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Abstract
We propose an extension of the �-OU Barndorff-Nielsen and Shephard model taking into
account jump clustering phenomena. We assume that the intensity process of the Hawkes
driver coincides, up to a constant, with the variance process. By applying the theory of
continuous-state branching processes with immigration, we prove existence and uniqueness
of strong solutions of the SDE governing the asset price dynamics. We propose a measure
change of self-exciting Esscher type in order to describe the relation between the risk-neutral
and the historical dynamics, showing that the �-OU Hawkes framework is stable under this
probability change. By exploiting the affine features of the model we provide an explicit
form for the Laplace transform of the asset log-return, for its quadratic variation and for
the ergodic distribution of the variance process. We show that the proposed model exhibits
a larger flexibility in comparison with the �-OU model, in spite of the same number of
parameters required.We calibrate themodel onmarket vanilla option prices via characteristic
function inversion techniques,we study the price sensitivities and propose an exact simulation
scheme. The main financial achievement is that implied volatility of options written on VIX
is upward shaped due to the self-exciting property of Hawkes processes, in contrast with the
usual downward slope exhibited by the �-OU Barndorff-Nielsen and Shephard model.
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1 Introduction

In recent years, the implied volatility indices, such as VIX in the US and V2X in Europe,
proved themselves to be key financial instruments for investment strategies, hedging (see
[9,55]) and also indicators of the “stress” on the market [35]. This growing importance
has shed light on the peculiar form of the implied volatility dynamics: the occurrence of
large variations on very short periods, with a tendency to form clusters of spikes. Moreover,
new derivatives products appear, due to market regulation and standardization, like volatility
options, with a significant and increasing demand. Implied volatility of these product exhibits
an upward slope, this is a clear evidence of market volatility risk aversion pushing people
to buy options to cover this risk [53]. The existence of such stylized facts accounts for the
emergence of a wide range of financial models taking into account these features. Heston [34]
proposes a model where the variance is stochastic and follows a CIR [17] diffusion. By using
Poisson processes, Bates [7] adds jumps in asset dynamics, while Sepp [58] includes jumps
in both the asset returns and the variance. Duffie et al. [22] generalize the jump-diffusion
framework by including a stochastic intensity for the jump processes both in the asset returns
and the volatility dynamics, however no self-exciting example is proposed in their paper.
Kallsen et al.[43] consider the case where jumps are added in the stock via a time-changed
Lévy process. More recently, a large literature develops rough volatility models ([8,23] and
[24]), while Abi Jaber et al. [2] propose a model based on the generalization of affine Volterra
processes.

The aim of this paper is to propose a new model for asset pricing able to capture the main
stylized features but preserving both mathematical and numerical tractability. Our idea is to
build up our model as an extension of the Barndorff-Nielsen and Shephard (BNS) model
in order to include jumps clusters in both the volatility and the stock return dynamics. In
their celebrated papers Barndorff-Nielsen and Shephard [5,6] propose a stochastic volatility
model of Ornstein–Uhlenbeck type driven by a subordinator; by considering as a concrete
specification for the subordinator a compound Poisson process with exponentially distributed
jumps size, they obtain a model where both the variance and the log-returns are driven by
the same jump process. This type of stochastic volatility model, named �-OU model and
originally introduced in order to fit empirical data, was later shown to be suitable for option
pricing by Nicolato and Venardos [54]. As pointed out by a large amount of literature (e.g.
[59]), single factor models, and, more specifically, the BNS model, are not flexible enough
and they are outperformed by multi-factor stochastic volatility models in practice (a multi-
factor extension of the BNS model is proposed in [52]). On the other hand, multi-factor
models have a main drawback in the huge number of parameters required, giving birth to
fitted parameters instability (e.g. [7]).

We propose to extend the �-OU model in order to include jump clustering features. The
clustering effect of jumps of the Hawkes [33] process is well suited to take into account the
periods of turmoil in the implied volatility, typically observed in implied volatility indices.
These clustering features have been studied throughout various financial asset models: see
Fiura [28] for FX rates, Hainaut [32] and Jiao et al. [39] for interest rates, Abergel and Jedidi
[1], Horst and Xu [36], Zheng et al.[61] for microstructure and limit order books, Errais et
al. [25] for credit risk, Jiao et al. [40] for energy prices and Granelli and Veraart [30] for
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risk premium and contagion. In this paper, we shall insist on the stylized facts related to the
clustering effects of the implied volatility indices, such as VIX index, and the related options.

In the model we are going to propose, the jump component of the dynamics is taken
into account through a marked Hawkes process, with exponentially distributed jump sizes.
Thus, the model has three state variables, the stock, the variance process and the intensity
of the jumps. In order to prevent parameters instability, we assume that the intensity process
coincides with the variance process up to an additive constant, representing the minimal
intensity of jumps arrival. Our model, that will be referred to as �-OU Hawkes volatility
model, shares the same number of parameters of�-OU since the constant intensity is replaced
by the shifting constant linking the intensity and the variance processes. In spite of this, the�-
OUHawkesmodel is intrinsicallymulti-factor, since both variance and intensity are stochastic
processes, so it exhibits more flexibility than the �-OU model. Parsimony is preserved by
the fact that the two processes coincide up to an additive constant. By exploiting a measure
change of Esscher type in a self-exciting setting, as introduced in Jiao et al. [39,40], we
describe the relation between the risk-neutral and the historical dynamics, showing that the
�-OU Hawkes framework is stable under this probability change unlike the α-stable case in
Jiao et al. [39,41].

We show that it is possible to fit the �-OU Hawkes model to obtain the skew, that is the
slope and the left wing of the implied volatility. We then perform a calibration of our model
using plain vanilla market data and provide a sensitivity analysis in order to illustrate the
flexibility of the model. This sensitivity analysis shows, in particular, that two parameters,
namely the speed of mean reversion and the minimal jump intensity, have a small impact on
the implied volatility. By using extreme values, we observe that the main impact of both the
speed of mean reversion and the minimal jump intensity is detected around the money and
consists, roughly speaking, in increasing the smile and preserving the slope for the left side
when the minimal jump intensity decreases or the speed of mean reversion increases. This
result could appear counterintuitive at first sight since, without jumps, the �-OU Hawkes
model, as the BNS, reduces to a Black Scholes diffusion and then the smile is expected to
disappear. The explanation is contained in the self-exciting structure of the �-OU Hawkes
model since, when the minimal jump intensity decreases, the endogeneity of the jumps
increases and that explains why extreme events occur more often.

We also point out that moment explosion does not take place in �-OU Hawkes model.
This interesting feature is crucial for several reasons: first, whenMonte Carlo simulations are
needed in order to perform derivatives evaluation with no close-form solutions available, an
infinite variance can constitute a serious drawback. A similar problem arises when consid-
ering derivatives with a nonlinear payoff. Third, in dynamic portfolio optimization moment
explosion problems can give rise to an infinite value function in many usual frameworks,
which represents a main drawback in financial applications.

By focusing on the options written on VIX, the same self-exciting effect gives birth to an
upward sloping implied volatility. This upward slope behavior is coherent with market data
(e.g. [53]), but is exhibited by very few models in the literature. Nicolato et al. [53] study the
implied volatility of variance options for different stochastic volatilitymodels with jumps and
show that only inverse-Gamma Ornstein–Uhlenbeck is able to reproduce an upward slope.
Indeed, in the case of exponential law for jumps size, the implied volatility for options written
on VIX is down-sloping. We then conclude that, in the �-OU Hawkes model, the upward
slope is a consequence of self-exciting structure of jumps. We also provide a sensitivity
analysis for VIX implied volatility.

