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Abstract—Studying the spatial organization of objects in im-
ages is fundamental to increase both the understanding of a
sensed scene and the explainability of the perceived similarity
between images. This leads to the fundamental problem of
handling spatial relations: given two objects depicted in an image,
or two parts in an object, how to extract and describe efficiently
their spatial configuration? Dedicated descriptors already exist
for this task, like the efficient force histogram. In this article, we
introduce the Force Banner, which extends it to two dimensions
by using a panel of forces (attraction and repulsion), so as
to benefit from more expressiveness and to model rich spatial
information. This descriptor can be used as an intermediate
representation of the image dedicated to the spatial configuration,
and feed a classical 2D Convolutional Neural Network (CNN) to
benefit from their powerful performances. As an illustration of
this, we used it to solve a classification problem aiming to dis-
criminate simple spatial relations, but with variable configuration
complexities. Experimental results obtained on datasets of images
with various shapes highlight the interest of this approach, in
particular for complex spatial configurations.

I. INTRODUCTION

In recent years, taking spatial relationships into account in
image analysis processes has been a hot topic studied by the
computer vision community, and more generally in the pattern
recognition domain. In fact, it can be stated that the spatial
organizations between image components are fundamental in
the human perception of image understanding. Therefore, the
spatial relations between the regions composing a scene can be
considered as important features, to recognize the nature of the
scene itself for instance. However, as far as we know they are
seldom used for image recognition, mostly because they often
suffer from strong structural constraint issues. Thus, most
of the state-of-the-art methods dedicated to the recognition
of complex scenes usually rely on a structural or statistical
description of the image content, summarizing different image
features such as outer contour, geometry or texture and color
effects. As a limit, these different types of imaging features are
sometimes not discriminant enough to successfully describe
image contents composed of objects mutually arranging with
complex spatial configurations.

In order to be able to integrate this type of spatial infor-
mation in future recognition systems, a preliminary question
that can be asked may be the following: is it possible to
automatically recognize a spatial relationship between a pair
of objects present in the content of a scene? In this article, we
consider this as a classification problem. Given two objects
and their relative position in the image, we want to build a
model being able to predict the spatial relation characterizing

their spatial arrangement (e.g., object A is “to the left of ”
object B).

In parallel, deep learning based strategies (such as Con-
volutional Neural Networks (CNNs)) have been proposed
in the computer vision community to efficiently exploit the
discriminative aspects of local features in images for various
tasks. Such models have led to outstanding results in im-
age classification tasks, but one of their inherent downside
is precisely their weak ability to take into account spatial
information, because images are represented as orderless col-
lections of local features. Furthermore, they are difficult to
exploit to directly recognize spatial relationships (that are
often ambiguous) between objects because the convolutional
features, computed from the initial image space, carry a point
of view that may be too local.

In this article, we propose to combine the advantages of
traditional approaches a.k.a. relative position descriptors to
those of CNNs to answer the problem of the recognition
of spatial relations. Rather than trying to learn a spatial
relationship directly from the initial image space, as it is
the case with standard CNNs based approaches, we propose
in Section III an intermediate representation of the image,
capturing information of relative positions between a couple
of objects, and we train the CNNs to recognize the spatial
relationship from this rich representation. Such new represen-
tation (called Force Banner) extends the concept of the Force
Histogram [1] since it captures the relative position between
objects using a panel of forces, from attraction to repulsion.
Like the Force Histogram, it takes into account the structural
shapes of the objects and their distance in a directional manner.

The remainder of this article is organized as it follows.
Section II reviews some related works in the context of this
paper. Section III presents our methodological contribution. In
Section IV, we propose an experimental study, where a dataset
with variable complexity in object configurations is considered
to illustrate the interest of our approach. We show that the
combination of the Force Banner with the original image
features allows to better recognize complex spatial relations.
Finally, a conclusion that emphasizes the perspectives of this
work is made in Section V.

