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Abstract

Transcriptomic analysis are characterized by being not directly quantitative and only providing relative measurements

of expression levels up to an unknown individual scaling factor. This difficulty is enhanced for differential expression

analysis. Several methods have been proposed to circumvent this lack of knowledge by estimating the unknown

individual scaling factors however, even the most used one, are suffering from being built on hardly justifiable biological

hypotheses or from having weak statistical background. Only two methods withstand this analysis : one based on largest

connected graph component hardly usable for large amount of expressions like in NGS, the second based on log-linear

fits which unfortunately require a first step which uses one of the methods described before.

We introduce a new procedure for differential analysis in the context of transcriptomic data. It is the result of pooling

together several differential analyses each based on randomly picked genes used as reference genes. It provides a

differential analysis free from the estimation of the individual scaling factors or any other knowledge. Theoretical
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properties are investigated both in term of FWER and power. Moreover in the context of Poisson or negative binomial

modelization of the transcriptomic expressions, we derived a test with non asymptotic control of its bounds. We complete

our study by some empirical simulations and apply our procedure to a real data set of hepatic miRNA expressions from

a mouse model of non-alcoholic steatohepatitis (NASH), the CDAHFD model. This study on real data provides new

hits with good biological explanations.

1 Introduction

Transcriptomic analysis of a tissue sample (an individual) results in the measurements inside either a fix volume or

a fix weight of expressions of some given set of expressions (that for simplicity we will consider gene expressions).

As the amount of molecules inside the fix analyzed quantity is not controlled, it is known that all these measurement

are scaled by a single unknown factor depending of the individual at hand. In other words, transcriptomic analysis are

characterized by being not directly quantitative and by only providing relative measurements of expression levels up

to an unknown individual scaling factor. When some of this genes are housekeeeping genes with known expression

properties, they serve as reference genes and one can use their observed relative expression levels to get a normalization

(Vandesompele et al. 2002). However, in exploratory differential analysis, such reference genes cannot always be known

in advance and we therefore have to compare several sets of expression levels, each set depending of the unknown

scaling factor attached to the corresponding individual.

Apart from the crude normalization by the total count (Marioni et al. 2008 ; Mortazavi et al. 2008), several methods

have been proposed to circumvent this issue : upper quantile (Bullard et al. 2010), trimmed mean of M values (TMM)

(Mark D. Robinson and Oshlack 2010) and interindividual median count ratio accross gene (Anders and Huber 2010),

which can be found in the Bioconductor packages DESeq2 (Love, Huber, and Anders 2014) and EdgeR (Mark D

Robinson, McCarthy, and Smyth 2010). All these methods are based on the belief that reference genes may be identified

as their expressions are expected to be less variable in the overall population and hence less variable even in presence of

fluctuations of the scaling factors. This belief is neither proven nor mathematically justifiable. Counter-examples can be

built for example by considering reference genes showing more variability than non-reference ones.

More recently, Li et al. (2012) proposed to use log-linear fits to detect DE genes, however it also relies on a scaling

factor estimation achieved by starting from the total count to selected iteratively a subset of genes associated with small

values of a Poisson goodness-of-fit statistic.

Up to our knowledge, only Curis et al. (2019), have proposed an approach free of this preliminary selection of reference

genes and of the estimation of the scaling factors. Having in mind that the ratio of two expressions for one individual

is free from the unknown scaling factor, only expression ratios are compared. To this end, they are considered to be
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vertices of a graph. Two vertices are connected if the expression ratios may be considered as equal between the two

populations. The largest connected component of the graph is expected to be made of non differential genes and DE

genes are expected to live outside of this largest component. Without discussing the hypotheses used to build the

largest connected component, it is easily understandable that the number of vertices of this graph being the square

of the number of expressions, such an approach is reserved to transcriptomic studies like qPCR where the number of

expressions is small, unlike high-throuput experiments which are our interest.

In brief, actual procedures for differential analysis in such high-throuput transcriptomic experiments are build on a

preliminary step, which consists in finding some non differential expressions to estimate the scaling factors. Then

data are reused for testing. It is not only unsatisfactory to lack a good recipe for this first step, but also unproper and

statistically worst, to do a differential analysis by having to run at first a non-differential analysis on the same data.

In view of this drawback that affects the methods in use, our proposal does not aim at finding first some non differential

expressions to rescale the data. Instead, we propose an iterative framework in which a rescaling is realized at each step

of the iteration from a randomly selected subset of expressions which are no longer assumed to be non differentially

expressed, the differential analysis being performed on the remaining data. In this sense, our proposal relies only on the

use of a differential test, which is only expected to have good type I and type II errors when the data are well scaled,

without an estimation of the “real” scaling factors, which may be estimated afterwards.

In this transcriptomic context, for a given individual i and a gene j, the measure is modelized by a Poisson random

variable Xij with intensities λij being the product of an individual scaling factor si, which only depends on the

individual i, times a gene dependent expression level µAj or µBj with the upper script refering to the conditions A or B.

To account for observed over-dispersion with respect to the Poisson model, gamma convoluted modelization of this

model is also used leading to the so-called negative binomial model. This latter modelization is all the more suitable

when transcriptomic expressions are measured at large genomic scale like gene expression levels pooling together

reads of non-homogeneous origins over few hundreds of base-pairs, unlike miRNA or siRNA experiments which cover

around 100 base-pairs and are more likely to be mimicked by simple Poisson random variables. In both modelizations,

the expectation satisfies

E(Xij) = λij = si × µj

with µj representing µAj or µBj .

In what follows, the expressions will be considered to be gene-expressions, however they could come from any

transcriptomic experiment (RNA-seq, miRNA-seq, etc). The individuals belong to two populations or have been studied

under two differents conditions A and B, providing nA and nB individuals under each condition. We aim to find those

genes which are differentially expressed (DE) genes between the two populations. We point out that transcriptomic
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studies using miRNA or siRNA are often explanatory studies made on two sub-populations of mice for example, such

that they are characterized by small sample sizes, nA and nB being usually between 5 and 10 individuals for each

subpopulation.

Our intensive iterative random procedure for detection can be summarized in more details as follows. At each step of the

iteration, a random subset of genes is selected and considered to be made of reference genes, used to get a normalization.

After this normalization, the non-selected genes are tested for differential behaviors. Along the iterations, the detections

for each gene are pooled. After the iterations, the pooled detections are compared to the rates of potential wrong

detections due to miss-picking randomly genes in the unknown set of DE genes. Our method controls the FWER for any

test procedure having its level and power controled when the scaling factors are known. It is adaptive to the unknown

number of genes which would be detectable, given the observations, if the scaling factors were known, assuming only

that the number of DE genes is less than half of the total number of genes.

Moreover, taking advantage that our procedure behaves as if reference genes were available, we propose and study a

unified testing procedure for differential analysis, adapted to our random detector for the two classical modelizations

(Poisson and Negative binomial). This test derives from a procedure where scaling factors would be known and in this

sense satisfies the requirements in term of type I and II errors of our random procedure. Assuming that the expressions

levels are high enough, we study their properties. It is shown to be approximately a standard Gaussian and we derive

non-asymptotic control for this approximation so that the test can have its level well controled at finite distance.

To complete our study, we run an intensive simulation. Finally we apply our procedure on a real data set of hepatic

miRNA expressions from a mouse model of non-alcoholic steatohepatitis (NASH), the CDAHFD (choline-deficient,

L-amino acid-defined, high-fat diet) model, with 4 cases of NASH with hepatic fibrosis and 4 controls without hepatic

lesions.