We conclude the analysis of options by performing a calibration of the model. The cal-
ibration is performed first on Eurostoxx 50 options for two maturities before the COVID
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crisis. This first set of parameters is exploited for sensitivities analysis. Then, we perform
a second round of calibrations on both options on S&P500 and VIX index for a very short
maturity (1 month). Calibrations are performed separating S&P500 and VIX options giving
birth to two new sets of calibrated parameters. These parameters are similar excepting by the
leverage parameter ρ that is close to 0 for VIX option. We link this effect to the definition of
VIX index given in the Chicago Board Options Exchange [16] white paper which exploits a
static replication valid for continuous paths underlying [21]. Surprisingly the �-OU Hawkes
volatility model calibrated on VIX options tries to reproduce the continuous paths forcing a
negligible leverage.

Finally, we address the problem of the simulation of the proposed model, which is a
very important aspect for its practical applicability. Exact simulation schemes for stochastic
volatilitymodels have been first introduced in literature byBroadie andKaya [12]which show
how to simulate exactly the transition density of the Heston (and its extensions with jumps)
model. Cai et al. [13] and Li and Wu[49] develop a similar approach for, respectively, SABR
[31] and Ornstein–Uhlenbeck stochastic volatility [57] models. The main drawback of those
methods is that they rely on the numerical inversion of conditional Laplace transforms which
make the simulation schemes slow and hard to implement (see, e.g., [46]). An important
advantage of the proposed �-OU Hawkes volatility model is that it can be simulated exactly
without resorting to any numerical method. We propose an exact simulation scheme for the
model and evaluate the performances by a comparison with the classic Euler scheme.

The rest of the paper is organized as follows. Section 2 details a statistical analysis of VIX
values pointing out the existence of jump clusters and giving a first fit to data. In Sect. 3 we
introduce the �-OUHawkes volatility model by providing theoretical results about existence
and characterization in a general framework. After presenting the affine properties of the
�-OU Hawkes model, we discuss the moment explosion issue. Moreover, we compute the
Laplace transformof the quadratic variation of the process involved, andprovide a closed form
expression for the variance swaps rates. After introducing an Esscher type transform for the
present model, we provide a class of equivalent martingale measures. Section 4 is devoted to
numerical applications, i.e. European pricing via characteristic function inversion techniques,
calibration, perfect simulation andVIXoptions analysis. Finally, Sect. 5 summarizes themain
properties of�-OUHawkes volatility model, and presents a systematic comparisonwith both
the BNS and the Heston models.

2 Clusters in VIX: stylized facts

In this section, we illustrate and discuss the clustering effects of the VIX. A general analysis
of this index is performed by Avellaneda and Papanicolaou [4]. This point provides us with
an empirical justification of our approach involving clustering effects both on the jumps
of the asset price and on the volatility. Moreover, we also see the particular importance of
downward jumps. The VIX index represents the square-root of the implied variance extracted
from short dated options on the S&P 500 index. Hence, we consider the square of VIX index
since it coincides with the variance swap rate, that is a linear functional with respect to time,
converging to the quadratic variation of the logarithm of the equity process (see, e.g. [43] for
more details).

Our sample consists of daily observations from 25-Sep-2006 to 23-Oct-2018, it involves
periods of important turmoil (post Lehman Brothers credit crisis after September 2008,
European sovereign debt crisis in summer 2011, etc.). The historical time series of the prices
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of both S&P500 and VIX indices are plotted in the top left panel of Fig. 1. Since the sample
starts in a period of mild volatility we can reasonably assume that the Hawkes intensity, at
this time, is close to its minimal level, which we denote by λ. The jumps are detected as the
larger positive fluctuations using the algorithm detailed in Callegaro et al. [14].

The first analysis concerns the distribution of gaps between two jumps in order to confirm
that the jumps are clustered. Given the total number of jumps in a given period and assuming a
constant intensity, the conditional distribution of gap lengths is uniform. It is now easy to test
this hypothesis using a Kolmogorov–Smirnov (K–S) test. The renormalised K–S statistics
gives a value of 4.45 that is really large compared to all critical values usually considered: for
instance, for a rejection of the null hypothesis at level of 0.01, the critical value is 1.62, for
0.001 it is 1.95. We then reject the Poisson arrival rate of jumps. In contrast, we can test the
hypothesis of an intensity proportional to the index VIX2 itself and the related renormalised
K–S statistics gives a value of 1.04 that is small compared to the critical values usually
considered, for instance 1.22 for a significance threshold 0.1. As a consequence, we cannot
reject the pure self-excited framework. The top right subplot of Fig. 1 illustrates the result of
the goodness of fit. It can be remarked that the values obtained assuming a constant intensity
are really far from the ideal diagonal whereas the ones assuming an intensity proportional to
the VIX2 itself are much closer.

We now turn on the joint analysis of S&P and VIX2. We identify, in an independent way,
the jump times and the size of the relative increments of S&P and the absolute increments of
VIX2. Our study shows that almost all large negative jumps of S&P coincide with the positive
jumps in VIX2, whereas only one half of positive jumps of S&P coincides with the negative
ones in VIX2. By studying the arrival times of the negative jumps of VIX2, we see that they
coincide with the very large values of the VIX2 itself and follow large positive jumps. We
can reproduce this effect with only positive jumps in VIX and an exponential mean-reversion
speed. Moreover, the method adopted to identify jumps is unable to detect relatively small
jumps (see [14]). In particular, jumps smaller than three standard deviations of the other
increments are classified as usual Brownian noise. The fact that we identify almost 2.5 more
positive jumps in VIX2 than negative jumps in S&P could be explained by the presence of a
larger Brownian contribution, covering a part of relatively small jumps. Indeed, we stop our
iteration at the fifth loop since the ratio of the variance at the fourth and fifth loop in S&P
is 0.975, i.e. really near to 1, showing that the split between the jumps and the Brownian
component is done. However, the same ratio for VIX2 increments is only 0.83 showing that
the Brownian part is certainly overestimated. In order to reach a variance ratio for VIX2

similar to the one of S&P more than eleven loops are required. The total number of large
fluctuations reaches a frequency of one every ten days that pushes us to cut the Brownian
component in the variance process in agreement with the BNS model.

We now focus on the law of jumps sizes in VIX2 and S&P. According to the Kou [47,48]
setup we obtain a quite acceptable fit for an exponential law truncated at the threshold used to
split increments between jumps and Brownian oscillations. The Kolmogorov–Smirnov test
gives values of 1.06 and 1.17 respectively for the positive jumps of VIX2 and negative ones
of S&P, that could not authorize to reject the exponential law hypothesis. Results on the joint
S&P and VIX2 analysis are reported in the bottom subplots of Fig. 1.
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Fig. 1 Top-left subplot: joint evolution of S&P and VIX2 indices. Top-right subplot: Kolmogorov–Smirnov
test for constant (red points) and proportional to the VIX2 (blue points) intensity for the jump arrivals. Bottom-
left subplot: Kolmogorov–Smirnov test for exponential law for positive fluctuations in VIX2. Bottom-right
subplot: Kolmogorov–Smirnov test for exponential law for negative fluctuations in S&P

3 The 0-OU Hawkes volatility model

As the BNS model, the �-OU Hawkes volatility model is a stochastic volatility model with
the same jumps driving both the volatility and the log-return processes, including a leverage
effect. We construct the variance process by subtracting a strictly positive constant λ to the
Hawkes intensity process (which is bounded from below by λ itself), in this way the variance
process exhibits the suited mean-reverting form and can visit all the positive values. Since the
model is constructed in order to reproduce the VIX2 behavior, which is naturally defined with
respect to the risk neutral probability, we start by considering the risk neutral framework, the
historical probability will be then introduced in Sect. 3.5.

