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I first met Claude at the seminar on contact and symplectic geometry organised from 1982 on by Daniel Bennequin at the École normale supérieure. It was much oriented towards the beautiful conjectures V.I. Arnold had stated in the mid-sixties, inspired by Poincaré's "last geometric theorem." What made the seminar seminal 1 is that its beginning coincided with the first breakthrough in that direction: at the end of 1982, Charles Conley and Eduard Zehnder proved [START_REF] Conley | The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol[END_REF] the conjecture on fixed points of Hamiltonian transformations of the standard symplectic 2n-torus stated in [2, Appendix 9]. 2 It so happened that, the summer before, I had thought about this conjecture, seen how to deduce it from another statement about exact Lagrangian isotopies of the zero section in T * T n and proved a symplectic isotopy extension lemma [START_REF] Chaperon | Quelques questions de géométrie symplectique [d'après, entre autres[END_REF] implying that such an isotopy extends to a compactly supported Hamiltonian isotopy of the ambient space. Almost immediately after reading the preprint of [START_REF] Conley | The Birkhoff-Lewis fixed point theorem and a conjecture of V. I. Arnol[END_REF], I adapted the Conley-Zehnder proof to get [START_REF] Chaperon | Quelques questions de géométrie symplectique [d'après, entre autres[END_REF] the more general statement, of which I had just learned that a slightly less precise form had also been conjectured by Arnold [START_REF] Arnold | Sur une propriété topologique des applications globalement canoniques de la mécanique classique[END_REF][START_REF] Avez | Problèmes ergodiques de la mécanique classique[END_REF]Appendice 33].

The two weeks spent on the proof of this Arnold conjecture brought me more recognition than the two years of very hard work on my 1980 thèse d' État [START_REF]Géométrie différentielle et singularités de systèmes dynamiques[END_REF][START_REF]C k -conjugacy of holomorphic flows near a singularity[END_REF][START_REF]A forgotten theorem on Z k ×R m -action germs and related questions[END_REF]: soon after the Bourbaki seminar [START_REF] Chaperon | Quelques questions de géométrie symplectique [d'après, entre autres[END_REF], I lectured on the Arnold conjectures in Marseille-Luminy and published with Edi Zehnder an expanded version [17] of these lectures. Having felt ill at ease when teaching the fact (established by Amann and Zehnder) that the non C 2 infinite dimensional action functional, once reduced to finite dimensions, is as smooth as the Hamiltonian of the isotopy, I found it urgent to design a purely finite dimensional proof of "my" Arnold conjecture; this again took me two weeks [START_REF]Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF][START_REF]An elementary proof of the Conley-Zehnder theorem in symplectic geometry[END_REF] and brought me much more recognition.

François Laudenbach liked this new proof; he had an extremely bright (and nice) student of his, Jean-Claude Sikorav, work on its generalisations and consequences. Jean-Claude first proved with François [START_REF] Laudenbach | Persistance d'intersection avec la section nulle au cours d'une isotopie hamiltonienne dans un fibré cotangent[END_REF] what had been the true aim of [START_REF]Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF][START_REF]An elementary proof of the Conley-Zehnder theorem in symplectic geometry[END_REF], namely, the extension of my result from the cotangent bundle of the torus to that of an arbitrary closed manifold. 3 He then noticed that formula [START_REF]Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF] in [START_REF]Une idée du type "géodésiques brisées" pour les systèmes hamiltoniens[END_REF] means that my discretised action is a generating phase for the deformed Lagrangian submanifold, and extended this to arbitrary closed manifolds [START_REF]Sur les immersions lagrangiennes dans un fibré cotangent[END_REF]. In [START_REF]Problèmes d'intersections et de points fixes en géométrie hamiltonienne[END_REF], he generalised the result to Lagrangian immersions and gave an easy proof of the Arnold conjecture on fixed points in situations including surfaces, first obtained more painfully in [START_REF] Sikorav | Points fixes d'une application symplectique homologue l'identité[END_REF].

At about the same time, the 25 years old Claude, who had been the student of Laudenbach and Ekeland, solved [START_REF] Viterbo | A proof of Weinstein's conjecture in R 2n[END_REF] a big problem: the Weinstein conjecture in R 2n . Oddly enough, he did not use Jean Claude's generating phases, with which he would soon do wonders [START_REF]Symplectic topology as the geometry of generating functions[END_REF].

The last of my favourite Arnold conjectures had been proved [START_REF] Gromov | Pseudo holomorphic curves in symplectic manifolds[END_REF] via holomorphic disks, and Floer theory 4 had taken off [START_REF] Floer | Morse theory for Lagrangian intersections[END_REF], leaving me with my fear of flying. My belief that some room was left for earthlier methods 5 now rested mostly on Claude's shoulders. He did not disappoint me.

Subharmonic bifurcations in real or complex dimension one

We first recall the simplest case of the most basic fact.

The period doubling bifurcation

Let h : (u, x) → h u (x) be a C k local map (R 2 , 0) → (R, 0), k ≥ 2, such that the derivative h 0 (0) = ∂ x h(0, 0) equals -1.
The fixed point 0 of h 0 is robust, meaning that every h u with u small enough has a fixed point ϕ(u) nearby, depending C k on the parameter u: Proposition 1.1. The fixed points of the unfolding h : (u, x) → u, h u (x) form near 0 the graph of a C k function ϕ : (R, 0) → (R, 0).

Proof. This follows from the implicit function theorem applied to the C k equation F (u, x) := x-h(u, x) = 0, as F (0, 0) = 0 and ∂ x F (0, 0) = 2 = 0.

Of course 0 is a 2-periodic point of h 0 , i.e., a fixed point of h 2 0 := h 0 • h 0 .