2 Formulation of the problem

We observe counts Xij for i = 1, ..., n and j = 1, ...,m the m expressions of n individuals belonging to two populations

caracterized by index subsets A and B of sizes nA and nB , with n = nA + nB . The first nA individuals belonging to

groupe A.

In an homogeneous population, the expectation λij ∶= E(Xij) is assumed to be the product of a scaling factor si

attached to the individual i together with µj an unknown relative quantification of gene j potentially varying with the

population, λij = siµj . By convention, we set ∑ni=1 si = n. With this convention, when all experiments perform the

same and A and B are two independent sub-populations of the same population then si = 1 for i = 1, . . . , n. In the latter

case, µj stands for the relative expression level of gene j in this population.
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When two sub-populations A and B are considered, µj is assumed to depend only on the experimental condition under

which i is considered. In other words, µj = µAj if i ∈ A and µj = µBj if i ∈ B.

For a given j in {1, ...,m}, we want to test whether the j-th expression is differentially expressed under experimental

conditions A and B. This can be stated as a test of the following hypotheses

Hj
0 ∶ gene j is not DE against Hj

1 ∶ gene j is DE. (1)

In other words, distinguishing the relative quantification of gene j in populations A and B :

E(Xij) = si µAj , for i ∈ A and E(Xij) = si µBj for i ∈ B, (2)

the hypotheses defined by (1), may be formulated as

Hj
0 ∶ µ

A
j = µBj against Hj

1 ∶ µ
A
j /= µBj . (3)

A gene j satisfying Hj
0 is called “invariant” (between conditions A and B) or a “reference gene”.

Definition 1 (DE η-detectable) Let h be an increasing function and the si, i = 1, ..., n be known. Suppose that we

have at hand a symmetric test statistic T ∗ with distribution only depending on the parameter h(µAj ) − h(µBj ) and

which is stochastically increasing with respect to this parameter. Let us denote by q∗(1 − η/2) an upper quantile

of T ∗(X1j , ...,Xnj) when µAj = µBj . We say that gene j is "DE η-detectable" at level η > 0 if and only if the null

hypothesis Hj
0 is rejected at this level that is if and only if

∣T ∗(X1j , ...,Xnj)∣ ≥ q∗(1 −
η

2
). (4)

The index set of the DE η-detectable genes is denoted D∗.

Clearly this definition depends, for all j, on the observed sample (X1j , ...,Xnj), hence all what follows including our

test construction and its analysis is conditional to this observation.

The set D∗ may be empty but it is unlikely to be large, unless the design of the experiment is irrelevant. By construction

its cardinal satisfies ∣D∗ ∣ = d∗ and we assume further that d∗ is samller than m/2.

Note that the quantile q∗(1 − η/2) does not depend on parameters µAj and µBj as T ∗ is assumed pivotal. The symmetry

of T ∗ is only here for simplicity. Clearly being DE η-detectable depends on the choice of T ∗. A bad choice could even
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conduct to declare all genes to be either not DE or DE.

In the special case where the si, i = 1, ..., n are known, we denote by p∗j the p-value associated to the test of the gene

j and the sorted p-values by p∗(j) such that p∗(j) ≤ p
∗
(j+1). In order to control the family-wise error rate (FWER) and

account for multiple testing, several procedures can be applied, we focus on the Holm’s step-down procedure (Holm

1979).

Procedure 1 (Holm’s procedure) The si, i = 1, ..., n being known, let d∗ be the minimal index j ≥ 0 such that

p∗(j+1) ≥ α/(m − j), the genes corresponding to p∗(1), ..., p∗(d∗) are declared differentially expressed with the convention

that if d∗ = 0 then all gene are declared invariant.

This procedure is known to ensure that the FWER is less than α

Guide of lecture The next section introduces several notations. Section 4 is devoted to the construction of a practical

statistic based on randomly picked “reference” genes when the si are unknown which is derived from T ∗. Section 4.1

contains Theorem 1 which proves that this construction controls the FWER as soon as T ∗ satisfies simple conditions on

the type I and II errors. Section 4.2 presents Theorem 2 and its corollary which give necessary conditions on the number

of iterations to get FWER and exponential control of the power. Section 5 focuses on the construction of a satisfying

test T ∗ when the distribution of gene expressions is assumed to follow Poisson or Negative Binomial distribution. The

adjusted rejection region corresponding to 4 for a practical implementation is a consequence of Theorem 3 and its

corollary. In Section 7, we study empirically the behavior of our procedure including its level and its power. Section 8

is devoted to the study of a real data set of hepatic miRNA expressions from a mouse model. The proofs of our two

theorems are reported in Appendix.

3 Notations

We will further use the convention that ● in exponent indicates the set –A or B– the index i is belonging to. For example

µ●j denotes µAj if i ∈ A and µBj if i ∈ B.

Given two integers k and r, we consider the sampling of r subsets of indexes in {1, . . . ,m} of size k, denoted S1, . . . , Sr.

We denote by S ∶= {S1, . . . , Sr}. Each subset from S will be used to provide an estimation of the unknown si and later

refered as a normalisation subset. Given S ∈ S, the genes with index in S are used for the estimation of the scaling

factors si. The remaining expressions with index in S̄ ∶= {1, . . . ,m} ∖S are tested for differential behavior between the

two populations.

For a given j in {1, . . . ,m}, we denote by Sj ∶= {S ∈ S ∣ j /∈ S} the set of subsets in S which do not contain j. The total
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number of tests run for gene j is rj ∶= ∣Sj ∣. Clearly rj ∼ B(r, κ) with

κ ∶= P (S ∈ Sj) = 1 − (m − 1
k

)/(m
k
) = m − k

m
= 1 − k/m. (5)

If a subset Sj contains at least one gene j in D∗ then the normalization may be wrong. We call such subset a badly

selected subset or a wrong normalization subset. Note that a such subset exists if D∗ is not empty, that is if d∗ > 0.

The number of wrong normalization subsets not containing j is

Bj ∶= ∑
S∈Sj

(S ∩D∗ /= ∅) = ∣{S ∈ Sj , S ∩D∗ /= ∅}∣. (6)

Taking into account that j is DE η-detectable (j ∈ D∗) or not and assuming that d∗ = d, the random variable Bj given

the observation of rj follows a binomial distribution

Bj ∣rj ∼

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B(rj , π0
d) if j /∈ D∗

B(rj , π1
d) if j ∈ D∗

,

where

π0
d ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − (m−d−1
k

)/(m−1
k

) if 0 ≤ d ≤m − k − 1

1 if d ≥m − k
and π1

d ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − (m−d
k

)/(m−1
k

) if 0 < d ≤m − k

1 if d ≥m − k + 1
(7)

with the convention that π1
0 = 0. The number π0

d (respectively π1
d) represents the probability that a wrong normalization

subset does not contain j when the latter is invariant, (respectively DE η-detectable).

Property 1 The numbers π0
d and π1

d satisfy π0
d > π1

d and the sequence π0
d/π1

d is decreasing and converges to 1 when d

grows.

4 Testing using randomly picking reference genes

When a subset S of independent reference genes is known, estimates of the unkown si, i = 1, ..., n are

ŝSi ∶=
n∑j∈SXij

∑ni=1∑j∈SXij
. (8)

These estimates appear as a ratio of moment estimates. Under the Poisson assumption, it is also the maximum likehood

estimators since logλij = log si + logµj can be written as a linear predictor of indicator variables for the individual i
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and the gene j :

logλij = φi × Ii + θj × Ij .