3.1 Definitions

Let (�,F,Q) be a probability space supporting a standard Brownian motionW := {Wt }t≥0

and a marked Hawkes process independent on W . The Hawkes process can be characterized
by its counting measure μ(dt, dz) defined on (R+)2 and by the sequence of jump times
{τi }i∈N and marks {Zi }i∈N, representing the jump times and jump sizes respectively. The
compensator ofμ can bewritten asλtθ(dz)dt , where θ(dz) is a distribution on themeasurable
space R+, and the compensated measure is denoted by μ̃(dz, dt) = μ(dz, dt)− λtθ(dz)dt .
In this paper, we assume that θ is of exponential type θ(dz) := ναe−αzdz. The intensity
process reads:

λt = λ0 + β

∫ t

0

(
λ − λs

)
ds +

∫ t

0

∫
R+

z μ(ds, dz), (1)

where λ < λ0 and β are positive constants. From now on, we require that the following
integrability assumption holds:
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Assumption 1 The following condition holds:

β̃ := β −
∫
R+

z θ(dz) > 0. (2)

Under our assumption on the jump size distribution, (2) can bewritten as β̃ := β− ν
α

> 0.This
condition could be considered as the usual non-explosion condition for Hawkes processes in
a marked Hawkes framework (see [10]).

The stock price process {St }t∈R+ is defined via its log-return process: {Xt }t∈R+ : Xt :=
ln(St/S0). In order to describe the leverage effect mentioned before, the jump process driving
the log-return dynamics is multiplied by −ρ, with ρ > 0. Without loss of generality, we will
assume that the interest and dividend rates are null. We assume that X satisfies the following
SDE:

dXt =
[
1

2
λ −

(
1

2
+
∫
R+

(
e−ρz − 1

)
θ(dz)

)
λt

]
dt +√

λt − λ dWt − ρ

∫
R+

z μ(dt, dz),

which under our assumption on the jump size distribution becomes:

dXt = −
(
1

2
σ 2
t − γ λt

)
dt + σt dWt − ρ

∫
R+

z μ(dt, dz), (3)

where γ = νρ
ρ+α

and the variance process is given by σ 2
t = λt − λ

dσ 2
t = −βσ 2

t dt +
∫
R+

zμ(dt, dz). (4)

Note that, thanks to the negative sign in front of the jump term and the domain of Zi , jumps
in the log-return process are negative and the compensator is positive. The natural filtration
of the point process N will be denoted by FN := {FN

t

}
t≥0, while the natural filtration of

(λ, S) will be denoted by F := {Ft }t≥0.

3.2 Existence and basic properties

Next, we shall prove existence and regularity of the solution of the SDE, by using the tools of
continuous state branching processes with immigration (CBI). In particular, we will show the
existence of a strong solution under mild hypotheses including the �-OU Hawkes volatility
model. We extend in particular the evolution by assuming a possible infinite activity of the
jump component. The �-OU Hawkes volatility model will be obtained under the hypothesis
of finite activity and an exponential law for the jump size. The advantage of this generalisation
is to provide a unified framework as in Barndorff-Nielsen and Shephard [5,6], by including
both finite and infinite activity. Moreover, the representation exploiting Branching processes
features provides valuable insights and ideas for interpretationof themodel behaviour.Wefirst
write the evolution of the compensated version of the SDE satisfied by the triplet (λ, σ, X).
We then characterize the evolution as a multi-dimensional exponential affine process where
λ is an autonomous CBI. A byproduct of this characterization is that our model could be
rewritten in the so-called Dawson and Li representation of CBI (see [19,20], [51]). This last
characterization provides access to the ergodic distribution of the process λ and σ . Under
hypothesis 1, the process λ is exponential ergodic. The law of the invariant distribution and
its parameters will be also derived.
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Lemma 1 (Compensated representation) The triplet (λ, σ, X) satisfies the following SDE
where the jump component is compensated.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dλt = β̃

(
β

β̃
λ − λt

)
dt +

∫
R+

z μ̃(dt, dz)

dσ 2
t = β̃

(
ν

αβ̃
λ − σ 2

t

)
dt +

∫
R+

z μ̃(dt, dz)

dXt = −
(
1

2
σ 2
t − ρ

α
γλt

)
dt + σt dWt − ρ

∫
R+

z μ̃(dt, dz)

(5)

The proof is a straightforward computation. The crucial point is that the compensator is
proportional to λ. Hereafter, in this section, we assume that the compensatedmeasure satisfies
the integrability condition

∫
R+(z∧ z2)θ(dz) < ∞ (see for instance [50, Section 3.1] and [51,

Section 2]). In order to exhibit explicitly this dependency on λ, we resort to the general theory
of continuous state branching processes with immigration and in particular the Dawson and
Li representation of the SDE satisfied by (λ, σ, X). The next result shows that the couple
(λ, X) satisfies the Dawson-Li representation of CBI in an extended probability space.

Proposition 1 (Dawson–Li representation) There exist an extended probability space where
there exist a white noise W (dt, du), defined on (R+)2, and a compensated Poisson mea-
sure Ñ (dt, du, dz), defined on (R+)3, with compensator dt du θ(dz), such that the triplet
(λ, σ, X) satisfies the SDE

λt = λ0 + β̃

∫ t

0

(
β

β̃
λ − λs

)
ds +

∫ t

0

∫ λs−

0

∫
R+

z Ñ (ds, du, dz)

σ 2
t = σ 2

0 + β̃

∫ t

0

(
ν

αβ̃
λ − σ 2

s

)
ds +

∫ t

0

∫ λs−

0

∫
R+

z Ñ (ds, du, dz)

Xt = X0 −
∫ t

0

(
1

2
σ 2
s − γρ

α
λs

)
ds +

∫ t

0

∫ σ 2
s

0
W (ds, du)

−ρ

∫ t

0

∫ λs−

0

∫
R+

z Ñ (ds, du, dz) .

This SDE admits a unique solution, which coincides almost surely with the solution of (5).

The main advantage of this representation is to highlight that the speed of mean reversion
and level of the intensity between two jumps change due to the self-exciting property. This
representation is needed in order to obtain the change of probability result in Sect. 3.5.
Moreover, one of the consequences of the previous result is the affine structure of the couple
(λ, X). The next result characterizes its Fourier–Laplace transform.

Proposition 2 (Fourier–Laplace transform) The couple (λ, X) is an exponential affine pro-
cess. That is the Laplace transform of (λ, X) satisfies:

log E
[
euXt+wλt

]
= uX0 + ψu,w(t)λ0 + φu,w(t),

for (u, w) in the domain D := {(u, w) ∈ C2 | �(w) < α + ρ�(u)}, where �(·) denotes the
real part of a complex number. The functions ψ and φ satisfy:

ψ ′
u,w(t) = R(u, ψu,w(t)), φ′

u,w(t) = F(u, ψu,w(t)),
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where

R(u, w) := 1

2

(
u2 − u

)+ γ u − βw + ν
w − ρu

α + ρu − w

F(u, w) := λ

[
βw − 1

2

(
u2 − u

)]
(6)

with starting conditionsψu,w(0) = w andφu,w(0) = 0. In particular, considering theFourier
transform, the pseudo Riccati operator reads R(iu, iw) = − 1

2

(
u2 + iu

)+ i (γ u − βw) +
ν

w−ρu
ρu−w−iα .

Proof A necessary condition for the Laplace transform to exist is the integrability of the
jumps, that is

∫ +∞
0 e−(uρ+w−α)zdz < +∞, which requires �(w) < α + ρ�(u). In Proposi-

tion 3, we shall show that this is actually a sufficient condition. In the following, we consider
the operator R and F only on this domain. Themain statement is a direct application of Duffie
et al.[22, Proposition 1]. By adopting the notation of Kallsen et al. [43], we can write the dif-
ferential characteristics (b, c, K ) of the process (λ, X). Since we consider the compensated
version, we do not need to specify any particular truncation function. (5) we obtain

b =
( 1

2λ + (
γ − 1

2

)
λ−

βλ − βλ−

)
c =

(−λ + λ− 0
0 0

)

K (G) = K1(G)λ−, ∀G ∈ B2(R+ × R) with K1(dz) = να exp (−αz)1z>0dz

Let’s write c = c0 + c1λ−, b = b0 + b1λ− and b = K0 + K1λ−, and recall that the relations
between the differential characteristics (b, c, K ) and the affine characteristics (F, R) are the
following:

F(u, w) = 1

2
(u, w)T c0(u, w) + b0(u, w) +

∫ [
euz − 1

]
K0(dz),

R(u, w) = 1

2
(u, w)T c1(u, w) + b1(u, w) +

∫ [
ewz − 1

]
K1(dz),

where (u, w)T denotes the transposed of the column vector (u, w). By remembering that the
moment generating function evaluated at y of an exponential random variable with parameter
α is y/(y − α), we obtain the Riccati system of ODE (6) for ψ and φ. 	

