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A recurrent RYR1 mutation associated 
with early-onset hypotonia and benign disease 
course
Valérie Biancalana1,2*, John Rendu3,4*, Annabelle Chaussenot5, Helen Mecili6, Eric Bieth7, Mélanie Fradin8, 
Sandra Mercier9,10, Maud Michaud11, Marie‑Christine Nougues12, Laurent Pasquier13,14, Sabrina Sacconi15, 
Norma B. Romero16, Pascale Marcorelles17,18, François Jérôme Authier19, Antoinette Gelot Bernabe20,21, 
Emmanuelle Uro‑Coste22, Claude Cances23, Bertrand Isidor9,10, Armelle Magot10,24, 
Marie‑Christine Minot‑Myhie8,25, Yann Péréon10,24, Julie Perrier‑Boeswillwald10, Gilles Bretaudeau26, 
Nicolas Dondaine2, Alison Bouzenard1, Mégane Pizzimenti1, Bruno Eymard27, Ana Ferreiro27,28, 
Jocelyn Laporte1, Julien Fauré3,4 and Johann Böhm1  

Abstract 

The ryanodine receptor RyR1 is the main sarcoplasmic reticulum  Ca2+ channel in skeletal muscle and acts as a con‑
necting link between electrical stimulation and  Ca2+‑dependent muscle contraction. Abnormal RyR1 activity compro‑
mises normal muscle function and results in various human disorders including malignant hyperthermia, central core 
disease, and centronuclear myopathy. However, RYR1 is one of the largest genes of the human genome and accu‑
mulates numerous missense variants of uncertain significance (VUS), precluding an efficient molecular diagnosis for 
many patients and families. Here we describe a recurrent RYR1 mutation previously classified as VUS, and we provide 
clinical, histological, and genetic data supporting its pathogenicity. The heterozygous c.12083C>T (p.Ser4028Leu) 
mutation was found in thirteen patients from nine unrelated congenital myopathy families with consistent clinical 
presentation, and either segregated with the disease in the dominant families or occurred de novo. The affected indi‑
viduals essentially manifested neonatal or infancy‑onset hypotonia, delayed motor milestones, and a benign disease 
course differing from classical RYR1‑related muscle disorders. Muscle biopsies showed unspecific histological and 
ultrastructural findings, while RYR1‑typical cores and internal nuclei were seen only in single patients. In conclusion, 
our data evidence the causality of the RYR1 c.12083C>T (p.Ser4028Leu) mutation in the development of an atypical 
congenital myopathy with gradually improving motor function over the first decades of life, and may direct molecular 
diagnosis for patients with comparable clinical presentation and unspecific histopathological features on the muscle 
biopsy.

Keywords: Neuromuscular disorder, Congenital myopathy, Calcium, Muscle weakness, Excitation–contraction 
coupling, Triad
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Introduction
Muscle contraction is a multistep process involving 
the conversion of an electrical stimulus into mechani-
cal force, and disturbances of this cascade of events can 
severely impact on muscle physiology and lead to human 
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disorders. The functionality of the excitation–contrac-
tion coupling (ECC) machinery essentially relies on the 
skeletal muscle triad, a specialized membrane complex 
composed of a deep sarcolemma invagination known as 
T (transverse)-tubule and two flanking terminal cisternae 
of the sarcoplasmic reticulum (SR) [12]. ECC is driven by 
the voltage-gated L-type  Ca2+ channel DHPR (dihydro-
pyridine receptor) at the T-tubules and the  Ca2+ channel 
RyR1 (ryanodine receptor 1) at the SR. Upon membrane 
depolarization, DHPR undergoes a conformational 
change and activates RyR1 across the membrane gap to 
trigger  Ca2+ release from the SR. The  Ca2+ ions hence 
induce the shortening of the contractile units, resulting 
in the generation of force [10, 30].

