization would predict learning outcomes, as measured by
gains in performance and latent measures of memory retrieval.

Our results show that cognitive training increases children’s
use and efficiency of memory retrieval and improves their
numerical problem-solving ability. Training-induced changes in
functional brain network organization were characterized by
increase in network modules as well as reorganization of

hippocampal-cortical circuits associated with gains in efficiency
of memory retrieval. Our findings elucidate a neurocognitive
process model of brain network mechanisms that drive learning
and gains in children’s efficient problem-solving strategies.

Results
Cognitive training improves performance on numerical pro-
blem solving. To assess the efficacy of our cognitive training
program (Fig. 1a), we first examined changes in accuracy and
reaction time on a numerical problem-solving task involving
verification of single-digit addition problems (e.g. 3+ 4= 7).
We found that children improved significantly with training—
gains were observed for both accuracy (t(34)= 3.98, p < 0.001,
Cohen’s d= 0.75) and reaction time (t(34)=−3.68, p < 0.001,
Cohen’s d=−0.70) (Fig. 1b).

To assess the specificity of these gains, we then examined
performance on a control task involving verification of number
identity (e.g., 7= 7). Here, changes in performance were not
consistent across behavioral measures: while children showed
decrease in reaction time (t(34)=−3.89, p < 0.001, Cohen’s d=
−0.60), they did not show improvements in accuracy (t(34)=
0.91, p= 0.37, Cohen’s d= 0.20). Critically, changes in reaction
time were not correlated between addition and control tasks (ρ=
0.15, p= 0.39). Additionally, changes in reaction time on the
addition task remained significant even after controlling for
changes in reaction time on the control task (p < 0.05). These
results suggest that the training program was highly effective in
that systematic and specific gains in numerical problem solving
were seen in observable behavioral measures, including accuracy
and reaction time, independent of changes associated with
repeated exposure to the task or practice effects.

Cognitive training increases the use and efficiency of memory
retrieval-based problem-solving strategy. To examine the effect
of the training program on latent processes associated with
numerical problem solving, we performed a trial-by-trial analysis
of the addition task using a two-component cognitive process
model (Fig. 2a; Supplementary Figs. 1, 2; see also “Methods” for
details). Children showed a significant increase in their pro-
pensity to use a memory retrieval strategy, a measure indepen-
dent of difficulty of items presented, after training (t(34)= 5.36,
p < 0.0001, Cohen’s d= 0.60). The actual use of memory retrieval
strategy also significantly increased with training (t(34)= 3.20,
p < 0.001, Cohen’s d= 0.26) (Fig. 2b). These changes in memory
retrieval strategy use were accompanied by a significant increase
in the efficiency of memory retrieval, as measured by memory
retrieval drift rate, with training (t(34)= 14.34, p < 0.0001,
Cohen’s d= 1.07) (Fig. 2b). These results suggest that the cog-
nitive training led to an increase in memory retrieval strategy use,
as well as increased efficiency and decisiveness in memory
retrieval.

Cognitive training related increases in the use and efficiency of
memory retrieval-based problem-solving strategy relate to
different aspects of observable behavioral measures. Training-
related change in model-inferred memory retrieval efficiency was
positively correlated with the change in accuracy (ρ= 0.42, p=
0.01), while the change in the use of memory retrieval strategy
was negatively correlated with change in reaction time (ρ=
−0.49, p= 0.01) (Supplementary Table 1). However, there was no
significant relationship between change in memory retrieval
efficiency and change in reaction time, nor between change in
memory retrieval strategy use and change in accuracy (|ρ|s < 0.12,
ps > 0.50) (Supplementary Table 1). These results demonstrate
that latent cognitive measures of memory retrieval relate to
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different aspects of observable behavioral performance on the
numerical problem-solving task.

Cognitive training induces changes in modular brain network
organization. We next examined training-related changes in the
modular organization of brain networks involved in numerical
problem solving (Fig. 3a). Graph-based analysis revealed distinct
patterns of modular network organization before and after
training (Fig. 3b). Specifically, group-averaged task-related brain
networks were characterized by the presence of two modules
prior to training and three modules after training. Before training,
the first module (Module 1) consisted of parietal, frontal, and
ventral temporal-occipital regions, while the second module
(Module 2) comprised the MTL memory system, primarily the
hippocampus and the parahippocampal gyrus bilaterally in
addition to the right MFG, whose connectivity with the MTL
has been implicated in memory-based numerical problem
solving13,39. Brain regions identified in Module 1 were among
those most consistently activated during numerical problem sol-
ving across multiple studies, as determined by meta-analysis
using Neurosynth77 (see “Methods”). After training, individual
functional subregions of the MTL were no longer distinctly seg-
regated and instead formed a more integrated three-module
structure with parietal, frontal, and ventral temporal-occipital
cortical regions involved in numerical problem solving.

Next, to determine whether training significantly altered
modular network organization across individuals, we assessed
the mutual information, a nonlinear measure of distance between
modular structure before training and modular structure after
training, in each participant. Distance between two modular
structures was computed by subtracting mutual information
between the two module affiliation vectors (ranging from 0 to 1)
from 1. Thus, larger distance reflected greater training-induced
functional brain reorganization. A two-tailed one-sample t-test
contrasting the distance between pre- and post-training networks
(M= 0.96; SD= 0.03) with the null hypothesis of no change in
modular structure (distance= zero) revealed significant change in
modular network organization with training (p < 0.001).

These results suggest that cognitive training changes overall
modular network organization, characterized by reconfiguration
of the MTL system into distinct patterns of MTL-cortical circuits
in response to training in numerical problem solving.

