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In brief

DNA sequencing continues to progress

toward longer and more accurate reads.

Yet, primary analyses, such as genome

assembly and pangenome graph

construction, remain challenging and

energy-inefficient. Here, we introduce the

concept of minimizer-space sequencing

analysis, expanding the alphabet of DNA

sequences to atomic tokens made of

fixed-length words. This leads to orders-

of-magnitude improvements in speed

and memory usage for human genome

assembly and metagenome assembly

and enables for the first time a

representation of a pangenome made of

661,405 bacterial genomes.
.
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SUMMARY
DNA sequencing data continue to progress toward longer reads with increasingly lower sequencing error
rates. Here, we define an algorithmic approach, mdBG, that makes use of minimizer-space de Bruijn graphs
to enable long-read genome assembly. mdBG achieves orders-of-magnitude improvement in both speed
and memory usage over existing methods without compromising accuracy. A human genome is assembled
in under 10 min using 8 cores and 10 GB RAM, and 60 Gbp of metagenome reads are assembled in 4 min
using 1 GB RAM. In addition, we constructed a minimizer-space de Bruijn graph-based representation of
661,405 bacterial genomes, comprising 16 million nodes and 45 million edges, and successfully search it
for anti-microbial resistance (AMR) genes in 12 min. We expect our advances to be essential to sequence
analysis, given the rise of long-read sequencing in genomics, metagenomics, and pangenomics. Code for
constructing mdBGs is freely available for download at https://github.com/ekimb/rust-mdbg/.
INTRODUCTION

DNA sequencing data continue to improve from long reads of

poor quality (Batzoglou et al., 2002), used to assemble the first

human genomes and Illumina short reads with low error rates

(%1%) to longer reads with low error rates. For instance, recent

Pacific Biosciences (PacBio) instruments can sequence 10- to

25-Kbp-long (HiFi) reads at %1% error rate (Wenger et al.,

2019). The R10.3 pore of the Oxford Nanopore produces reads

of hundreds of Kbps in length at a � 5% error rate. A tantalizing

possibility is that DNA sequencing will eventually converge to

long, nearly perfect reads. These new technologies require

algorithms that are both efficient and accurate for important

sequence analysis tasks such as genome assembly (Logsdon

et al., 2020).

Efficient algorithms for sequence analysis have played a

central role in the era of high-throughput DNA sequencing.

Many analyses, such as read mapping (Yorukoglu et al., 2016;

Shajii et al., 2021), genome assembly (Pevzner et al., 2004),

and taxonomic profiling (Lu and Salzberg, 2020; Nazeen et al.,

2020), have benefited from milestone advances that effectively

compress, or sketch, the data (Loh et al., 2012), for e.g., fast

full-text search with the Burrows-Wheeler transform (BWT) (Bur-

rows and Wheeler, 1994), space-efficient graph representations

with succinct de Bruijn graphs (Chikhi et al., 2019), and light-

weight databases with MinHash sketches (Ondov et al., 2016).
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Large-scale data re-analysis initiatives (Edgar et al., 2020; Lach-

mann et al., 2018) further incentivize the development of efficient

algorithms, as they aim to re-analyze petabases of existing pub-

lic data.

However, there has traditionally been a trade-off between algo-

rithmic efficiency and loss of information, at least during the initial

sequence-processing steps. Consider short-read genome as-

sembly: the non-trivial insight of chopping up reads into k-mers,

thereby bypassing the ordering of k-mers within each read, has

unlocked fast and memory-efficient approaches using de Bruijn

graphs; yet, the short k-mers—chosen for efficiency—lead to

fragmented assemblies (Berger et al., 2013). In modern sequence

similarity estimation and read mapping approaches, (Yorukoglu

et al., 2016) information loss is even more drastic, as large

genomic windows are sketched down to comparatively tiny sets

of minimizers—which index a sequence (window) by its lexico-

graphically smallest k-mer (Ondov et al., 2016) and enable

efficient but sometimes inaccurate comparisons between

gigabase-scale sets of sequences (Jain et al., 2020).

Here, we provide a highly efficient genome assembly tool for

state-of-the-art and low-error long-read data (for a high-level

summary, see Box 1: Progress and Potential). We introduce

minimizer-space de Bruijn graphs, mdBGs, which instead of

building an assembly over sequence bases—the standard

approach that for clarity we refer to as base space—newly per-

forms assembly inminimizer space (Figure 1A) and later converts
s. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Box 1. Progress and potential

Progress: third-generation sequencing technologies, such as PacBio and Oxford Nanopore (ONT), can now yield terabytes of long-

read genomic sequences (contiguous sequences typically on the order of tens of thousands of base pairs) of higher quality (1%–4%

error rate) to analyze genomes. With these evolving technologies, several important computational challenges have emerged. A

fundamental problem among these is genome assembly, which is the computational task of assembling (stitching together)

sequencing reads into a single genomic sequence per chromosome. The prevailing approach, de novo assembly, is naively

resource-intensive since it requires pairwise comparisons between all possible pairs of reads. Although the coverage and quality

of sequencing technologies have vastly advanced over the past several years, genome assembly from sequencing data remains

a challenging task due to the size and scope of genomic data being generated across the tree of life.

More efficientdenovoassemblers use graph-based data structures,most frequentlydeBruijn graphs, which conceptually encode a

set of sequence fragments found in the reads, aswell as their overlaps. The sequence of each complete chromosomecorresponds to

a path in this graph. While de Bruijn graphs theoretically scale linearly in the size of the target genome instead of the number of reads

and are, therefore, more efficient, sequencing errors can cause branching and, thus, increase their size and runtime to search.

Moreover, all k-mers (sequences of length k) that appear in the reads need to be stored, which is memory-intensive. A key insight

of language models, which have emerged as an effective way to model natural languages, is that words (or sentence fragments),

instead of letters, can be used as tokens (small building blocks) in the computational model of the natural language. Taking inspiration

from this concept, our key conceptual advance is a data structure we call a minimizer-space de Bruijn graph (mdBG), where,

instead of single nucleotides as tokens of the de Bruijn graph, we use short sequences of nucleotides known as minimizers, which

allow for an even more compact representation of the genome in what we call minimizer space. Minimizer-space de Bruijn graphs

store only a small fraction of the nucleotides from the input data while preserving the overall graph structure, enabling them to be

orders of magnitude more efficient than classical de Bruijn graphs. By doing so, we can reconstruct whole genomes from accurate

long-read data in minutes—about a hundred times faster than state-of-the-art approaches—on a personal computer, while using

significantly less memory and achieving similar accuracy.

To enable assembly of reads with up to a 4% error rate (e.g., from emerging Oxford Nanopore data, which offers high sequencing

throughput, low cost and ultra-long read lengths), we newly correct for read errors by performingminimizer-space partial order align-

ment (POA), in which sequencing errors in a query read are corrected by aligning other reads from the same genomic region to the

query in minimizer space.

We also show that we can build very large minimizer-space de Bruijn graphs that can be queried for biologically useful questions by

constructing a graphical pangenome of a large and diverse collection of 661,405 bacterial genomes. This collection of several tera-

bytes has never before been represented as a pangenome graph (a graph that represents multiple genomes simultaneously). Such a

task is computationally nearly impossible using state-of-the-art methods, which would take weeks and terabytes of RAM to com-

plete. We show that our method completes the construction in roughly 3 h with low memory usage, and the connected components

in the mdBG distinguish species, allowing us to quickly search for anti-microbial resistance genes inside the entire pangenome.

Potential: as long-read sequencing technologies mature, they offer the promise of genome reconstruction with unprecedented ac-

curacy and contiguity. However, the assembly of these genomes can be memory-intensive and time-consuming (taking days). This

precludesanybut the largest centerswithnearlyunlimitedcomputingpower toassemblemetagenomes, largebacterial pangenomes,

and the growing number of humangenomes for personalizedmedicine. If personalizedmedicine is expected tobe effective and avail-

able to everyone in the near future, processing raw data needs to be done both cheaply and at ultra-fast rates. Consequently, cloud

computing for genome assembly and analysiswill likely underpin future large-scale genomics collaborations and efforts to re-analyze

archiveddata. Ourmethod,mdBG, significantly reduces the computational resources required for performingwhole-genomeassem-

bly, making such analyses possible on desktop computers. We specifically demonstrate its use through three examples: human

genome assembly, metagenome assembly, and the construction of large pangenome graphs. For microbiome and pangenome

analyses, our approach offers the possibility of constructing graphical pangenomes at the scale of the largest existing collections

quickly and accurately, enabling us to simultaneously analyze the myriad of genomes available in databases. Given the rise of

next-generation sequencing technologies and faster and less expensive genome assembly, we expect our advances to be essential

to the convergence among next-generation sequencing (NGS), cloud computing, and precision and personalized medicine, and

beneficial in creating the infrastructure necessary to formulate and test disease mechanisms and develop new treatments at scale.
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it back to base-space assemblies. Specifically, each read is

initially converted to an ordered sequence of itsminimizers (Rob-

erts et al., 2004; Li and Yan 2015). The order of the minimizers is

important, as our aim is to reconstruct the entire genome as an

ordered list. Our method differs from the classical MinHash tech-

nique, which converts sequences into unordered sets of mini-

mizers to detect pairwise similarities between them (Broder,

1997). To aid in assembly of higher-error-rate data, we also intro-

duce a variant of the partial order alignment (POA) algorithm that
operates in minimizer space instead of base space and effec-

tively corrects only the bases corresponding to minimizers in

the reads. Sequencing errors that occur outside minimizers do

not affect our representation. Those within minimizers cause

substitutions or indels in minimizer space (Figure 4), which can

be identified and subsequently corrected in minimizer space

using POA (Figure 1C).