In practice such reference genes are unknown and it is conceptually difficult to believe that they could be known when

one new hypothesis is tested. This problem is all the more difficult as the si are unknown. Our methodology bypasses

this lack of knowledge through the sampling of the subsets S1,. . . ,Sr which are used each in turn as normalization

subset as if they were made of reference genes (see Section 3).

For a given normalization subset S in S = {S1, ..., Sr}, our test statistic, denoted TS(X1j , ...,Xnj), is asymptotically

equivalent to T ∗(X1j , ...,Xnj) with the si replaced by ŝSi . The rejection region is adapted accordingly through a non

asymptotic control of the level by replacing q∗(1 − η/2) with

q(1 − η/2) ∶= (1 +
√
c logn) q∗(1 − η/2) (9)

where c is a positive constant. As a consequence, for any gene with index j not in S, we can determine if the null Hj
0 is

rejected or not with a prescribed significance level.

4.1 Our procedure

For any gene j = 1, ...,m and any normalization subset S ∈ Sj , let us define the detection indicator (the indicator of the

rejection of the null hypothesis) for gene j when the subset S is used for normalization by

1S(j) ∶= (∣TS(X1j , ...,Xnj)∣ > q(1 − η/2)) . (10)

We denote by Pj(⋅) = P (⋅∣S ∈ Sj) the conditionnal probability with respect to the event S ∈ Sj .

Using total probability formula, we decompose the detection rate

Pj(1S(j) = 1) = Pj(1S(j) = 1∣S ∩D∗ = ∅)Pj(S ∩D∗ = ∅) + Pj(1S(j) = 1∣S ∩D∗ /= ∅)Pj(S ∩D∗ /= ∅). (11)

Assuming that the definition of q(1 − η/2) given by (9) ensures that the detection rates for a good normalization subset
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Hj
0 : j invariant Hj

1 : j is DE η-detectable
µAj = µBj j ∈ D∗

Good normalization subset ≤ η ≥ 1 − β
S ∩D = ∅

TABLE 1 – Assumptions on the detection rates for a gene j regarding its status when a good normalization subset is
used.

satisfy Table 1, it follows that

Pj(1S(j) = 1) ≤ η(1 − π0
d∗) + π0

d∗ when j /∈ D∗ (12)

Pj(1S(j) = 1) ≥ (1 − β)(1 − π1
d∗) when j ∈ D∗. (13)

where π0
d and π1

d are defined in (7).

Thanks to the use of a pivotal statistic, Pj(1S(j) = 1∣S ∩D∗ = ∅) does not depend on j hence η can be chosen small

even when the number of genes is large.

We consider Rj the number of detections for the gene j through its rj ∶= ∣Sj ∣ associated normalizations. Let us define

pdj (η) ∶= 1 −B (Rj ; r, κ(η(1 − π0
d) + π0

d)) (14)

where κ = 1 − k/m (see (5)) and B(., n, x) is the c.d.f. of the binomial with parameter n and x. As a consequence

pdj (η) appears as the p-value associated with Rj when D∗ is of cardinality d and Rj is considered to come from a

binomial with parameters r and κ(η(1 − π0
d) + π0

d).

Noticing that r and κ(η(1 − π0
d) + π0

d) does not depend on j the order of the p-values does not depend on η or d. As a

consequence, we can order the genes accordingly to the pdj (η) independently from d and η to satisfy

pd(1)(η) ≤ p
d
(2)(η) ≤ ... ≤ p

d
(m)(η), for all d and η. (15)

We now derive our detection procedure :

— Gene (1) is declared to be DE if and ony if p0
(1)(η) < α/m ;

— Gene (2) is declared to be DE if and only if p1
(2)(η) < α/(m − 1) ;

— ...

— Gene (d) is declared to be DE if and only if pd−1
(d) (η) < α/(m − d + 1) ;

— Gene (d + 1) is declared to be DE if and only if pd(d)(η) < α/(m − d) ;
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— ...

Finally, given η > 0, we define d̂, the number of genes declared DE by our procedure, as follows :

d̂ ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0 if p0
(1)(η) ≥ α/m,

min{d > 0, pd−1
(d) (η) < α/(m − d + 1) and pd(d+1)(η) ≥ α/(m − d)} otherwise.

(16)

If d̂ > 0, the genes associated with the d̂ smallest p-values are declared DE, otherwise all genes are declared invariant.

We recall that the order of the p-values does not depend on d and η, hence the meaning of “smallest p-values” is well

defined.

Clearly, our procedure will be all the more powerful that the detection rate difference (1−β)(1−π1
d)−(η(1−π0

d)+π0
d)

is large when d ≤ d∗. Our main result controls the FWER of non DE gene detection for this randomize procedure.

Theorem 1 Assuming that the genes are independent and that the detection rates for the test defined by (10) satisfy the

assumptions provided by Table 1 for any good normalization subset S, then the FWER is bounded by α + or(1 ) as

soon as

(1 − β)(1 − π1
d∗) > η(1 − π0

d∗) + π0
d∗ . (17)

The proof of Theorem 1 is reported in Appendix 9.1

4.2 Rates of Detection and Power

We now focus on the link between η and α. We first focus on the case d∗ = 0 to derive condition on r based on a level

control. Then, we study the power when d∗ > 0.

If d∗ = 0, the p0
j(η) derived from the Rj are associated with binomial B(r, θ0) with expectation rθ0 where θ0 ∶= κη.

In this case, each normalisation subsets S is a good normalisation subset and the rate of detection satisfies θS(j) ∶=

Pj(1S(j) = 1) ≤ θ0 such that P (Rj > x) ≤ P (R̊j > x) where R̊j is a B(r, θ0). This result is a consequence of the

following lemma which provides a more general result, true for any d∗.

Lemma 1 Denoting

θ0 ∶= κ(η(1 − π0
d) + π0

d) and θ1 ∶= κ(1 − β)(1 − π1
d),

under assumption provided by Table 1, if j0 /∈ D∗ then Rj0 ≤ R̊j0 where R̊j0 ∼ B(r, θ0). Similarly, if j1 ∈ D∗ then

Rj1 ≥ R̂j1 where R̂j1 ∼ B(r, θ1). In term of c.d.f it follows that

P (Rj0 ≤ x) ≥ P (R̊j0 ≤ x) and P (Rj1 ≤ x) ≤ P (R̂j1 ≤ x).
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Proof of Lemma 1 For any S in Sj0 , as 1S(j0) is a Bernoulli with parameter

θS(j0) ∶= P (1S(j0) = 1) ≤ κ(η(1 − π0
d) + π0

d) = θ0, (18)

it follows that 1S(j0) = 1US≤θS(j0) ≤ 1US≤θ0 where US are independent uniform random variables. Consequently

Rj0 ≤ R̊j0 where R̊j0 is a Binomial B(r, θ0). Similarly for j1 ∈ D∗, for any S in Sj1 , 1S(j1) = 1US≤θS(j1) ≥ 1US≤θ1

with

θS(j1) ∶= P (1S(j1) = 1) ≥ κ(1 − β)(1 − π1
d) = θ1 (19)

and Rj1 ≥ R̂j1 where R̂j1 is a Binomial B(r, θ1). ◻

As d∗ = 0, the FWER is the probability under the global null, ⋂jHj
0 , to have one Rj too large and can be upper

bounded as follow

P (∃j ∈ {1, ...,m},Rj > rθ0 + rε) ≤ P (∃j ∈ {1, ...,m}, R̊j > rθ0 + rε) ≤mP (R̊1 > rθ0 + rε) . (20)

Using (Massart 1990, Theorem 2),

P (R̊1 − rθ0 > rε) ≤ exp(− rε2

2(θ0 + ε/3)(1 − θ0 − ε/3)
) ≤ exp(− rε2

2(θ0 + ε/3)
) . (21)

This inequality is non trivial for deviations rε of order the standard deviation of R̊1 which is of not smaller than
√
rθ0.