Cognitive training-induced modular brain network reorgani-
zation predicts performance gains. We next investigated whether
training-induced change in modular organization of brain network
involved in numerical problem solving is associated with perfor-
mance gains. Our analysis revealed a significant positive correlation
(ρ= 0.46, p= 0.007) such that children who showed greater
training-induced global functional brain reorganization, as indexed

Fig. 1 Cognitive training improves performance on numerical problem solving. a Overall study design. Before training, all children underwent an extensive
battery of neuropsychological assessments for intelligence quotient (IQ) and academic achievement. Additionally, before training, each child underwent an
fMRI scan session during which they completed Addition (verification of addition equations) and Control (verification of number identities) conditions in a
numerical problem-solving task. Upon successful completion of the aforementioned sessions, children went through an intensive 8-week one-to-one
training program focused on conceptual aspects of number knowledge and speeded practice on efficient problem-solving strategies and systematic
learning of numerical problem solving delivered through 22 lessons of increasing difficulty. Training sessions occurred three times per week and were each
40–50min in duration. After 8 weeks of training, all children underwent a second fMRI scan session. Adapted from Iuculano et al.14. b Numerical problem-
solving skills (assessed by performance on Addition condition) improved significantly with training – performance gains were observed for both accuracy
(t(34)= 3.98, p < 0.001, Cohen’s d= 0.75) and reaction time (t(34)=−3.68, p < 0.001, Cohen’s d=−0.70). N= 35 children. Error bar shows standard
error of mean. **: p < 0.001. msec: millisecond.
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by distance between pre- and post-training networks, exhibited
larger performance gains with training (Fig. 4). This result was
specific to accuracy, as the result of additional analysis using reac-
tion time was not significant (ρ= 0.18, p= 0.32). Post-hoc analysis
revealed that changes in accuracy and reaction time were not sig-
nificantly correlated (ρ= 0.18, p= 0.30). Furthermore, none of the
behavioral measures included in the extensive battery of neu-
ropsychological assessments conducted before training, including
assessments of IQ and math and reading abilities, was associated
with numerical problem-solving performance gain with training (|ρ|
s < 0.31, ps > 0.06) (Supplementary Table 2). The correlation
between modular network reorganization and accuracy gain was
greater than any association between neuropsychological measures
and accuracy gain (ps < 0.01). These results suggest that training-
induced change in global modular brain network organization
predicts performance gains in children.

Cognitive training induces changes in node-level brain net-
work organization. In addition to global modularity changes,
changes in brain network organization may occur at the regional
level for each brain network node. To examine training-related
changes in the regional organization of brain networks involved
in problem solving, we used the modular structure derived above
to compute a region-wise diversity coefficient—a measure of how

uniformly a brain region interacts with regions in other modules.
A high value for the diversity coefficient indicates that interac-
tions are more evenly distributed across many modules, while a
low value indicates interactions with fewer modules, or increased
modular segregation76. We found that the diversity coefficient of
the right rostral hippocampus and the right anterior insula
decreased with training (ps < 0.05, FDR corrected) (Fig. 5a, b). No
other regions including the bilateral IPS showed significant
training-related changes in the diversity coefficient (Fig. 5c, d;
Supplementary Fig. 3). As left and right IPS nodes show similar
patterns of results, we subsequently report diversity coefficient of
bilateral IPS region, combining the left and right IPS nodes. An
exploratory analysis of variance (ANOVA) yielded no significant
Region (right rostral hippocampus, bilateral IPS) by Time inter-
action (pre-training, post-training) (F(2, 34)= 0.62, p= 0.61). As
numerical problem solving involves distributed functional cir-
cuits, it is possible that weak (non-significant) modular changes
in domain-specific IPS circuitry occur along with significant
changes in domain-general hippocampal circuitry. Nonetheless,
our key findings suggest that the functional interactions of
the right rostral hippocampus and the right anterior insula
become less diverse with training, demonstrating functional
specialization of these regions associated with acquisition of
numerical problem-solving skills.

Fig. 2 Cognitive training increases the use and efficiency of memory retrieval-based problem-solving strategy. a A dynamic latent cognitive model
reveals multiple processes associated with problem-solving strategy use. The first drift–diffusion process shows an early terminated memory retrieval
process governed by memory retrieval related drift parameters (e.g., memory drift rate), which has not reached the decision threshold when the strategy
switching time is reached. At this point, a probabilistic decision is made to either continue with memory retrieval or shift to a counting strategy. This figure
shows a shift to counting, with the drift–diffusion process in the second part being governed by counting related drift parameters (e.g., count drift rate; see
“Methods” for details). b Children showed a significant increase in their use of memory retrieval strategy (t(34)= 3.20, p < 0.001, Cohen’s d= 0.26), after
training. They also showed an increase in the efficiency of memory retrieval strategy (t(34)= 14.34, p < 0.0001, Cohen’s d= 1.07), as measured by
memory retrieval drift rate, with training. N= 35 children. Error bar shows standard error of mean. ***: p < 0.0001, **: p < 0.001.
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Cognitive training-induced right rostral hippocampal network
reorganization predicts performance gains. We next assessed
the relation between training-induced changes in the right rostral
hippocampus and the right anterior insula network organization
and change in accuracy on the numerical problem-solving task.
Training-induced change in the diversity coefficient of the right
rostral hippocampus was significantly negatively correlated with
change in accuracy (ρ=−0.49, p= 0.002), such that children
who showed greater decreases in the diversity coefficient, exhib-
ited larger performance gains with training (Fig. 6a). This finding
was specific to accuracy, as the result of additional analysis using
reaction time was not significant (ρ=−0.19, p= 0.27). Further-
more, training-induced change in the diversity coefficient of the
right anterior insula was not significantly correlated with per-
formance gain (ρ= 0.15, p= 0.38). Change in the IPS diversity
coefficient with training was also not correlated with performance
gain (ρ=−0.06, p= 0.74) (Fig. 6b). These results suggest that
training-induced changes in regional organization of the right
rostral hippocampus specifically relate to training-induced per-
formance gains in children.

Cognitive training-induced right rostral hippocampal network
reorganization predicts memory retrieval efficiency gain. We
next assessed the relation between training-induced change in the
right rostral hippocampus, the right anterior insula, and the IPS
network organization and changes in memory retrieval strategy
use and efficiency.