Mutations in RYR1 have been associated with a vari-
ety of dominant and recessive pathologies including 
malignant hyperthermia susceptibility (MHS, OMIM 
#145,600) [16, 25], King-Denborough syndrome [6], 
central core disease (CCD, OMIM #117,000) [29, 38], 
multi-minicore disease (MmD, OMIM #255,320) [26], 
centronuclear myopathy [36], congenital fiber-type dis-
proportion (CFTD) [5], core-rod myopathy [28], dusty 
core disease (DuCD) [15], late-onset axial myopathy 
[24], Samaritan myopathy [3], and exertional myalgia [9]. 
CCD is the most common RYR1-related myopathy, and 
a significant number of the identified mutations are also 
associated with an increased risk of MHS [19]. The vast 
majority of the CCD mutations are heterozygous mis-
sense changes mainly affecting conserved amino acids 
in the C-terminal part of the protein, and functional 
studies have shown that the mutations either generate a 
leaky RyR1 channel, or interfere with DHPR binding, and 
thereby uncouple excitation from contraction [1, 8, 23]. 
Affected individuals typically present with childhood-
onset hypotonia, slowly or non-progressive proximal 
muscle weakness, facial weakness, joint hypermobility, 
contractures, and scoliosis [18]. Muscle biopsies from 
CCD patients display well-delimited areas with reduced 
oxidative activity and a variable degree of sarcomeric dis-
organization running along the longitudinal fiber axis as 
histopathological hallmark [18].

Here we describe a novel and recurrent RYR1 muta-
tion in nine unrelated congenital myopathy families with 
unspecific findings on the muscle biopsy, and a consist-
ent clinical picture with unusual disease course differing 
from classical CCD, MmD, CNM, or CFTD cases.

Patients and methods
DNA sampling
Genomic DNA was prepared from peripheral blood by 
routine procedures from affected and unaffected mem-
bers of all nine families with written informed consent 

according to the declaration of Helsinki and its later 
amendments. DNA storage and usage were IRB-approved 
(DC-2012-1693). All nine families were from France.

Molecular diagnosis
DNA samples from family 5 were processed with the 
SureSelect Human all Exon 50  Mb capture library v5 
(Agilent, Santa Clara, USA), and enriched DNA frag-
ments were exome-sequenced on an Illumina HiSeq2500 
(Illumina, San Diego, USA). For patient 12 (family 8), 
the RYR1 cDNA was amplified and sequenced following 
reverse transcription of the muscle RNA. All other fami-
lies were sequenced for a targeted panel of 210 (MYOdi-
agHTS) or 145 (Myogr_V2019) neuromuscular disorders 
genes on a NextSeq550 (Illumina).

The exome and panel sequence data were aligned to 
the GRCh37/hg19 reference genome, and variants were 
filtered based on the inheritance and their frequency in 
gnomAD (http:// gnomad. broad insti tute. org/) and in our 
in-house database containing > 1500 exomes, and ranked 
in accordance with the clinical and histological charac-
teristics of the patients. The potential pathogenic effect of 
the prioritized variants was predicted using the Alamut 
software (https:// www. inter active- bioso ftware. com/ ala-
mut- visual/), and the segregation was verified by Sanger 
sequencing in all families. The identified RYR1 mutation 
was numbered according to GenBank NM_000540.3 and 
NP_000531.2.

To assess a potential splicing effect, skeletal muscle 
RNA was extracted from frozen muscle samples from 
patient 12 (family 8) using the Precellys 24 homogenizer 
(Bertin Technologies, Montigny-le-Bretonneux, France) 
and reverse transcribed using the SuperScript® III kit 
(Invitrogen, Carlsbad, USA).

Muscle morphology
Open muscle biopsies of the vastus lateralis (families 
1 and 5), quadriceps (families 2, 4, 8, and  9), or deltoid 
(families 3, 6, and 7) were performed between age 1 
and 66, and the muscle sections underwent histological 
routine investigations including haematoxylin & eosin 
(H&E), nicotinamide adenosine dinucleotide-tetrazolium 
reductase (NADH-TR), Gomori trichrome, and ATPase 
(pH 9.4). For electron microscopy, the muscle samples 
were fixed with glutaraldehyde (2.5%, pH 7.4), post fixed 
with osmium tetroxide (2%), incubated with 5% ura-
nyl acetate, dehydrated in graded series of ethanol, and 
embedded in epon resin 812.

Results
Clinical reports
The thirteen patients described in this study belong to 
nine unrelated families and most presented with neonatal 

http://gnomad.broadinstitute.org/
https://www.interactive-biosoftware.com/alamut-visual/
https://www.interactive-biosoftware.com/alamut-visual/
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or infancy-onset hypotonia and delayed motor mile-
stones, followed by a gradual improvement over the first 
decades of life and a slow functional deterioration at 
advanced age. An antenatal disease onset with reduced 
fetal movements in combination with hydramnios and 
macrosomia was diagnosed in family 3, and the elder 
affected individuals from family 1 reported a disease 
onset during childhood, but early clinical data were not 
available. Families 1 and 2 showed a dominant disease 
transmission, while the index patients from families 3, 4, 
5, 8, and 9 were sporadic cases without ancestral history 
of a neuromuscular disorder. The patients from families 
6 and 7 reported a dominant disease inheritance, but the 
affected parent either deceased or the contact was lost, 
precluding molecular segregation analyses. The clinical 
and histological features of all families are summarized in 
Table 1.