To go further, we consider that the deviations statisfies rε =
√
θ0 r

0.5+ξ with 0 < ξ < 0.5 such that

ε =
√
θ0 r

ξ−0.5. (22)

The latter is smaller than θ0 as soon as r ≥ θ1/(2ξ−1)
0 . In this case (21) becomes

P (R̊1 − rθ0 > rε) ≤ exp(−3rε2

8θ0
) ≤ exp(−3

8
r2ξ) . (23)

Using (20)

P (∃j ∈ {1, ...,m},Rj > rθ0 + rε) ≤m exp(−3
8
r2ξ) . (24)

Equating the right-hand side term with α, it follows that the FWER is smaller than α as soon as

r ≥ θ1/(2ξ−1)
0 ∨ [−8

3
log( α

m
)]

1/2ξ
. (25)
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We now suppose d∗ > 0 and assume the rate of rejections to be not smaller than θ1 with θ1 ≥ θ0 for the genes with index

in D∗. Given j ∈ D∗, the error of second kind can be controlled as follow :

P (Rj < rθ0 + rε) ≤ P (R̂j < rθ0 + rε) = P (R̂j − rθ1 < −r(θ1 − θ0 − ε))

where R̂j ∼ B(r, θ1), see Lemma 1. Again using Massart’s inequality, it follows that

P (R̂j < rθ0 + rε) ≤ exp(− r(θ1 − θ0 − ε)2

2(1 − θ1 + (θ1 − θ0 − ε)/3)(θ1 − (θ1 − θ0 − ε)/3)
) (26)

≤ exp(− r(θ1 − θ0 − ε)2

2(θ1 − (θ1 − θ0 − ε)/3)
) (27)

≤ exp(−r(θ1 − θ0 − ε)2

2θ1
) . (28)

The last inequality comes from assuming ε ≤ θ1 − θ0. Assuming the stronger constraint ε ≤ (θ1 − θ0)/2, it follows than

P (R̂j < rθ0 + rε) ≤ exp(−r(θ1 − θ0)2

8θ1
) ≤ exp(−r(θ1 − θ0)2

8
) . (29)

Taking care of the multiplicity, it follows that

P (∃j ∈ D∗, R̂j < rθ0 + rε) ≤ d∗ exp(−r(θ1 − θ0)2

8
) ≤m exp(−r(θ1 − θ0)2

8
) . (30)

Using (22), the constraint ε ≤ (θ1 − θ0)/2 becomes

r ≥ [ 2
√
θ0

θ1 − θ0
]

1/(0.5−ξ)

.

Finally (using ξ = 0.25) we obtain the following theorem and its corollary which control level and power of our

randomized strategy :

Theorem 2 Under the assumptions of Th. 1, our procedure is of FWER α and has its power growing exponentially fast

with r –all the faster as θ1 − θ0 the larger– as soon as

r ≥ 1√
θ0

∨ [−8
3

log( α
m

)]
2
∨ [ 2

√
θ0

θ1 − θ0
]

4

12



with

θ1 − θ0 = (1 − k

m
) [(1 − β)(1 − π1

d;∗) − (η(1 − π0
d∗) + π0

d∗)] .

In other words,

Corrolary 1 Under the assumptions of Th. 1, when r ≥ 1/
√
θ0 and

(1 − β)(1 − π1
d∗) − (η(1 − π0

d∗) + π0
d∗)√

η(1 − π0
d∗) + π0

d∗

≥ 2 m

m − k
(−8

3
log α

m
)

0.5
(31)

our procedure is of FWER α with power growing exponentially fast as soon as r ≥ [− 8
3 log(α/m)]−0.5

.

The left-hand side in (31) appears as lower bound of the normalized difference of detection rates between DE and

not-DE genes.

5 Testing procedure for Poisson and Negative binomial models

Usually, the gene expressions are modelled by negative binomials Xij ∼ NB(γ●j , γ●j/(γ●j + λij)) such that E(Xij) =

λij = siµ●j and var(Xij) = λij(1 + λij/γ●j ). In this parametrization, the gene dependent parameter γ●j governs the

overdispersion of the count data Xij with respect to the Poisson case for which γ●j = +∞. We will denote further

ρ●j ∶= µ●j/γ●j which is zero for the Poisson case.

Under the assumption that λij = si µ●j is large enough, the Gaussian approximation of the negative binomial counts Xij

provides

Xij ∼ NB(γ●j , γ●j/(γ●j + λij)) ≈ N(si µ●j , si µ●j(1 + si ρ●j)) (32)

such that

2
√
Xij ≈ N(2

√
si µ●j ,1 + si ρ

●
j).

This Gaussian approximation is just an extension of the Poisson (ρ●j) approximation obtained by variance stabilization.

Given a normalization subset S, let us consider an integer j /∈ S and let us specify the expression to be compared under

conditions A and B.

Assuming that the Gaussian approximation for negative binomial holds, from (32), we obtain

Uij ∶ = 2
√

Xij

si
≈ N(2

√
µ●j , ρ

●
j + 1/si)

= 2
√
µ●j +

√
ρ●j + 1/siεij = 2

√
µ●j + Vij (33)

13



with εij ∼ N(0,1) and Vij ∶=
√
ρ●j + 1/siεij . By construction the εij for i = 1, . . . , n are independent. We denote

further ω●i ∶= (ρ●j + 1/si)1/2.

Defining Σ2
S as

Σ2
S ∶=

n

∑
i=1

(ω●i )2 = ∑
i∈A

(ωAi )2 + ∑
i∈B

(ωBi )2 = ρA
nA

+ ρB
nB

+ 1
n2
A

∑
i∈A

1
si
+ 1
n2
B

∑
i∈B

1
si
, (34)

we consider the hypotheses test statistic

ŪAl − ŪBl
Σs

= 2

√
µAj −

√
µBj

Σs
+
V̄ Al − V̄ Bl

Σs

which, as (33) holds, under the null hypothesis is reduced to (V̄ Al − V̄ Bl )/Σs and follows approximately N(0,1) .

Since ρAj , ρBj and the si are unknown, the latter cannot be used directly as a test statistic. Therefore we consider further

Yij ∶= 2
√
Xij/ŝi =

√
si/ŝiUil (35)

where ŝi is an estimator of si, see (8). Together with an estimator of Σ2
S :

Σ̂2
S = 1

nA(nA − 1) ∑i∈A
(Yij − Ȳ Aj )2 + 1

nB(nB − 1) ∑i∈B
(Yij − Ȳ Bj )2 (36)

we build our testing procedure on the following statistic

T ∶=
Ȳ Aj − Ȳ Bj

Σ̂S
.

The justification for this construction is provided by a decomposition of T that we obtain by using algebraic computations.

First, for a real vector xj ∶= (x1j , . . . , xnj)T from Rn, we denote the empirical means of xj in A and B by

x̄Al ∶= 1
nA

∑
i∈A

xij and x̄Bl ∶= 1
nB

∑
i∈B

xij .