Training-induced change in the diversity coefficient of the right
rostral hippocampus was significantly negatively correlated with
change in memory retrieval efficiency (ρ=−0.52, p= 0.0014),
such that children who showed greater decreases in the diversity
coefficient, exhibited larger gains in memory retrieval efficiency
with training (Fig. 6c). This result was specific to memory
retrieval efficiency, as change in memory retrieval strategy use
was not significantly associated with change in hippocampal
network reorganization (ρ= 0.13, p= 0.44). Furthermore,
changes in the right anterior insula and the bilateral IPS diversity
coefficient with training were not correlated with gain in memory
retrieval efficiency (|ρ|s < 0.10, ps > 0.10) (Fig. 6d). The correla-
tion between change in memory retrieval efficiency and change in
diversity coefficient was significantly different between the right
rostral hippocampus and IPS nodes (p= 0.02).

The relationship between change in the diversity coefficient of
the right rostral hippocampus and memory retrieval efficiency
gain was validated by a second joint neurocognitive process
model, where the model parameters were inferred by character-
izing change in the diversity coefficient as a linear combination of
change in the latent drift–diffusion model parameters. Here, we
computed Bayes factors (BFs) using the Savage–Dickey computa-
tion method78 to test the relationship between latent parameter
changes in memory retrieval strategy use and efficiency and
change in the diversity coefficient of the right rostral hippocam-
pus. BF values greater than 3 in favor of H1 provide moderate
evidence for H1, those between 1/3 and 3 provide insufficient

Fig. 3 Cognitive training induces changes in modular brain network organization. a Overall analytical pipeline to compute and compare modularity of
brain network organization before and after training. Meta-analysis was used to identify parietal, frontal, and ventral temporal-occipital regions consistently
activated during numerical problem solving, in addition to hippocampus and parahippocampal gyrus subregions within the medial temporal lobe (MTL).
We constructed brain network models using task-evoked measures of functional connectivity (estimated by Addition vs. Control condition) between these
brain regions and used community detection analysis to investigate network organization before and after training. b Graph-based analysis revealed distinct
patterns of modular network organization before and after cognitive training. Specifically, group-averaged task-related brain networks, as shown in
connectivity matrices, were characterized by the presence of two modules prior to training and three modules after training. Before training, the first
module (Module 1) consisted of parietal, frontal, and ventral temporal-occipital regions, while the second module (Module 2) comprised all MTL regions,
including the hippocampus and parahippocampus bilaterally, and the right medial frontal gyrus (MFG). After training, individual functional subregions of
the MTL formed a more complex three-module structure with parietal, frontal, and ventral temporal-occipital regions (Modules 1–3). N= 35 children. MTL
regions are shown in italics. Color bar represents connectivity strength between pairs of nodes. SPL: superior parietal lobule; IPS: intraparietal sulcus; AI:
anterior insula; IFG: inferior frontal gyrus; DMPFC: dorsomedial prefrontal cortex; FEF: frontal eye field; ITG: inferior temporal gyrus; LOC: lateral occipital
cortex; cPHG: caudal parahippocampal gyrus; lpPHG: lateral posterior parahippocampal gyrus; EC: entorhinal cortex; mpPHG: middle posterior
parahippocampal gyrus; rHipp: rostral hippocampus; cHipp: caudal hippocampus. L: left; R: right.
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evidence, and those below 1/3 provide evidence of absence (i.e.,
BF > 3 in favor of the null hypothesis)79. The model revealed that
training-induced change in memory retrieval efficiency was
significantly associated with change in the diversity coefficient
of the rostral hippocampus (β=−0.79, BF= 5.6). There was
insufficient evidence in favor or against an association between
training-induced change in the propensity to use memory
retrieval or the actual use of memory retrieval and change in
the diversity coefficient of the rostral hippocampus (1/3 < BF < 3).
Training-induced change in decision threshold or switching time
was not associated with change in the diversity coefficient of the
rostral hippocampus (BFs > 3 in favor of the null hypothesis).

Finally, we assessed whether training-induced global change in
the modular network organization, as assessed using mutual
information-based distance metrics, relate to change in memory
retrieval strategy use or efficiency. Global network change was not
correlated with change in memory retrieval efficiency (ρ= 0.07,
p= 0.71) or use (ρ=−0.20, p= 0.25), which suggests that
training-induced gain in memory retrieval efficiency is specifically
associated with right rostral hippocampal network reorganization.

Taken together, these results provide evidence that training-
induced changes in regional organization of the right rostral
hippocampus drive training-induced memory retrieval efficiency
gains in children.

Discussion
We used a neurocognitive process model to investigate whether
cognitive training designed to improve children’s problem-
solving skills alters the modular organization of hippocampal-
cortical circuits and drives the use of efficient memory-based
problem-solving strategies. We found that 8 weeks of cognitive
training not only improved performance as indexed by observed
behavioral measures, but also increased latent model-derived
measures of memory retrieval strategy use and efficiency. Fur-
thermore, cognitive training led to reduced diversity of inter-
modular functional connections of the right rostral hippocampus
region of the MTL memory system and the right anterior insula
node of the salience network. Notably, training-related changes in
diversity of intermodular functional connections of the right
rostral hippocampus predicted gains in efficiency of memory-
based strategies. These effects were specific to the hippocampus as
the intermodular functional connections of the IPS—a brain area
consistently implicated in numerical problem solving—neither
changed with cognitive training nor were they associated with
individual learning gains.

Our findings demonstrate that behaviorally-relevant functional
reorganization of the hippocampal-memory network supports
distinct aspects of cognitive skill acquisition in children13,40,45,47.

Fig. 5 Cognitive training induces changes in network organization of the hippocampus and anterior insula. Diversity coefficient, a measure of how
uniformly a brain region interacts with regions in other modules, of (a) the right rostral hippocampus and (b) the right anterior insula decreased with
training (ps < 0.05, false discovery rate [FDR]-corrected). The diversity coefficient of (c, d) the bilateral intraparietal sulcus (IPS) —a brain area
consistently implicated in numerical problem solving—did not change with training. N= 35 children. Error bar shows standard error of mean. *: p < 0.05.