Remark 1 Proposition 2 can be further extended to obtain the Laplace transform of(
Xt , λt ,

∫ t
0 Xsds,

∫ t
0 λsds

)
by using the results in Brignone and Sgarra [11].

For sake of readability,wewillwrite again the generalizedRiccati operator in the following
form on D

R(u, w) = −βw2 + p(u)w + uq(u)

w − (α + ρu)
(7)

where p(u) and q(u) are the two following quadratic polynomials:

p(u) := ν + 1

2
u (1 − u − 2γ ) − β(α + ρu),

q(u) := −1

2

[
(α + ρu) (1 − u − 2γ ) + 2ρν

]
.

The next result is a direct consequence of the affine structure of the model.
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Corollary 2 (Ergodic distribution)Under Assumption 1, the intensity process λ is exponential
ergodic and the moment generating function of the invariant distribution is given by

E
[
ewλ∞] = eλw

(
1 − α

β

β̃
w

)− ν
β
λ

for w ∈
(
−∞,

β̃
αβ

)
, that is λ∞ satisfies a Gamma law with scale parameter αβ

β̃
, shape

parameter ν
β
λ and shifting parameter λ. The variance process σ 2 is also exponential ergodic

with a Gamma invariant law with the same parameters and no shift.

Proof According to Jiao et al. [39, Proposition 3.7], we have to compute

E
[
ewλ∞] = exp

{∫ w

0

F(0, x)

R(0, x)
dx

}
= exp

{∫ w

0

λβx

ν x
α−x − βx

dx

}

Simplifying, we get:

E
[
ewλ∞] = exp

{
λ

∫ w

0

β(α − x)

ν − β(α − x)
dx

}
= exp

{
λw − λν

β

∫ w

0

β

ν − β(α − x)
dx

}

= eλw

(
ν − βα + βw

ν − αβ

)− λν
β = eλw

(
1 − α

β

β̃
w

)− λν
β

,

from which the thesis follows. 	


3.3 Explicit Laplace transform andmoments explosion

Next, we obtain the explicit form of the Laplace transform of the �-OU Hawkes model,
but, in order to evaluate its domain, we first deal with the explosion of moments. The next
proposition shows that the �-OU Hawkes model has moments of every positive order and
the negative moments of orders larger than u > −α/ρ.

Proposition 3 (Explosion of moments) Under the �-OU Hawkes model, E
[
Sut
] =

Su0 E
[
euXt

]
< ∞ if and only if u > −α/ρ, with u ∈ R.

Proof In order to perform our analysis on explosion of moments, we need to calculate the
function w(u) such that R(u, w(u)) = 0. According to Keller-Ressel [45, Lemma 3.2], this
function is uniquely defined on a maximal domain I ⊂ D and verifies w(0) = w(1) = 0.
Set out �(u) := p2(u) − 4βuq(u). We deduce that the set I is {u|�(u) ≥ 0}. Set out
w±(u) := −p(u)±√

�(u)
2β the two (possibly equal) roots of βx2 + p(u)x + uq(u) = 0 for

u ∈ I . When the two roots are different, the only root which satisfies w(0) = w(1) = 0 is

w−(u) = −p(u)−√
�(u)

2β . Moreover, w−(u) is the only solution which values are always in
the domain D. In agreement with Keller-Ressel [45, Lemma 3.2], we have for u ∈ R

f+(u) := sup{w ∈ R+ : F(u, w) < ∞} = ∞
r+(u) := sup{w ∈ R+ : R(u, w) < ∞} =

{∞ u > −α/ρ

α + ρu u ≤ −α/ρ
,

we then deduce that

T�(u) =
{∞ i f u > −α/ρ

0 i f u ≤ −α/ρ

proving the result. 	
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We now focus on the explicit solution of the Laplace transform of the couple (X , λ).
Looking at the ODE satisfied by ψ , we remark that it is non-linear but of first order and
separable. Then, we can formally solve it as indicated in the following corollary.

Corollary 3 (Explicit form for the inverse function of the Laplace transform)We have

t =
∫ ψu,w(t)

w

dy

R(u, y)
= L(ψu,w(t), u, w) + H(ψu,w(t), u, w) (8)

where

L(ψu,w(t), u, w) := − 1

2β
log

∣∣∣∣∣
β ψ2

u,w(t) + p(u) ψu,w(t) + uq(u)

βw2 + p(u)w + uq(u)

∣∣∣∣∣

H(ψu,w(t), u, w) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p(u)+2β(α+ρu)

2β
√

�(u)
log

∣∣∣∣
(
ψu,w(t)−w+(u)

)(
w−w−(u)

)
(
w−w+(u)

)(
ψu,w(t)−w−(u)

)
∣∣∣∣ �(u) > 0

p(u)+2β(α+ρu)
β

[
1

2βw+p(u)
− 1

2βψu,w(t)+p(u)

]
�(u) = 0

p(u)+2β(α+ρu)

β
√−�(u)

{
arctan

[
2β√−�(u)

[
ψu,w(t) + p(u)

2β

]]
+ �(u) < 0

− arctan
[

2β√−�(u)

[
w + p(u)

2β

]]}
.

Proof The first equality of (8) is a direct consequence of the ODE satisfied by ψu,w(t), see
Proposition 2. We have then to compute explicitly

t =
∫ ψu,w(t)

w

dy

R(u, y)
= −

∫ ψu,w(t)

w

y − (α + ρu)

β y2 + p(u)y + uq(u)
dy

= − 1

2β

∫ ψu,w(t)

w

2β y + p(u)

β y2 + p(u)y + uq(u)
dy + 1

2β

∫ ψu,w(t)

w

p(u) + 2β(α + ρu)

β y2 + p(u)y + uq(u)
dy .

The first integrand has the form f ′(y)/ f (y) then we have

− 1

2β

∫ ψu,w(t)

w

2β y + p(u)

β y2 + p(u)y + uq(u)
dy

= − 1

2β
log

∣∣∣∣∣
β
(
ψu,w(t)

)2 + p(u)ψu,w(t) + uq(u)

βw2 + p(u)w + uq(u)

∣∣∣∣∣ .

That is the term L(ψu,w(t), u, w) in (8). For the second term, we need to distinguish three
cases, that is if the polynomial β y2 + p(u)y + uq(u) has two real roots, i.e. �(u) > 0, only
one root, i.e. �(u) = 0 or complex roots. We first consider the case �(u) > 0, i.e. u ∈ I ,
then β y2 + p(u)y + uq(u) = β(y − w+(u))(y − w−(u)). Then

1

2β

∫ ψu,w(t)

w

p(u) + 2β(α + ρu)

β y2 + p(u)y + uq(u)
dy

= p(u) + 2β(α + ρu)

2β2(w+(u) − w−(u))

∫ ψu,w(t)

w

[
1

(y − w+(u))
− 1

(y − w−(u))

]
dy .