Neonatal hypotonia often involved swallowing difficul-
ties necessitating gastrostomy and was accompanied by 
respiratory distress in patients 6 (family 2) and 7 (family 
3), and by recurrent infections in patients 5 and 6 (both 
family 2). Delayed motor milestones were apparent in 
all patients with complete medical records. Independent 
walking was achieved between 18 and 36  months, and 
commonly came along with frequent falls and an abnor-
mal gait. In all patients, the muscle phenotype stabilized 
and often improved with motor maturation over the 
first decades of life. At the last clinical examination, the 
patients were between 3 and 72  years old, and all were 
ambulant. The oldest patient (1, family  1) manifested 
steppage gait, required a cane for walking, and had dif-
ficulties climbing stairs. Patients 2, 3 (both family 1), 7 
(family 3), and 9 (family 5) were unable to jump or run, 
climbing stairs was arduous for all affected individuals 
from families 1, 2, 3, 7, and 9, a positive Gowers’s sign 
was noted for patients 2 (family 1), 6 (family 2), 7 (fam-
ily 3), 9 (family 5), 11 (family  7), and 12 (family 8), and 
an abnormal gait for patient 1 (family 1), 10 (family  6), 
and 11 (family 7). Muscle weakness was mostly axial, but 
proximal and distal muscle weakness were also reported 
in individual cases. Restrictive respiratory involvement 
with a vital capacity (VC) ranging from of 40% to 83% 
was noted in patient 1 (family 1), 7 (family 3), 9 (family 
5), 10 (family 6), 11 (family 7), and 13 (family 9). Ophthal-
moparesis was diagnosed in patient 7 (family 3), 10 (fam-
ily  6), and 11 (family 7), and ptosis in patient 9 (family 
5). Additional clinical signs included high-arched palate 
(7x), joint hyperlaxity (7x), elongated face (4x), scoliosis 
(4x), foot deformities (4x), facial diplegia (1x), dysmor-
phy (1x), and moderate asthma (1x). A cardiac phenotype 
with ventricular hypertrophy was diagnosed in patient 1 
(family 1), and patient 5 (family 2) unexpectedly deceased 
at the age of 4 from cardiorespiratory arrest. Noteworthy, 

patient 4 from family 2 experienced an MH episode fol-
lowing surgery.

Whole-body MRI disclosed general muscle atrophy in 
patient 7 (family 3) and moderate atrophy and fatty infil-
trations in the upper and lower limb muscles with par-
ticular involvement of the sartorius and the peroneus 
muscles in patient 10 (family 6). EMG revealed a myo-
pathic pattern in patient 7 (family 3), 9 (family 5), 10 
(family 6), and 13 (family 9), and serum creatine kinase 
(CK) levels were slightly below the normal reference val-
ues in patients 2 and 3 (family 1).

Unspecific histopathological signs on muscle sections
Patients from all nine families underwent a muscle 
biopsy, and sections were examined for structural anom-
alies and abnormal accumulations through a standard 
panel of histological and histochemical stains (Fig.  1A). 
The biopsies were taken between age 1 (patient 5, fam-
ily 2) and age 66 (patient 1, family 1), but morphological 
analyses did not evidence common and distinct patho-
logical signs or the occurrence of particular features at a 
specific age. The predominant anomalies included type I 
fiber predominance (6x), fiber size variability (5x), inter-
nal nuclei (3x), mitochondrial mispositioning (2x), type I 
fiber atrophy (2x), type II fiber atrophy (2x), cores (1x), 
and rods (1x). Electron microscopy on muscle samples 
from patients 1 (family 1), 7 (family 3), and 8  (family 4) 
confirmed mitochondrial mispositioning and aggrega-
tion potentially associated with abnormal myofibrillary 
organization, and additionally uncovered lipid accumu-
lations, lipofuscin granules, and mitochondria contain-
ing crystalloid inclusions. COX-negative fibers or signs 
of muscle fiber degeneration, frequently encountered 
in mitochondrial myopathies and dystrophies, were not 
observed. Taken together, the clinical features were simi-
lar in all nine families, and the non-specific histological 
and ultrastructural features on the biopsies were indica-
tive of an undefined congenital myopathy.