Our key conceptual advance is that minimizers can them-

selves make up atomic tokens of an extended alphabet, which
Cell Systems 12, 958–968, October 20, 2021 959
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Figure 1. Overview of our methods

(A) An efficient assembly method for state-of-the-art genome sequencing (e.g., PacBio HiFi data). Illustration of our minimizer-space de Bruijn graph (mdBG,

bottom) compared with the original de Bruijn graph (top) commonly used for genome assembly. Center horizontal section shows a toy reference genome, along

with a collection of sequencing reads. Top box shows k-mers (k = 4) collected from the reads, which are the nodes of the classical de Bruijn graph. The input size

of 52 nucleotides (nt) is depicted in boldface. Bottom box shows the position of minimizers in the reads for [ = 2, and any [-mer starting with nucleotide ‘‘A’’ is

chosen as a minimizer. k0-min-mers (using notation k0 = 3 here to differentiate from classical k-mers) are tuples of k0 minimizers as ordered in reads, which

constitute the nodes of the minimizer-space de Bruijn graph. Creating k0-min-mers from the minimizer-space representation of reads allows for a reduction in

input size, since the only bases stored in a k0-min-mer are the bases of the chosenminimizers. The reduced input size to 18 nucleotides (nt) is depicted in boldface.

The minimizer-space representation accelerates the construction and traversal of the de Bruijn graph while reducing memory consumption.

(B) Overview of the assembly pipeline using mdBG. The region of the figure above (respectively, below) the dotted line corresponds to analyses taking place in

base space (respectively, minimizer space). The input reads are scanned sequentially, and all [-mers that belong to a pre-selected set of universeminimizers (see

STARMethods) are identified. Each read is then represented as an ordered list of the selectedminimizers, and k-min-mers are collected from theminimizer-space

representation of reads using a sliding window of length k. A minimizer-space de Bruijn graph (mdBG) is then constructed from the set of all k-min-mers and

(legend continued on next page)
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enables efficient long-read assembly that, along with error

correction, leads to preserved accuracy. By performing assem-

bly using a minimizer-space de Bruijn graph, we drastically

reduce the amount of data input to the assembler, preserving ac-

curacy, lowering running time, and decreasingmemory usage by

1 to 2 orders of magnitude compared with current assemblers.

Setting adequate parameters for the order of the de Bruijn graph

and the density of our minimizer scheme allows us to overcome

stochastic variations in sequencing depth and read length, in a

similar fashion to traditional base-space assembly. To handle

higher sequencing error rates, we correct for base errors by

introducing the concept of minimizer-space partial order

alignment (POA).

With error-prone data, we study two regimes: real PacBio HiFi

read data (<1% error rate) for Drosophila melanogaster and

Human, which turn out to require little adjustment for errors

due to the very low rate, and synthetic 1 to 10% error-rate

data, which correspond to the range of error rates of Oxford

Nanopore’s recent technology. We also demonstrate that

despite data reduction, running our rust-mdbg software on

synthetic error-free and 4%error rate data results in near-perfect

reconstruction of a genome, the latter entirely due to our applica-

tion of POA in minimizer space.

To further demonstrate rust-mdbg’s capabilities, we used it

to assemble two PacBio HiFi metagenomes, achieving run-

times of minutes as opposed to days, and memory usage

two orders of magnitude lower than the current state-of-the-

art hifiasm-meta, with comparable assembly completeness

yet lower contiguity. As a versatile use case of minimizer-space

analysis, we construct, to the best of our knowledge, the

largest pangenome graph to date of 661K bacterial genomes

and perform minimizer-space queries of anti-microbial resis-

tance (AMR) genes within this graph, identifying nearly all those

with high sequence similarity to original bacterial genomes.

Rapidly detecting AMR genes in a large collection of samples

would facilitate real-time AMR surveillance (Ellington et al.,

2017), and mdBG provides a space-efficient alternative to in-

dexed k-mer searches.

Remarkably, our approach is equivalent to examining a

tunable fraction (e.g., only 1%) of the input bases in the data

and should generalize to emerging sequencing technologies.

Comparison with related work
This work is at the confluence of three core ideas that were

recently proposed in three different genome assemblers:

Shasta (Shafin et al., 2020), wtdbg2 (Ruan and Li, 2020), and

Peregrine (Chin and Khalak, 2019). (1) Shasta transforms

ordered lists of reads into minimizers (Shasta used the term

markers) to produce an efficiently reduced representation of
simplified in order to reduce ambiguity and remove errors. The mdBG is then c

spanned by the minimizers in the mdBG, and a set of contigs is reported.

(C) Overview of the minimizer-space partial order alignment (POA) procedure w

minimizers ([ = 2) are shown, with sequencing errors and the minimizers that

as orange, substitution in blue, no errors in green). (2) Before minimizer-space err

(n = 1). (3) For a query ordered list (the first read in the read set in the figure), all or

query neighbors are obtained by applying a heuristically determined distance filte

is constructed by initializing the graphwith the query and aligning each ordered list

are shown in red). (5) By taking a consensus path of the graph, the error in the q
sequences that facilitates quick detection of overlaps between

reads. A similar idea was previously used for read mapping

and assembly in minimap/miniasm (Li, 2016, 2018) and edit

distance calculation with Order Min Hash (OMH) (Marçais

et al., 2019). (2) The wtdbg2 idea extends the usual

S= fA;C;T ;Gg alphabet, which forms the basis of traditional

genome deBruijn graphs, to 256 bpwindows: a ‘‘fuzzy’’ de Bruijn

graph is constructed by ‘‘zooming out’’ of read sequences and

considering batches of 256 bps at a time. (3) The Peregrine

idea can be broken down into two parts: (1) pairs of consecutive

minimizers can be indexed—and they are naturally less often

repeated across a genome than isolated minimizers, and (2) a

hierarchy of minimizers can be constructed so that fewer mini-

mizers are selected than in classical methods, thus increasing

the distance between minimizers.

In distantly related independent work, a very recent pre-print

(Rautiainen and Marschall, 2020) (MBG) demonstrates a similar

idea as Peregrine, performing assembly by finding pairs of

consecutive minimizers on reads. Although MBG does combine

the concepts of minimizers and de Bruijn graphs, it is fundamen-

tally different from the work presented here. Nodes in the MBG

are classical k-mers over the DNA alphabet, whereas nodes in

our representation are k-mers over an alphabet of minimizers.

Two other related concepts to MBG are sparse de Bruijn graphs

(Ye et al., 2012) and A-Bruijn graphs (Kolmogorov et al., 2019; Lin

et al., 2016), in which the nodes are a subset of the original de

Bruijn graph nodes and the edge condition is relaxed so that

overlaps may be shorter than ðk�1Þ when pairs of nodes are

seen consecutively in a read.

Conceptually, our advance is in tightly combining both de

Bruijn graphs and minimizers, introducing a non-trivial mix of

previously known ingredients (see Box 2). The concept of a de

Bruijn graph was not considered in either the Shasta or the

Peregrine assemblers; whereas in the wtdbg2 assembler,

de Bruijn graphswere considered, but notminimizers. Moreover,

reducing the three aforementioned genome assemblers into a

single idea for each of them, in terms of how they achieve

algorithmic efficiency, is a contribution in itself and simplifies

our presentation greatly. What we offer is essentially an ultra-

fast variation of de Bruijn graphs for long reads.