Then we establish the relation between the difference of means and the vector xj

(x̄Aj − x̄Bj )1n =Hxj

14



where

1n ∶= (1, . . . ,1
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n times

)T and H ∶=
⎛
⎜⎜
⎝

1
nA
JnA

− 1
nB
JnA,nB

1
nA
JnB ,nA

− 1
nB
JnB

⎞
⎟⎟
⎠
.

and J being the unit matrix consisting of integers equal to 1.

With respect to these notations the following decomposition of T holds

T1n =
1

Σ̂S
HYj =

ΣS
Σ̂S

( 1
ΣS

H(Yj −Uj) +
1

ΣS
HUj)

= ΣS
Σ̂S

( 1
ΣS

H(diag(
√
si/ŝi)Uj −Uj) +

1
ΣS

H(2
√
µ●j + Vj))

= ΣS
Σ̂S

⎛
⎝

1
ΣS

Hdiag(
√
si/ŝi − 1)Uj +

2
ΣS

(
√
µAj −

√
µBj ) +

V̄ Aj − V̄ Bj
ΣS

)
⎞
⎠

= ΣS
Σ̂S

⎛
⎜⎜⎜
⎝

1
ΣS

Hdiag(
√
si/ŝi − 1)diag(

√
ρ●j + 1/si)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R1

εj

+ 2
ΣS

Hdiag(
√
si/ŝi − 1)(

√
µAj 1

T
nA
,
√
µBj 1

T
nB

)T

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
R2

+ 2
ΣS

(
√
µAj −

√
µBj ) +

V̄ Aj − V̄ Bj
ΣS

)
⎞
⎠

(37)

= ΣS
Σ̂S

⎛
⎝
R1εj

ΣS
+ 2R2

ΣS
+ 2

ΣS
(
√
µAj −

√
µBj ) +

V̄ Aj − V̄ Bj
ΣS

⎞
⎠
. (38)

We recall that by construction (V̄ Aj − V̄ Bj )/ΣS ∼ N(0,1). Moreover the following theorem holds which controls the

distribution of our test statistic with respect to the Gaussian under the null.

Theorem 3 Assuming that maxi ∣
√
si/ŝi − 1∣ ≤ 1/2, the following relations hold with probability larger than 1 − 5n−c

ΣS
Σ̂S

≤ (1 +
√
c logn)(1 + 2 max

i
∣
√
si/ŝi − 1∣) ≤ (1 +

√
c logn)

⎛
⎝

1 + 2 [2(1 + c)(1 + o(1))1 + smaxρ̄S

∑j∈S µj
logn
n

]
1/2⎞

⎠
,

∥R1ε∥2

Σ2
S

≤ 2(1 + 2
√
c logn + 2c logn)(1 + c)(1 + o(1))1 + smaxρ̄S

∑j∈S µj
logn,

∥R2∥2

Σ2
S

≤ 2(1 + c)(1 + o(1)) (
√
µAj +

√
µBj )

2
× 1 + smaxρ̄S

∑j∈S µj
( n
nA

∨ n

nB
) logn.
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smax ∶= max
i=1,...,n

si and ρ̄S ∶= ∑
j∈S

µjρj/ ∑
j∈S

µj . (39)

To understand the meaning of these inequalities, one has to think that∑j∈S µj is intended to be large. As a consequence,

ΣS/Σ̂S is of order 1 +
√
c logn for any c > 0 and the bias terms R1ε/ΣS and R2/ΣS are negligeable. Section 7

discusses strategies to ensure that ∑j∈S µj is large.

The proof of this theorem is reported in Appendix 9.2 Let us denote Φ the cumulative distribution function of the

standard Gaussian.

Corrolary 2 Under assumption of the Theorem 3, T ∗S(X⋅j) ≈ ΣS

Σ̂S
T 0(X⋅j). Moreover, if we consider q∗(1 − α/2) =

(1 +
√
c logn)Φ−1(1 − α/2), then the test defined by the rejection region

∣T ∗S(X⋅j)∣ > q∗(1 − α/2)

is of level α.

6 Implementation strategies

The technical assumption given by (17) constraints d̂ to be not larger than a quantity ∆ which depends on η, β, k and m

and is given by

∆ = max
d

{d / (1 − β)(1 − π1
d) > η(1 − π0

d) + π0
d}.

It expresses that the number of genes which can be detected is upper bounded. In order to bypass this constraint on the

maximal number of possible detections, we propose an iterative implementation of our procedure which still controls

the FWER at level α + or(1 ). It is built as follow. Starting from the m genes, the procedure is run at level α/2. At

the i-th step, if the number of detections reaches the upper bound ∆ (computed at each step), then the remaining non

DE-detected genes are tested using α/2i+1 instead of α. The global FWER is then controlled by ∑∞
i=1 α/2i ≤ α.

One essential term in the control provided by Theorem 3 is ∑j∈S µj which should be large. We can imagine two

implementations to ensure this property. The first one, which is the closest to our theoretical setting, consists in fixing

a minimal expected intensity µ0 per gene and select the subset made of those genes satisfying µj ≥ µ0. Along the

iterations, the normalizing subset S is such that ∑j∈S µj ≥ ∣S∣ × µ0. The second consists, given a fix M0, in growing at

each iteration S until ∑j∈S µj ≥M0.
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Both strategies depend on the knowledge of the si however, using the estimates ŝi obtained from S, it is possible to get

an idea whether the size of S is large enough or not by using, for example,

( 1
n

n

∑
i=1

√
Yij/ŝi)

2

≈ µj and ∑
j∈S

( 1
n

n

∑
i=1

√
Yij/ŝi)

2

≈ ∑
j∈S

µj .

In the second strategy, the growth of S stops as soon as the latter left hand side term is larger than M0.

7 Empirical study

For the empirical study, we use our iterative procedure as described in Section 6. We consider two populations having

equal size n/2 assuming that all experiments perform perfectly (si = 1 for i = 1, . . . , n) and that all genes follow a

Poisson distribution (ρA = ρB = 0).

In population A, µAj = µ0 for all j. In population B, µBj = µAj = µ0 for j >m1 and µBj = µ0ϕ for j ≤m1.

According to (37), for the differentially expressed genes (j ≤m1), up to the biais terms R1 and R2 and up to the term

ΣS/Σ̂S , the expected fold change is 2(
√
µBj −

√
µAj )/ΣS . As ΣS = 2/

√
n, the test statistic T is of order

√
nµ0 ∣√ϕ−1∣

and it should be compared to −qα/2m(1 +
√
c logn), where qα/2m is the quantile of order α/2m of the standard

Gaussian.

From the relation
√
nµ0 ∣√ϕ − 1∣ > −qα/2m(1 +

√
c logn), we compute the lower and upper threshold values of ϕ to

have detections with probability larger than α :

ϕlow = (1 −
qα/2m(1 +

√
c logn)

√
nµ0

)2

ϕup = (1 +
qα/2m(1 +

√
c logn)

√
nµ0

)2
.

In all examples, we fix n = 12, m = 500, µ0 = 100, η = 5 %, α = 5 %, β = 10 % and tune c = 2 in Theorem 3 and its

Corrolary 2 to ensure a proper FWER control. For each setting, 100 data samples are simulated for two populations A

and B.

We start our empirical study by considering the FWER, taking µAj = µBj = µ0 for all j. Then we study empirically the

power of our procedure for various values of the shift ϕ between population A and B for the genes j with j = 1, ...,225.
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7.1 Under the global null

Here we assume that we are under the global null hypothesis for which µAj = µBj = µ0 for j = 1, ...,m and we run 2

complete sets of simulations.
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We observe on the first simulation (left graph) that the FWER is 0.05 with 0.06 average detected genes. For the second

simulation (right graph) FWER and average detected genes are respectively 0.04 and 0.04.