Identification of the RyR1 p.Ser4028Leu mutation
We performed panel sequencing of 210 neuromus-
cular disorder genes for families 1, 2, 3, 4, and 6, panel 
sequencing of 145 neuromuscular disorder genes for 
families 7 and 9, exome sequencing for family 5, and 
direct cDNA sequencing for family 8. We identified the 
same heterozygous c.12083C>T transition in RYR1 exon 
88 in all nine families (Fig. 1B), and NGS did not detect 
other potentially pathogenic variants in known congeni-
tal myopathy genes. The RYR1 mutation segregates with 
the disease in the dominant families 1 and 2, and occurs 
de novo in the sporadic cases from families 3, 4, 5, and 
8. DNA samples from the parents of the index patient 
from families 6, 7, and 9 were not available. Although 
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absent from the gnomAD public human variant database 
(https:// gnomad. broad insti tute. org/), c.12083C>T has 
been referenced by dbSNP (rs794728696) and HGMD 
(CM157211), where it has been classified as variant of 
unknown significance (VUS) based on reports of two 
congenital myopathy patients from China and the Czech 
Republic with sparse publicly available clinical data [7, 
33].

The c.12083C>T mutation involves the substitution 
of the polar amino acid Serine at position 4028 into the 
hydrophobic Leucine residue in the central domain of 
RyR1 (p.Ser4028Leu), and is also predicted to enforce a 
cryptic acceptor splice site at the 3’ end of exon 88. To 
explore the potential impact of the mutation on splicing, 
we extracted RNA from the muscle biopsy from patient 
12 (family 8). Sequencing of the reverse-transcribed 
RYR1 cDNA did not detect alternative transcripts, and 
the c.12083C>T mutation appeared at the heterozygous 
state on the electropherogram, indicating a comparable 
expression of both alleles in the muscle sample and rul-
ing out a major impact of the mutation on splicing and 
mRNA stability.

Discussion
Here we report the identification of a recurrent RYR1 
missense mutation in thirteen patients from nine unre-
lated families with atypical congenital myopathy asso-
ciated with a benign disease course. The c.12083C>T 
(p.Ser4028Leu) mutation was previously classified as 
VUS, and the present study provides clinical, histological, 
and genetic data supporting its pathogenicity.

Potential pathologic impact of the identified RYR1 
mutation
The ryanodine receptor RyR1 is an intracellular  Ca2+ 
channel mediating skeletal muscle contraction through 
the rapid release of  Ca2+ from the sarcoplasmic reticu-
lum to the cytosol [35]. It is composed of more than 5000 
amino acids forming a multitude of specialized domains 
and acting in a highly concerted fashion to enable the 
transition from open to closed conformation [11, 37]. 
The central domain encompasses amino acids 3668 to 
4251 and serves as a relay station between the cytoplas-
mic and transmembrane parts to coordinate channel 

gating [2]. On the resolved protein structure, the Ser4028 
residue resides in the first section of the central domain 
and locates in proximity to the EF-hand motif, implicated 
in  Ca2+-dependent regulation of the RyR1 complex [4]. 
The central domain furthermore constitutes a docking 
station for diverse allosteric regulators including pro-
teins and small molecules [2]. It is therefore conceivable 
that the p.Ser4028Leu amino acid substitution directly or 
indirectly modifies  Ca2+ sensing or the interaction with 
RyR1 agonists or antagonists, and thereby interferes with 
proper channel activity. The differential expression of 
specific allosteric proteins during muscle development 
and maintenance may correlate with the disease course in 
our patients, and provides a potential explanation for the 
amelioration of the muscle phenotype with age.

Mutations affecting the RyR1 central domain
To date, almost 700 RYR1 mutations have been docu-
mented and associated with a heterogenous spectrum of 
human disorders with autosomal dominant or autoso-
mal recessive inheritance [34]. As a general rule, central 
core disease (CCD) is mainly caused by heterozygous 
missense mutations often affecting amino acids in the 
C-terminal pore-forming domain of RyR1, while the less 
common and phenotypically overlapping multi-minicore 
disease (MmD), centronuclear myopathy (CNM), and 
congenital fiber type disproportion (CFTD) arise from 
recessive missense, splice, and truncating mutations dis-
persed over the entire gene, and usually involve an earlier 
disease onset and more severe clinical features compared 
with CCD [32].