RESULTS

An overview of our pipeline, implemented in Rust (rust-mdbg),

is shown in Figure 1B. We compared rust-mdbg with three

recent assemblers optimized for low-error rate long reads:

Peregrine, HiCanu (Nurk et al., 2020), and hifiasm (Cheng

et al., 2020) (see ‘‘genome assembly tools, versions, and param-

eters’’ for versions and parameters).
onverted back into base space by concatenating the base-space sequences

ith a toy dataset of 4 reads. (1) Error-prone reads and their ordered lists of

are created as a result of errors denoted in colors (insertion as red, deletion

or-correction, the ordered lists of minimizers are bucketed using their n-tuples

dered lists that share an n-tuple with the query are obtained, and the final list of

r dj (Jaccard distance threshold of f = 0:5). (4) A POA graph in minimizer space

that passed the filter to the graph iteratively (weights of poorly supported edges

uery is corrected.
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Box 2. A primer on minimizers and de Bruijn graphs

The variable s is used as a placeholder for an unspecified alphabet (a non-empty set of characters). We defineSDNA = fA; C; T ; Gg
as the alphabet containing the four DNA bases. Given an integer [>0, S[ is the alphabet consisting of all possible strings on SDNA of

length [. To avoid confusion, we stress thatS[ is an unusual alphabet: any ‘‘character’’ ofS[ is itself a string of length [ over the DNA

alphabet.

Given an alphabet s, a string is a finite ordered list of characters from s. Note that our strings will sometimes be on alphabets where

each character cannot be represented by a single alphanumeric symbol. Given a string x over some alphabet s and some integer

n>0, the prefix (respectively, the suffix) of x of length n is the string formed by the first (respectively, the last) n characters of x.

We now introduce the concept of a minimizer. In this paragraph, we consider strings over the alphabet SDNA. We consider two

types of minimizers: universe andwindow. Consider a function f that takes as input a string of length [ and outputs a numeric value

within range ½0;H�, whereH>0. Usually, f is a 4-bit encoding of DNA or a random hash function (it does notmatter whether the values

of f are integers or whether H is an integer). Given an integer [>1 and a coefficient 0<d<1, a universe ð[; dÞ-minimizer is any stringm

of length [ such that fðmÞ<d,H. We defineM[;d to be the set of all universe ð[;dÞ-minimizers, and we refer to d as the density ofM[;d.

This definition of aminimizer is in contrast with the classical one (Roberts et al., 2004), whichwe recall here, althoughwewill not use

it. Consider a string x of any length and a substring (window) y of length w of x. Awindow [-minimizer of x given window y is a sub-

stringm of length [ of y that has the smallest value fðmÞ among all other such substrings in y. Observe that universe minimizers are

defined independently of a reference string, unlike window minimizers. They have been recently independently termed mincode

syncmers (Edgar, 2021). We also performed experiments with an alternative concept to minimizers, Locally Consistent Parsing

(LCP) (Sxahinalp and Vishkin, 1994), which replaces universal minimizers with core substrings: substrings that can be pre-computed

for any given alphabet such that any sequence of length n includes� n=[ substrings of length [ on average (see ‘‘locally consistent

parsing [LCP]’’).

We recall the definition of de Bruijn graphs. Given an alphabet s and an integer kR2, a de Bruijn graph of order k is a directed graph

where nodes are strings of length k over s (k-mers), and two nodes x; y are linked by an edge if the suffix of x of length k� 1 is equal

to the prefix of y of length k� 1. This definition corresponds to the node-centric de Bruijn graph (Chikhi et al., 2014) generalized to

any alphabet.
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Ultra-fast, memory-efficient, and highly contiguous
assembly of real HiFi reads using rust-mdbg

Weevaluatedour software,rust-mdbg, on real PacBioHiFi reads

fromD.melanogaster, at 1003coverage,andHiFi reads for human

(HG002) at� 503 coverage, both taken from theHiCanu publica-

tion (https://obj.umiacs.umd.edu/marbl_publications/hicanu/

index.html) (Nurk et al., 2020).

Since our method does not resolve both haplotypes in diploid

organisms, we compared against the primary contigs of HiCanu

and hifiasm. In our tests with D. melanogaster, the reference

genome consists of all nuclear chromosomes from the RefSeq

accession (GenBank: GCA_000001215.4). Assembly evalua-

tions were performed using QUAST (Gurevich et al., 2013)

v5.0.2 and run with parameters recommended in HiCanu’s

article (Nurk et al., 2020). QUAST aligns contigs to a reference

genome, allowing to compute contiguity and completeness sta-

tistics that are corrected for misassemblies (NGA50 and

Genome fraction metrics respectively in Table 3). Assemblies

were all run using 8 threads on a Xeon 2.60 GHz CPU. For

rust-mdbg assemblies, contigs shorter than 50 Kbp were

filtered out similar to as shown in Nurk et al. (2020). We did not

report the running time of the base-space conversion step and

graph simplifications, as they are under 15% of the running

CPU time and run on a single thread, taking no more memory

than the final assembly size, which is also less memory than

the mdBG.

Table 1 (leftmost) showsassembly statistics forD.melanogaster

HiFi reads. Our software rust-mdbg uses� 333 less wall-clock

time and 83 less RAM than all other assemblers. In terms of as-

sembly quality, all tools yielded high-quality results. HiCanu had

66%higherNGA50 statistics thanrust-mdbg, at the cost ofmak-
962 Cell Systems 12, 958–968, October 20, 2021
ing more misassemblies, 3853 longer runtime, and 83 higher

memory usage.rust-mdbg reported the lowestGenome fraction

statistics, likely due, in part, to an aggressive tip-clipping graph

simplification strategy, also removing true genomic sequences.

Table 1 (rightmost) shows assembly statistics for Human HiFi

(HG002) reads. rust-mdbg performed assembly 81x faster

with 183 less memory usage than Peregrine, at the cost of

a 22% lower contiguity and 1.5% lower completeness.

Compared with hifiasm, rust-mdbg performed 3383 faster

with 193 lower memory, resulting in a less contiguous assembly

(NG50 of 16.1Mbp versus 88.0 Mbp for hifiasm) and 1.3%higher

completeness.

Remarkably, the initial unsimplified mdBG for the Human

assembly only had �12 million k-min-mers (seen at least twice

in the reads, out of 40 million seen in total) and 24 million edges,

which should be compared with the 2.2 Gbp length of the

(homopolymer compressed) assembly and the 100-GB total

length of input reads in the uncompressed FASTA format.

This highlights that the mdBG allows very efficient storage

and simplification operations over the initial assembly graph

in minimizer space.
Minimizer-space POA enables correction of reads with
higher sequencing error rates
We introduce minimizer-space partial order alignment (POA) to

tackle sequencing errors. To determine the efficacy of mini-

mizer-space POA and the limits of minimizer-space de Bruijn

graph assembly with higher read error rates, we performed

experiments on a smaller dataset. In a nutshell, we simulated

reads for a single Drosophila chromosome at various error rates

https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html
https://obj.umiacs.umd.edu/marbl_publications/hicanu/index.html


Table 1. Assembly statistics of D. melanogaster real HiFi reads (left), simulated perfect reads (center), and Human real HiFi reads

(right), all evaluated using the commonly used QUAST program

D. mel 1003 real HiFi reads D. mel 503 simulated perfect reads Human real HiFi reads

Tool Peregrine HiCanu Hifiasm Rust-mdbg Peregrine HiCanu Hifiasm

Rust-

mdbg Peregrine Hifiasm Rust-mdbg

Time 40 min 11s 7 h 43min 5 h 17min 1 min 9 s 23 min 31 s 8 h 12 min 19 h 38 min 21 s 14 h 8 min 58 h 41min 10 min 23 s

Memory 12 GB 12 GB 21 GB 1.5 GB 16 GB 18 GB 51 GB <1 GB 188 GB 195 GB 10 GB

# Contigs 682 928 538 93 63 45 48 34 8,109 431 805

NGA50 (M) 5.2 10.1 4.8 6.0 6.3 19.4 21.5 15.4 18.2* 88.0* 16.1*

Complete

(%)

93.9% 96.6% 96.6% 90.8% 98.2% 98.1% 98.2% 96.2% 97.0% 94.2% 95.5%

# Misasm. 10 5 0 0 3 5 0 1 N/A* N/A* N/A*

All assemblies were homopolymer compressed. Wall-clock time is reported for 8 threads. NGA50 is a contiguity metric reported in megabases (Mbp)

by QUAST as the longest contig alignment to the reference genome so that shorter contig alignments collectively make up 50% of the genome length.