7.2 Empirical study of the power

We now study the power of our procedure by assuming that m1 = 225 and, while µBJ = µAj for j > m1, for j ≤ m1,

µBj = ϕjµAj with φj ∶= 1 + a/
√
j such that the relative decay (µBj − µAj )/µAj varies as a/

√
j. Using a = 5,7,10 and 12,

we let the number of expected detections vary from low to high and study the behavior of our iterative procedure when

the number of potential detections is approaching m/2. As 152 = 225, the largest relative decay is a/15. The detection

rates through simulations are depicted in each graph. On each plot below, the red dashed line specifies j corresponding

to the threshold value of ϕup when µ1 ≥ µ0. We observed that, as soon as the relative decay is larger than 2/3 (a = 10),

we achieved an almost perfect detection.
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8 Real data - Mice model of NASH

We apply the iterative procedure, as described in Section 6, using the same settings as in the Section 7, on the real

data set of hepatic miRNA expressions from a mouse model of non-alcoholic steatohepatitis (NASH), the CDAHFD

(choline-deficient, L-amino acid-defined, high-fat diet) model, with 4 cases of NASH with hepatic fibrosis and 4 controls

without hepatic lesions (Hoffmann et al. 2020). One mouse showed a strong disequilibrium of library size with respect

to the others of about a third.

Expressions with less than 20 reads shown in total in the 8 mice were filtered out prior to analysis and the testing was

done for 749 remaining miRNA’s. For these remaining genes, if their are not differentially expressed, then µ0 ≈ 2.5 (see

Section 6). For all 2500 randomizations, normalization subsets were formed with 10 random reference genes.

The results achieved on this real experiments were compared to those obtained using the trimmed mean of M values

(TMM) (Mark D. Robinson and Oshlack 2010).

The procedure detectes the total of 14 miRNA differentially expressed : mmu-miR-31-3p, mmu-miR-31-5p, mmu-miR-

34a-5p, mmu-miR-96-5p, mmu-miR-141-3p, mmu-miR-141-5p, mmu-miR-200a-3p, mmu-miR-200b-3p, mmu-miR-
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200b-5p, mmu-miR-200c-3p, mmu-miR-429-3p, mmu-miR-582-5p, mmu-miR-802-3p, mmu-miR-802-5p.

Within the mmu-miR-34 family members that are known to regulate hepatic fibrosis (Li et al. 2015 ; Jiang et al. 2017),

only the major isoform mmu-miR-34a-5p whose monocistronic gene is located on chromosome 4 has been detected

and identified strongly upregulated while the other major isoforms mmu-miR-34b-5p and mmu-miR-34c-5p whose

polycistronic gene is located on chromosome 9 are not. All other minor microRNA isoforms mmu-miR-34a/b/c/-3p

does not exhibit significant differences in the reads between the experimental groups.

The microRNA mmu-miR-96-5p is involved in both fibrosis (Chandel et al. 2018) and cancerization processes (Leung

et al. 2015), showing that there are possible linkages between these different pathologies. In our experimental model

of NASH we observe a clear increase in its expression, however it is also consistant with the fact that nodules were

observed in the livers of mice at the time of sacrifice.

For mmu-miR-34a-5p and mmu-miR-96-5p, due to the clear increase in expression observed both our procedure and

TMM behave the same. For the further miRNA, TMM clearly shows a lower sensibility.

Our differential expression analysis also identified a subset of 7 microRNAs that had significant differences between

the experimental groups. These belong to the mmu-miR-200 family, which is known for its involvement in various

liver diseases including NASH, fibrosis, and hepatocellular carcinoma (Murakami et al. 2011 ; Gregory et al. 2008 ;

Jiang et al. 2017). The mmu-miR-200 family is divided into two different clusters : one of the clusters is located on

chromosome 4, which contains mmu-miR-200a/b/429 members, the other cluster which is located on chromosome 6

includes mmu-miR-200c/141 members. Although belonging to different clusters located in different chromosomes, the

major microRNA isoforms (mmu-miR-141-3p, mmu-miR-200a-3p, mmu-miR-200b-3p, mmu-miR-200c-3p, mmu-

miR-429-3p) are all overexpressed in the CDAHFD model, and the same evolution is observed with the trimmed mean

of M-values normalization method (TMM normalization method). On the other hand, our procedure is able to show

that minor microRNA isoforms (mmu-miR-141-5p, mmu-miR-200b-5p) are also upregulated in the CDAHFD model,

which is not observed with TMM.

Interestingly, mmu-miR-31-5p which was previously shown overexpressed in liver fibrosis (Hu et al. 2015), cirrhosis,

and hepatocellular carcinoma (Karakatsanis et al. 2013 ; Tessitore et al. 2016) is found upregulated in the CDAHFD

model. In this case our procedure is able to show that its minor microRNA counterpart mmu-miR-31-3p is also

upregulated. Here again this result is not observed with TMM.

Finally, the last three microRNAs (mmu-miR-582-5p (Zhang et al. 2015), mmu-miR-802-3p, mmu-miR-802-5p (Zhen

et al. 2018 ; Yang et al. 2019)) are intriguing because their known activities are not specific to the field of fibrosis, so

further investigation is required to understand their involvement in the pathology. It should be emphasized that the

increase in their expression involves a relatively small number of reads and are not detected by TMM.
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All this biological arguments show that our method is more sensitive than those used in daily practice by biologists and

offer some meaningful results.

From a statistical point-of-view, as our procedure is based on some random sampling, it depends on the seed of the

random generator. To get an idea of the stability with respect to this seed, we run few times the complete procedure on

our real data. On the 14 detected miRNA, only mmu-miR-96-5p was not present in the list of detected on few runs.

9 Appendix

9.1 FWER control of randomly picking reference genes

We recall that the pdj (η) defined in (14) correspond to the p-values associated to the numbers of detections Rj when

d∗ = d and the error of type I is control by η for a good normalization subset.

In order to establish that our randomized procedure respects FWER at level α, we first yield the following lemma which

controls the order between DE genes and non-DE genes of the pdj (η).

Lemma 2 If the genes are independent and the following relation holds

Pj/∈D∗(1S(j) = 1) ≤ η(1 − π0
d∗) + π0

d∗ < (1 − β)(1 − π1
d∗) ≤ Pj∈D∗(1S(j) = 1)

then, for all d, with small probability the pdj (η) for DE genes are larger than those of non-DE genes, that is :

P ( min
j0/∈D∗

pdj0
(η) < max

j1∈D∗
pdj1

(η)) = or(1 ) .

Given this lemma, with large probability, the discoveries of the DE genes are first and false discoveries occurs if the

number of discoveries is larger than d∗. As a consequence, with large probability, a false discovery occurs if and only if

pd
∗

(d∗+1)(η) <
α

m − d∗
.

In other words, with large probability, a false discovery occurs if and only if one of the m−d∗ non-DE genes is detected

at the corrected α/(m − d∗) level which is the ad-hoc Holm’s correction to control the FWER. Finally, the FWER is

controled by α + or(1 ).