By splitting and integrating the integral and recalling that w+(u)−w−(u) = √
�(u) /β, we

obtain

1

2β

∫ ψu,w(t)

w

p(u) + 2β(α + ρu)

β y2 + p(u)y + uq(u)
dy

= p(u) + 2β(α + ρu)

2β
√

�(u)
log

∣∣∣∣ (ψu,w(t) − w+(u)) (w − w−(u))

(w − w+(u)) (ψu,w(t) − w−(u))

∣∣∣∣ .
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Suppose now that the two solutions coincide that is �(u) = 0 and w−(u) = w+(u) =
−p(u)/(2β). Then, we have

1

2β

∫ ψu,w(t)

w

p(u) + 2β(α + ρu)

β y2 + p(u)y + uq(u)
dy

= p(u) + 2β(α + ρu)

2β2

[
1

w + p(u)
2β

− 1

ψu,w(t) + p(u)
2β

]
.

Finally, when �(u) < 0, we have

1

2β

∫ ψu,w(t)

w

p(u) + 2β(α + ρu)

β y2 + p(u)y + uq(u)
dy = p(u) + 2β(α + ρu)

β
√−�(u)

[
arctan

(
2βψu,w(t) + p(u)√−�(u)

)
+

− arctan

(
2βw + p(u)√−�(u)

)]
.

From which the thesis follows. 	


Remark 2 The function H coincides, up to some constants, to the corresponding function of
the Heston model. The function L , that does not appear in Heston case, is the logarithm of a
quadratic function of ψ .

3.4 Variance swap andVIX

Next, we aim to provide closed form expressions for the variance swap rates. The VIX index
could then be obtained easily. VIX is the forecasted average volatility of S&P during the next
month, the equivalent index based on Eurostoxx 50 is called V2X. In the rest of the paper,
the term “VIX” is used broadly to refer to VIX or V2X or all other volatility indices based
on a particular underlying, where no risk of confusion exists. The next proposition, gives the
explicit form of the variance swap rates.

Proposition 4 (Variance swap rates) Under �-OU Hawkes volatility model, the variance
swap rate at time t with a time to maturity t + T reads

Kt (T ) := E
[
[X ]T+t − [X ]t

∣∣Ft

]
= �1(T )λt + �0(T ) (9)

where

�1(T ) =
[
1 + 2ν

(ρ

α

)2] 1 − e−β̃T

β̃

�0(T ) = λν

β̃

[
1

α
+ 2β

(ρ

α

)2]
T − βλ

[
1 + 2ν

(ρ

α

)2] 1 − e−β̃T

β̃2
(10)

Proof Recalling that the �-OU Hawkes volatility model belongs to exponential affine class,
we can obtain the Laplace transform of the quadratic variation thanks to Kallsen et al. [43,
Lemma 4.2]. It yields that, for �(u) ∈ R−,

log E
[
eu[X ]T+t

∣∣∣Ft

]
= �0(T , u) + �1(T , u)λt + u[X ]t
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where �0(T , u) = ∫ T
0 βλ�1(s, u)ds − λ u T and �1 satisfies

∂�1

∂T
(T , u) = −β�1(T , u) + u +

∫ ∞

0

(
e�1(T ,u)z+uρ2z2 − 1

)
ναe−αzdz

= −β�1(T , u) + u + να

2
√−ρ2u

U
(
1

2
,
1

2
,
[α − �1(T , u)]2

−4ρ2u

)
− ν

with �1(0, u) = 0 where U denotes the confluent hypergeometric function of the second
kind. We can obtain the expected value of the quadratic variation by differentiation of the
Laplace transform and setting u = 0. As in Kallsen et al. [43, Lemma 4.2], we obtain, under
Assumption 1,

E
[
[X ]T+t

∣∣Ft

]
= �0(T ) + �1(T )λt + [X ]t

where �i (T ) := − ∂�i
∂u (T , 0). In order to obtain the explicit form of �1(T ), we differentiate

(10) and, taking u = 0, we obtain the differential equation satisfied by �1. It reads

�′
1(T ) = −β�1(T ) + 1 + ν

�1(T )

α
+ 2ν

(ρ

α

)2 = −β̃�1(T ) + 1 + 2ν
(ρ

α

)2
.

By solving the previous linear equation and recalling the initial condition �1(0) = 0, we
obtain the explicit form for�1(T )given in the statement. Similarly, differentiating the relation
satisfied by �0 and taking u = 0, we obtain �0(T ) = ∫ T

0 βλ�1(s)ds + λ T and a direct
integration gives the explicit form for �1(T ) in the statement. 	


We can obtain the following corollary since the VIX index could be expressed as the
square root of the variance swap rate with maturity one month (see e.g. [4,41,53,55] and
references therein).

Corollary 4 Let T equal to one month, i.e. T := 1/12, then VIX index reads V I Xt =√
�1(T )λt + �0(T ). Moreover, the forward rate of VIX index reads

E

[√
�1(T )λt + �0(T )

]

= 1

2
√

π

∫ ∞

0

1

x3/2

(
1 − exp

{
λ0 ψ0,−x �1(T )(t) + φ0,−x �1(T )(t) − x�0(T )

})
dx . (11)

The proof of the last statement is based on the Laplace transform of square root function
using the Laplace transform given in Proposition 2. Equation (11) is almost closed given the
result of Corollary 3.

3.5 Change of probability

In this section, we investigate the change of probability in the framework defined above. One
of the main advantages of the integral representation detailed in Proposition 1 is that it gives
rise to a natural extension of the Esscher transform in the jump clustering framework. The
main result is detailed in the following proposition showing that the class of �-OU Hawkes
models is stable under a self-exciting Esscher type change of probability (see [39,40] for
similar results in the α-stable case, which is not stable under the same kind of probability
change). We point out that the Esscher transform that we are going to introduce is not the
Esscher transform for the semimartingale St , as defined by Kallsen and Shiryaev [44], but it
is the Esscher transform of the driving Hawkes process, strictly analogous to the transform
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defined by Nicolato and Venardos [54, eq. 3.14]. For a critical presentation of the Esscher
transform for BNS models we refer to Hubalek and Sgarra [37]. In this section, in order to
avoid ambiguity, we add a superscript P or Q on the various quantities of (5) depending on
the reference probability.

Proposition 5 (Self-exciting Esscher transform) Let (λ, σ, X) be as in Proposition 1 under
the risk neutral probability Q. Fix (η, ξ) ∈ R × (−αQ, ∞) and define

Ut := η

∫ t

0

∫ σ 2
s

0
W (ds, du) +

∫ t

0

∫ λs−

0

∫
R+

(
e−ξ z − 1

)
Ñ (ds, du, dz)

Then, the Doléans–Dade exponential E(U ) is a martingale and the probability measure P
defined by dP/dQ|Ft

:= E(U )t is equivalent to Q. Moreover, under P, the couple (λ, X)

satisfies the evolution of exponential affine class (see Eq. 5) with parameters

αP := αQ + ξ, νP := νQ
αQ + ξ

αP
β̃P := β̃Q − νQαQ

(αQ + ξ)2

[
1 − νQαQ

(αQ)2

]
,

and the dynamics with respect to Q takes the following form:

dXt = −
[(

1

2
+ η

)
σ 2
t − ρλt−νQ

(
1

ρ + αQ
− 1

(αQ + ξ)2

)]
dt

+σt dW
P

t − ρ

∫
R+

z μ̃P(dt, dz),

dλt = β̃P

(
β

β̃P
λ − λt

)
dt +

∫
R+

z μ̃P(dt, dz).