The number of misassemblies is reported by QUAST. NGA50/NG50 andGenome fraction (Complete%) should bemaximized, whereas all other metrics

should be minimized. Only Peregrine, hifiasm, and our method rust-mdbg were evaluated on Human assemblies, since HiCanu requires around

an order of magnitude more running time. *For the Human assemblies, NG50 is reported instead of NGA50, andmisassemblies are not reported due to

structural differences between HG002 and the hg38 reference.
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and performed mdBG assembly with and without POA (see

STAR Methods for more details).

Figure 2A (left) shows that the original implementation without

POA is only able to reconstruct the complete chromosome into a
A

B

Figure 2. Evaluation of minimizer-space POA correction

(A) Effect of ourminimizer-space POA correction onmdBGassembly and reads. R

ranging from 0%, 1%,., up to 10%. Assemblies were run with and without minim

for each assembly (uncorrected in blue, minimizer-space POA-corrected in orang

minimizer space, for raw reads (observed in blue, and predicted by Equation 1 in

(B) Robustness of rust-mdbg assemblies by varying the k and d parameters,

of recovered k-min-mer values is reported in both plots. Left panel shows recovery

(R 90%) occurring with dR0:0025). Right panel shows recovery rates for [ = 12,
single contig up to error rates of 1%, after which the chromo-

some is assembled into R2 contigs. With POA, an accurate

reconstruction as a single contig is obtained with error rates up

to 4%. We further verified that, up to a 3% error rate, the
eads fromD.melanogaster chromosome 4were simulatedwith base error rates

izer-space POA correction. Left panel depicts the length of the longest contig

e). Right panel depicts the average read identity to the reference, computed in

green), and reads corrected by POA in minimizer space (in orange).

on whole-genome D. melanogaster simulated perfect reads. The proportion

rates for k = 30, [ = 12, and varying d from 0.001 to 0.005, with good recovery

d = 0:003, and varying k from 10 to 50, again with good recovery with kR 40.
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Figure 3. Pangenome mdBG of 661,405 bacterial genomes and retrieval of anti-microbial resistance genes

Top panel: a complete d= 0:001 pangenome mdBG is constructed for the whole 661,405 bacterial collection and the first five connected components are

displayed here (using Gephi software). Each node is a k-min-mer, and edges are exact overlaps of k � 1 minimizers between k-min-mers. Middle panel: a

collection of anti-microbial resistance gene targets was converted into minimizer space, then each k-min-mer is queried in a 661,405 bacterial pangenome graph

(d = 0:01) yielding a bimodal distribution of gene retrieval: genes with high identity (99%+) to those in the pangenome are found, while those with lower identity

are not found. The histogram is annotated by the minimal sequence divergence of each gene as aligned by minimap2 to the pangenome over 90% of its

length. Bottom panel: runtime and memory usage for the d= 0:01 graph construction and query. Note that the graph need only be constructed once in a

preprocessing step.
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reconstructed contig corresponds structurally exactly to the

reference, apart from the base errors in the reads. At a 4% error

rate, a single uncorrected indel in minimizer space introduces a

�1 Kbp artificial insertion in the assembly.

Figure 2A (right) indicates that the minimizer-space identity of

raw reads linearly decreases with increasing error rate. With

POA, near-perfect correction can be achieved up to a� 4%error

rate, with a sharp decrease at >5% error rates but still with an

improvement in identity over uncorrected reads.

This highlights the importance of accurate POA correction: to

put these results in perspective, mdBGs appear to be suitable to

HiFi-grade data (< 1% error rates) without POA and our POA

implementation is almost, but not quite yet, able to cope with

the error rate of ONT data (5%).

With POA, the runtime of our implementation was around 45 s

and 0.4 GB of memory, compared with under 1 s and < 30 MB of

memory without POA. Note that we did not use an optimized

POA implementation; thus, we anticipate that further engineering

efforts would significantly lower the runtime and possibly also

improve the quality of correction.
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Pangenome mdBG of a collection of 661,405 bacterial
genomes allows efficient large-scale search of
AMR genes
We applied mdBG to represent a recent collection of 661,405

assembled bacterial genomes (Blackwell et al., 2021). To the

best of our knowledge, this is the first de Bruijn graph construc-

tion of such a large collection of bacterial genomes. Previously

only approximate sketches were created for this collection: a

COBS index (Bingmann et al., 2019), allowing probabilistic mem-

bership queries of short k-mers (k = 31) (Blackwell et al., 2021),

and sequence signatures (MinHash) using sourmash (Pierce

et al., 2019) and pp-sketch (Lees et al., 2019), none of which

are graph representations.

The mdBG construction with parameters k = 10, l = 12, and

d= 0:001 took 3 h 50 m wall-clock running time using 8 threads,

totaling 8 h CPU time (largely IO-bound). The memory consump-

tion was 58 GB and the total disk usage was under 150 GB.

Increasing d to 0.01 yields a finer-resolution mdBG but increases

the wall-clock running time to 13h30m, the memory usage to

481 GB, and the disk usage to 200 GB.



Figure 4. Propagation of sequencing errors

in base space to minimizer space

We consider a sequence along with its minimizers

(left of the box). Each panel inside the box depicts

the effect of a different mutation on this sequence.

Top left panel: G/C (in purple) leads to no change

in the minimizer-space representation as the muta-

tion did not change or create any minimizer. Bottom

left: A/G led to the disappearance ofm2. Top right:

C/A made them3 minimizer appear. Bottom right:

T/A affected two minimizers: m4 was substituted

for m1, and m3 was inserted.

ll
OPEN ACCESSArticle
To compare the performance of mdBG with existing state-of-

the-art tools for building de Bruijn graphs, we executed KMC3

(Kokot et al., 2017) to count 63-mers and Cuttlefish (Khan and

Patro, 2020) to construct a de Bruijn graph from the counted

k-mers. KMC3 took 22 wall-clock h and 191 GB memory using

8 threads, 2 TB of temporary disk usage, and 758 GB of output

(56 billion distinct k-mers). Cuttlefish (Khan and Patro, 2020)

did not terminate within three weeks of execution time. Hence,

constructing the mdBG is at least two orders of magnitude

more efficient in running time and one order of magnitude in

disk usage and memory usage.
Table 2. Metagenome assembly statistics of the ZymoD6331 datase

and rust-mdbg

Zymo D6331

Species Abundance hifiasm rust-mdbg

A. muciniphila 1.36% 100.00% 100.00%

B. fragilis 13.13% 99.99% 100.00%

B. adolescentis 1.34% 100.00% 99.73%

C. albicans 1.61% 67.83% 39.82%

C. difficile 1.83% 100.00% 99.98%

C. perfringens 0.00% 0.01% 0.01%

E. faecalis 0.00% 0.01% 0.01%

E. coli B1109 8.44% 100.00% 97.92%

E. coli b2207 8.32% 100.00% 98.66%

E. coli B3008 8.25% 100.00% 99.56%

E. coli B766 7.83% 96.91% 96.27%

E. coli JM109 8.37% 100.00% 97.85%

F. prausnitzii 14.39% 100.00% 100.00%

F. nucleatum 3.78% 100.00% 99.96%

L. fermentum 0.86% 100.00% 100.00%

M. smithii 0.04% 99.84% 87.18%

P. corporis 5.37% 99.56% 99.56%

R. hominis 3.88% 100.00% 100.00%

S. cerevisiae 0.18% 69.52% 39.56%

S. enterica 0.02% 6.23% 4.62%

V. rogosae 11.02% 100.00% 100.00%

Running time – 34 h 29 min 55s

Memory usage – 83 GB 0.9 GB

TheAbundance column shows the relative abundance of the species in the s

assemblies as reported by metaQUAST.
Figure 3 shows the largest 5 connected components of

the d= 0:001 bacterial pangenome mdBG. As expected, several

similar species are represented within each connected compo-

nent. The entire graph consists of 16 million nodes and 45million

edges (5.3 GB compressed GFA), i.e., too large to be rendered,

yet much smaller than the original sequences (1.4 TB lz4-

compressed).