3 A little sooner, Helmut Hofer had done this [START_REF] Hofer | Lagrangian embeddings and critical point theory[END_REF] in an infinite dimensional framework. Whatever its proof, I thought the result would be more central than it turned out to be. 4 Whose idea owes as much to Charlie Conley as to Edi Zehnder, see the foreword of [START_REF]On generating families[END_REF]. 5 A similar belief is at the origin of the present article.

Proposition 1.2. Assume that α(u) := h u ϕ(u) satisfies α (0) = 0.Then, near 0, the 2-periodic points of h (solutions of h 2 u (x) = x) form the union of two curves intersecting transversally at 0: of course graph ϕ, and a C k-1 curve W of which h| W is an involution, implying that T 0 W is the x-axis.

Proof. Conjugating h by the local diffeomorphism (u, x) → u, x -ϕ(u) , we may assume ϕ = 0-the new h u (0) is the old h u ϕ(u) . By Taylor's formula, h u (x) = xg u (x) near 0, where g u (x) = 1 0 h u (tx) dt, hence g u (0) = α(u) and therefore g 0 (0) = -1; the map g :

(u, x) → g u (x) is C k-1 and the equation h 2 u (x) = x writes xg u (x)g u h u (x) = x, which means x = 0 (the fixed points) or G(u, x) := g u (x)g u h u (x) -1 = 0. As G(0, 0) = 0 and ∂ u G(0, 0) = d du u=0 g u (0) 2 = -2α (0) = 0, there exist open neighbourhoods U, V of 0 in R such that the zeros of G| U ×V form the "graph" W = {u = ψ(x)} of a C k-1 implicit function ψ : V → U .
The map h is by definition an involution of its set of 2-periodic points, of which

W \{0} is an open subset, which becomes h-invariant if W is replaced by W ∩ h(W ) (this means restricting conveniently the open subset V ). Invariance writes ψ(x) = ψ h ψ(x) (x) , hence ψ (0) = lim x→0 ψ h ψ(x) (x) -ψ(x) h ψ(x) (x) -x = 0 since the only fixed point of h lying in W is 0; thus, T 0 W is the x-axis.
Examples. The curve W can have various positions with respect to T 0 W :

• If h u (x) = α(u)
x, where α : (R, 0) → (R, -1) is a C k function with ±α (0) > 0, then W is the x-axis; the fixed point 0 of h u is attracting for ±u < 0, repulsing for ±u > 0, and this cannot be called a bifurcation.

• If h u (x) = -(1 + u -x 2 )
x, then the fixed point 0 of h u is attracting for u < 0, repulsing for u > 0, and W is the parabola u = x 2 ; for u > 0, the attracting 2-periodic orbit {-√ u, √ u}, born for u = 0, takes the place of 0 as an attractor of h u , a genuine bifurcation.

• If h u (x) = -(1 + u + x 2 )
x then, for u < 0, the repulsing 2-periodic orbit {-√ -u, √ -u} gradually "throttles" the attracting fixed point 0, so that for u ≥ 0 no attractor of h u persists near 0, a true catastrophe.

The generic situations look like the last two examples (Figure 1). 1.2. Subharmonic bifurcations, holomorphic case Proposition 1.3. Let h : (u, z) → h u (z) be a local map (C 2 , 0) → (C, 0), holomorphic and such that h 0 (0) = ∂ z h(0, 0) is a q th root of unity ρ = e 2πi p q , 0 < p < q. Then:

i) The fixed points of the unfolding h : (u, z) → u, h u (z) form near 0 the graph of a holomorphic function ϕ : (C, 0) → (C, 0). ii) Assume that α(u) := h u ϕ(u) satisfies α (0) = 0. Then, near 0, the qperiodic points of h (solutions (u, z) of the equation h q u (z) = z) form the union of two holomorphic curves intersecting transversally at 0: the fixed point set graph ϕ and a curve W on which h induces a Z/qZ-action. iii) When ρ is a primitive q th root of unity, the curve W and the z-plane are tangent to order q -1 at 0.

Proof. i) As h 0 (0) = ρ = 1, just apply the holomorphic implicit function theorem to the equation z -h(u, z) = 0. ii) As in the proof of Proposition 1.2, one can assume ϕ = 0, hence h u (z) = z g(u, z) with g holomorphic this time and g(u, 0) = α(u). The equation

h q u (z) = z writes zg u (z)g u h u (z) • • • g u h q-1 u (z) = z, which means either z = 0 (the fixed points) or G(u, z) := g u (z)g u h u (z) • • • g u h q-1 u (z) -1 = 0.
As G(u, 0) = α(u) q -1 and α(0) = ρ, one has ∂ u G(0) = qρ q-1 α (0) = 0 and G(0) = 0, hence there exist open neighbourhoods U, V of 0 in C such that the zeros of G| U ×V form the "graph" W = {u = ψ(z)} of a holomorphic implicit function ψ : V → U . The map h induces by definition an action of Z/qZ on its set of qperiodic points, of which

W \ {0} is an open subset, that becomes h-invariant if W is replaced by W ∩ h-1 (W ) ∩ • • • ∩ h1-q (W
) (as before, this means restricting conveniently the open subset V ). Invariance writes ψ(z) = ψ h ψ(z), z .