Fig. 4 Cognitive training-induced modular brain network reorganization
predicts performance gains with training. Children who showed greater
training-induced changes in modular brain network reorganization, as
indexed by a mutual-information-based distance metric, exhibited
larger gains in accuracy on addition problems with training (ρ= 0.455,
p= 0.007). N= 35 children.
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By examining learning-dependent plasticity of a distributed
functional network involving the MTL memory system and
multiple cortical regions consistently implicated in numerical
problem solving, the current work provides key evidence that
cognitive skill acquisition reorganizes specialized brain circuits in
school-age children. These findings provide important insights
into neurocognitive mechanisms underlying individual differ-
ences in children’s learning and have broad implications for
educational practice and interventions for enhancing core com-
petence in academically relevant domains.

The first key finding of our study is that our short-term cognitive
training program was effective with systematic gains that were seen
in observable behavioral measures as well as latent model-
derived measures of changes in the rate of memory retrieval-
based strategy use and efficiency. Consistent with previous
developmental11,44–46,63 and classroom-based17 studies, short-term
training improved (observed) performance on numerical problem
solving. Crucially, our modeling of latent problem-solving strategies
revealed that 8 weeks of cognitive training decreased the use of
counting and increased the use and efficiency of memory-based
retrieval strategy. These findings are consistent with the
‘overlapping waves’ theory80 which posits that children’s learning
in arithmetic problem solving is characterized by changes in dis-
tributions of problem-solving strategies, rather than broad and
abrupt shifts between processing stages11. Notably, our latent cog-
nitive measures of memory retrieval strategy use and efficiency

captured different aspects of observable behavioral measures:
increase in memory retrieval strategy use was associated with faster
reaction time and greater memory retrieval efficiency correlated
with improved accuracy on numerical problem solving. Our find-
ings suggest that acquisition of numerical problem-solving skills is
characterized by greater use of memory-based retrieval strategies as
well as greater efficiency in memory-based strategies, accompanied
by faster problem solving and higher accuracy, respectively.
More broadly, our computational modeling approach provides a
quantitative template for investigating latent cognitive processes
beyond observable behavioral measures in other domains
(see Supplementary Discussion for more details).

The second key finding of our study is that cognitive training
markedly altered the network organization of brain regions
involved in numerical problem solving. Functional brain changes
were characterized by changes in the modular brain network
organization with training. To date, cognitive training studies
have mainly focused on activation and connectivity of brain
regions at single time points23,28, rather than plasticity of brain
network configuration across time in response to training. Fur-
thermore, most previous studies have been carried out in adults,
and functional brain network reorganization in response to
training has not been examined in children. Our study addresses
these gaps and provides evidence for intervention-related plasti-
city in the modular organization of brain networks during pro-
blem solving in children. Specifically, we found that modular

Fig. 6 Cognitive training-induced network reorganization of the hippocampus predicts learning and memory retrieval efficiency gains. a Training-
related change in diversity coefficient of the right rostral hippocampus was significantly negatively correlated with performance gains (ρ=−0.49,
p= 0.002), such that children who showed greater decreases in diversity coefficient, exhibited larger gains in performance with training. b Changes in the
intraparietal sulcus (IPS) diversity coefficient with training were not correlated with performance gains with training. c Training-related change in diversity
coefficient of the right rostral hippocampus was significantly negatively correlated with gains in efficiency of memory retrieval (ρ=−0.52, p= 0.001), such
that children who showed greater decreases in diversity coefficient, exhibited larger gains in efficiency of memory retrieval with training. d Changes in IPS
diversity coefficient with training were not correlated with gains in memory retrieval efficiency with training. N= 35 children.
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network organization changed with training. Notably, all sub-
regions of the MTL, which initially belonged to a single, segre-
gated module prior to training, were subsequently reorganized
into three modules each with a distinct pattern of MTL-cortical
circuits (Fig. 3b).

Our analysis further identified the right rostral hippocampus as
the node that drives modular reorganization in response to cog-
nitive training. Specifically, we found that the proportion of
intermodular connections of the right rostral hippocampus was
significantly reduced after training (Fig. 5a). A key aspect of this
change was that, post-training, the rostral hippocampus was no
longer part of the segregated MTL module but was instead now
integrated into IPS, ITG, and LOC brain regions consistently
implicated in numerical processing1,35,41–43,56,57,59,61 (Fig. 3b). In
parallel, this reconfiguration was also accompanied by segregation
of the rostral hippocampus-containing module from the two
other modules, as indicated not only by the formation of a new
functional module but also by a decrease in its diverse interac-
tions as noted above. In other words, the right rostral hippo-
campus not only switched module allegiance from the MTL to a
cortical IPS-ITG-LOC numerical processing module, but its
interactions with other modules decreased at the same time.

By incorporating multiple MTL subdivisions in our large-scale
brain network model, our results also help elucidate the differential
role of the right rostral hippocampus in response to cognitive
intervention. Previous memory studies have suggested that the
rostral hippocampus is crucial for pattern completion, whereas
the caudal hippocampus is crucial for pattern separation81. Thus, the
rostral hippocampus subdivision of the MTL may contribute to the
integration of memories by altered modular configuration and
enhanced interactions with distributed brain regions implicated in
numerical processing. Taken together, our findings suggest that
network plasticity and reorganization of rostral hippocampus
circuits underpins learning of academically relevant skills, in line
with the integrative coding mechanisms proposed for this brain
region82–84.

The third important finding of our study is that the training-
induced brain network reconfiguration, both at the large-scale
and regional levels, was associated with behavioral changes.
Specifically, children who showed greater training-induced large-
scale functional brain network reorganization, as measured by
mutual information-based distance metrics, exhibited larger
performance gains with training. Additionally, functional brain
network reorganization better predicted performance gains with
training than neuropsychological assessments acquired before
training, including domain-general (IQ and reading) and
domain-specific (numerical operations and math reason-
ing) measures. Furthermore, building on evidence showing brain
network changes associated with the right rostral hippocampus,
we found that children who showed greater training-induced
functional brain reorganization of the right rostral hippocampus
also exhibited larger gains in accuracy. Taken together, these
results suggest that the degree of training-induced changes in
functional network organization, both at the large-scale level and
at the regional level localized to the right rostral hippocampus, are
associated with individual differences in training-induced
performance gains.