II. RELATED WORKS

Many studies have been conducted for the analysis of
spatial relations in different application domains of pattern
recognition and computer vision, with the common objective
of describing the spatial arrangement of objects in images [2].



We can distinguish in the literature two main research axes
based on strong dual concepts [3]: the concept of spatial
relation, and the one of relative position of an object with
regards to another.

In the first axis, a spatial relation such as “to the left
of ” is considered, and a fuzzy evaluation of this relation
is obtained for two given objects. For instance, the fuzzy
landscape framework [4] focuses on this type of evaluations.
This approach is based on a fuzzy modeling of spatial relations
directly in the image space, using morphological operations.
Typical applications include graph-based face recognition [5],
brain segmentation from MRI [6], or handwritten text recog-
nition [7].

In the second axis, the relative position of an object with
regards to another one can have a representation of its own,
from which it is possible to derive evaluations of spatial
relations. Different spatial relations can be assessed from
this intermediate representation and the associated descriptors
can be integrated into pattern recognition processes to match
similar spatial configurations or to predict spatial relations. A
typical relative position descriptor is the Force Histogram [1],
which is a generalization of the Angle Histogram [8]. No-
tably, Force Histograms are isotropic and less sensible to
discretization issues, while also allowing to explicitly take
into account the distance between objects, depending on the
application needs. Force Histograms are involved in several
application domains such as linguistic descriptions [9], [10],
scene matching [11] or content-based image retrieval [12],
[13].

Note that many other approaches were also proposed for
modeling more specific spatial relations such as the “sur-
rounded by” relation [14], the “between” relation [15], [16],
or even the “enlaced by” relation [17]. Other recent works
introduced the φ-descriptor [18], [19], which provides a
generic framework to assess any spatial relation from a set of
specific operators, based partially on Allen intervals [20]. This
descriptor provides an important advancement, while requiring
an extraction of a set of suitable operators dedicated to each
usual spatial relation.

Going back to the model of Force Histograms, the authors
of [21], [22] introduced the Force Histogram Decomposition
(FHD), a graph-based hierarchical descriptor that allows to
characterize the spatial relations and shape information be-
tween the pairwise structural subparts of objects. A novel
“bags-of-relations” framework based on such descriptors is
used to produce discriminative structural features that are
suited for particular object classification tasks. An advantage
of this learning procedure is its compatibility with traditional
bags-of-features frameworks, allowing for hybrid representa-
tions that gather structural and local features. The authors
of [22] also shown the importance and the complementar-
ity of the different forces (negatives for repulsion, positives
for attraction) involved in Force Histograms to improve the
recognition of complex classes.

More specifically, the recognition of spatial relations (given
two objects in an image, what is their spatial relation?) can

Figure 1. Centroid and bounding box spatial location ambiguities.

also be considered as a classification task. In this context,
this problem (which has long remained a problem of pattern
recognition) has been covered by the field of computer vision,
notably with the arrival of deep learning architectures. The task
often consists in visual relationship detection: given an image,
the algorithm predicts “subject-predicate-object” triplets as
well as the bounding boxes of the objects. In contrast, our task
is classification rather than detection: the object pairs are given
(for instance as a raster binary image), and we aim at a finner
evaluation of relation understanding. Most of the approaches
from the state-of-the-art [23]–[25] rely on CNNs architectures
where a model is trained from the coordinates of the bounding
boxes of the objects (visual features), and potentially their
semantics (e.g., chairs, guitars) called language features, to
predict the spatial relations.

Such approaches require large amount of annotated data to
get accurate results. To get such collections, we can cite crowd-
sourcing initiatives like Open Images, Visual Genome [26], or
SpatialSense [27], that led to the creation of datasets contain-
ing a significant number of visual relations. SpatialSense [27]
is for example constructed through adversarial crowd-sourcing,
in which human annotators are asked to find spatial relations
that are difficult to predict using simple clues such as bounding
boxes or common configurations. Such annotated datasets may
allow for proper benchmarking of spatial relation recognition
techniques. However, they often contain only the bounding
boxes of the objects of interest present in the image content,
since most of the state-of-the-art approaches in computer
vision rely on these features for spatial relation recognition.