(

iii) Still assuming ϕ = 0, if we derivate (1.1), we get

ψ (z) = ψ h ψ(z), z ∂ 1 h ψ(z), z ψ (z) + h ψ(z) (z) .
For z = 0, as the identity h(u, 0) = 0 implies that ∂ 1 h(u, 0) = 0, this reads ψ (0) = ψ (0) h 0 (0), that is, (ρ -1)ψ (0) = 0, hence ψ (0) = 0, which proves our result if q = 2. Otherwise assuming inductively that ψ vanishes to order k -1 at 0 for some k ∈ {2, . . . , q -1} and derivating k times (1.1) at 0, the Faà di Bruno formula and the identity ∂ 1 h(u, 0) = 0 yield

ψ (k) (0) = ψ (k) (0) h 0 (0) k , that is, (ρ k -1) ψ (k) (0) = 0, hence ψ (k) (0) = 0 as ρ is a primitive q th root of unity. Examples. If h u (z) = α(u)z, where α : (C, 0) → (C, ρ) is a holomorphic function such that α (0) = 0, then W is the z-plane. If h u (z) = (ρ + u -z q )z, then W is the curve u = z q . 1.3. Opening Pandora's box Under the hypotheses of Proposition 1.3 ii)-iii), α is a holomorphic local diffeomorphism (C, 0) → (C, ρ).
Viewing it as a local parameter change and performing the variable changes in the proof of Proposition 1.3, the following hypotheses are verified with u 0 = ρ:

Hypotheses. Given u 0 ∈ S 1 , set ũ0 := (u 0 , 0) ∈ C 2 and let h : (u, z) → h u (z) be a holomorphic local map (C 2 , ũ0 ) → (C, 0) such that h u (0) = 0 and h u (0) = u. Proposition 1.

now reads as follows:

Proposition 1.4. If u 0 = e 2πi p q , 0 < p < q, gcd(p, q) = 1, then the q-periodic points of h near ũ0 form the union of {z = 0} and the h-invariant "graph" W p/q = {u = ψ p/q (z)} of a holomorphic ψ p/q : (C, 0) → (C, u 0 ) such that ψ p/q (j) (0) = 0 for 1 ≤ j < q. The function ψ := ψ p/q verifies (1.1), and h generates a Z/qZ-action on

W p/q , namely m, ψ(z), z -→ hm ψ(z), z = ψ(z), h ψ(z) m (z) , induced by the Z/qZ-action (m, z) → h ψ p/q (z) m (z) on Dom ψ p/q .
When u 0 is not a root of unity, the following result can apply to f = h u0 :

Theorem 1.5 (Brjuno [5], Yoccoz [START_REF] Yoccoz | Petits diviseurs en dimension 1[END_REF]). If u 0 = e 2πiω with ω ∈ [0, 1] \ Q, the following two conditions are equivalent: i) ω is a Brjuno number, meaning that the convergents pn qn of its continued fraction expansion verify

log qn+1 qn < ∞. ii) Every holomorphic germ f : (C, 0) → (C, 0) such that f (0) = u 0 is holomorphically linearisable.
Notes. The implication i)⇒ii) is Brjuno's. In 1942, Siegel [START_REF] Siegel | Iteration of analytic functions[END_REF] had proved ii) under the stronger condition sup log qn+1 log qn < ∞. This already defines a full measure set of numbers u 0 ∈ S 1 , but Theorem 1.5 provides the optimal set. Back to families, in the trivial case h u (z) = uz, every h u is linear(isable). However, in general, h u0 is linearisable if u 0 = e 2πiω with ω Brjuno.

In that case, linearisability means that there exists a holomorphic local coordinate (conjugacy)

Z ω : (C, 0) → (C, 0) such that Z ω • h u0 = u 0 Z ω ; as the rotation z → u 0 z preserves each circle S r = {|z| = r}, every closed curve C r = Z -1
ω (S r ) with r > 0 small enough is h u0 -invariant and, of course, Z ω | Cr conjugates h u0 | Cr to the rotation z → e 2πiω z restricted to S r . Question 1.6. Is this the limit of what happens near u = e 2πipn/qn ? Do the holomorphic functions ψ pn/qn tend to the constant ψ ω = u 0 = e 2πiω in some uniform neighbourhood of 0 and, for z ∈ C close to 0, do the periodic orbits

ψ pn/qn (z), h ψ pn /qn(z) k (z) : 0 ≤ k < q n of h tend to the closed h-invariant curve {u 0 } × C r such that z ∈ C r ?
More precisely, does the (holomorphic) standard linearisation 6

Z pn/qn (z) = 1 q n qn-1 k=0 e -2πikpn/qn h ψ pn /qn (z) k (z) of the Z/q n Z-action (m, z) → h ψ pn /qn (z) m (z) tend to Z ω when n → ∞?
Notes. If h u (z) = uz, the answer is trivially positive even when ω is not Brjuno. The question is whether this holds for arbitrary families h. My hope would be to deduce the Siegel-Brjuno theorem from the uniform convergence of ψ pn/qn and maybe Z pn/qn in a uniform neighbourhood of 0, at least for some well-chosen family h. One should get invariant fractals at the limit when ω is not Brjuno, as in [START_REF]Bifurcations de points fixes elliptiques, II. Orbites périodiques et ensembles de Cantor invariants[END_REF] -the Pérez-Marco hedgehogs [START_REF] Pérez-Marco | Fixed points and circle maps[END_REF], independent of any arithmetic conditions apart from ω being irrational, might be obtained by this method.

Subharmonic bifurcations, Arnold tongues and KAM circles

Here, smooth means real analytic or C ∞ .

Subharmonic bifurcations in real dimension two

Let h : (u, z) → h u (z) be a smooth local map (R 2 × R 2 , 0) → (R 2 , 0
) such that the eigenvalues of the derivative Dh 0 (0) = ∂ z h(0, 0) are primitive q th roots of unity ρ = e 2πi p q , ρ = e -2πi p q , 1 ≤ p < q, q ≥ 3.

Proposition 2.1.

i) The fixed points of the unfolding h : (u, z) → u, h u (z) form near 0 the graph of a smooth function ϕ : (R 2 , 0) → (R 2 , 0). ii) There is a smooth local function α : (R 2 , 0) → (C, ρ) such that the eigenvalues of Dh u ϕ(u) are α(u), α(u). iii) If Dα(0) : R 2 → C is bijective then, near 0, the q-periodic points of h form the union of two surfaces intersecting transversally at 0: of course graph ϕ, plus a C q-3 surface W on which h| W induces a Z/qZ-action.