To illustrate a possible application of this pangenome graph,

we performed queries for the presence of AMR genes in the

d= 0:01 mdBG. We retrieved 1,502 targets from the NCBI AMR-

FinderPlus ‘‘core’’ database (the whole amr_targets.fa file
t (left) and the ATCCMSA-1003 dataset (right) using hifiasm-meta

ATCC MSA-1003

Species Abundance hifiasm rust-mdbg

A. baumannii 0.18% 99.84% 99.96%

B. pacificus 1.80% 100.00% 100.00%

B. vulgatus 0.02% 81.85% 70.90%

B. adolescentis 0.02% 5.24% 0.64%

C. beijerinckii 1.80% 99.99% 99.99%

C. acnes 0.18% 100.00% 100.00%

D. radiodurans 0.02% 82.50% 53.66%

E. faecalis 0.02% 54.98% 21.05%

E. coli 18.00% 100.00% 100.00%

H. pylori 0.18% 100.00% 100.00%

L. gasseri 0.18% 97.78% 98.14%

N. meningitidis 0.18% 98.59% 99.03%

P. gingivalis 18.00% 91.74% 99.94%

P. aeruginosa 1.80% 99.71% 99.73%

R. sphaeroides 18.00% 99.75% 100.00%

S. odontolytica 0.02% 8.18% 1.05%

S. aureus 1.80% 100.00% 100.00%

S. epidermidis 18.00% 100.00% 100.00%

S. agalactiae 1.80% 99.50% 99.98%

S. mutans 18.00% 100.00% 100.00%

– – – –

– – 59 h 16 min 3 min 51 s

– – 313 GB 1.3 GB

ample. The two rightmost columns show the species completeness of the
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Table 3. Comparison of assembly statistics between original universe minimizers and universe minimizers with LCP

D. mel 1003 real HiFi reads D. mel 503 simulated

perfect reads

Human real HiFi reads

Minimizers scheme Universe Universe + LCP Universe Universe + LCP Universe Universe + LCP

Time 1 m 9 s 1 m 13 s 21 s 22 s 10 m 23 s 10 m 31 s

Memory 1.5 GB 1 GB <1 GB <1 GB 10 GB 10 GB

# contigs 93 106 34 35 805 807

NGA50 (M) 6.0 5.4 15.4 15.4 16.1* 13.9*

Complete (%) 90.8% 91.1% 96.2% 96.3% 95.5% 95.5%

# misasm. 0 0 1 2 N/A* N/A*

Assembly statistics using both universe minimizers (denoted by ‘‘ Universe,’’ same datasets as in Table 1) and universe minimizers with LCP (denoted

by ‘‘Universe + LCP’’) of D. melanogaster real HiFi reads (left), simulated perfect reads (center), and Human real HiFi reads (right), evaluated using the

same metrics in Table 1. Parameters for both schemes were k = 35, [ = 12, and d= 0:002 for D. melanogaster, and k = 21, [ = 14, and d= 0:003 for

Human. *For the Human assemblies, NG50 is reported instead of NGA50, and misassemblies are not reported due to structural differences between

HG002 and the hg38 reference.
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as of May 2021) and converted each gene into minimizer space,

using parameters k = 10, l = 12, and d = 0:01. Of these, 1,279

genes were long enough to have at least one k-min-mer (on

average 10 k-min-mers per gene). Querying those k-min-mers

on the mdBG , we successfully retrieved on average 61.2% of

the k-min-mers per gene; however, the retrieval distribution is

bimodal: 53% of the genes have R99% k-min-mers found,

and 31% of the genes have %10% k-min-mers found.

Further investigation of the genes missing from the mdBGwas

done by aligning the 661,405 genomes collection to the genes

(in base space) using minimap2 (7 h running time over 8 cores).

We found that a significant portion of genes (141, 11%) could not

be aligned to the collection. Also, k-min-mers of genes with

aligned sequence divergence of 1% or more (267, 20%) did

not match k-min-mers from the collection and, therefore, had

zero minimizer-space query coverage. Finally, although we

performed sequence queries on a text representation of the

pangenome graph, in principle, the graph could be indexed in

memory to enable instantaneous queries at the expense of

higher memory usage.

This experiment illustrates the ability of mdBG to construct

pangenomes larger than supported by any other method, and

those pangenomes record biologically useful information such

as AMR genes. Long sequences, such as genes (containing at

least 1 k-min-mer), can be quickly searched using k-min-mers

as a proxy. There is nevertheless a trade-off of minimizer-space

analysis that is akin to classical k-mer analysis: graph construc-

tion and queries are extremely efficient; however, they do not

capture sequence similarity below a certain identity threshold

(in this experiment, around 99%). Yet, the ability of the mdBG

to quickly enumerate which bacterial genomes possess any

AMR gene with high similarity could provide a significant boost

to AMR studies.

Highly efficient assembly of real HiFi metagenomes
using mdBG
We performed an assembly of two real HiFi metagenome

datasets (mock communities Zymo D6331 and ATCC MSA-

1003, accessions GenBank: SRX9569057 and GenBank:

SRX8173258). Rust-mdbg was run with the same parameters

as in the human genome assembly for the ATCC dataset, with
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slightly tuned parameters for the Zymo dataset (see ‘‘genome

assembly tools, versions, and parameters’’).

Table 2 shows the results of rust-mdbg assemblies in com-

parison with hifiasm-meta, a metagenome-specific flavor of

hifiasm. In a nutshell, rust-mdbg achieves roughly two orders

of magnitude faster and more memory-efficient assemblies,

while retaining similar completeness of the assembled genomes.

Although rust-mdbgmetagenome assemblies are consistently

more fragmented than hifiasm-meta assemblies, the ability of

rust-mdbg to very quickly assemble a metagenome enables

instant quality control and preliminary exploration of gene

content of microbiomes at a fraction of the computing costs of

current tools.

DISCUSSION

Three areas we hope to tackle in our assembly implementation

are: (1) its reliance on setting adequate assembly parameters,

(2) lack of base-level polishing, and (3) haplotype separation.

Regarding (1), we are experimenting with automatic selection

of parameters [, k, and d. A heuristic formula is presented along

with its implementation and results in the GitHub repository of

rust-mdbg; however, it leads to lower-quality results (e.g., 1

Mbp N50 for the HG002 assembly versus 14 Mbp in Table 3).

We also provide a preliminary multi-k assembly script inspired

by IDBA (Peng et al., 2010). While automatically setting mdBG

parameters is fundamentally a more complex task than just

determining a single parameter (k) in classical de Bruijn

graphs, we anticipate that similar techniques to KmerGenie

(Chikhi andMedvedev, 2014) could be applicable, where optimal

values of ð[; k; dÞ would be found as a function of the k-min-mer

abundance histogram.

Regarding directions (2) and (3), polishing could be performed

as an additional step by feeding the reads and the unpolished as-

sembly to a base-space polishing tool such as racon (Vaser

et al., 2017). Haplotype separation might prove more difficult

to incorporate inmdBGs: unlike HiFi assemblers that use overlap

graphs with near-perfect overlaps, minimizer-space de Bruijn

graphs cannot differentiate between exact and inexact overlaps

in bases that are not captured by a minimizer. However, an im-

mediate workaround is to perform haplotype phasing on
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resulting contigs, using tools such as HapCut2 (Edge et al.,

2017) or HapTree-X (Berger et al., 2020).

We anticipate that k-min-mers could become a drop-in

replacement for ubiquitously adopted k-mers for the comparison

and indexing of long, highly similar sequences, e.g., in genome

assembly, transcriptome assembly, and taxonomic profiling.
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Marçais, G., DeBlasio, D., Pandey, P., and Kingsford, C. (2019). Locality-sen-

sitive hashing for the edit distance. Bioinformatics 35, i127–i135.

Muthukrishnan, S., and Sxahinalp, S.C. (2000). Approximate nearest neighbors

and sequence comparison with block operations. In STOC ’00: Proceedings of

the thirty-second annual ACM symposium on Theory of computing,

pp. 416–424. https://doi.org/10.1145/335305.335353.

Nazeen, S., Yu, Y.W., and Berger, B. (2020). Carnelian uncovers hidden func-

tional patterns across diverse study populations from whole metagenome

sequencing reads. Genome Biol. 21, 47.

Nurk, S., Walenz, B.P., Rhie, A., Vollger, M.R., Logsdon, G.A., Grothe, R.,

Miga, K.H., Eichler, E.E., Phillippy, A.M., and Koren, S. (2020). HiCanu: accu-

rate assembly of segmental duplications, satellites, and allelic variants from

high-fidelity long reads. Genome Res. 30, 1291–1305.
968 Cell Systems 12, 958–968, October 20, 2021
Ondov, B.D., Treangen, T.J., Melsted, P., Mallonee, A.B., Bergman, N.H.,

Koren, S., and Phillippy, A.M. (2016). Mash: fast genome and metagenome

distance estimation using MinHash. Genome Biol. 17, 132.

Peng, Y., Leung, H.C.M., Yiu, S.M., and Chin, F.Y.L. (2010). IDBA– A practical

iterative de Bruijn graph de novo assembler. In Annual International

Conference on Research in Computational Molecular Biology (Springer),

pp. 426–440.

Pevzner, P.A., Tang, H., and Tesler, G. (2004). De novo repeat classification

and fragment assembly. Genome Res. 14, 1786–1796.