The fourth key finding of our study relates to changes in
strategy use, as assessed with computational modeling that
allowed us to quantify network mechanisms underlying greater
use of memory-based strategies. Again, building on our finding
of brain network changes associated with the right rostral hip-
pocampus, we found that children who showed greater training-
induced functional brain reorganization of the right rostral
hippocampus also exhibited larger gains in memory retrieval
efficiency. Notably, unlike overall changes in performance gains,

as noted above, changes in memory retrieval efficiency were not
significantly associated with large-scale network changes as
assessed using mutual information-based distance metrics.
Rather, gains in memory retrieval efficiency were specifically
associated with the right rostral hippocampus region that showed
significant reorganization with training. This dissociation further
clarifies the specific role of emergent rostral hippocampus cir-
cuitry in driving the use of more efficient memory-based pro-
blem-solving strategies. The specificity of the association between
changes in memory retrieval efficiency, rather than overall
performance gains, and right rostral hippocampal network
reorganization is further highlighted by our control analysis
(Supplementary Fig. 4), which shows that the strategy process
dissociation model provides a significantly superior character-
ization of the change in right rostral hippocampal brain network
organization, compared to a control model that applies canonical
drift–diffusion processes without inferring latent strategies.

Taken together, the current study demonstrates that a short-
term cognitive training, designed to improve children’s problem
solving, alters functional brain network organization and leads to
increased use and efficiency of memory retrieval-based strategies
in children.

Future studies will need to address two limitations. First, it is
possible that some of the changes in brain and behavior observed
in this sample may have arisen from practice effects or repeated
testing, which is also known to facilitate learning85–87. Follow-up
experiments with a well-matched active control will be needed to
better understand training-specific learning and functional brain
reorganization. Second, our neurocognitive process models of
numerical problem-solving strategies were based on single-digit
addition problems. Further studies are needed to validate latent
cognitive processes involved in solving more complex numerical
problems and training-related transfer to new problems, includ-
ing the possibility of use of more than two strategies, beyond
retrieval and counting. Additionally, longitudinal follow-up stu-
dies are needed to determine the long-term stability of the
observed training-induced behavioral, cognitive, and neural
changes. Finally, future work should investigate whether network-
analytic quantitative measures of hippocampal-cortical network
organization could serve as a brain-based biomarker for tailoring
various cognitive training interventions.

In conclusion, the present work provides a comprehensive
characterization of brain network mechanisms that drive acade-
mically relevant learning in children. Our quantitative network
analysis combined with a computational modeling approach
substantially improves our understanding of brain network
mechanisms underlying the increased use of efficient memory-
based problem-solving strategies. The current work presents a
neurocognitive process model of latent memory processes that
underlie individual differences in learning in response to cogni-
tive training. More generally, our findings provide, to the best of
our knowledge, novel evidence for theoretical models that posit
that the emergence of brain network modules supports the
development of specialized cognitive functions.

Methods
Experimental design. The current study examined the neurocognitive mechan-
isms that underlie the acquisition of efficient memory-based strategies, following a
short-term cognitive training. Participant characteristics, study design, and pro-
cedures are described in the respective sub-sections below.

Participants. Participants were recruited from multiple school districts in the
San Francisco Bay Area. Participants had no history of psychiatric illness, neuro-
logical disorders, or reading disabilities. Informed consent was obtained from
the legal guardian of each child and all study protocols were approved by the
Stanford University Institutional Review Board. Thirty-five children in grade 3
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(age: M= 8.58, SD= 0.58, 20 females) participated in the current study (Supple-
mentary Table 3).

Overall study design. Figure 1a illustrates our study design. Demographic, neu-
ropsychological, cognitive, and brain imaging measures were acquired from each
participant prior to training. After successful completion of the MRI scanning
session, children started an 8-week math training program. Training sessions
occurred three times per week and were each approximately 40–50 min in dura-
tion. Response to training was examined using arithmetic verification and pro-
duction tasks which assessed accuracy, reaction time, and retrieval strategy use
before and after training.

Neuropsychological assessments. All participants underwent a comprehensive
battery of standardized neuropsychological assessments including the Wechsler
Abbreviated Scale of Intelligence (WASI, 1st edition)88 and the Wechsler Indivi-
dual Achievement Test (WIAT-II, 2nd edition)89 (Supplementary Table 3). IQ was
determined using the WASI; academic achievement in reading and mathematics
was assessed using the WIAT. These standardized measures were acquired prior to
training and were not repeated because of the statute of limitations regarding their
repeated use within a year.

Training sessions. Children took part in an 8-week cognitive training program
adapted from MathWise17,18. The training program combined conceptual
instruction with speeded retrieval of math facts14. Similar to MathWise, the
training involved a total of 15–20 h of training, but it was condensed to 8/9 weeks
with longer lessons in order to equate overall time on training14. The training
consisted of 22 lessons of increasing difficulty14. Lessons 1 through 4 reviewed
adding and subtracting 0, 1, and 2, as well as low ties (from 1+1 to 6+6 and
corresponding subtraction facts, e.g., 12–6)14. These lessons also taught the com-
mutative property of addition (i.e., changing the order of the operands does not
change the sum), as well as the additive identity property of zero (i.e., adding zero
does not change the number’s value), and introduced the children to math
manipulatives (i.e., a number line and blocks in a circle)14. Lessons 5 and 6 taught
the min strategy for addition (i.e., start with the larger number and count up with
the smaller number)17,18 and the missing addend strategy for subtraction (i.e., start
with the smaller number and count up to the larger number)14. During lesson
7–22, children practiced with progressively more difficult problems14. They started
out with all the addition problems that summed to 5, and the corresponding
subtraction problems14. By the end of training, they learned addition problems that
summed to 18, and their corresponding subtraction problems14. All lessons fol-
lowed the same structure: (1) warm-up flashcards to review previously trained
math problems; (2) number knowledge review, including the use of manipulatives
and the counting strategies; (3) a lesson worksheet to introduce the new math
problems; (4) a math game, (5) computerized flashcards combining the current and
previous lessons’ material, (6) a physical flashcard game, and (7) a review work-
sheet of that day’s problem set14. Since scanning occurred only on weekends,
children who completed lesson 22 early in the week took part in 1 or 2 additional
review sessions14. Training was administered by well-trained research assistants,
under the guidance of post-doctoral fellows to ensure fidelity of training imple-
mentation. To maximize compliance, participants were provided as many breaks as
needed and were given positive feedback and incentives for completing training
activities (stickers and small prizes)14.