Proof. i) follows from the implicit mapping theorem applied to the smooth equation

F (u, z) := z -h(u, z) = 0, as ∂ z F (0, 0) : R 2 → R 2 is invertible.
ii) follows from the formula for the eigenvalues of a real 2 × 2 matrix with no real eigenvalue.

iii) We may assume ϕ = 0, and the new Dh u (0) is the old Dh u ϕ(u) .

Lemma 2.2. a) An R-linear change of variables J(u) : R 2 → C, depending smoothly on u, yields h : (R 2 × C, 0) → (C, 0) and Dh u (0)z = α(u)z. b) Modulo a change of variables, polynomial of degree q -1 with respect to z, z, whose coefficients are smooth functions of u, the Taylor polynomial Q u of h u to order q -1 at 0 for small u is of the form

Q u (z) = z α(u) + [ q-1 2 ] k=1 b k (u)|z| 2k + β(u)z q-1 .
6 The other holomorphic local linearisations Z satisfy Z • Z -1 pn/qn (z) = za(z qn ), a(0) = 0.

Proof of the lemma. a) The isomorphism J(u) ∈ L(R 2 , C) is an eigenvector of Dh u (0) T : λ → λ • Dh u (0) associated to the eigenvalue α(u). Under the condition, e.g., J(u)(1, 0) = 1, it is unique and depends smoothly on u. b) By normal form theory or direct computation, one can assume that Q u (z) -α(u)z is a C-linear combination (depending smoothly on u) of monomials z j zk with 1 < j + k ≤ q -1 and u j 0 ūk 0 = u 0 , that is, e 2πi(j-k-1)p/q = 1, which writes (j -k -1)p = q with ∈ Z. As gcd(p, q) = 1, one has = mp, m ∈ Z, hence j -k -1 = mq and either m = 0, hence z j zk = z|z| 2k , or m = -1 and j = 0, yielding z j zk = zq-1 . By Taylor's formula,

h u (z) = Q u (z) + q j=0 z j zq-j 1 0 (1 -t) q-1 (q -1)! q j ∂ j z ∂ q-j z h u (tz)dt = z a(u, z) + b(u, z)
zq-1 z where a, b are smooth, a(u, 0) = α(u) and b(u, 0) = β(u). It follows that h u (z) = zg u (z) with g : (u, z) → g u (z) only C q-3 in general and g u (0) = α(u).

• For q > 3, the same arguments as in the proof of Proposition 1.3 yield a C q-3 implicit function ψ : (C, 0) → (R 2 , 0) whose graph W has the required properties near the origin-in particular, (1.1) holds.

• If q = 3, then h u (z) = A u (z)z near 0, where A u (z) = 1 0 Dh u (tz) dt (hence A u (0)z = α(u)z)
, and one can similarly apply the implicit map theorem along r = 0 after dividing by r the equation h 3 u (re iθ ) = re iθ . 7The details are left to the reader.

Example. If h u (z) = (ρ + u)z -zq-1 , u, z ∈ C, then W is the surface u = zq-1 /z, which is C q-3 but not C q-2 . Thus, our bound for the differentiability of W is sharp. No such problem arised in the holomorphic case.

Arnold tongues

Under the hypotheses of Proposition 2.1 iii), α is a smooth local diffeomorphism (R 2 , 0) → (C, ρ). Viewing it as a local parameter change, the following hypotheses are verified with u 0 = ρ, modulo the variable changes in the proof of Proposition 2.1:

Hypotheses. For u 0 ∈ S 1 , setting ũ0 := (u 0 , 0) ∈ C 2 , let h : (u, z) → h u (z) be a smooth local map (C 2 , ũ0 ) → (C, 0) such that h u (0) = 0 and Dh u (0)z = uz. Proposition 2.

now reads as follows:

Proposition 2.3. If u 0 = e 2πi p q , 0 < p < q, gcd(p, q) = 1, then, near ũ0 , the q-periodic points of h form the union of {z = 0} and the h-invariant "graph" W p/q = {u = ψ p/q (z)} of a C q-3 function ψ p/q : (C, 0) → (C, u 0 ). The function ψ := ψ p/q verifies (1.1), and h| W p/q generates a Z/qZ-action on W p/q as in Proposition 1.4.

The functions ψ = ψ p/q of Proposition 1.4, being holomorphic, are either constant or open. Thus the invariant manifold W p/q , projected into parameter space, is either {e 2πip/q } or (in general) an open neighbourhood of e 2πip/q . The non-holomorphic case is altogether different: Proposition 2.4. If u 0 is a primitive q th root of unity e 2πip/q , 0 < p < q, q > 4, then: i) Up to a smooth local change of variables C 2 , ũ0 → C 2 , ũ0 , of the form (u, z) → (u, Z u (z)) with Z u (real) polynomial of degree q -2, one has the following: near ũ0 , the unfolding h is tangent to order q -2 along C × {0} to a smooth unfolding P (u, z) = (u, P u (z)) of the form

P u (z) = z u - [ q-3 2 ] k=1 b k (u)|z| 2k .
ii) For b 1 (u 0 ) = 0, the principal part of ψ p/q (z) is u 0 + b 1 (u 0 )|z| 2 . Thus, for ū0 b 1 (u 0 ) = 0, the set Im ψ p/q of those u near u 0 for which h u has a q-periodic orbit lies on one side of S 1 .

iii) The function ψ p/q is tangent to order q -3 at ũ0 to a normal form

ψp/q (z) = u 0 + [ q-3 2 ] k=1 a k |z| 2k =: χ p/q (|z|), a k ∈ C, a 1 = b 1 (u 0 ).
Thus, when the first Birkhoff invariant b 1 (u 0 ) is non-zero, restricting Dom ψ p/q if necessary, the set Im ψ p/q is contained near u 0 in an "Arnold tongue" 0≤t≤ε u ∈ C : |u -χ p/q (t)| ≤ δ ε t q-3 along the curve χ p/q ([0, ε]), with ε > 0 small and lim ε→0 δ ε = 0.