Pierce, N.T., Irber, L., Reiter, T., Brooks, P., and Brown, C.T. (2019). Large-

scale sequence comparisons with sourmash. F1000Res. 8, 1006.

Rautiainen, M., and Marschall, T. (2020). MBG: minimizer-based sparse de

Bruijn graph construction. bioRxiv https://www.biorxiv.org/content/10.1101/

2020.09.18.303156v1.full.

Roberts, M., Hayes, W., Hunt, B.R., Mount, S.M., and Yorke, J.A. (2004).

Reducing storage requirements for biological sequence comparison.

Bioinformatics 20, 3363–3369.

Ruan, J., and Li, H. (2020). Fast and accurate long-read assembly with wtdbg2.

Nat. Methods 17, 155–158.

Sxahinalp, S.C., and Vishkin, U. (1994). Symmetry breaking for suffix tree con-

struction. In Proceedings of the Twenty-Sixth Annual ACM Symposium on

Theory of Computing’, STOC ’94 (Association for Computing Machinery),

pp. 300–309. https://doi.org/10.1145/195058.195164.

Shafin, K., Pesout, T., Lorig-Roach, R., Haukness, M., Olsen, H.E., Bosworth,

C., Armstrong, J., Tigyi, K., Maurer, N., Koren, S., et al. (2020). Nanopore

sequencing and the Shasta toolkit enable efficient de novo assembly of eleven

human genomes. Nat. Biotechnol. 38, 1044–1053.

Shajii, A., Numanagi�c, I., Leighton, A.T., Greenyer, H., Amarasinghe, S., and

Berger, B. (2021). A python-based programming language for high-perfor-

mance computational genomics. Nat. Biotechnol. https://doi.org/10.1038/

s41587-021-00985-6.

Vaser, R., Sovi�c, I., Nagarajan, N., and �Siki�c, M. (2017). Fast and accurate de

novo genome assembly from long uncorrected reads. Genome Res. 27,

737–746.

Wenger, A.M., Peluso, P., Rowell, W.J., Chang, P.C., Hall, R.J., Concepcion,

G.T., Ebler, J., Fungtammasan, A., Kolesnikov, A., Olson, N.D., et al. (2019).

Accurate circular consensus long-read sequencing improves variant detection

and assembly of a human genome. Nat. Biotechnol. 37, 1155–1162.

Ye, C., Ma, Z.S., Cannon, C.H., Pop, M., and Yu, D.W. (2012). Exploiting

sparseness in de novo genome assembly. BMC Bioinformatics 13

(Supplement 6 ), S1.

Yorukoglu, D., Yu, Y.W., Peng, J., and Berger, B. (2016). Compressive map-

ping for next-generation sequencing. Nat. Biotechnol. 34, 374–376.

http://refhub.elsevier.com/S2405-4712(21)00332-X/sref24
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref24
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref25
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref25
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref26
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref26
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref26
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref27
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref27
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref28
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref28
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref28
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref29
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref29
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref30
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref30
https://arxiv.org/pdf/1505.06550.pdf
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref32
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref32
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref32
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref33
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref33
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref34
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref34
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref35
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref35
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref35
https://doi.org/10.1101/2020.03.27.012047
https://doi.org/10.1101/2020.03.27.012047
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref37
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref37
https://doi.org/10.1145/335305.335353
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref39
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref39
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref39
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref40
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref40
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref40
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref40
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref41
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref41
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref41
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref42
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref42
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref42
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref42
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref43
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref43
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref44
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref44
https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full
https://www.biorxiv.org/content/10.1101/2020.09.18.303156v1.full
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref46
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref46
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref46
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref47
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref47
https://doi.org/10.1145/195058.195164
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref49
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref49
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref49
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref49
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1038/s41587-021-00985-6
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref51
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref52
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref52
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref52
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref52
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref53
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref53
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref53
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref53
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref54
http://refhub.elsevier.com/S2405-4712(21)00332-X/sref54


ll
OPEN ACCESSArticle
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

D. melanogaster and H. sapiens HiFi reads Nurk et al., 2020 Table 1; https://doi.org/10.1101/

gr.263566.120

ATCC MSA-1003 and Zymo D6331

HiFi reads

N/A Table 2; SRA identifiers SRX9569057 and

SRX8173258

Software and algorithms

mdBG code This paper https://doi.org/10.5281/zenodo.5145931;

https://github.com/ekimb/rust-mdbg
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Rayan

Chikhi (rchikhi@pasteur.fr)

Materials availability
This study did not generate new materials.

Data and code availability
d This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in the key re-

sources table.

d All original code has been deposited at https://github.com/ekimb/rust-mdbg/ and is publicly available as of the date of publi-

cation. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
METHOD DETAILS

Minimizer-space de Bruijn graphs
We say that an algorithm or a data structure operates in minimizer-space when its operations are done on strings over the S[

alphabet, with characters from M[;d. Conversely, it operates in base-space when the strings are over the usual DNA alphabet SDNA.

We introduce the concept of ðk; [; dÞ-min-mer, or just k-min-mer when clear from the context, defined as an ordered list of k

minimizers from M[;d. We use this term to avoid confusion with k-mers over the DNA alphabet. Indeed, a k-min-mer can be seen

as a k-mer over the alphabet S[, i.e. a k-mer in minimizer-space. For an integer k>2 and an integer [>1, we define aminimizer-space

de Bruijn graph (mdBG) of order k as de Bruijn graph of order k over the S[ alphabet. As per the definition in the previous section,

nodes are k-min-mers, and edges correspond of identical suffix-prefix overlaps of length k � 1 between k-min-mers . Figure 1A

shows an example.

We present our procedure for constructing mdBGs as follows. First, a set M of minimizers are pre-selected using the universe

minimizer scheme from the previous section. Then, reads are scanned sequentially, and positions of elements in M are identified.

A multiset V of k-min-mers is created by inserting all tuples of k successive elements in M[;d found in the reads into a hash table.

Each of those tuples is a k-min-mer , i.e., a node of the mdBG. Edges of the mdBG are discovered through an index of all

ðk � 1Þ-min-mers present in the k-min-mers.

mdBGs can be simplified and compacted similarly to base-space de Bruijn graphs, using similar rules for removing likely

artefactual nodes (tips and bubbles), and performing path compaction. They are also bidirected, though we present them as directed

here for simplicity. See ‘implementation details’ for more details on reverse complements and simplification.

By itself the mdBG is insufficient to fully reconstruct a genome in base-space, as in the best case it can only provide a sketch con-

sisting of the ordered list of minimizers present in each chromosome. To reconstruct a genome in base-space, we associate to each

k-min-mer the substring of a read corresponding to that k-min-mer . The substring likely contains base-space sequencing errors,

which we address at the end of this paragraph. To deal with overlaps, we also keep track of the positions of the second and sec-

ond-to-last minimizers in each k-min-mer . After performing compaction, the base sequence of a compacted mdBG can be recon-

structed by concatenating the sequences associated to k-min-mers , making sure to discard overlaps. Note that in the presence of
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sequencing errors, or when the same k-min-mer corresponds to several locations in the genome, the resulting assembled sequence

will be imperfect (similar to the output of miniasm (Li, 2016)) which can be fixed by additional base-level polishing (not per-

formed here).

How sequencing errors in base-space propagate to minimizer-space
In order to clarify the difference between base-space and minimizer-space in the presence of sequencing errors, we newly derive an

expression of the expected error rate inminimizer-space (parameterized by k;[, and d), using a Poisson processmodel of random site

mutations that was invoked by Mash (Ondov et al., 2016). Given the probability d of a single base substitution, the probability that no

mutation will occur in a given [-mer is e�[d under a Poisson model.

To estimate the number of erroneousk-min-mers in a read,wedefine for a given readR, the expectednumbernR of universe ð[;dÞ-min-

imizers (described in Box 2) in the read as nR = ðjRj � [ + 1Þ,d. Since a k-min-mer is erroneous whenever at least one of k universe

ð[;dÞ-minimizers within the k-min-mer is erroneous, the probability that a given k-min-mer is erroneous is then 1� e�[dk . The number

of k-min-mers obtained from the read is nR � k + 1. Thus, the expected number of erroneous k-min-mers in a read is

ðnR � k + 1Þ,�1� e�[dk
�

For instance, for a base-space mutation rate of d = 0:01, minimizer-space parameters [ = 12, k = 10, and d = 0:01, and a read

length of jRj = 20000, 70% of the k-min-mers in the read are erroneous. However, lowering the base-space mutation rate to d =

0:001 and keeping other values of k and [ identical renders only 10% of the k-min-mers erroneous within a read.