Training outcome measures. Response to training was examined using accuracy
and reaction time (assessed in the fMRI scanner) and strategy use (assessed outside
the scanner) on single-digit addition problems before and after training. While
children were trained on both addition and subtraction problems as part of an
established math training protocol14, our main outcome measures focused on
addition problem-solving skills to probe memory-retrieval-based problem solving
strategy use, which is more often observed in addition than subtraction problem
solving90–92.

Statistics and reproducibility. The current study used the following analytical
approaches: (i) neurocognitive process model of latent memory processes to
examine training-induced changes in the use and efficiency of memory-based
problem-solving strategies and (ii) quantitative functional brain network analysis
to investigate training-induced changes in modular organization of functional
brain circuits. Two-tailed paired t-tests and Wilcoxon signed rank paired tests were
performed for comparisons between pre- and post-training for behavioral and
brain measures respectively, and Spearman correlation was used for analysis on
brain-behavior relation, unless otherwise specified. Effect sizes, Cohen’s d, and
Spearman’s rho, were estimated in Matlab. All statistical analysis is based on the
sample of 35 children. Details on computational modeling and functional MRI
network analysis are described in their respective sub-sections below.

Computational modeling
Overview. We used computational modeling to assess the use and efficiency of
problem-solving strategies. We modeled the problem-solving process as a mixture

model of two latent strategies: memory retrieval and counting strategies (Fig. 2a).
Our computational modeling allowed us to measure different strategy-specific
process components, and their relation to changes in observable behavior and brain
network organization. Our model is characterized by a process dissociation
structure that imposes theoretically derived structural constraints on the trial-by-
trial inference about which latent strategy is being used. The inference about which
strategy was used on each trial is made by comparing the likelihood of behavioral
responses (correct or incorrect choice and reaction time) under the parameters
inferred for each individual strategy (Fig. 2a; Supplementary Figs. 1, 2).

The process dissociation model infers which of these two strategies best explains
performance (the joint distribution of accuracy and reaction time) on a trial-by-
trial level, accounting for the variability in item difficulty levels across trials, for
each individual, given the observed data. Specifically, both the memory retrieval
and counting strategies are modeled as distinct drift–diffusion processes74, with
different start (non-decision) times, and a common decision threshold that
measures the degree of evidence required to decide. Each drift–diffusion process
represents a distinct cognitive problem-solving strategy (memory retrieval or
counting). On each trial, an individual is assumed to follow a two-step strategy-
selection process, with memory retrieval as the primary (default) strategy and a
possible subsequent switch to an alternate counting strategy. This probabilistic
strategy selection is characterized by adapting sequential item-response or SRM-
MC models93, such that the probability of shifting away from a primary-memory-
based strategy is dependent on both an individual-level propensity but also an
item-specific effect that is common across all individuals.

The two-step strategy selection process is governed by a latent measure of
executive function that characterizes the time taken for internal strategy switching.
The rate of evidence accumulation of the drift–diffusion process is a measure of the
efficiency of that strategy. This drift rate for memory retrieval is based on a
combination of individual-level latent measure of memory retrieval efficiency as
well as a latent item difficulty parameter which is estimated from the data across
participants using an adapted form of item-response theory. For counting, the
evidence accumulation process is inversely related to the number of counts
required for each item, modulated by an individual level counting efficiency
measure.

As an additional measure, we also implemented a second neurocognitive
process model that jointly characterizes changes in problem-solving strategies and
changes in brain circuits to provide precise measurements about how training-
induced changes in different latent model parameters are linked to changes in brain
modularity. This model, which integrates psychometric measurement, cognitive
process modeling, and brain network analysis, was implemented within a
hierarchical Bayesian inference framework (Supplementary Figs. 1, 2) using JAGS
version 4.3.075. The key imperative is that while typical approaches reduce a
sequence of behavior into one or two dimensions of performance, our approach
allows us to characterize behavior using multiple dimensions of individual
differences, measure training-induced changes in each dimension, and relate
changes in brain modularity to specific dimensions rather than overall
performance gains.

Model and implementation. Multidimensional latent measures of individual dif-
ferences were examined by computational modeling of behavioral responses during
the arithmetic verification task. Specifically, the behavioral responses—choice
accuracy and reaction time—were modeled as a drift–diffusion process (DDM),
with the model implemented as a Wiener distribution94,95 with four parameters,
the decision threshold, drift rate, bias, and non-decision time. Children use mul-
tiple problem-solving strategies (memory retrieval and counting), and each strategy
is characterized by its own set of parameters that reflect mechanistic and
chronometric assumptions about the strategies. Behavior on any trial (i.e., for any
specific problem) is thus characterized as being a result of a probabilistic selection
of one of these strategies and modeled as a mixture model of memory retrieval and
counting strategies.

As noted above, the model assumes a sequential two-step process, with an initial
attempt for memory retrieval followed by the possible application of a counting
strategy. This implies a switching point at which an individual might give up on
memory retrieval and switch to an alternate strategy or decide to continue with
memory retrieval. We denote this as the strategy switching time. The probability of
an individual i selecting a memory retrieval strategy for an item k depends on the
individuals’ propensity towards memory retrieval ρi as well as how amenable the
item is to be retrieved from memory ρk. The ρk parameter can be interpreted as the
degree of difficulty of memory retrieval for item k and is measured at the group
level. Importantly, this dissociates the probability of memory retrieval into
individual and item-level effects:

p memory retrievalð Þ ¼ 1
1þe� ρi�ρkð Þ ð1Þ

p countingð Þ ¼ e� ρi�ρkð Þ
1þe� ρi�ρkð Þ ð2Þ

The memory retrieval process is characterized as a drift–diffusion process and the
efficiency of memory retrieval is characterized by a memory retrieval drift rate
parameter δMik

� �
, with higher values characterizing faster and more accurate

memory retrieval. The efficiency of memory retrieval is characterized as being
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dependent on an individuals’ memory retrieval efficiency δMi
� �

and the nature of
the specific item, specifically, the item k level difficulty of memory retrieval:

δMik ¼ δMi
1þeρk

ð3Þ

The counting process is also characterized as a drift–diffusion process, with a
combination of individual and item-level effects. A min counting strategy is
assumed to be used, where the counting is initiated from the larger addend to count
up nk steps to the total, where nk is the smaller addend. For an item k the drift rate
for counting is modeled as below, with δCi representing the individuals counting
efficiency:

δC½min�
ik ¼ δCi

nk
ð4Þ

A selection of the counting strategy is accompanied by a larger non-decision time
(relative to memory retrieval) to account for the strategy switching time. The
strategy switching time is assumed to be a fixed time for each individual, with the
assumption that memory retrieval is always attempted as a default strategy, but
individuals may switch strategies at some point, and this switching time measures
the persistence of individuals in sticking to a memory retrieval strategy (or lack of
persistence and hence early switching away from memory retrieval). The decision
threshold αið Þ is interpreted in terms of the degree of confidence required to decide
and is assumed to be invariant to the choice of strategy used.

Since performance is measured at two time points with a relatively short time
interval (8 weeks), the item k level parameters (obtained at the group level) are
treated as objective difficulties that do not change over this time period. The basic
non-decision time τi is also assumed to remain the same. However, the strategy
switching non-decision time τCi

� �
, the decision threshold αið Þ, as well as the

individual strategy efficiencies δCi ; δ
M
i

� �
and individual propensities for strategy

use ρMi
� �

are allowed to vary between time points and individuals. Any effects of
training and intervention are expected to be reflected in one or more of these five
parameters. Response times less than 300 ms (less than 1% of the trials) were
treated as missing values for the model inference. Using these parameters, the
model posterior predictive accurately captured individual differences in reaction
times and error rates (1 – accuracy) at both pre and post-training, showing the
adequacy of model fit to data (Supplementary Fig. 5).

The joint brain behavioral model additionally builds in a latent regression of the
change in brain modularity measure of interest against the change in all the model
parameters, pre- and post-training (Supplementary Fig. 2).

Control analysis was performed to compare our model to two other models, a
simple drift–diffusion model and a single strategy drift–diffusion model that
accounts for variability in item-level difficulty but not the variability in the use of
different strategies. This analysis revealed that our model accounting for both item
difficulty and strategy dissociations provides the best fit to behavioral and brain
data, compared to models that do not consider strategy-based dissociation of
individual problems (Supplementary Table 4).

Model priors. Hierarchical normal priors, with appropriate truncation where
required, were placed on memory propensity, memory efficacy, counting efficacy,
and decision threshold for pre-training and for the change from pre- to post-
training. Uniform priors were placed on non-decision time and switching time.
Hierarchical normal priors were also placed on the item-level difficulty parameter.
For the hierarchical priors, the hyperpriors used were uniform priors on the
standard deviation and a multivariate normal prior for the hierarchical means. The
multivariate normal hyperprior was constructed with normal priors on the means
and an inverse Wishart prior on the covariance matrix of the multinormal. Markov
chain Monte Carlo (MCMC) settings were 3 chains with 10,000 samples each, with
a burn-in of 5000 (i.e., 5000 retained after burn-in) and a thinning factor of 1.

Brain imaging
Functional MRI data acquisition. fMRI data were acquired using whole-brain
imaging with a T2*-sensitive gradient echo spiral in/out pulse sequence at a Signa
LX (GE Medical Systems) 3T scanner with the following parameters: echo time
(TE)= 30 ms, repetition time (TR)= 2 s, flip angle= 80°, field-of-view= 200 mm,
29 axial-oblique slices parallel to the anterior commissure–posterior commissure
line, dimensions 3.125 × 3.125 × 4mm with 0.5-mm skip. To reduce blurring and
signal loss from field inhomogeneity, an automated high order shimming method
based on a spiral acquisition was used prior to the acquisition of functional MRI
scans. Cushions were placed around participants’ heads to minimize head
movement.

Structural MRI data acquisition. High-resolution T1-weighted images were
acquired in each child at both scan sessions (that is, pre- and post-training) to
facilitate anatomical co-registration of fMRI maps. A spoiled-gradient-recalled
inversion recovery three-dimensional MRI sequence with the following parameters
was used: I= 300 ms, TR= 8.4 ms; TE= 1.8 ms; flip angle= 15°; 22-cm field of
view; 132 slices in coronal plane; 256 × 192 matrix; 2 NEX, acquired resolution=
1.5 × 0.9 × 1.1 mm.

Functional MRI task. The numerical problem-solving task was performed during
fMRI. This task consisted of two runs of addition problem solving during which the
child had to verify addition equations (for example, 3+ 4= 7). Problems were
presented in a fast event-related fMRI design with 12 single-digit addition pro-
blems per run. In each run, problems were presented horizontally in green lettering
on a black background. In half of the problems, the answers presented were correct
(for example, 2+ 4= 6); in the remaining half, the answers presented deviated
from the correct solution by ±1 or ±2 (for example, 3+ 5= 7). Addition problems
with 1 or 0 as operands were excluded. The larger operand was equally likely to
appear in the first or second position. Each trial started with a fixation asterisk that
lasted for 0.5 s. Then, the problem was presented for a maximum of 9.5 s, during
which time the child could make the response. The participant used a response box
to indicate if the answer was correct or not. After the response, the problem
disappeared from the screen and a black screen appeared until the time window
was filled to 9.5 s. A set of 12 problems constituting the Control condition was also
presented during each run. These problems consisted of number identity ver-
ifications (for example, 7= 7) and were randomly interspersed with the addition
trials. Invalid trials were counterbalanced as in the Addition condition (that is,
answers deviated from the correct solution by ±1 or ±2). This condition served as
the control task for fMRI data analyses to better isolate brain activity related to
numerical problem solving, controlling for low-level perceptual processing of visual
stimuli and motor responses required to complete verification tasks. The task
design also included a total of six rest periods—10 s each, which occurred at jittered
intervals during each run to achieve an optimal event-related fMRI design. The rest
periods were not explicitly modeled. Accuracy and median reaction times of cor-
rectly solved problems were computed separately for each participant for each of
Addition and Control conditions (Supplementary Table 5). We used performance
on Addition condition to assess numerical problem-solving ability.

