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ARTS AND MATHEMATICS: KNOTS AND LINKS

CHRISTIAN MERCAT AND MICHÈLE ARTIGUE

Friezes and tilings frequently accompany the teaching of isometries. The objects
that we will consider in this vignette, like the one in Figure 1 are not far from them.
However, their understanding involves others mathematics: topology and theory of
graphs, which are more recent than geometry. They constitute a fabulous subject to
make you feel and experience the power of mathematics, its delicacy and rigor.

Knots and links have been used in many civilizations as tools and ornaments,
from Celtic epic sculptures to Persian illuminations of the Koran (Figure 2).

They appear in the lives of fishermen and basket makers, and when we lace our
shoes or braid our hair. They are extremely diverse and mathematics can help to or-
der this diversity, by questioning what brings together or differentiates these shapes.
This study is part of topology and in particular its branch that is knot theory.

FIGURE 1. A braid with four ribbons forming a frieze.

FIGURE 2. The Derrynaflan ring from the 8th century, ©National
Museum of Ireland, Dublin and a carpet page at the end of an illu-
minated Koran from the 14th century, Spain, BnF.
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http://expositions.bnf.fr/islam/grand/ar_385_129v-130.htm
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FIGURE 3. Extracts from TAIT’s classification

1. KNOT THEORY

A knot is defined mathematically as an embedding of the circle in space. Prac-
tically, imagine a piece of string that we twist without cutting it, and retie the two
ends. A link, on the other hand, is an assembly of several knots, several pieces of
string. The illustration at the beginning of this vignette, for example, interlaces blue,
red, yellow and green ribbons that pass over and under each other alternatively, it’s
a braid. The theory of knots began to develop in the second half of the 19th century
and its source is not strictly speaking mathematical. Physicists William THOMSON,
better known as Lord KELVIN, and Peter Guthrie TAIT were among the first to con-
tribute. They thought it would help them understand the phenomena of absorption
and emission of light by atoms. And it lead TAIT to undertake a classification of knots
(Figure 3).

FIGURE

4. Trefoil

It is difficult to recognize that two knots are in the same
class, i.e. that one can pass from one to the other by a contin-
uous deformation, like when trying to untangle a string tied
at its ends, without unraveling it, nor cutting it. See for ex-
ample these different images of the same trefoil knot (Figure
4), which is the simplest node that is not trivial (i.e. which
cannot be reduced to a circle).

This is why knot theory seeks to associate knots with
quantities that these continuous deformations do not mod-
ify: invariants. For example, the polynomial of ALEXANDER is
an invariant which associates a polynomial with integer coefficients to each type of
knot. It was discovered by James Wadell ALEXANDER in 1923 and is the first invariant
of this type. The ALEXANDER’s polynomial of the trefoil knot, for example, is: t 2 − t+
1. But first let’s learn how to draw a link. We We will then come back to this question
of invariants.
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2. LINKS, KNOTS AND GRAPHS

A link (or a braid if it is open) is a knot with several components. It is generally
represented by its regular projection in a plane: Its threads are drawn crossing trans-
versely and at most two by two: there are not three points of the node which are
projected on the same point of the plane, the strands at the crossings have different
projected directions and the crosses are finite in number. To describe the object that
results from these different crossings and its structure is not obvious.

FIGURE

5. Coloring

This abstract model neglects a certain number of param-
eters such as the color of the strands and their thickness. It
is a planar graph: with vertices connected by edges, not nec-
essarily rectilinear, which do not intersect and we will label
them with a left / right chirality.

A regular projection of a link partitions the plane in dif-
ferent zones, delimited by the projection of the link himself.
Where there are crossings, locally four zones meet. We can,
according to the JORDAN’s theorem1, color all areas in two
colors, say black and white, of such that these crosses resem-
ble a chessboard (two opposite zones have the same color
and two contiguous zones have a different color).

It suffices to decide that the infinite exterior zone is white,
to choose a point inside and connect each zone by a path
which crosses transversely the projection of the interlacing

and avoids crossings (Figure 5).
Each time you go through a thread, you change color. We show that the result does

not depend on the chosen starting point, nor on the detail of the path followed and
that we always end up with a consistent coloring. The coloring indeed depends only
on the parity of the number of strands crossed. We associate a vertex with each black
zone and we connect them by an edge, drawn above each crossing, from a black area
to its opposite. We then attach the corresponding label to encode whether it is the
right strand or the strand left which, seen from a vertex, passes above. The coding is
consistent: the opposite zone gives the same chirality (Figure 6).

The trefoil knot is thus associated with a triangle where all edges have the same
chirality, say left: it is an alternating link: when you follow a strand, it crosses alter-
nately above, below, above ... But this is not the only graph which codes this knot,
there is also a graph with two vertices and three edges. They are not straight but
curved and labeled right! (Figure 7).