Old but often overlooked work has shown that standard “all
or nothing” mathematical relationships are clearly not suitable,
and Freeman [28] (in 1975) suggested to use fuzzy relation-
ship. However, computers have not been able to effectively
model these vital spatial concepts. For instance, many authors
assimilated 2D objects to very elementary entities such as
a point (centroid) or a (bounding) rectangle. The procedure
is practical and convenient in most of the cases, but cannot
be hoped to give a satisfactory modeling, as pointed out by
Rosenfeld [29] in 1985 (see Figure 1).

In this work, on the one hand, in order to predict a spatial
relation, our motivations are to evaluate the relative position
of a 2D object A compared to another object B by a set
of functions, called Force Banner, corresponding to either
repulsion or attraction forces between the two objects. The
object A is the argument, and the object B the referent. For



any direction θ, the weight value of the arguments that can be
found in order to support the proposition “A is in direction θ
of B” is calculated from several force representations.

On the other hand, our objective is to study the possibility
of a CNN to apprehend these spatial relationships by simply
considering a set of training sample data representing the
four main cardinal directions between two objects. In other
words, the goal is to attest the potential of a CNN to learn the
description of directional relations, by considering a single
object representing the argument and another one the referent.

III. PROPOSED APPROACH FOR THE RECOGNITION OF
SPATIAL RELATIONS

We describe hereinafter the proposed approach for spatial
relation recognition. We propose a novel representation, called
Force Banner, derived from the concept of Force Histogram [1]
(a reminder on this one is given in Section III-A), modeling
directional information about the relative position of pairs of
objects composing a scene. Such a representation is described
in Section III-B. Given a binary image containing a pair of
objects, it captures the relative position between objects using
a panel of forces (attractives to repulsives), that take into
account the structural shapes of the objects and their distance.
Force Banners are used to feed a classical 2D CNN for the
recognition of spatial relations, benefiting from pre-trained
models and fine-tuning (Section III-C).

A. Notions on Force Histograms [1]

The Force Histogram model was initially introduced in [1].
In this section, we briefly recall the main definitions and
principles of this model, which constitutes the basis of our
novel approach.

Force Histograms (thereafter noted F-Histograms) aim to
evaluate and characterize the directional spatial relations be-
tween binary objects in images. The model relies on the
definition of a force of attraction between points. Given two
points located at a distance d from each other, their force of
attraction is as follows:

ϕr(d) =
1

dr
(1)

where r characterizes the kind of force processed. Instead of
directly studying all pairs of points between the two objects,
the force of attraction between two one-dimensional segments
is considered. Let I and J be two segments on a line of angle
θ, Dθ

IJ the distance between them and |.| the segment length.
The force of attraction fr of segment I with regards to segment
J is given by:

fr(I, J) =

∫ |I|+DθIJ+|J|

DθIJ+|J|

∫ |J|
0

ϕr(u− v) dv du. (2)

Given two binary objects A and B, a θ-oriented line in
the image forms two sets of segments belonging to each
object: CA = ∪{Ii}i=1..n and CB = ∪{Jj}j=1..m. The mutual
attraction between these segments is defined as:

Fr(θ, CA, CB) =
∑
I∈CA

∑
J∈CB

fr(I, J). (3)

Figure 2. Illustration of the F-Histogram computation scheme. The force of
attraction between A and B along the direction θ is the integral sum of forces
computed on longitudinal cuts (CA, CB) [1].