Proof First, we remark that
∫
R+ e−ξ z θP(dz) < ∞, since �(ξ) ∈ (−αQ, ∞). It is easy

to show that the triplet (λ, X , Y ), where Y := E(U ), is Markovian and exponential affine
by applying the same argument of Proposition 1. Thanks to the integrability property we
can then apply Kallsen and Muhle-Karbe [42, Corollary 3.9] and this will imply that Y is a
martingale, that P exists and it is equivalent toQ. We have easily that dYt = Yt−dUt . For the
second statement, let f ∈ C2

b (R
+ × R), we apply Itō formula to Ht := f (λt , Xt ) Yt . Let’s

denote by fλ (resp. fX ) the first derivative of f with respect to λ (resp. X ). A standard but
tedious computation gives

dHt = Local Martingale + Yt−
{
1

2
fX X (λt , Xt ) λ(t)

+ fλ(λt−, Xt−)

[(
βλ − β̃Qλt−

)
+ λt−

∫
R+

z
(
e−ξ z − 1

)
θQ(dz)

]

+ fX (λt−, Xt−)

[
−
(
1

2
+ η

)
σ 2
t + ρλt−

∫
R+

z
(
e−ξ z − 1

)
θQ(dz)

]

+λt−
∫
R+

[
f (λt− + z, Xt− − ρz) − f (λt−, Xt−) − z fλ(λt−, Xt−)

+ρz fX (λt−, Xt−)
]
e−ξ z θQ(dz)

}
dt

By identifying the terms, we obtain the evolution of (λ, X) under P. 	
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4 Numerical applications

This section deals with numerical studies of the �-OU Hawkes volatility model. In the first
part, we show how to price European call options using characteristic function inversion
techniques. A calibration on a recent set of market data is proposed. Moreover, we estimate
the behaviour of the slope of the implied volatility as time to maturity goes to zero and show
that it exhibits a power decay with parameter 0.2. The second part deals with options written
on VIX index. The main result is that VIX implied volatility increases with strike.Nicolato
et al. [53] have shown that �-OU model exhibits a VIX implied volatility decreasing with
the strike. We deduce that the increasing VIX implied volatility is a consequence of the self-
exciting structure. Then, we present some results on the calibration on S&P 500 and VIX
options on the same date and maturity and compare the resulting parameters. In the third
part we show how to simulate efficiently the �-OU Hawkes model. In particular, we will
show that the model can be simulated exactly, allowing for unbiased estimation of derivatives
prices. Finally, we study numerical efficiency of the proposed method through a comparison
with the Euler simulation scheme.

Computations are done usingMatlab®(VersionR2019b) inMicrosoftWindows 10®runni-
ng on a machine equipped with Intel(R) Core(TM) i7-9750HQ CPU @2.60GHz and 16 GB
of RAM.

4.1 European option pricing and calibration

In Sect. 3.3 we obtained the Laplace transform of (X , λ) in terms of the solution of an
ODEs system. The characteristic function of log-returns under the proposed model is given
by ϒ(u) := E

[
eiuXT

]
and can be obtained by Proposition 2. This result opens the doors to

option pricing via standard characteristic function inversion algorithms such as, for example,
FFT [15] and COS [26] methods. The latter has the advantage to present exponential con-
vergence to the true solution, while preserving linear computational complexity. The main
consequence is that option prices can be estimated through a smaller number of evaluations
of the characteristic function, which is particularly important when it has to be computed
through time consuming numerical techniques such as solution of ODEs systems (as in the
present case). See Brignone and Sgarra [11] for more details. Hence, given an initial price
S0, a strike K and maturity T , European option prices are computed as

E[(ST − K )+] =
∫ ∞

−∞
(S0e

x − K )+ f (x)dx ≈
∫ b

a
(S0e

x − K )+ f (x)dx (12)

where

f (x) =
∞∑
k=1

Fk cos

(
kπ

x − a

b − a

)
+ 1

b − a
≈

N−1∑
k=1

Fk cos

(
kπ

x − a

b − a

)
+ 1

b − a
, (13)

Fk = 2
b−a�

(
ϒ
(

kπ
b−a

)
exp

(
−i kaπ

b−a

))
and [a, b] ∈ R is chosen such that:

∫ b
a eiux f (x)ds ≈∫∞

−∞ eiux f (x)dx . Following Fang and Oosterlee [26] we set

a = c1 − L
√
c2 + √

c4, b = c1 + L
√
c2 + √

c4 (14)

where L can be chosen arbitrary large and ci denotes the i-th cumulant of ln
(
ST
K

)
. Since

the model is affine, cumulants can be computed analytically, for this purpose, we adapt
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Fig. 2 Probability density functions of XT and implied volatilities for short and long maturities for the
calibrated parameters in Table 1 (Set A)

the procedure outlined in Feunou and Okou [27]. According to Fang and Oosterlee [26], if
L = 10, (14) gives a truncation error around 10−12, which is negligible for our purposes.
Given European options prices, the corresponding implied volatility can be computed by
inverting the Black–Scholes formula.

Equipped with an efficient procedure for computing the implied volatility surface, we
calibrate our model on the Eurostoxx 50 market data of the 19 November 2019. We mini-
mize the differences (in absolute value) between market and model implied volatilities. The
resulting parameters are displayed in Table 1 (Set A). Calibrated risk neutral density and
implied volatility are plotted for different maturities in Fig. 2. We remark that the density
functions have a left tail heavier than the right one especially for the shorter maturity.

We now focus on the slope of ATM implied volatility, i.e. the derivative of implied volatil-
ity with respect to the at the money strike, and its dependency on the maturity. Figure 3
confirms that the implied volatility exhibits a steeply negative ATM slope. This phenomenon
is magnified for short maturities over an extremely large range, down to 5 minutes that could
be considered as a limit of microstructure. According to empirical studies, we test if the slope
of implied volatility skew exhibits a power decay with time to maturity. The ATM implied
volatility slope in the �-OU Hawkes volatility model has a power decay behaviour with
parameter−0.20 and an R2 coefficient of determination of 0.81. We stress that in the Heston
model it presents a different behavior: it converges to a finite value as time to maturity goes to
zero. Then, the behaviour of the �-OU Hawkes volatility model is extremely different from
that of the Heston model (for short maturities) and replicates better the empirical facts.

Next, we focus on the sensitivity of the implied volatilitywith respect tomodel parameters.
In Fig. 4 we show the model implied volatility for different sets of parameters. We decide
to consider σ0 as an initial condition for the process. Then sensitivities with respect to λ are
obtained shifting both λ and λ0 by the same value. We will focus on the impact of a change
of a parameters on the level and the slope of implied volatility for negative moneyness, the
position of the minimum of the implied volatility and the smile (i.e. convexity around this
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Fig. 3 Behavior of the slope of implied volatility skew as function of the maturity over a range from 5min to
2.5years. Model parameters as in Table 1 (Set A)

minimum). We first remark that an important change of λ or β is needed to distinguish their
sensitivities. We will see that these parameters impact more the implied volatility for options
written on VIX. For extreme changes on λ, we observe that the main impact of an increase
in λ is that the position of the minimum of implied volatility moves on right and the implied
volatility goes up, the slope for negative moneyness is unchanged. For extreme changes on
β, we observe that the main impact of an increase in β is to accentuate the smile for positive
moneyness. There is also a small negative effect on the level of implied volatility. The position
of the minimum and the slope are roughly unchanged. A small change on α and/or ρ has
an important effect on the slope with opposite directions, i.e. a positive change in α (resp.
ρ) decreases (resp. increases) the steepness of the slope. Convexity is roughly unchanged in
both the cases. ρ has a positive impact on the position of the minimum whereas α has no
effect.