Proof of Lemma 2 : From Lemma 1, for all j0 /∈ D∗ and all j1 ∈ D∗, we have R̂j1 ≤ Rj1 and Rj0 ≤ R̊j0 with R̊j0 ∼

B(r, θ0) and R̂j1 ∼ B(r, θ1). As a consequence, if maxj0/∈D∗ Rj0 > minj1∈D∗ Rj1 then maxj0/∈D∗ R̊j0 > minj1∈D∗ R̂j1 .
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As a consequence, the following relation holds

P (max
j0/∈D∗

Rj0 > min
j1∈D∗

Rj1) ≤ P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1) (40)

and it is enough to prove that maxj0/∈D∗ R̊j0 > minj1∈D∗ R̂j1 occurs with small probability when r goes to infinity.

Using total probability formula, for all x

P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1) = P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1 ∣ max
j0/∈D∗

R̊j0 ≤ x)P (max
j0/∈D∗

R̊j0 ≤ x)

+ P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1 ∣ max
j0/∈D∗

R̊j0 > x)P (max
j0/∈D∗

R̊j0 > x)

≤ P ( min
j1∈D∗

R̂j1 ≤ x) + P (max
j0/∈D∗

R̊j0 > x)

= P ( min
j1∈D∗

R̂j1 ≤ x) + 1 − P (max
j0/∈D∗

R̊j0 ≤ x).

As ∣D∗∣ = d∗, usual derivations of the c.d.f. for the minimum and the maximum of independent variables provide

P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1) = 1 − [1 − P (R̂j1 ≤ x)]d
∗

+ 1 − [P (R̊j0 ≤ x)]m−d∗

= 1 − [1 − P (R̂j1 ≤ x)]d
∗

+ 1 − [1 − P (R̊j0 > x)]m−d∗

≈ 1 − (1 − d∗P (R̂j1 ≤ x)) + 1 − (1 − (m − d∗)P (R̊j0 > x))

= d∗P (R̂j1 ≤ x) + (m − d∗)P (R̊j0 > x)

For any 0 < ξ < 1, let x ∶= B−1(1 − ξ, r, θ0) be the (1 − ξ)-quantile under B(r, θ0). Then P (R̊j0 > x) ≤ ξ. If

P (R̂j1 ≤ x) ≤ ξ also holds, that is if

B−1(1 − ξ, r, θ0) ≤ B−1(ξ, r, θ1), (41)

then

P (max
j0/∈D∗

Rj0 > min
j1∈D∗

Rj1) ≤ P (max
j0/∈D∗

R̊j0 > min
j1∈D∗

R̂j1) ≤mξ. (42)

We now prove that ξ can be chosen satisfying P (R̂j1 ≤ x) ≤ ξ if r is large enough. From the Massart’90 inequality, we

obtain that B−1(ξ, r, θ1) ≥ r(θ1 − ε̂) with

P (R̂j1 < r(θ1 − ε̂)) ≤ exp(− rε̂2

2(1 − θ1 + ε̂/3)(θ1 − ε̂/3)
) ≤ exp(−rε̂

2

2θ1
), j1 ∈ D∗
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similarly B−1(1 − ξ, r, θ0) ≤ r(θ0 + ε̊) with

P (R̊j0 > r(θ0 + ε̊)) ≤ exp(− rε̊2

2(θ0 + ε̊/3)(1 − θ0 − ε̊/3)
) ≤ exp(− rε̊2

2(θ0 + ε̊/3)
), j0 /∈ D∗.

Let us assume from now on that ε̊ and ε̂ are not larger than (θ1 − θ0)/2, then

B−1(1 − ξ, r, θ0) ≤ r(θ0 + ε̊) ≤ r(θ1 − ε̂) ≤ B−1(ξ, r, θ1).

Moreover ε̊/3 ≤ θ1 − θ0 such that

P (R̊j0 > r(θ0 + ε̊)) ≤ exp(−rε̊
2

2θ1
), j0 /∈ D∗.

Consequently P (R̊j0 > B−1(1 − ξ, r, θ0)) ≤ ξ and P (R̂j1 ≤ B−1(ξ, r, θ1)) ≤ ξ are satisfied as soon as ε̂ and ε̊ are non

smaller than
√
−2θ1 ln(ξ)/r. The assumption that ε̊ and ε̂ are not larger than (θ1 − θ0)/2 is then fulfilled as soon as

r ≥ −8θ1 ln ξ
(θ1 − θ0)2 .

Replacing ξ by ξ/m ends the demonstration of the lemma. ◻

9.2 Proof of Theorem 3

In order to derive the distribution of our test statistic, we need the following lemma and its corrolary to control the

deviations of maxi ∣
√
si/ŝi − 1∣.

Lemma 3 Let ŝi be the estimator of si given by (8). Assuming the Gaussian approximations hold, then if t2 is of

smaller order than n∑i∈S µj/(1 + smax ρ̄S), with probability larger than 1 − 4n exp(−t2/2),

∣
√

si
ŝi
− 1∣ ≤ (1 + o(1))t

¿
ÁÁÀ1 + smaxρ̄S

n∑j∈S µj
for all i = 1, . . . , n. (43)

Corrolary 3 Taking t2 = 2(1 + c) log(n), assuming that (1 + smax ρ̄S) log(n)/n∑i∈S µj is of smaller order than 1,

we have with probabilty larger than 1 − 4n−c for all i = 1, ..., n

(
√

si
ŝi
− 1)

2

≤ 2(1 + c)(1 + o(1))1 + smaxρ̄S

∑j∈S µj
logn
n

. (44)

If ∑j∈S µj ≥ 1 + smax ρ̄S , (44) is always satisfied. This condition means that the sum of the absolute levels over the
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normalization set is large enough to compensate for over-dispersion.

The proof of Lemma 3 in reported in Appendix 9.3

9.2.1 Control of ΣS/Σ̂S

Let us consider the operator S(⋅) defined for all x ∈ Rn by S2(x) ∶= ∥L(I −K)x∥2 where

K =
⎛
⎜⎜
⎝

1
nA
JnA

0nA,nB

0nB ,nA

1
nB
JnB

⎞
⎟⎟
⎠

and L is the diagonal matrix diag(1/
√
nA(nA − 1), . . . ,1/

√
nA(nA − 1),1/

√
nB(nB − 1), . . . ,1/

√
nB(nB − 1)).

Simple computations show that Σ̂2
S = S2(Y ).

The following relation holds

S2(U) = ∥L(I −K)U∥2 = ∥L(I −K)diag(1 −
√
si/ŝi)U +L(I −K)diag(

√
si/ŝi)U∥2

and using triangular inequality, as Yij =
√
si/ŝiUij , we obtain

S(U) ≤ ∥L(I −K)diag(1 −
√
si/ŝi)U∥ + ∥L(I −K)Y ∥ ≤ max

i
∣
√
si/ŝi − 1∣ S(U) + S(Y ). (45)

It is clear that operator S(⋅) is invariant by any translation of a vector which is constant over the indexes in A and

in B, which is the case for E(U). As a consequence, S(U) = ∥L(I −K)diag(ωi)ε∥ where ω2
i = ρ●j + 1/si satifies

Uil = 2
√
µ●j + ωiεij . We control this latter norm using Gendre (2014 Lemma 8.2).

Let us denote A ∶= L(I −K)diag(ωi), we now show that Tr(AAT ) = Σ2
S and bound the ratio Σ2

S/S2(Y ) from above :

AAT = L(I −K)diag(ωi)diag(ωi)T (I −K)TLT = L(I −K)diag(ω2
i )(I −K)L.