Then, the set of all θ-oriented parallel lines Cθ going through
the whole image gives us the global attraction FABr (θ) be-
tween A and B along a direction θ. Figure 2 summarizes
the process for a given direction. Finally, the F-Histogram
FABr is obtained by computing FABr onto a set of angles
θ ∈ [0, 2π[, summarizing the relative position of a binary
object A (commonly called the argument) with regards to a
binary object B (the referent) in a circular way.

B. Towards the Force Banner

Usually two levels of forces are widely used in the literature
to assess spatial relation between a couple of objects:

• r = 0 relies on constant forces which are independent
of the distance between objects. In some extent this ap-
proach is based on the handling of an isotropic histogram
of angles;

• r = 2 relies on gravitational forces where more impor-
tance is given to closer points.

Evaluating FAB0 gives an overview of the scene, but it
is often too cautious. Such behavior can be corrected by
considering FAB2 , which focuses on close-up views between
the object A and B. However, a complex situation can give a
contradictory opinion (sometimes excessively pessimistic and
sometimes excessively optimistic). In [10] it was shown that
the combination of these two types of forces can provide an
efficient and robust system for obtaining a linguistic descrip-
tion of a scene. And in [22] it was shown that negative forces
(r = −2 for instance) embedded in a bag of relations can also
bring another point of view during a classification process.
Thus, the description potential of r can be different depending
on the complexity of the scenes considered.

Our idea is to provide in a single representation, called
Force Banner, a series of FABr , to better take into account
the complex description of a situation, and to use it as input
of a CNN (see section III-C) to extract automatically the most
discriminative features (forces versus directions), providing
a convenient model for a supervised classification task and
benefiting from CNN good performance.

Let A and B be two objects and let r and θ be two real
numbers such that r ∈ [rs, re] and θ ∈ [0, 2π[. The Force
Banner FBAB is defined as it follows:



Figure 3. (First line) Illustrative samples of the considered dataset of binary
shapes: pair of simple objects, pair of geometrical shapes, pair of GIS objects
(houses and road). The referent is in yellow while the argument is in green.
(Second line) Corresponding discrete Force Banners modeling the relative
position between the argument and the referent objects. Each row corresponds
to a particular force r while each column represents the force in a particular
direction θ. Note that for visualization purpose, the discrete Force Banners
are represented here as heatmaps.

FBAB : [0, 2π[×[rs, re]→ R+

(θ, r) 7→ FABr (θ)
(4)

Considering different values of r, the assessable property of
the Force Banner depends on the location of A and B. If the
objects A and B are both disjoint and non tangent then FBAB

is assessable for any value of r. Otherwise if [rs, re] ⊂]−∞, 2[
then disjoint and tangent object can be considered to make
FBAB assessable. If [rs, re] ⊂] − ∞, 1[ then any couple of
objects can be considered to make FBAB assessable.

Furthermore it is easy to show from [1] that the Force
Banner is invariant with regards to translations and scaling
transformations (after normalization). It is also isotropic if a
circular shift along the θ-axis is performed to take into account
the effects of the rotation.

C. Chosen CNN model

Convolutional Neural Networks refer to a family of deep
learning algorithms. Susch systems are composed of two parts.
The first one is designed to feature extraction, it has many
neuron layers that compute the convolutions of the previous
ones. The neurons of each layer are activated by non-linear
functions (e.g., sigmoid, ReLU) in order to keep the most
representative features (high order features). We find also
max-pooling layers between convolutional layers to reduce
faster the size of the intermediate features and the number of
parameters to be computed to define the network, and hence
to control over-fitting. The second part is the classifier, using
high order features to make the decision. Generally, it is a fully
connected layer that provides a probability vector, on which is

plugged a softmax function to predict the class label of input
data.