The LOVD database (https:// datab ases. lovd. nl/ shared/ 
varia nts/ RYR1/ unique) lists 101 variants within or 
adjacent to RYR1 exons 75 to 91, encoding the central 
domain. These variants encompass missense, nonsense, 
splice, and synonymous single nucleotide substitu-
tions as well as smaller insertions and deletions, and are 
either classified as pathogenic, benign, or of uncertain 
significance (VUS). From the 32 heterozygous VUS and 
pathogenic variants, distinct medical information is only 
provided for eleven patients, including ten with suspi-
cion of malignant hyperthermia (p.Val3840Ile [17, 31], 
p.Arg3903Gln [13], p.Ile3916Met [27], p.Gly3938Asp 
[22], p.Trp3985Arg [21], p.Asp3986Glu [31], 

(See figure on next page.)
Fig. 1 Unspecific histological findings on muscle biopsies. A Histological and ultrastructural investigations on muscle sections revealed 
inconsistent and unspecific findings including fiber size variability on H&E (families 1 and 7), mitochondrial mispositioning on Gomori trichrome and 
NADH‑TR (white arrows, families 1 and 7), atrophy of dark type I fibers on NADH‑TR (family 1), predominance of type I fibers on NADH‑TR and ATPase 
(family 6), as well as crystalloid inclusions within mitochondria (white arrow and zoom, family 1) and lipid droplets on EM (yellow arrows, families 1 
and 4). Sarcomeric disarray and Z‑band streaming were not observed. B Pedigrees of the nine families and exemplary electropherograms of healthy 
and affected individuals indicating the position of the RYR1 mutation. WT indicates molecular tested healthy individuals, and grey symbols depict 
reportedly affected individuals without genetic test. C Skeletal muscle cDNA sequence of the index patient from family 8 encompassing RYR1 exons 
88 and 89 and excluding a major effect of the mutation on splicing

https://gnomad.broadinstitute.org/
https://databases.lovd.nl/shared/variants/RYR1/unique
https://databases.lovd.nl/shared/variants/RYR1/unique
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p.Thr4081Met [17], p.Arg4136Ser [14], p.Ala4185Thr 
[22], p.Val4234Leu [13, 14]) and a single patient with 
muscle weakness and histopathological features of CNM 
on the biopsy (p.Ser4112Leu [20]). The p.Ser4028Leu 
missense mutation has been reported in individual con-
genital myopathy patients from the Czech Republic 
[33] and China [7], and in accordance with the patients 
described in the present study, histological investigations 
on the muscle biopsy from the Chinese patient disclosed 
nonspecific findings. Taken together, heterozygous mis-
sense mutations affecting the RyR1 central domain have 
primarily been associated with suspicion of malignant 
hyperthermia, suggesting that p.Ser4028Leu patients 
may be at risk for MHS. This is supported by the MHS 
episode in patient 4 from family 2. Noteworthy, variants 
in RYR1 exon 88 involving an amino acid change are rare 
and do not occur at the homozygous state in the healthy 
population (https:// gnomad. broad insti tute. org/), indicat-
ing that the encoded section of the RyR1 central domain 
is particularly intolerant for genetic modifications.

Concluding remarks
The pathogenicity of the c.12083C>T (p.Ser4028Leu) 
mutation is supported by several lines of evidence. It seg-
regates with the disease in families with dominant dis-
ease transmission, and occurs de novo in sporadic cases. 
All affected individuals presented with early disease 
onset and benign progression, and the muscle biopsies 
displayed a variable picture with unspecific histological 
signs. Although all nine described families are French, 
family 1 is of Italian and family 2 of Cambodian origin. A 
potential impact of the common genetic and ethnic back-
ground on the unusual disease presentation can therefore 
be excluded. This is further sustained by the description 
of an additional patient from China carrying the same 
mutation [7], and points to a specific mutational effect 
of the p.Ser4028Leu mutation on RyR1 function. Overall, 
our findings provide important insights into the patho-
genicity of the RyR1 p.Ser4028Leu mutation previously 
classified as VUS, and improves the genetic diagnosis for 
affected patients and families. RYR1 should also be con-
sidered in dominant and sporadic congenital myopathy 
patients without evocative cores or central nuclei on the 
muscle biopsy, especially if the patient manifests neonatal 
or infancy-onset hypotonia improving over time.
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