Preservation of normality by transducers
Abstract
We consider input deterministic finite state transducers with infinite inputs and infinite outputs, and we consider the property of Borel normality on infinite words. When these transducers are given by a strongly connected set of states, and when the input is a Borel normal sequence, the output is an infinite word such that every word has a frequency given by a weighted automaton over the rationals. We prove that there is an algorithm that decides in cubic time whether an input deterministic transducer preserves normality.