We have chosen the SqueezeNet model [30] but any other
2D CNN model can be used. SqueezeNet has interesting
properties, like the same accuracy level as the AlexNet model
on the ImageNet dataset with much fewer parameters, which
makes the training faster. The architecture of SqueezeNet
introduces a new module called Fire composed of a squeeze
layer using 1× 1 convolution filters followed by expand layer
that contains a mix of 1×1 and 3×3 convolution filters. Also,
its classifier is based on a global average pooling over feature
maps, potentially decreasing the overfitting effect. Its global
architecture is illustrated on Figure 4.

Figure 4. SqueezeNet architecture [30]

We used the PYTORCH implementation of SqueezeNet, pre-
trained on IMAGENET. This pre-training provides a model
which is already quite good for any classification task on
images, after replacing the last layer by another one dedicated
to the considered task and training only that layer, which is
called transfer learning. However, numerous studies showed
the interest of post-training the whole model on the proper
data, especially here where the data are not real images but
a stack of histograms. This step called fine-tuning allows to
specialize the network to an ad-hoc task, leading ultimately to
better performances. We then considered this approach in our
experiments.

IV. EXPERIMENTAL STUDY

To evaluate the interest of our approach, the proposed
Force Banner representation is involved in a spatial relation
recognition task on a dataset containing various configurations
(from simple to more complex ones) of object pairs. The
objective is also to show its complementarity with the original
image representation, when considering a CNN-based learning
and classification strategy, here on a classification task with 4
classes (North, South, East, West). This protocol is similar to
the one used in [9] to evaluate the histogram of angles, which
was based on a simpler neural network architecture and much
fewer images.

A. Data

As mentioned in Section II, recent initiatives in the com-
puter vision domain are currently leading to the production of
large databases dedicated to spatial relation recognition [27].
As a limit, such datasets only contain the bounding boxes
of the objects of interest present in the image content, or
they do not provide together the spatial relationships and the
segmentation of the involved objects. Since our hypothesis is
that considering the shapes and the structures of the objects
should be investigated to assess their configuration, we need a



Figure 5. Samples of discrete Force Banners for the different classes
(columns) and for different ambiguity levels (rows), from level N1 (easy) to
level N4 (not decidable). For each class a privileged direction can be deduced,
i.e. a small range in abscissa, which is clear for the simple cases and gets
fuzzy or too far from a privileged direction as the ambiguity increases.

delimitation of these objects, so we built a new image database
more suitable for our experiment.

To this end, we randomly generated multiple combinations
of binary shapes that we drew in an image on a homogeneous
background. Such idea was already considered in various
articles from the state-of-the-art in description of spatial re-
lations [4], [19]. The position of the objects in the image is
also randomly decided to guarantee a greater diversity. We
have only avoided that the binary shapes are strictly disjoint
to guarantee the assessable property of the Force Banner. The
image size is 224 × 224 to be compatible with the input
of networks. Technically, the produced images are gray-level
images where each object (referent versus argument) appears
with a specific gray-level, and the background in black.

Two families of shapes were considered:
1) shapes corresponding to geometric shapes (triangle, rect-

angle, ellipse) and simple objects made from those shapes
(houses, planes, cars, etc., in different views);

2) shapes corresponding to urban objects extracted from a
remote sensing image (houses, roads, river, agricultural
crop-fields).

This has led to the creation of two datasets subsequently
named SimpleShapes (2280 images) and GIS (211 images).
Figure 3 presents some samples of the dataset (in color for
visualization purpose). The second dataset will be used as a
realistic test case in our experiments. Moreover, it is interesting
to note that, contrary to the first one, it contains shapes made
of several parts that are not connected, which may result in

more complex situations.
These images were then manually annotated by three ex-

perts to provide a spatial relationship for each scene. For each
image, one object was considered as the referent and one as
the argument, and a spatial relation is chosen. We consider the
opposite relation as symmetric. For complex and ambiguous
cases between experts, a vote is taken.