These two graphs are what are called dual graphs. This coding by a planar graph
allows the interlacing to be completely coded and it is much easier to describe. The

1JORDAN’s theorem expresses that any simple and closed curve of the plane delimits two connected
components of the plane, one limited, the other not.
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FIGURE 6. A left edge FIGURE 7. Two
dual graphs of the
trefoil knot

complicated braid is in fact encoded by a graph that can be explained in one sen-
tence, for example, “a triangular ladder from which a rung is removed every three”
(Figure 8).

FIGURE 8. A triangular ladder missing one rung every three en-
codes the braid.

These graphs are evocative and Alexander GROTHENDIECK named children’s draw-
ings a large class of (locally) planar graphs. After this phase of analysis, let’s proceed
to the synthesis: draw the interlacing encoded by a graph. This is done in three steps
shown from right to left in Figure 8:

(1) Draw a cross in the middle of each edge. Any cross is in the middle of an
edge.

(2) Connect the strands to each other in a continuous path.
(3) Decide the above/below.

In detail, a cross is drawn in pencil, inclined between 30 and 60° with the edge. This
orientation is important for the next stage because we continue each small strand
along the ridge in the direction where it points. We thus arrive at the next crossing
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FIGURE 9. The metaphor of the labyrinth: edges are walls, the
crossings are doors.

Finally, choosing a crossing, by aligning the edge that carries it with one’s gaze,
identify which of the two strands comes from the right and which comes from the
left. It allows you to replace the crossing by a "bridge" with a strand (say the left)
passing above and the other (the right) below. We invite you now, before reading the
rest, to draw up a small graph, of 5 or 6 edges, all of comparable lengths, angles not
too sharp not too obtuse, and to develop the node that it encodes, it suffices for this
to play with planar graphs. The video http://video.math.cnrs.fr/entrelacs/
and the examples in [4, 5] can give you ideas.

3. INVARIANTS

The first to take a serious interest in invariants is the young Carl Friedrich GAUSS

at the beginning of the 19th century, describing the interlacing of two curves, γ1,γ2,
in space, calculated as an impressive though integer valued integral,

1

4π

∮
γ1

∮
γ2

~r1 −~r2

|~r1 −~r2|3
· (d~r1 ×d~r2)

and we connect to the strand that points in that direction. At this stage, we do 
not introduce any new crossing and the strands do not cross the eddges except at 
crossings. A useful metaphor: imagine the edges like the walls of a labyrinth, which 
we follow and which we cannot cross, except at crossroads, where a door appears 
(Figure 9).

 This number is not calculated here from the projection of the interlacing but re- 
mains the same when we deform the curves without intersecting. It seems under- 
standable if we are convinced that the result is an integer: the formula depends con- 
tinuously on each curve and can only jump one unit when there is a problem: when 
the denominator vanishes, that is, when both curves intersect. But we can calculate 
it much more easily using a projection, by orienting the strands and simply summing 
signs for each crossing between the two curves: +1 for and -1 for . When there 
is only one curve, this combinatorial sum defines a number, that we call the writhe 
w(K ) of the projection of the node K . The right trefoil knot thus has a +3 writhe. But

http://video.math.cnrs.fr/entrelacs/
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what becomes of w(K ) when incidents alter the projection? There are three types
of complications which can occur in the projection of a knot. Let’s look locally in a
small disc, the rest of the interlacing remaining the same (Figure 10):

FIGURE 10. The three REIDEMEISTER moves.

In the twenties, BRIGGS and REIDEMEISTER demonstrated that the only simplifi-
cations we needed to go from one particular projection to any other were described
by these three movements. To have a knot invariant is therefore to have a function
whose value is not modified by these moves. But we quickly see that, whatever the
strand orientations, if transformations II and III do not modify the writhe, the first
one modifies it! The number w(K ) is therefore not a knot invariant!

However we can fix these problems and get real invariants. They are not simple
numbers, but a collection of numbers, coefficients of polynomials in one or two vari-
ables.

The heroes of this part of the story are James Waddell ALEXANDER in 1923, John
Horton CONWAY in 1969, Vaughan JONES in 1984 and Louis KAUFFMAN in 1987. They
discovered, and others after them, by means touching algebra or mathematical physics,
ways of building complex links functions as combinations of the same function but
on simpler links: these are the skein relations. Among these functions, some are in-
variants. There are different versions on the same theme. In the same way as for the
movements of REIDEMEISTER, we modify locally a link inside a small ball, leaving the
rest unchanged.

KAUFFMAN’s bracket < K > is defined by

• its value <O >= 1 on the trivial knot,
• its value with an extra unknot < K ∪O >= (−a2 −a−2) < K > and
• the skein relation < >= a < >+a−1 < > .