To estimate the average [-mer identity of a read, we provide an approximation of the minimizer-space error rate given the base-

space error rate. As seen above, an [-mer that was selected as a universe minimizer has probability e�[d to be mutated. Mutations

that occur outside of universe minimizers may now still affect the minimizer-space representation by turning a non-minimizer [-mer

into a universe minimizer (see Figure 4). Under the simplifying assumption that this effect occurs independently at each position in a

read, the probability that an [-mer turns into a universeminimizer is the probability of amutation within that [-mer times the probability

d that a random [-mer is a universe minimizer, i.e., ð1 � e�[dÞd. For a universe minimizerm, there are approximately 1= d neighboring

[-mers that are candidates for turning into universe minimizers themselves due to a base error. We will conceptually attach those

[-mers to m, and consider that an error in any of those [-mers leads to an insertion error next to m.

Combining the above terms leads to the following minimizer-space error rate approximation:

1� e�[d
�
1� �

1� e�[d
�
d
�1=d

(Equation 1)

For an error rate of d = 5%, i.e. close to that of the Oxford Nanopore R10.3 chemistry, [ = 12, and d = 0:01, the minimizer-space

error rate is 65.1%, dropping to 2.3%when d = 0:1%. This analysis indicates that parameters [, k, d and the base error rate d together

play an essential role in the performance of a mdBG-guided assembly.

Error correction using minimizer-space partial order alignment (POA)
Long-read sequencing technologies from Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) recently enabled the production

of genome assemblies with high contiguity, albeit with a relatively high error rate (R%5) in the reads, requiring either read error

correction and/or assembly polishing, which are both resource-intensive steps (Chin et al., 2013; Loman et al., 2015). Wewill demon-

strate that our minimizer-space representation is applicable to error-free sequencing reads and PacBio HiFi reads, which boast error

rates lower than %1; however, in order to work with long reads with a higher error rate such as PacBio CLR and ONT, we present a

resource-frugal error correction step that uses partial order alignment (POA) (Lee et al., 2002), a graph representation of a multiple

sequence alignment (MSA), in order to rapidly correct sequencing errors that occur in the minimizer-space representation of reads.

Stand-alone error correction modules such as racon (Vaser et al., 2017) and Nanopolish (Loman et al., 2015) have also relied on

POA for error correction of long reads; however, these methods work in base-space, and as such, are still resource-intensive. We

present an error correction module that uses POA in minimizer-space that can correct errors in minimizer-space, requiring only

the minimizer-space representation of reads as input.

An overview of the minimizer-space POA procedure is shown in Figure 1C, and the detailed processes for the stages of the error-

correction procedure are shown in Section ‘‘Minimizer-space partial order alignment’’. The input for the procedure is the collection of

ordered lists of minimizers obtained from all reads in the dataset (one ordered list per read). As seen earlier, the ordered list of

minimizers obtained from a read containing sequencing errors will likely differ from that of an error-free read. However, provided

the dataset has enough coverage, the content of other ordered lists of minimizers in the same genomic region can be used to correct

errors in the query read in minimizer-space. To this end, we first perform a bucketing procedure for all ordered lists of minimizers

using each of their n-tuples, where n is a user-specified parameter.

After bucketing, in order to initiate the error-correction of a query we collect its neighbors: other ordered lists likely corresponding to

the same genomic region. We use a distance metric (Jaccard or Mash (Ondov et al., 2016) distance) to pick sufficiently similar neigh-

bors. Once we obtain the final set of neighbors that will be used to error-correct the query, we run the partial order alignment (POA)
e2 Cell Systems 12, 958–968.e1–e6, October 20, 2021
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procedure as described in (Lee et al., 2002), with the modification that a node in the POA graph is now a minimizer instead of an

individual base, directed edges now represent whether two minimizers are adjacent in any of the neighbors, and edge weights

represent the multiplicity of the edge in all of the neighbor ordered lists. After constructing the minimizer-space POA by aligning

all neighbors to the graph, we generate a consensus (the best-supported traversal through the graph). Once the consensus is

obtained in minimizer-space, we replace the query ordered list of minimizers with the consensus, and repeat until all reads are

error-corrected. In order to recover the base-space sequence of the obtained consensus after POA, we store the sequence spanned

by each pair of nodes in the edges, and generate the base-space consensus by concatenating the sequences stored in the edges of

the consensus.

Implementation details
Reverse complementation is handled in our method in a natural way that is similar to classical base-space de Bruijn graphs. Each

[-mer is identified with its reverse complement, and a representative canonical [-mer is chosen as the lexicographically smaller of

the two alternatives. In turn, k-min-mers are identified with their reverse; no complementation is performed in minimizer-space, as

the complement of a canonical [-mer is itself. Similarly to base-space assembly, any k-min-mer appearing only once in the multiset

V is removed from V due to the likelihood that it is artefactual. Assembly graph simplifications are performed using gfatools (https://

github.com/lh3/gfatools), with alternating rounds of tip clipping and bubble removal (see ‘‘gfatools command line’’ Section),

except for simulated perfect reads, which were only compacted into base-space unitigs.

In order to reduce memory usage, we write k-min-mers and the base-space sequences spanned by k-min-mers on disk, and

retrieve them once the contigs are generated in minimizer-space. rust-mdbg includes a binary program (to_basespace) that

transforms a simplified minimizer-space assembly into a base-space assembly.

Minimizer-space partial order alignment
POA bucketing and preprocessing

In Algorithm 1, all tuples of length n of an ordered list of minimizers are computed using a sliding window (lines 4-6), and the ordered

list of minimizers itself is stored in the buckets labeled by each n-tuple (line 7). We use bucketing as a proxy for set similarity, since

each pair of reads in the same bucket will have an n-tuple (the label of the bucket), and will be more likely to come from the same

genomic region.
Algorithm 1. Bucketing procedure for all ordered lists of minimizers

Input Set of ordered list of minimizers S, bucket index length n

1: procedure: BUCKET(S;n)

2: B)fg 8Empty hash table of buckets

3: for s˛S do

4: for i = 0 to i = jsj � n+ 1 do

5: t)s½i : i + n� 8n-tuple of s starting at position i

6: B½t�)B½t�Ws

7: end for

8: end for

9: return B

10: end procedure
The overview of the collection of neighbors for error-correcting a query ordered list of minimizers is shown in Algorithm 2.We obtain

all n-tuples of a query ordered list, and collect the ordered lists in the previously populated buckets indexed by its n-tuples (lines 10-

15). These ordered lists are viable candidates for neighbors, since they share a tuple of length at least n with the query ordered list;

however, since a query n-tuple may not uniquely identify a genomic region, we apply a similarity filter to further eliminate candidates

unrelated to the query. Using either Jaccard orMash distance (Ondov et al., 2016) as a similarity metric, for a user-specified threshold

4, we filter out all candidates that have distanceR4 to the query ordered list to obtain the final set of neighbors that will be used for

error-correcting the query (lines 1-9).
Algorithm 2. Collection of neighbors for a given query ordered list

Input: A query ordered list of minimizers q to be error-corrected, collection of bucketsB, bucket index length n, distance function d,

distance threshold 4

1: function FILTER(q;C;d;4)

2: F)fg 8Empty set of candidates that pass the filter

3: for c˛C do

(Continued on next page)
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Algorithm 2. Continued

4: if dðq;cÞ<4 8Apply distance threshold of 4 to a candidate then

5: F)FWc

6: end if

7: end for

8: return F

9: end function

10: procedure COLLECT(q;B;n;d;4)

11: C)fg 8Empty set of candidate neighbors

12: for i = 0 to i = jqj � n+ 1 do

13: t)q½i : i + n� 8n-tuple of q starting at position i

14: C)CWB½t�
15: end for

16: F)FILTERðq;C;d;4Þ
17: return F

18: end procedure
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POA graph construction and consensus generation
Algorithm 3. Minimizer-space POA graph construction and consensus generation

Input: A query ordered list of minimizers q to be error-corrected, collection of query neighbors N

1: procedure POA(q;N)

2: G = ðV ;EÞ)initializeGraphðqÞ 8As described in (Lee et al., 2002)

3: for n˛N do

4: G)semiGlobalAlignðG;nÞ 8As described in (Lee et al., 2002)

5: end for

6: l)fg 8Scoring table for nodes

7: P)fg 8Predecessor table for nodes

8: topologicalSortðGÞ 8Topological sorting of nodes

9: for v˛V do

10: e = ðu; vÞ)maxðinEdgesðvÞ Þ 8Find the maximum-weighted incoming edge to v

11: l½v�)we + l½u�
12: P½v�)u

13: end for

14: C)CONSENSUSðV ; l; PÞ 8Described in the ‘‘Minimizer-space POA’’