Four classes were considered during the annotation phase
(North, South, East, West). Due to the randomness of the
generative process, the datasets contain various spatial config-
urations ranging from simple configurations to more complex
ones that can lead to more ambiguous spatial situations. The
images were also sorted according to the complexity and
ambiguity level of the spatial relation (in 4 different levels
N1–N4), so as to evaluate separately on each part. Really
ambiguous cases that were not decidable (N4) were rejected
from the datasets in the experiments, leading to 1953 images
in SimpleShapes and 190 images in GIS.

B. Experimental protocol

We provide hereinafter the experimental protocol followed
in this applicative study.

1) Discrete Force Banner: Using raster data, a matrix
dF̃B

AB
is obtained from a discrete approximation of the

Force Banner FBAB . Let us consider Θ = {θ1, θ2, . . . , θ|Θ|}
a set of consecutive directions defined from a constant step
δθ ∈ R (that is θi+1 = θi+δθ and θ0 = 0 and θ|Θ| = 2π−δθ).
Let rs ∈ R and re ∈ R be two forces and a set of forces
between theses two bounds R = {rs, rs + δr, . . . , re} with
δr a force discretization step. Each row of the matrix is
normalized by its own area to ensure the same importance for
each directional relation. Then, dF̃B

AB
is defined as follows:

dF̃B
AB

=

∣∣∣∣∣∣∣∣∣∣∣∣

µθ0,rs . . . µθ0+iδθ ,rs . . . µθ2π−δθ ,rs

...
. . .

...
. . .

...
µθ0,rj . . . µθ0+iδθ ,rj . . . µθ2π−δθ ,rj

...
. . .

...
. . .

...
µθ0,re . . . µθ0+iδθ ,re . . . µθ2π−δθ ,re

∣∣∣∣∣∣∣∣∣∣∣∣
(5)

and

µθi,rj = FABrj (θi)/||FABrj (.)|| (6)

with rj = rs+jδr .
This means that all the values are in the range [0, 1]

to take into account the scale factor and the forces taken
independently have the same relevance. To be compatible
with the CNN input data without having to rescale images,
we considered in these experiments 224 different directions
(|Θ| = 224 and δθ = 2π/224), and 224 forces from
rs = −2.24 to re = 2.24, with a step of 0.02.

The discrete Force Banner dF̃B
AB

can then be encoded
as a 2D gray-scale image of size 224 × 224 where each
row corresponds to a particular force r while each column
represents the force in a particular direction θ. Figure 3 and



Figure 6. Test/validation loss and accuracy curves obtained on the Simple-
Shapes dataset (Train & Test on N1+N2+N3), when the models are trained
with the different data representations with the same splits.

Figure 5 present some samples of discrete Force Banners
(shown as heatmaps only for visualization purpose).

2) Studying Force Banner vs. original image information:
To quantitatively show that the recognition of the spatial rela-
tion between a pair of objects may be enhanced by considering
a discrete Force Banner instead of directly considering the
original image representation, we proceed to the following
experiment.

To classify images from the datasets, we consider as in-

put of the CNN network either their discrete Force Banner
representations (dF-banner), or the binary images cropped to
the bounding box containing the two objects and rescaled to
the initial size 224 × 224 (bbox image), or a combination
of the two since they carry additional information (dFB +
image). Cropping the raw image is applied as an intuitive
pre-treatment to help the CNN. Doing so, we have a method
that is quite naive but interesting enough to be used as a
comparison. To combine the two representations, the two CNN
models dedicated to the cropped image and to its discrete
Force Banner are trained jointly on the same indices, and the
fusion is performed with an additional fully connected layer
on the concatenation of their final embedding level. A simpler
solution with just a sum of their normalized prediction scores
provides close but lower quality results.