4.2 Options onVIX

We focus now on options written on VIX index that coincides with the square root of the
variance swap rate. Of course, this analysis also applies to the equivalent index based on
the Eurostoxx 50, the V2X index. According to Proposition 4, the variance swap rate is
affine in λ and given by (9). Call and Put options on VIX or V2X are very popular with
trading volumes increasing year after year. The prices of these options is generally expressed
in terms of Black–Scholes implied volatility even if the structure of the model is far from
log-normality and the index itself is not computed in a linear way. These options will be
referred to as options on volatility, whatever the underlying index (VIX or V2X). In order
to use Black–Scholes formula, we need to define the options and their associated forward
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Fig. 4 Implied volatilites for varying model parameters. Option contract parameters: S0 = 100, T = 0.5.
Model parameters are as in Table 1 (Set A), initial volatility σ 2

0 is fixed at 0.0079

contract, thanks to (9), we have

FV I X (T ) = E

[√
�1(T̂ )λT + �0(T̂ )

]
,

CV I X (T , K ) = E

[(√
�1(T̂ )λT + �0(T̂ ) − K

)+]

where the variance time to maturity T̂ := 1
12 is one month in coherence with the definition

of VIX and V2X , the expiry of the option is denoted by T . Thus, the underlying volatility
swap goes from T to T + T̂ . Figure 5 shows the implied volatility of options written on V2X.
The yellow curve is obtained using the calibrated parameters in Table 1 (Set A). We observe
that the implied volatility is increasing and then coherent with the usual behavior of VIX
implied volatility. Comparing with the exponential law case studied in Nicolato et al.[53], we
highlight that the self-exciting property of the �-OU Hawkes volatility model changes the
slope of VIX implied volatility from negative to positive. Nicolato et al. [53] obtain a positive
slope but they need to consider an inverse-gamma law with ν = 1.2 and then a model with
infinite variance. The α-Heston model by Jiao et al. [41], which accounts both for power
decay and self-exciting features, exhibits an implied VIX volatility which is convex around
the money but without any moment larger than the first one. From a financial point of view,
the increasing shape of the VIX smile can be explained by the important role played by the
options on VIX for high strikes, i.e. protection against turmoils in the equity markets. The
strong demand for this protection is responsible for the high levels of the implied volatility
for elevated strikes. Figure 5 also details the sensitivities of the implied volatility of options
written on VIX with respect to α, β, λ and ρ. First, we note that a change in α impacts the
level of implied volatility, acting as a translation of the smile. Without surprise the influence
of ρ is the more glaring. Second, we can observe that the VIX implied volatility also exhibits
a sensitivity with respect to β and λ for standard perturbations. Given the small sensitivity
of implied volatility of the underlying with respect to β and λ, it is natural to choose β and
λ to fit the smile of the VIX volatility.
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Fig. 5 Implied volatility of the options on volatility for varyingmodel parameters. Option contract parameters:
T̂ = 1

12 , T = 1. Model parameters are as in Table 1 (Set A), λ is computed such that σ 2
0 is fixed at 0.0079

4.3 Calibration on S&P500 andVIX options

Next, we calibrate the proposed model on S&P500 and VIX options. We find model param-
eters minimizing the difference in absolute value between the market and model implied
volatilities (1 month maturity). Resulting parameters are reported in Table 1, with parameter
set B resulting from the calibration on S&P500 options and set C resulting from the cali-
bration on options on VIX. Results show that the �-OU Hawkes volatility model calibrates
well on S&P500 and VIX options separately. We highlight that the options sets used for the
calibration refer to a crisis period, i.e. November 6 2020, for both the COVID-19 pandemic
and the close presidential contest in US. However, a joint calibration does not work well. It is
easy to remark that themain issue is related to the leverage parameter ρ. The other parameters
are similar, in particular comparing with the values estimated out of the crisis (i.e. set A).

In particular we remark that the calibrated leverage ρ is negligible for VIX options. This
effect is probably due to the VIX definition. As indicated in the Chicago Board Options
Exchange [16] white paper, VIX index is computed as the square root of the static replication
of Variance Swap rates. This static replication is introduced in Demeterfi et al. [21] and is
based on the crucial hypothesis of continuous paths of the underlying. In Demeterfi et al.
[21, pp. 29-35] the impact of jumps on the underlying is detailed showing that a bias exists
as long as underlying jumps. In our model, jumps in the underlying disappear as long as
the leverage parameter ρ goes to zero. It is then quite natural that a joint S&P500 and VIX
calibration is unattainable in practice. Moreover, the VIX is based on an average of short
dated options of different expiries and not a single expiry. More surprisingly, the two distinct
calibrations on the same day give similar parameters with the substantial exception of the
leverage ρ. We could conclude that the �-OU Hawkes volatility model fits the behaviour of
implied volatilities on both S&P500 and VIX albeit a more detailed theoretical analysis of
the jumps corrections is needed to confirm this goodness.
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Fig. 6 Separate calibration of option on S&P500 (left subplot) and options on VIX (right subplot)

Table 1 Calibrated parameters. Parameter set A is calibrated on options Eurostoxx (9 November 2019),
Parameter set B is calibrated on options on S&P500 (6 November 2020), Parameter set C is calibrated on
options on VIX (6 November 2020). For sake of completeness, we indicate the initial value of the intensity
λ0 = σ 2

0 + λ

Set λ α ν β ρ σ 2
0 λ0

A 1.6372 50.1123 0.9040 1.1819 2.8853 0.0079 1.6451

B 2.9851 16.2035 1.6805 4.2392 1.1106 0.0290 3.0141

C 2.9731 14.4447 2.0494 3.4374 0.0498 0.0186 2.9917

4.4 Exact simulation and its performance

We start by pointing out that the model simulation crucially depends on the Hawkes process.
Several exact simulation schemes have been proposed in literature for the simulation of this
kind of process. Gonzato et al. [29] provides an extensive literature review and finds the
exact simulation scheme proposed by Dassios and Zhao [18] is the most efficient, being the
fastest among the exact methods. Hence, we decide to simulate the Hawkes process using the
exact method of Dassios and Zhao [18]: given an initial date t0 = 0, a final date T , an initial
value for λ0 and the parameters of the model, the algorithm allows to obtain a sample of the

quadruplet
(
NT , {τk}NT

k=1, {λτk }NT
k=1, {Zτk }NT

k=1

)
, where NT is the total number of jumps in the

period [0, T ], τk is the k−th jump time, Zτk is the k−th jump size which has an exponential
distribution with parameter α. Given the quadruplet, we can compute:

λT = λ + (λτNT
− λ)e−β(T−τNT ),

∫ T

0
λsds = −λT − λ0 − βλT −∑NT

k=1 Zτk

β
,
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moreover,
∫ T
0 σ 2

s ds = ∫ T
0 λsds − λT and

XT

∣∣∣λT ,

∫ T

0
λsds ∼ N (m, s2) (15)

where

m = X0 + γ

∫ T

0
λsds − ρ

NT∑
k=1

Zτk − 1

2

∫ T

0
σ 2
s ds, s2 =

∫ T

0
σ 2
s ds. (16)

Hence, is possible to simulate XT given λ0 exactly and efficiently (no numerical methods or
approximations are required at any step), implying that unbiased estimators for path inde-
pendent derivatives can be obtained. Moreover, is also possible to extend the methodology in
order to generate paths for log-returns process observed at a discrete time grid, we summarize
the procedure in Algorithm 1.

Algorithm 1 Exact simulation
Input: X0, λ0, λ, α, β, ν, ρ, {t0, t1, ..., tn := T }
Output: {Xt j }nj=1

1: Set k = 0 and γ = νρ
ρ+α

2: Simulate the quadruplet
(
NT , {τk }NT

k=1, {λτk }NT
k=1, {Yτk }NT

k=1

)
using Dassios and Zhao [18]

3: for j = 1 : n do

4: Compute number of jumps in the interval: A = #{k : t j−1 < τk ≤ t j }
5: if A = 0 then

6: L = 0 and λ j = λ + (λ j−1 − λ)e−β(t j−t j−1)

7: else

8: L = ∑
k Yτk It j−1<τk≤t j

9: k = k + A

10: λ j = λ + (λτk − λ)e−β(t j−τk )

end

11: Compute
∫ t j
t j−1

λsds = − λ j−λ j−1−βλ(t j−t j−1)−L
β

and
∫ t j
t j−1

σ 2
s ds = ∫ t j

t j−1
λsds − λ(t j − t j−1)

12: Draw G ∼ N (0, 1)

13: Xt j = Xt j−1 + γ
∫ t j
t j−1

λsds − ρL − 1
2

∫ t j
t j−1

σ 2
s ds + G

√∫ t j
t j−1

σ 2
s ds

14: end

Remark 3 Willard [60] proposed a conditional Monte Carlo method in order to improve the
efficiency of the simulation estimators under stochastic volatility models. His method is
applicable to path-independent derivatives that have closed-form solutions under the Black–
Scholes model and can be easily adapted to the proposed model. The first advantage of the
conditional Monte Carlo approach is that European option price estimators will present a
lower standard deviation, moreover, it can be used to generate unbiased estimators for the
Greeks. We refer to Broadie and Kaya [12] for more details on conditional Monte Carlo
formulae.