Since I −K and L are both symmetric, all the matrices in this latter product are symmetric such that we can use any

permutation of them to compute the trace of this product. Hence Tr(AAT ) = Tr(L2(I −K)2diag(ω2
i )).

By definition L2 = diag(1/nA(nA − 1), . . . ,1/nA(nA − 1),1/nB(nB − 1), . . . ,1/nB(nB − 1)) and, as K is a matrix

of projection K2 =K, the same holds for I −H such that (I −K)2 = I −K.
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We write L2(I −K)diag(ω2
i ) as a block matrix

L2(I −K)diag(ω2
i ) =

⎛
⎜⎜
⎝

1
nA(nA−1)(InA

− 1
nA
JnA

)diag( 1
si
+ ρAj ) 0nA,nB

0nB ,nA

1
nA(nA−1)(InB

− 1
nB
JnB

)diag( 1
si
+ ρBj )

⎞
⎟⎟
⎠

whose trace is 1
n2

A
∑i∈A( 1

si
+ ρAj ) + 1

n2
B
∑i∈B( 1

si
+ ρBj ) which is Σ2

S .

Clearly, for all x ∈ Rn, xTATAx = ∥Ax∥2 ≥ 0, hence the matrix AAT is positive and has all its eigenvalue non negative

which are all smaller than Tr(AAT ) = Σ2
S . It follows from Gendre (2014 Lemma 8.2) that, with probability larger than

1 − e−x

1 − 2
√
x ≤ S2(U)

Σ2
S

or in other terms
ΣS
S(U)

≤ 1√
1 − 2

√
x
≈ 1 +

√
x. (46)

Multiplying (45) and (46) together, we get

ΣS
S(Y )

≤ 1 +
√
x

1 −maxi ∣
√
si/ŝi − 1∣

.

Assuming moreover that the maximum is smaller than 1/2, we can use that 1/(1 − x) ≤ 1 + 2x for x ≤ 1/2, such that

Lemma 1 provides

ΣS
S(Y )

≤ (1 +
√
x)(1 + 2 max

i
∣
√
si/ŝi − 1∣) ≤ (1 +

√
x)

⎛
⎝

1 + 2 [2(1 + c)(1 + o(1))1 + smaxρ̄S

∑j∈S µj
logn
n

]
1/2⎞

⎠
.

The last inequality in the Theorem 3 comes from equating e−x to n−c which implies that x = c lnn.

9.2.2 Control of ∥R1ε∥2

One can check that

R1R
T
1 =Hdiag(

√
si/ŝi − 1)diag(ω2

i )diag(
√
si/ŝi − 1)HT =Hdiag(

√
si/ŝi − 1)2diag(ω2

i )HT

≤ max
i

(
√
si/ŝi − 1)2Σ2

SJn.
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As Jn has only one non-zero eigenvalue which is also its trace and which is equal to n, it follows using Gendre (2014

Lemma 8.2) that for any x > 0, with probability larger than 1 − e−x,

∥R1ε∥2

nmaxi(
√
si/ŝi − 1)2Σ2

S

≤ 1 + 2
√
x + 2x (47)

and
∥R1ε∥2

Σ2
S

≤ 2(1 + 2
√
x + 2x)(1 + c)(1 + o(1))1 + smaxρ̄S

∑j∈S µj
logn

9.2.3 Control of ∥R2∥2

Simple algebra computations show that

∥R2∥2 = n
⎛
⎜
⎝

√
µAj

nA
∑
i∈A

(
√
si/ŝi − 1) −

√
µBj

nB
∑
i∈B

(
√
si/ŝi − 1)

⎞
⎟
⎠

2

≤ n(
√
µAj +

√
µBj )2 ( 1

nA
∑
i∈A

(
√
si/ŝi − 1) + 1

nB
∑
i∈B

(
√
si/ŝi − 1))

2

such that, using Cauchy-Schwarz inequality and
√
si/ŝi − 1 = √

si(
√
si/ŝi − 1)/√si, we have :

∥R2∥
√
n(

√
µAj +

√
µBj )

≤ ( 1
n2
A

∑
i∈A

1
si
+ 1
n2
B

∑
i∈B

1
si

)
1/2

( 1
nA

∑
i∈A

si(
√
si/ŝi − 1)2 + 1

nB
∑
i∈B

si(
√
si/ŝi − 1)2)

1/2

.

It follows that
∥R2∥

√
n(

√
µAj +

√
µBj )

≤ ΣS max
i

∣
√
si/ŝi − 1∣ ( 1

nA
∑
i∈A

si +
1
nB

∑
i∈B

si)
1/2

≤ ΣS max
i

∣
√
si/ŝi − 1∣

√
max(n/nA, n/nB).

Finally
∥R2∥2

Σ2
S

≤ 2(1 + c)(1 + o(1)) (
√
µAj +

√
µBj )

2
× 1 + smaxρ̄S

∑j∈S µj
( n
nA

∨ n

nB
) logn.

9.3 Proof of Lemma 3

We recall that ŝi = nXS
i●/XS

●● where XS
i● = ∑j∈SXij and XS

●● = ∑
n
i=1∑j∈SXij . Under the Gaussian approximation,

taking into account that ∑ni=1 si = n, we have

XS
i● ≈ N(si ∑

j∈S
µj , si ∑

j∈S
µj + s2

i ∑
j∈S

µjρj) and XS
●● ≈ N(n ∑

j∈S
µj , n ∑

j∈S
µj +

n

∑
i=1
s2
i ∑
j∈S

µjρj).

Using Hoeffding’s inequality applied to the two latter random variables, for all t > 0, the following inequalities hold
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with probability larger than 1 − 4 exp(−t2/2) :

n∑j∈S µj − t
√
n∑j∈S µj +∑ni=1 s

2
i ∑j∈S µjρj

si ∑j∈S µj + t
√
si ∑j∈S µj + s2

i ∑j∈S µjρj
≤ X

S
●●

XS
i●

≤
n∑j∈S µj + t

√
n∑j∈S µj +∑ni=1 s

2
i ∑j∈S µjρj

si ∑j∈S µj − t
√
si ∑j∈S µj + s2

i ∑j∈S µjρj

Considering that ∑ni=1 s
2
i ≤ smax∑ni=1 si = nsmax with smax = max(si), we have

1
si

∑j∈S µj − t
√
∑j∈S µj + smax∑j∈S µjρj/

√
n

∑j∈S µj + t
√
∑j∈S µj + si∑j∈S µjρj/

√
si

≤ XS
●●

nXS
i●
≤ 1
si

∑j∈S µj + t
√
∑j∈S µj + smax∑j∈S µjρj/

√
n

∑j∈S µj − t
√
∑j∈S µj + si∑j∈S µjρj/

√
si

Denoting

ρ̄S ∶= ∑
j∈S

µjρj/ ∑
j∈S

µj

we have as si ≤ n

1 − t
√

1 + smax ρ̄S/
√
n∑j∈S µj

1 + t
√

1 + smax ρ̄S/
√
n∑j∈S µj

≤ si
ŝi

≤
1 + t

√
1 + smax ρ̄S/

√
n∑j∈S µj

1 − t
√

1 + smax ρ̄S/
√
n∑j∈S µj

Using that (1 + x)−1 ≈ 1 − x(1 + o(1)) when x is small, we get our inequality

∣
√

si
ŝi
− 1∣ ≤ (1 + o(1))t

¿
ÁÁÀ1 + smaxρ̄S

n∑j∈S µj

for t2 being small in front of n∑i∈S µj/(1 + smax ρ̄S) in order to have the approximation valid.
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