As another comparative method, we compare the results
obtained with our approach with a baseline method relying on
the bounding boxes of the objects of interest as in [27]. In
this approach, the bounding box coordinates of each shape
are encoded into 512-dimensional vectors by linear layers,
and then are fused into one by element wise addition, which
is then classified by a 2-layer fully connected network with
256 hidden units. In our solution (bbox coords), a Multi-Layer
Perceptron (MLP) model is used directly on the coordinates
of the two objects without considering them separately in the
first stage, which allows more expressiveness. The network
used is made of 4 fully connected layers, with 96, 192 and 96
hidden units, which results in 38 501 parameters with our 4
output classes.

3) Learning and validation protocol: Both CNN models
were trained by fine-tuning a SqueezeNet model pre-trained on
IMAGENET (Section III-C). The MLP used for the bounding
box coordinates was trained from scratch. All the models were
trained with cross-entropy loss and classic SGD optimizer,
with a learning rate of 10−4 and default values for the other
parameters (β1 = 0.9, β2 = 0.999 and ε = 10−8), with a
batch size of 20.

To avoid a learning bias and over-fitting, the datasets are
classically split into two subsets with sizes of 75% and 25%
representing respectively train and test sets, keeping the same
proportions of each class and each ambiguity level as in the
initial dataset in both subsets. Filtering of ambiguity levels can
also be performed if only some levels have to be used.

Three trainings of each model were performed: the first
one with all the SimpleShapes dataset (Section IV-A) without
totally ambiguous cases (N1+N2+N3, 1953 images), the sec-
ond one without the most difficult situations (N1+N2, 1794
images) and the last one with the simplest situations only
(N1, 1421 images). So as to better evaluate the generalization
capacity of each model, they were also tested on the full
GIS dataset, which is made of different kinds of shapes. The
training on simple cases of SimpleShapes (N1+N2 or N1 only)
was also tested on difficult cases (N3) of the same dataset, as
another evaluation of the generalization capacity, and of the
difference of difficulty in practice between the different level
subsets.



Table I
CLASSIFICATION RESULTS (OVERALL ACCURACY – OA AND STANDARD DEVIATION – STD) ON THE TEST SETS.

dF-banner bbox image dFB + image bbox coords [27]
Datasets OA STD OA STD OA STD OA STD
Train & Test on N1 92.66% 0.94% 88.39% 0.50% 92.13% 0.25% 90.73% 1.71%
Train & Test on N1+N2 92.70% 0.62% 87.53% 0.46% 92.90% 0.78% 90.13% 0.34%
Train & Test on N1+N2+N3 91.47% 1.36% 87.30% 0.55% 92.53% 1.62% 88.96% 0.89%
Train on N1 & Test on N3 76.03% 3.76% 73.86% 1.15% 78.13% 2.65% 72.75% 3.46%
Train on N1+N2 & Test on N3 75.54% 2.70% 72.82% 1.54% 78.55% 2.79% 73.17% 0.96%
Train on N1+N2+N3 & Test on GIS 91.81% 0.79% 61.75% 3.65% 86.02% 2.43% 86.67% 3.17%

From each training, we selected the optimal number of
epochs according to the loss obtained on the test part: the best
models are those corresponding to the epochs when the loss
starts to plateau or before it starts to increase. In our tests, we
selected three following epochs and re-ran the test on the same
test part three times for each one. Then we compute the mean
over all the 3× 3 runs, as an estimation of the accuracy that
can be expected with those models, and the standard deviation
to show the fluctuation of the performance for the different
methods. The results are reported in Table I. This step can also
be seen as a validation step for the test on the GIS dataset.

C. Results and discussion

As a preliminary result, Figure 5 shows a sample of discrete
Force Banners for each class and for each level of ambi-
guity. For each class a privileged direction can be deduced,
corresponding to the direction of the spatial relation. This is
clear for the simple cases where the direction is close to the
privileged one, while it gets fuzzy when it is too far from
this privileged direction, or covering a range which is too
large. These visual results first highlight the ability of the
discrete Force Banner to capture (simple to more complex)
spatial configurations in a directional manner.