It suffers from the same problem as the writhe: the trivial knot’s bracket with writhe
−1 is < >= a < > +a−1 < >= a + a−1(−a2 − a−2) = a − a − a−3 = −a−3 6= 1!
And every time we writhe, we multiply the result by that factor. Therefore, when we
multiply by (−a)3w(K ), we get a true invariant! In the frame below, we calculate the
KAUFFMAN’s bracket of the standard trefoil knot of writhe −3.

The crossings that are to be split are indicated as yellow discs.

< >= a < > +a−1 < > where the first knot is the trivial twist knot of writhe
2 while the last is a link with two simple knotted components which is called the HOPF

link. It fulfills < >=< >= a < >+a−1 < >= a < >+a−1 < >= a(−a3)+
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a−1(−a−3) =−a4−a−4 that we replace above to yield< >= a(−a3)2+a−1(−a4−a−4) =
a7−a3−a−5. We could also have applied three times the skein relations without thinking
to obtain 23 = 8 terms. As the left trefoil has a twist of −3, the associated invariant is
therefore (−a)9(a7−a3−a−5) =−a16+a12+a4. We can show that it is always a LAURENT

polynomial (we allow negative degrees) of degrees multiple of 4 and by this change of
variable t = a−4, we obtain the JONES polynomial of 1984.

REIDEMEISTER moves and skein movements are also expressed on the graphs which
code them (Figure 11 drawing in solid left edges, and in dashed right edges).

FIGURE 11. REIDEMEISTER’s moves on the graph.

On the graph, the skein relations amount to erasing the edge or fusing the vertices,
which can be noted by crossing out the edge, respectively across or along.To the skein
relation < >= a < > +a−1 < > corresponds < > = a< >+ a−1< >,
each type of wall bringing a factor a or a−1. In applying the relation on all the edges
we end up with a disjoint union of trivial knots. Thus, the computation of KAUFF-
MAN’s bracket of the trefoil can also be written:

< > = a< >+ a−1< > and iterating, it yields = a(< >+< >+
< >)+a3< >+a−1(< >+< >+< >)+A−3< >= 3a <O >+a3 <
OO > +3a−1 < OO > +a−3 < OOO >= 3a + (a3 +3a−1)(−a2 − a−2)+ a−3(−a2 −
a−2)2 = 3a − (a5 +a +3a +3a−3)+a +2a−3 +a−7 =−a5 −a−3 +a−7. It is actually
the KAUFFMAN’s bracket of the mirror trefoil.

This sum on all the possible contributions of local configurations is called a
partition function in statistical mechanics.

The HOMFLY-PT2 polynomial of a knot K is a little more elaborate, it requires that
we orient the knot and needs two variables; P (x, y)(K ) is thus defined by: P (O) = 1
and the skein relation xP ( )− yP ( ) = P ( ). It has the big advantage of being
compatible with the COMPOSITION of knots: the sum K1]K2 of two knots is obtained

2Standing for HOSTE, OCNEANU, MILLET, FREYD, LICKORISH, YETTER and PRZYTYCKI, TRACZYK.
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simply by opening them and gluing them back together. The polynomial of K1]K2

then satisfies P (x, y)(K1]K2) = P (x, y)(K1)×P (x, y)(K2). Just as any integer can be de-
composed as factors of prime numbers (12 = 22 ×3), knots can uniquely decompose
into prime knots. It was the chemical intution of KELVIN and TAIT. Figure 12 lists le
first prime knots with up to seven crossings;

FIGURE 12. The table of prime knots up to 7 crossings.

4. CONCLUSION

Interlacing first appeared in mankind as a technical tool then manifestations of
his artistic creativity and this wasn’t until many centuries after that they became ob-
jects attention for scientists, physicists and mathematicians. The development of the
topology and its own tools made it possible to progress in the understanding of these
objects, to identify invariants. However, many issues remain open and the research
is very active there. Very recently, in 2020, for example, a conjecture concerning a fas-
cinating knot (Figure 13) discovered by John CONWAY 50 years ago, has been proved
by the mathematician Lisa PICCIRILLO: she proves that this knot, which possesses
the same ALEXANDER-CONWAY’s polynomial as the unknot, is not a slice knot[7].

Certainly the initial hopes of THOMPSON and TAITS were betrayed because the as-
sumptions on which they were based were proved to be wrong, but work on knots
and braids has now various applications, in biology as one would expect, but also
in robotics for example. Topology is not an object of secondary education and this
is also not the case for graphs for many students, but the various experiments that
were carried out on drawing knots in elementary school, proved to be very motivat-
ing and enriching for the students, allowing them to unexpectedly put mathematics
to their service when gazing on the world and artistic creations. The entrelacs.net
site bears witness to this. For the teacher’s perspective, gaining insight into the un-
derlying mathematics is as well important and that’s the subject of this vignette.

http://entrelacs.net
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FIGURE 13. The CONWAY knot on the door of the Cambridge Math-
ematics Department (CC By SA Atoll).
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