Proof. i) follows from Lemma 2.2 b).

ii)-iii) As ψ p/q (z) = ψ p/q h ψ p/q (z), z by (1.1), the Taylor polynomial ψp/q (z) = u 0 + 1≤j+ ≤q-3 c j z j z =: u 0 + ĉ(z) satisfies ψp/q (z) = ψp/q P ψp/q (z) (z) up to terms of degree greater than q -3.

Denoting the Taylor expansion of b

k (u 0 + v) at v = 0 by bk (v) = m≥0 b kmn v m vn ,
this means that, up to terms of degree greater than q -3,

ĉ(z) = ĉ   z u 0 + ĉ(z) - [ q-3 2 ] k=1 bk ĉ(z) |z| 2k    .
ii) It follows that c 10 = u 0 c 10 = 0, c 01 = ū0 c 01 = 0, c 20 = u 2 0 c 20 = 0, c 02 = ū2 0 c 02 = 0; thus, the first c j that can be nonzero is c 11 =: a 1 , and it is equal to b 100 = b1 (0) = b 1 (u 0 ).;

iii) Inductively, one can see that ĉ(z) = ĉ(u 0 z), hence ĉ(z) =

[ q-3 2 ] k=1 a k |z| 2k .
The reader can fill in the details as an exercise.

Example.

If h u (z) = z u - [ q-3 2 ]
k=1 a k |z| 2k then ψ p/q = ψp/q ; thus, near u 0 , Im ψ p/q is the curve χ p/q ([0, ε]).

Opening Pandora's box wider

Question 2.5. For diophantine ω with convergents p n /q n , if b 1 (u 0 ) = 0, one can wonder as in the holomorphic case whether one has the following:

• The smooth functions ψ pn/qn tend to some ψ ω : (C, 0) → (C, u 0 ) in a uniform neighbourhood of 0; thus, the h-invariant surfaces W pn/qn tend to the h-invariant surface W ω = {u = ψ ω (z)}.

• For small z, the periodic orbits ψ pn/qn (z), h ψ pn/qn (z) k (z) : 0 ≤ k < q n of h tend to a closed h-invariant curve {ψ ω (z)} × C ωz such that z ∈ C ωz and that the rotation number of h ψ(z) | Cωz is ω. • The standard linearisation of the Z/q n Z-action (m, z) → h ψ pn /qn (z) m (z) tends to a local transformation Z ω linearising the local diffeomorphism z → h ψω(z) (z). Hence, the T-action (θ, z) → Z -1 ω e 2πiθ Z ω (z) leaves ψ ω invariant, 8 implying that Im ψ ω is a curve (with boundary), limit of the narrower and narrower Arnold tongues Im ψ pn/qn . Example (KAM invariant curves). Assume that h possesses the following properties near some u 0 = e 2πiω0 with ω 0 ∈ R \ Q: i) If |u| = 1, the transformation h u preserves the area. ii) h u = |u| h u/|u| , hence h u multiplies the area by |u| 2 .

iii) One has b 1 (u 0 ) = 0. By ii), no h u with |u| = 1 can have a closed invariant curve near 0. Thus, if the answer to Question 2.5 is positive, then every ψ ω has modulus one, hence b 1 (u 0 ) = iλu 0 , λ ∈ R-which already follows from i). Figure 2 shows what happens for (u, z) = (e 2πiω , z) ∈ S 1 × C close to ũ0 , in local coordinates (ω, z). The ω-axis is in red and the "paraboloids" are the surfaces W ω with ω Diophantine, which do lie in S 1 × C as |ψ ω (z)| = 1. These surfaces intersect the slice u = u 0 at the h u0 -invariant closed curves ("KAM circles") C ωz with ψ ω (z) = u 0 , which occupy most of the room near z = 0, with maybe complicated dynamics in between. Note. The limit surfaces W ω and the linearisations Z ω in Question 2.5 might be obtained as in [START_REF] Chenciner | Bifurcations de points fixes elliptiques, I. Courbes invariantes[END_REF] (where, however, the typical situation is b 1 (e 2πiω ) / ∈ iR, yielding normally hyperbolic invariant circles). Figure 2, which I like a lot, most probably follows from standard KAM theory [START_REF] Féjoz | Introduction to KAM theory with a view to celestial mechanics[END_REF]. The case where h is holomorphic will be referred to as the holomorphic case.

Higher dimensions

Note. A general situation reduces to these hypotheses. Let h : (u, x) → h u (x) be a smooth local map (R 2d × R 2d , 0) → (R 2d , 0) such that the eigenvalues of Dh 0 (0) are simple and not real. Near 0, the fixed points of h form the graph x = ϕ(u) of a smooth implicit function, which we may assume to be 0.

There is [START_REF] López De Medrano | Regularities and singularities appearing in the study of polynomials and linear operators[END_REF][START_REF]Singularities in dynamics: a catastrophic viewpoint[END_REF] a smooth local map J of R 2d into the space of R-linear isomorphisms R 2d → C d , defined near 0, such that each

J(u)Dh u (0)J(u) -1 is a diagonal automorphism diag α(u) : z → α 1 (u)z 1 , . . . , α d (u)z d of C d (thus, the eigenvalues α j (u), α j (u) of Dh u (0), 1 ≤ j ≤ d, depend smoothly on u). Via the identification (u, x) → u, J(u)x , we can view h as a local map (R 2d × C d , 0) → (C d , 0) such that Dh u (0) = diag α(u).
Setting α(u) := α 1 (u), . . . , α d (u) and assuming Dα(0) : R 2d → C d invertible, the smooth local map α : (R 2d , 0) → C d is a local diffeomorphism. If we view it as an identification, then u 0 := α(0) satisfies our hypotheses.