Figure 6 illustrates the obtained loss, accuracy and F1-score
curves (test/validation phase) when the models are trained
with the different image representations on the SimpleShapes
dataset. We observe that the different models start to provide
their best results after 10 epochs, and that the test loss starts
to plateau from 20 epochs for all models, and to increase from
30 for the bbox image model, or 50 for the dF-banner model,
while it remains stable for the bbox coords model.

By looking at the accuracy or F1-score values from Figure 6,
we can also compare the different approaches. For all the
approaches, the scores start to converge after 10 epochs too,
and get really stable after 45 epochs. The first one to reach
its plateau is the bbox coords approach, which is already high
after the first epoch (but has still important variation until 8
epochs), contrary to the others that start from 40 − 60% and
reach their plateau after 5 to 10 epochs. The best result is
obtained for the dF-banner and dFB+image methods, followed
by the bbox coords method just below, and finally the bbox
image one which is quite inferior.

The precise results for this test and for the tests on the differ-
ent datasets are reported in Table I, computed as mentionned in
Section IV-B3. When training and testing on the same dataset,

either the dF-banner or the dFB+image approach gets the
best results, depending on the difficulty of the data, with a
really small difference. They are followed by the bbox coords
approach and finally the bbox image one in general.

Concerning the ambiguity level of the dataset, the difficulty
of N3 relatively to N1 and N2 is clear from the tests on N3
only, with an important gap compared to tests on the same
level of difficulty as in train. However the relative difference
between training on N1 or on N1+N2 is not really visible on
the results, which may be due to the higher importance of the
N1 images in the dataset.

Finally for the test on the GIS dataset, the dFB+image score
is much lower than on SimpleShapes, just below the bbox
coords approach. This must be due to the bad performance of
the bbox image approach, while the score for the dF-banner is
still as high as for the test on the SimpleShapes dataset. This
means that the dF-banner has a much higher and really good
generalization capacity, since it can get higher performance on
an unseen dataset corresponding to realistic situations.

All these results suggest that the discrete Force Banner is an
appropriate description of the spatial configuration, providing
better features for the classification task than the bounding box
coordinates or the binary image, even if the latest can bring
some additional information in the more difficult cases. It is
particularly good at generalizing to other kind of images, as
the test on the GIS dataset reveals.

V. CONCLUSION

In this article, we studied the problem of spatial relation
recognition. Instead of considering directly the original image
space to predict the spatial relation, we proposed the Force
Banner representation modeling rich spatial information be-
tween pairs of objects composing a scene. Such an inter-
mediate representation captures the relative position between
objects using a panel of forces (attraction and repulsion), that
take into account the structural shapes of the objects and
their distance in a directional fashion. This solution currently
only deals with binary images, but it is robust to imperfect
segmentation since the contribution of one pixel is balanced
by the others for each direction. Moreover, Force Banners can
be used to feed a classical 2D CNN, here the SqueezeNet
model, for the recognition of spatial relations, benefiting from
pre-trained models and fine-tuning.

Experimental results obtained on a dataset of about 2000
images composed of various shapes (simple objects, geomet-



rical shapes, urban objects from a GIS) highlighted the interest
of this approach, and in particular its benefit to describe spatial
information, with very good generalization capacity. We also
shown in this study that current state-of-the-art approaches
based on bounding-boxes models may not be sufficient to
predict spatial relations from ambiguous or complex relations.
Thus, we provide here research clues to allow a CNN to
better apprehend the spatial information carried naturally by
the content of a scene.

As a perspective, we plan to embed the Force Banners
in a graph-based representation of the image to allow the
recognition of complex spatial configurations between scenes
composed of multiple objects. We also want to integrate in
our approach a post-hoc visual attention mechanism, to better
understand and visualize which panel of forces (repulsions,
attractions) and which set of directions contributed to the
decision of the CNN classifier. This will ultimately allow to
refine and adapt the model to the specificity and complexity
of the classes from a dataset.
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