Next, we evaluate the performances of Algorithm 1 in terms of accuracy and CPU by a
comparison with the Euler scheme. To do that, we follow strictly Broadie and Kaya [12]: we
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Table 2 Simulation results under the �-OU Hawkes volatility model for a European call option. Parameters
are as in Table 1, top panel refers to set A (true option price: 5.6645), central panel refers to set B (true
option price: 12.4740), bottom panel refers to set C (true option price: 11.7605). Other parameters: S0 = 100,
K = 100 and T = 1. M × 104 is the total number of simulations, N × 102 is the number of time steps in
the Euler scheme. Further notes: CPU is in seconds

Euler Exact
M × 104 N × 102 bias RMSE CPU RMSE CPU

Set A

1 1 0.0669 0.1000 0.16 0.0758 0.17

4 2 0.0333 0.0498 0.80 0.0375 0.38

16 4 0.0170 0.0252 6.18 0.0186 1.22

64 8 0.0092 0.0177 47.19 0.0093 4.71

256 16 0.0049 0.0068 425.33 0.0047 19.67

Set B

1 1 0.1988 0.2685 0.16 0.1800 0.22

4 2 0.0996 0.1341 0.80 0.0912 0.59

16 4 0.0473 0.0652 6.14 0.0454 2.24

64 8 0.0240 0.0329 46.05 0.0226 9.16

256 16 0.0136 0.0177 421.49 0.0113 35.59

Set C

1 1 0.1547 0.2672 0.16 0.2206 0.25

4 2 0.0796 0.1379 0.80 0.1124 0.72

16 4 0.0328 0.0641 6.10 0.0562 2.61

64 8 0.0179 0.0332 46.81 0.0278 10.30

256 16 0.0115 0.0181 420.54 0.0139 40.51

compute rootmean square errors, RMSE =
√
bias2 + standard error2, where the bias is given

by the difference between the true price of the ATM European call option computed using
(12) and the simulated one. To estimate the bias precisely and remove the variance, we employ
4 × 108 simulation trials for both the Euler and the exact scheme. For the Euler scheme, we
consider different numbers of time discretization stepsN . Then, using the estimated biases,
we compute RMSEs for different number of simulation trials M and record the CPU time
necessary to complete the simulation. Results are displayed in Table 2 for the three different
parameter sets reported in Table 1. For the exact scheme we don’t report any bias estimate
since it is unbiased.

Numerical results show that the exact scheme outperforms the Euler scheme both in
terms of accuracy and CPU time. It presents constantly smaller RMSEs and is faster. This is
particularly evident for high number of simulation trials, indeed, in the case with 256× 104

simulations, it is more than 20 times faster for parameters set A and more than 10 times
faster for parameters set C than the Euler scheme. Finally, Fig. 7 presents a graphical speed
accuracy comparison on a log-log scale. From this plot is possible to see that the proposed
method exhibits the optimal convergence rate of 0.5 typical of the exact methods (see e.g.
[12]), contrarily to the Euler scheme, whose convergence rate is smaller (around 0.32 for all
the parameter sets).
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5 Conclusion

In this concluding section we want to provide a systematic comparison of the properties of
the proposed �-OU Hawkes volatility model and the two most similar stochastic volatility
models available in the literature, i.e. the BNS and Heston models. This comparison can be
resumed in the following points.

Ergodic distribution of variance process the threemodels share the same ergodic distribution,
that is of Gamma type. However, a main difference between Heston and �-OU Hawkes
models is that the volatility process can not reach 0. This property can be easily deduced
by the evolution given by (1) with the assumption that λ0 > λ.

ParsimonyHestonmodel is characterizedby four parameters, namely long runmean, speedof
mean reversion, correlation and volatility of volatility.�-OUBNS andHawkes volatility
models are characterised by five parameters: background intensity (playing also the role
of a reverting level in the Hawkes model framework), mean reverting speed, leverage
coefficient and two parameters for the jump size specifying, respectively, the exponential
law intensity and a scaling factor. The scaling factor plays a minor role. Thus, we can
could consider that the three models are all parsimonious.

Fourier–Laplace transform the three models are exponential affine and the associated
pseudo-Riccati differential equation can be solved explicitly. In particular, the inverse
of the joint Fourier–Laplace transform of (X , λ) is an explicit function containing only
functions of ln and arctan type as in Heston model. It exists a huge amount of literature
devoted to numerical methods for option pricing based on Fourier transform inversion
methods (e.g. [15,26]). All these methods can be adapted to the present framework of the
�-OU Hawkes model, see Sect. 4. Moreover, it is not surprising that the term-structure
and the evolution in time of the implied volatility for intermediate and longer maturities
is similar to the one described by the Heston model. However, for very short maturities,
the implied volatility behaviour is definitively more similar to that exhibited by the BNS
�-OU.

Exact simulation scheme we show that the proposed model can be simulated exactly with-
out resorting to any numerical method. This is a significant advantage with respect to
the Heston model whose transition can be still simulated exactly but only resorting
to time consuming numerical techniques (i.e. repeated numerical inversion of Laplace
transforms and root finding algorithms, see [12]). The simulation scheme we propose
is unbiased and can be easily exploited not only for European options but also for more
complex options such as barrier and other path dependent options. Vanilla option pricing
can be performed in a very fast way also by simulating the Hawkes process and then
applying a conditional Black–Scholes formula in the same spirit of Hull andWhite [38],
Romano and Touzi [56], Willard [60] and Broadie and Kaya [12]. The same approach
can be used also to obtain unbiased estimates for the Greeks.

Explosion of moments �-OU Hawkes volatility model has not the undesirable property that
moments of order higher than 1 can explode in finite time [3]. This feature is important
because moment explosion can create problems in some occasions, for example when
performing derivatives pricing through Monte Carlo simulation (finite second moment
is necessary), or in dynamic portfolio optimization problems with power utility (the
value function could be infinite when the expected value of a power of the underlying is
infinite). As long as themoment generating function of the jumps size distribution exists,
the moments of any order exist for all finite maturities. This is the main difference with
the Heston and many other stochastic volatility models (see for instance the inverse-
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Gamma OU in [53]). From this point of view, �-OU Hawkes volatility model is more
similar to �-OU BNS.

Leverage effect it is guaranteed by the negative sign of the parameter ρ multiplying the jump
driver as in the usual �-OU BNS. In Sect. 4 we show that the slope of ATM implied
volatility has a power decay as a function of the time to maturity.

Volatility and jumps clusters this is the main difference between our model and the two other
models. As a matter of fact, a Hawkes driver implies clusters by construction. It means
that the equity prices can experience turmoil periods with spikes and high volatility
levels followed by very long periods with a persistence of flat volatility.

Options written on VIX �-OU Hawkes volatility exhibits an increasing implied volatility for
options written on VIX, in coherence with empirical evidence, whereas �-OU BNS and
Heston model are down-sloping. This result is particularly important since, comparing
BNS and Hawkes volatility models, the only difference is in the self-exciting property of
the jumps in Hawkes framework. An increasing implied volatility could be obtained in a
Lévy framework as for instance inverse-Gamma OU in Nicolato et al. [53], but without
preserving the existence of all moments.

In conclusion, the�-OUHawkes volatility model introduced in this paper is parsimonious
but can reproduce a broad range of empirical evidences and, in particular, the behavior
of VIX options. For numerical purposes, the explicit Laplace transform enables to exploit
characteristic function inversion techniques for vanilla pricing and calibration as well. An
efficient exact simulation scheme can be exploited for more complex payoffs.
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