Periodic orbits

Proposition 3.1. Assume that u 0 = ρ = (ρ 1 , . . . , ρ d ), where ρ j = e 2πipj /q , 0 < p j < q. Let π : R + ×S 2d-1 , {0}×S 2d-1 → (C d , 0) be the oriented blowup π(r, y) := ry ("polar coordinates"). Then, setting ȗ0 := (u 0 , 0) ∈ C d × R + and denoting by S2d-1 the complement of the coordinate hyperplanes in S 2d-1 : i) Near ũ0 , the map h lifts to a smooth local map h : (u, r, y) → hu (r, y) of

C d × R + × S 2d-1 , {ȗ 0 } × S 2d-1 into R + × S 2d-1 , {0} × S 2d-1 such that π • hu = h u • π and h(ȗ 0 , y) = 0, (diag u 0 )y for all y ∈ S 2d-1 .
ii) The q-periodic points of the unfolding h : (u, r, y) → u, hu (r, y) contain {ȗ 0 } × S 2d-1 and the h-invariant "graph" W = {u = ψ(r, y)} of a smooth local map ψ = ψp/q : R + × S2d-1 , {0} × S2d-1 → (C n , u 0 ). iii) Hence, the non-fixed q-periodic points of h contain the h-invariant "graph"

W = {u = ψ(z)} of a smooth ψ = ψ p/q : π(Dom ψ) \ {0} → C n \ {u 0 }. iv) In the holomorphic case, W is holomorphic. Proof. i) The relation π• hu (r, y) = h u •π(r, y) writes hu (r, y) = (R u , Y u )(r, y) with R u (r, y) = |h u (ry)| and Y u (r, y) = h u (ry)/|h u (ry)| for r > 0; now, by Taylor's formula, h u (ry) = rA u (ry)y, where A u (ry) := 1 0 Dh u (try) dt, hence Y u (r, y) = A u (ry)y/|A u (ry)y| wherever A u (ry)y = 0, including r = 0 near u = u 0 since A u (0) = diag u.
ii) One has that h q u (ry) = ry if and only if rG u (r, y) = 0, where G u (r, y) = G(u, r, y) = A u h q-1 u (ry) • • • A u (ry)y -y, hence in particular G(u, 0, y) = (diag u) q y -y. Forgetting the fixed points r = 0, the equation h q u (ry) = ry reads G(u, r, y) = 0. Now, all y ∈ S 2d-1 verify G(u 0 , 0, y) = 0 and ∂ u G(u 0 , 0, y) = q diag(ρ 1 y 1 , . . . , ρd y d ), invertible if and only if y 1 • • • y d = 0, i.e., y ∈ S2d-1 . Hence, there exist open neighbourhoods U of u 0 in C d and V of {0} × S2d-1 in R + × S2d-1 such that the zeros of G| U × V form the "graph" of a smooth implicit map ψ : V → U ; as before, this graph W becomes

h-invariant if it is replaced by W ∩ h-1 ( W ) ∩ • • • ∩ h1-q ( W ).
iii) Recall that π is a diffeomorphism off the "exceptional divisor" π -1 (0). iv) We can therefore "read" the equation G u (r, y) = 0 via this diffeomorphism, that is, write it g u (z) := h q u (z) -z = 0 for z = 0; as the unfolding (u, r, y) → u, G u (r, y) is a local diffeomorphism at every point of W , so is (u, r, y) → u, rG u (r, y) , hence the unfolding g : (u, z) → u, g u (z) is a diffeomorphism at every point of W ; the map g being holomorphic, its local inverses are, implying that W is holomorphic.

Note. A nicer way to prove iv) is to use the complex blowup π C : (D, z) → z, z ∈ D, D ⊂ C d complex line through 0;9 the implicit function theorem yields a holomorphic ψC "upstairs", defined on an open subset of the complement of the closure of {(D, z)

: z = 0, z 1 • • • z d = 0} and equal to u 0 on π -1 C (0). Example. If h u (z) = diag u + χ(z q1 1 , . . . , z q d d ) z
, where q j is the denominator of p j /q in irreducible form and χ :

(C d , 0) → (C d , 0) is holomorphic, then ψ(z) = ρ -χ(z q1 1 , . . . , z q d d )
, which has contact of order at least min q k with the constant ρ at 0. Proposition 3.2. The automorphism diag ρ lifts via π to the diffeomorphism diag ρ : (r, y) → r, (diag ρ)y .

i) Restricting W if required, there is a smooth diffeomorphism Z = Zp/q of W onto an open diag ρ-invariant subset Ω ⊃ {0} × S2d-1 of R + × S2d-1 ,
conjugating h| W to ( diag ρ)| Ω, with Z(ȗ 0 , y) = (0, y) for all y ∈ S2d-1 . ii) The map Z induces a smooth diffeomorphism Z = Z p/q of W onto the open diag ρ-invariant "trefoil" Ω := π( Ω) \ {0}, conjugating h| W to diag ρ| Ω and tending to 0 when the variable in W tends to ũ0 . iii) If h is holomorphic, so is Z.

Proof. i) The conjugacy Zp/q is as in Question 1.6, but in polar coordinates: Zp/q ψ(r, y), (r, y) = r |C(r, y)|, C(r, y)

|C(r, y)| , where C(r, y) = 1 q q-1 k=0 (diag ρ) -k A ψ(r,y) h k-1 ψ(r,y) (ry) • • • A ψ(r,y) (ry)y. 
For all y ∈ S2d-1 , one has that C(0, y) = y, hence Z(ȗ 0 , y) = (0, y) and

D Zp/q (0, y) = 1 0 * id y ⊥ : R × y ⊥ → R × y ⊥
is invertible. It follows that Zp/q is a smooth local diffeomorphism, whose domain can be made h-invariant as usual. It is not difficult to check that it is a conjugacy, see equation (3.1) hereafter. ii) is obvious; by definition, the conjugacy Z p/q is as in Question 1.6:

Z p/q ψ p/q (z), z = 1 q q-1 k=0 (diag ρ) -k h ψ p/q (z) k (z). (3.1)
iii) follows at once. Hence, denoting again by W the inverse image of this new Ω by Z, the map h| W is invariant under the T d -action Z * ȇ : t, Z-1 (r, y) → Z-1 ȇ(t, r, y); in particular, it preserves each orbit, which orbits constitute a foliation of W by d-tori

Z-1 {r} × (x 1 S 1 × • • • × x d S 1 ) with x j > 0 and x 2 1 + • • • + x 2 d = 1.
In general, these tori of course do not lie each in a slice u = constant like the orbits of h| W . The foliation, like the new W , depends on the choice of Z, which is far from unique since the set of diag ρ-invariant smooth diffeomorphism germs R + × S 2d-1 , {0} × S 2d-1 → R + × S 2d-1 , {0} × S 2d-1 is infinite dimensional. 10 However, when p/q tends to some diophantine ω ∈ [0, 1] d , the orbits of h| Wp/q should "become denser and denser in such invariant tori": 

where k ∈ N d , |k| = k 1 + • • • + k d and kω = k 1 ω 1 + • • • + k d ω d . Then, every holomorphic germ f : (C d , 0) → (C d , 0) such that Df (0) = diag u 0 is holomorphically linearisable: there exists a holomorphic local diffeomorphism Z ω : (C d , 0) → (C d , 0) such that Z ω • h u0 = (diag u 0 )Z ω . 11 As the rotation z → (diag u 0 )z = (e 2πiωj z j ) 1≤j≤d preserves each d-torus T r = {|z 1 | = r 1 , . . . , |z d | = r d }, every embedded torus T ωr = Z -1
ω (T r ) with r j > 0 small enough is h u0 -invariant and, of course, Z ω | Tωr conjugates h u0 | Tωr to the rotation z → (diag u 0 )z restricted to T r . Question 3.4. Applied to f = h u0 , is this the limit of what happens near u = (e 2πipj /q ) 1≤j≤d when p/q ∈ Q d tends to ω? 12 Do the maps ψ p/q tend to ψ ω = u 0 in some uniform neighbourhood of 0? For z ∈ C d close to 0, does the periodic orbit ψ p/q (z), h ψ p/q(z) k (z) : 0 ≤ k < q of h tend to the closed h-invariant torus {u 0 } × T ωr such that z ∈ T ωr ? More precisely, does the holomorphic linearisation (3.1) of h| W p/q tend to Z ω when n → ∞?

Note. This is not as simple as Question 1.6: indeed, unless I am mistaken, the maps ψ p/q are not a priori defined in a neighbourhood of 0, so that part of the question is whether Dom ψ p/q tends to such a neighbourhood. On the other hand, it follows from normal form theory that, as in the case d = 1, the map ψ = ψ p/q has more and more contact with u 0 at 0 when p/q → ω. 13 10 Indeed, the set of diag ρ-invariant smooth diffeomorphism germs 11 One can assume DZω(0) = Id. Pöschel [START_REF]On the Siegel-Sternberg linearization theorem[END_REF] attributes Theorem 3.3 to Siegel, who certainly proved its analogue for vector fields [START_REF]Über die Normalform analytischer Differentialgleichungen in der Nähe einer Gleichgewichtslösung[END_REF]. The same applies to its improvement by Brjuno. This "Siegel-Brjuno" theorem for maps and much more is proved in [START_REF] Rüssmann | On the convergence of power series transformations of analytic mappings near a fixed moint into a normal form[END_REF][START_REF] Pöschel | On invariant manifolds of complex analytic mappings near fixed points[END_REF][START_REF]On the Siegel-Sternberg linearization theorem[END_REF][START_REF] Stolovitch | Family of intersecting totally real manifolds of (C n , 0) and germs of holomorphic diffeomorphisms[END_REF]. 12 For example, p j /q = p jn /qn can be the n th convergent of ω j . 13 If one prefers, ψC has more and more contact with u 0 at points of π -1 C (0).

(C d , 0) → (C d , 0) is infinite dimensional, as any smooth germ η : (C d , 0) → (C d , 0) yields the diag ρ-invariant germ 1 q q 1 (diag ρ) -k • η • (diag ρ) k .
3.4. Passing to the limit in the smooth case? If u 0 = (e 2πiω1 , . . . , e 2πiω d ), where ω = (ω 1 , . . . , ω d ) ∈ T d is non-resonant, meaning that ω 1 , . . . , ω d ∈ T are independent over Z, then, by normal form theory, one has the following: for each positive integer N , up to smooth local conjugacy (u, z) → u, Z u (z) , every h u with u -u 0 small enough is tangent to order 2N + 1 at 0 to a polynomial map

P u (z) = diag u + N =1 b (u) |z 1 | 2 , . . . , |z d | 2 z
with b (u) : R d → R d homogeneous of degree , depending smoothly on u. As for d = 1, it follows that when p/q tends to ω the map ψ p/q of Proposition 3.1 is tangent to higher and higher order at 0 to a polynomial normal form

14 ψp/q (z) = χ p/q |z 1 | 2 , . . . , |z d | 2 , χ p/q (0) = ρ, Dχ p/q (0) = b 1 (ρ).
Thus, if b 1 (u 0 ) (and therefore b 1 (ρ) for small p q -ω) is invertible then, restricting ψ p/q , the set Im ψ p/q lies near ρ in a thinner and thinner "Arnold tongue" along the smooth d-fold with corner χ p/q ([0, ε) d ) for small ε > 0. ) is invertible, one can wonder as in the holomorphic and one-dimensional cases whether one has the following when p/q tends to ω:

• The ψp/q 's tend to a map ψω of R + × S2d-1 , {0} × S2d-1 into (C n , u 0 ) in a uniform neighbourhood of {0}× S2d-1 ; thus, the h-invariant surfaces Wp/q tend to the h-invariant 2d-fold Wω = {u = ψω (r, y)}.