Functional MRI preprocessing. Data were analyzed using SPM8 (http://www.fil.ion.
ucl.ac.uk/spm/). The first five volumes were not analyzed to allow for signal
equilibration. A linear shim correction was applied separately for each slice during
reconstruction using a magnetic field map acquired automatically by the pulse
sequence at the beginning of the scan. Images were realigned to correct for motion,
corrected for errors in slice-timing, co-registered to each individual’s structural T1
images, spatially transformed to standard stereotaxic space (based on the Montreal
Neurologic Institute coordinate system), resampled every 2 mm using sinc inter-
polation, and smoothed with a 6 mm full-width half-maximum Gaussian kernel to
decrease spatial noise prior to statistical analysis. For co-registration, the indivi-
dual’s highest quality-rated (that is, either before or after 8 weeks) structural MRI
sequence was used.

Translational movement in millimeters (x,y,z), and rotational motion in degrees
(pitch, roll, yaw) were calculated based on the SPM8 parameters for motion
correction of the functional images of each subject. Mean scan-to-scan (framewise)
displacement of movement did not exceed 1 mm for all participants in either
session (that is, pre- or post-training) and was not significantly different between
sessions (t(34)= 1.56, p= 0.31). Training-related change in head motion was
not correlated with changes in latent and observable behavioral and brain measures
(|r|s < .30, ps > 0.08; Supplementary Table 6). To correct for deviant volumes
resulting from spikes in movement, we used de-spiking procedures similar to
those implemented in AFNI96. Volumes with movement exceeding 0.5 voxels
(1.562 mm) or spikes in global signal exceeding 5% were interpolated using
adjacent scans.

Functional MRI network analysis: region of interest (ROI) selection. Neurosynth77-
based meta-analysis using term “arithmetic” was used to identify 18 parietal,
frontal, and ventral temporal-occipital regions consistently activated during
numerical problem solving1,13,32,40–43,47,97, in addition to 12 hippocampus and
parahippocampal gyral subregions defined in the Brainnetome atlas98 (Fig. 3a).
Anatomical locations of the ROIs from the meta-analysis were identified by the
Harvard-Oxford atlas.

Functional MRI network analysis: network construction. Psychophysiological
interaction (PPI) connectivity analysis99 was performed using the 30 ROIs
described above to construct a task-based numerical problem-solving brain net-
work (Fig. 3a). We used a standard PPI analysis procedure100–104 which explicitly
models and controls for overall task activation, and as such it models effective
rather than synchronized task-related co-activation99. Specifically, our PPI analysis
employed three regressors: a physiological variable representing the deconvolved
time series within the seed region, a psychological variable representing Addition
problem solving and Control number identity verification conditions, and a psy-
chophysiological interaction term that represented the Hadamard cross-product of
the first two regressors. PPI analyses were performed at the individual participant
level and connectivity estimates corresponding to the Addition versus Control
contrast were used as edge-weights of the 30 × 30 task-based functional con-
nectivity of numerical problem-solving brain network.

Functional MRI network analysis: Graph-based analysis of global and regional
modular organization. We used graph-theoretical and community detection
techniques to investigate the global and regional measures of modular organization
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of functional connectivity among 30 node task-based numerical problem-solving
brain network (Fig. 3a). Community detection was used to determine the optimal
global modular structure within the functional connectivity matrix by grouping
nodes into nonoverlapping communities or modules that maximize intramodular
connectivity and minimize intermodular connectivity. The Louvain algorithm
implemented in the Brain Connectivity Toolbox (http://www.brain-connectivity-
toolbox.net) was used to detect community structure in the functional connectivity
matrix. This algorithm optimizes a quality function Q*, defined as the difference
between the observed intramodular connectivity and the intramodular connectivity
expected by chance, while penalizing assignment of nodes with negative correla-
tions to the same community. The Louvain algorithm automatically determines the
number of underlying communities, and the resulting community structure is
characterized by high positive and low negative connectivity within each com-
munity. It should be noted that this community structure was based on an
unbiased weighted connectivity matrix, i.e., we did not impose an arbitrary
threshold on the connectivity matrix. One commonly adopted and critical step in
such analyses is to create a binary adjacency matrix by thresholding an association
matrix (e.g., cross-correlation between brain nodes) at an arbitrary value. However,
the use of such arbitrary thresholds is problematic, as it can lead to different levels
of network sparsity and highly biased estimates of community structure. Our
approach here overcomes these limitations.

Changes in large-scale modular network organization after 8 weeks were
computed using an information-theoretic distance metric. Specifically, we
computed the distance as one minus the mutual information between the modular
organization at pre-training and the modular organization at post-training. Brain
Connectivity Toolbox was used to compute the mutual information between two
modular organizations.

Modular organization at the regional level was characterized by computing
diversity coefficients of each of the 30 nodes belonging to the numerical
problem-solving brain network. Diversity coefficient is a measure of how
uniformly a brain region interacts with regions in other modules. Specifically, a
high value for the diversity coefficient would indicate that interactions are more
evenly distributed across modules. Diversity coefficient, is a more relevant
measure than participation coefficient. Crucially, diversity coefficients are not
influenced by the number of modules and thus consistent across different
partitions of the same network105. In contrast, participation coefficients are
influenced by the number of modules and thus variable across different
partitions of the same network. Therefore, diversity coefficient is a more
appropriate measure of regional modular connectivity in the current study
which examines learning-induced changes in the partition of the brain network
involved in numerical problem solving105. Brain Connectivity Toolbox was used
to compute the diversity coefficient.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data for Figs. 1b, 2b, 4, 5a–d, and 6a–d have been provided in Supplementary
Data 1. All the other data that support the findings of this study are available from the
corresponding authors upon reasonable request.

Code availability
Data were analyzed using Matlab 9.5 (R2018b), JAGS 4.3.0, SPM8, and Brain
Connectivity Toolbox. Data analysis scripts are available from the corresponding authors
upon reasonable request.
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