Section

15: return C

16: end procedure
Algorithm 4 describes a canonical POA consensus generation procedure, similar to racon (Vaser et al., 2017), except that here

consensus is performed in minimizer-space.
Algorithm 4. Consensus generation on POA graph

Input: The node set V of the POA graph, scoring array l, predecessor array P

1: function CONSENSUS(V ;l;P)

2: C) ½� 8Consensus path to be

obtained

3: vmax)B 8Initialize the highest-scoring node

4: for v˛V do

5: if l½v�>l½vmax� then
6: vmax)v

7: end if

8: end for

(Continued on next page)
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Algorithm 4. Continued

9: vcurr)vmax 8Start traceback from highest-scoring node

10: while vcurrsB do

11: C)C+ ½vcurr �
12: vcurr)P½vcurr � 8Move to predecessor of current node

13: end while

14: return C

15: end function

ll
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The minimizer-space POA error-correction procedure is shown in Algorithm 3. For each neighbor of the query, we perform semi-

global alignment between a neighbor ordered list and the graph, where for two minimizersmi andmj, a match is defined asmi = mj,

and a mismatch is defined as mismj (lines 17-19). After building the POA graph G= ðV ;EÞ by aligning all neighbors in minimizer

space, we generate a consensus to obtain the best-supported traversal through the graph. We first initialize a scoring l, and set

l½v�= 0 for all v˛V . Then, we perform a topological sort of the nodes in the graph, and iterate through the sorted nodes. For each

node v, we select the highest-weighted incoming edge e= ðu; vÞ with weight we, and set l½v� = we + lðuÞ. The node u is then marked

as a predecessor of v (lines 21-28).

Minimizer-space POA evaluation set-up
We extracted chromosome 4 (� 1.2 Mbp) of the D. melanogaster reference genome, and simulated reads using the command

randomreads.sh pacbio=t of BBMap (Bushnell, 2014). We generated one dataset per error rate value from 0% to 10%, keeping

other parameters identical (24 Kbpmean read length and 70X coverage). Reads were then assembled using our implementation with

and without POA, using parameters [ = 10, k = 7, and d= 0:0008 experimentally determined to yield a perfect assembly with error-

free reads. We evaluated the average read identity in minimizer-space using semi-global Smith-Waterman alignment between the

sequence of minimizers of a read and the sequence of minimizers of the reference, taking BLAST-like identity (number of minimizer

matches divided by the number of alignment columns). We also evaluated the length of the longest reconstructed contig in base-

space as a proxy for assembly quality.

Exploration of rust-mdbg parameter space on simulated perfect reads
In order to demonstrate the efficacy of our approach in terms of results quality in an ideal setting, we simulated error-free reads of

length 100 Kbp at 50X coverage of the D. melanogaster genome. The parameters for the assembly were k = 30, [ = 12, and d =

0:005. Table 3 (center) shows that rust-mdbg is able to assemble these error-free reads nearly as well as HiCanu and hifiasm,

within lower but similar NGA50 (� 25% lower) and genome fraction (< 1% lower) values. However, rust-mdbg is 2-3 orders of mag-

nitudes faster and uses an order of magnitude less memory.

For a base-space de Bruijn graph assembler, the quality of the assembly depends on a single parameter (k), whereas in a rust-

mdbg assembly, there are three parameters ð[; k; dÞ that can affect assembly quality independently (see STAR Methods). We inves-

tigated the effect of changing k for given [ and d, and changing d for given k and [ on the performance of rust-mdbg on perfect reads.

For [= 12 and k = 30, we tested different values for d from 0.001 to 0.005 (increased by 0.0005 in each iteration). For [= 12 and d =

0:003, we tested different values of k from 10 to 50 (increased by 1 in each iteration). For each iteration, we computed the k-min-mer

recovery rate (the percentage of k-min-mers obtained from the reads that also exist in the set of k-min-mers from the reference) as a

means of quantifying the quality of a minimizer-space assembly through a completeness metric.

Figure 2B shows the results of this investigation. For fixed values of k = 30 and [ = 12, k-min-mer recovery rate is insufficiently low

for d<0:0025: Since the ordered lists of minimizers obtained from the reads need to have length >k in order to not be discarded, a very

low density value causes a higher fraction of reads to be skipped, decreasing k-min-mer recovery rate. For dR0:0025, an increasingly

smaller portion of the reads are discarded, consistently yielding k-min-mer recovery rates of >90%. We further observe that for fixed

values of d= 0:003 and [ = 12, k-min-mer recovery rate is consistently above 95% for k-min-mer lengths of 10 to 35. Since d = 0:003,

a sufficient portion of the reads are transformed into k-min-mers at this k-min-mer length, and higher values of kwill result in a larger

portion of the reads to be discarded.

gfatools command lines
The following (relatively aggressive) GFA assembly graph simplifications rounds were performed for all mdBG assemblies, using

https://github.com/lh3/gfatools/. Rounds are of two types: -t x,y removes tips having at most x segments and of maximal length

y bp, and -b z removes bubbles of maximal radius z bp. In addition, gfa_break_loops.py is a custom script (available in the

rust-mdbg GitHub repository) that removes self-loops in the assembly graph, as well as an arbitrary edge in x4y cycles.

gfatools asm -t 10,50000 -t 10,50000 -b 100000 -b 100000 -t 10,50000 \

-b 100000 -b 100000 -b 100000 -t 10,50000 -b 100000 \

-t 10,50000 -b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp1.gfa

gfa_break_loops.py $base.tmp1.gfa > $base.tmp2.gfa
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gfatools asm $base.tmp2.gfa -t 10,50000 -b 100000 -t 10,100000 \

-b 1000000 -t 10,150000 -b 1000000 -u > $base.tmp3.gfa

gfa_break_loops.py $base.tmp3.gfa > $base.tmp4.gfa

gfatools asm $base.tmp4.gfa -t 10,50000 -b 100000 -t 10,100000 \

-b 1000000 -t 10,200000 -b 1000000 -u > $base.msimpl.gfa

Genome assembly tools, versions, and parameters
HiCanu (v2.1) was run with default parameters, hifiasm (commit 8cb131d) with parameters -l0 -f0, and Peregrine (commit

008082a) with command line: 8 8 8 8 8 8 8 8 8 –with-consensus –shimmer-r 3 –best_n_ovlp 8. rust-mdbg was run

with parameters k = 35, [ = 12, and d= 0:002 for D. melanogaster, and k = 21, [ = 14, d= 0:003 for HG002.

For metagenomes, rust-mdbgwas run with parameters k = 21, [ = 14, d= 0:003 for the ATCCMSA-1003 dataset (same param-

eters as the human dataset), and k = 40, [ = 12, d= 0:004 for the Zymo D6331 dataset. Hifiasm-meta (commit cda13b8) was run

with parameters -S –lowq-10 50 for ATCC MSA-1003 and default for Zymo.

Locally Consistent Parsing (LCP)
Locally Consistent Parsing (LCP) describes sets of evenly spaced core substrings of a given length [ that cover any string of length n

for any alphabet (Sxahinalp and Vishkin, 1994). The set of core substrings can be pre-computed such that a string of length n is

covered by � n=[ core substrings on average. LCP and the concept of core substrings were used in the first linear-time algorithm

for approximate string matching (Sxahinalp and Vishkin, 1994), for string indexing under block edit distance (Muthukrishnan and

Sxahinalp, 2000), and for almost linear-time approximate string alignment (Batu et al., 2006).

SCALCE (Hach et al., 2012) introduced LCP to genome compression, and used the longest core substring(s) in each read as

representatives to group together similar reads, which are then reordered lexicographically for compression without the need of a

reference genome. In preliminary testing of LCPs as an alternative to minimizers in our pipeline, we integrated the pre-computed

set of core substrings described in SCALCE into the universe ð[; dÞ-minimizers scheme in rust-mdbg, where we selected an

[-merm as a minimizer ifm is a universe ð[;dÞ-minimizer and also appears in the set of core substrings. We evaluated both minimizer

schemes on simulated perfect reads fromD.melanogaster at 50X coverage, real Pacific Biosciences HiFi reads fromD.melanogaster

at 100X coverage, and HiFi reads for human (HG002) at � 50X coverage, taken from the HiCanu publication (https://obj.umiacs.

umd.edu/marbl_publications/hicanu/index.html) (Nurk et al., 2020). We did not notice a major difference using LCP versus only

universe minimizers, but our implementation should be seen as a baseline for future optimizations.
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