• For each (r, y), the periodic orbits ψp/q (r, y), hk ψp/q (r,y) (r, y) 0≤k<q of h tend to a h-invariant embedded d-torus { ψω (r, y)} × T ωry such that (r, y) ∈ T ωry . • The "linearisation" Zp/q of Proposition 3.2 i) tends to a local transformation Zω "linearising" the local diffeomorphism (r, y) → h ψω(r,y) (r, y).

Hence, the T d -action θ, Z-1 ω (r, y) → Z-1 ω r, e 2πi diag θ y leaves ψω invariant, implying that Im ψω is a d-fold (with corner), limit of the narrower and narrower subsets Im ψp/q .

Example (KAM invariant tori). Assume that h possesses the following properties near some u 0 = e 2πiω0 with ω 0 non-resonant: iii) The linear map b 1 (u 0 ) is an isomorphism. Then, if the answer to question 3.5 is positive, it follows from ii) that every ψ ω takes its values in {|u 1 | = • • • = |u d | = 1}, yielding a 3d-dimensional analogue of Figure 2, see [START_REF] Féjoz | Introduction to KAM theory with a view to celestial mechanics[END_REF][START_REF] Massetti | A normal form à la Moser for diffeomorphisms and a generalization of Rüssmann's translated curve theorem to higher dimensions[END_REF]. 15 

Comments and references

My interest in this part of the program sketched in [START_REF]Singularities in dynamics: a catastrophic viewpoint[END_REF] awoke when I heard Abed Bounemoura talk about [START_REF] Bounemoura | A Diophantine duality applied to the KAM and Nekhoroshev theorems[END_REF].

The dimension of both parameter and phase space, minimal here, can be much higher 16 . Proposition 1.3 has been known (at least) to me for thirty years, as well as the "blown-up" version of Proposition 2.1. 17 I have no reference for the higher dimensional results in subsection 3.4. The excision of the coordinate hyperplanes in Propositions 3.1-3.2 corresponds to the closure of manifolds of periodic orbits of lower period, which might tend to (manifolds of) lower dimensional KAM tori à la Eliasson [START_REF] Eliasson | Perturbations of stable invariant tori for Hamiltonian systems[END_REF][START_REF] Féjoz | Introduction to KAM theory with a view to celestial mechanics[END_REF].

It is known that "good" periodic orbits accumulate on KAM tori. My naive hope is to do it the other way round and get the mysterious objects as limits of obvious ones, which would clarify a very intricate situation.

One of the sources of this article is an awfully biased reading of the two papers [START_REF] Chenciner | Bifurcations de points fixes elliptiques, I. Courbes invariantes[END_REF][START_REF]Bifurcations de points fixes elliptiques, II. Orbites périodiques et ensembles de Cantor invariants[END_REF] by Alain Chenciner, to whom my debt cannot be overestimated, though he certainly does not share my viewpoint that conservative systems are essentially meant to deny the existence of death (and birth. . . ).

Last but not least, I thank Jacques Féjoz and Laurent Stolovitch for very useful discussions and comments.

Figure 1 .

 1 Figure 1. Bifurcation and catastrophe.
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  Conjugating everything by Zω, one can assume h ψω (z) (z) = e 2πiω z, hence (1.1) reads ψω(z) = ψω(e 2πiω z), which yields ψω(z) = ψω(e 2πikω z) for every integer k and therefore ψω(z) = ψω(e 2πiθ z) for all θ ∈ T by density.

Figure 2 .

 2 Figure 2.

3. 1 .

 1 Statement of the hypotheses Hypotheses. Given u 0 ∈ C d , d > 1, whose components are nonzero and all different, set ũ0 := (u 0 , 0) ∈ C d × C d and let h : (C d × C d , ũ0 ) → (C d , 0) be a smooth local map (u, x) → h u (x) such that h u (0) = 0 and Dh u (0) = diag u : z → u 1 z 1 , . . . , u d z d .

Note.

  The diagonal action e : (t, z) → e 2πi diag t z of T d on C d preserves diag ρ and lifts to the action ȇ : (t, r, y) → (r, e 2πi diag t y) =: ȇt (r, y) of T d on R + × S 2d-1 , which preserves diag ρ. The open subset Ω becomes ȇ-invariant (and still diag ρ-invariant) if it is replaced by t∈T d ȇt ( Ω), which contains {0} × S2d-1 and is open because T d is compact.

3. 3 .

 3 Passing to the limit in the holomorphic case? In the holomorphic case, if u 0 = (e 2πiω1 , . . . , e 2πiω d ), ω = (ω 1 , . . . , ω d ) ∈ T d , the following result may apply to h u0 : Theorem 3.3. Assume ω diophantine in the sense that, for some large τ , inf 1≤j≤d inf |k|≥2 |k| τ e 2πikω -e 2πiωj > 0,

Question 3 . 5 .

 35 Assume ω diophantine in the sense that, for some large τ ,inf m =0 |m| τ e 2πimω -1 > 0, where m ∈ Z d , |m| = m 1 + • • • + m d and mω = m 1 ω 1 + • • • + m d ω d . If b 1 (u 0

  i) If |u 1 | = • • • = |u d | = 1, the transformation h u preserves the standard symplectic form σ = 1 2i (dz 1 ∧ dz 1 + • • • + dz d ∧ dz d ).ii) One has thath u = h (u1/|u1|,...,u d /|u d |) • diag(|u 1 |, . . . , |u d |) and therefore h * u σ = 1 2i (|u 1 | 2 dz 1 ∧ dz 1 + • • • + |u d | 2 dz d ∧ dz d ).

The "blown-up" surface W = graph ψ in polar coordinates is smooth, see section 3.

In the standard j th local chart of CP d-1 , this blowup reads z j , (w k ) k =j → z with z k = z j w k for k = j; the "forbidden" closed subset is the union of the hyperplanes w k = 0.

If one prefers, ψ has more and more contact with ψp/q • π at points of π -1 (0).