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Abstract

In this paper, we present and analyze a finite element level set method based on the method of characteristics
for two phase flow. Surface tension effects are taken into account by the CSF approach. We first write the
variational formulation of the problem and investigate its well-posedness. Next, for the discretization,
a first order method of characteristics approach for the evolution of the level set function and for the
material derivative of the velocity is used. The velocity and pressure unknowns are discretized by P2− P1
Taylor–Hood finite elements. Then, in each time step, the interface transport is decoupled from the Navier–
Stokes equations. Well–posedness results for subproblems in this decoupled discrete problem are derived.
Furthermore, under high regularity assumptions, we state error estimates for our scheme. Ultimately, three
computational examples illustrate the performance of the proposed method.
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1. Introduction

Problems with free surfaces appear in immiscible multi-fluids, motion of glaciers, fluid structure inter-
actions, blood in moving arteries and many other domains. Numerical methods for solving such problems
are of great importance in many engineering applications and are still a challenging field. In recent years,
analytical and numerical researches have been extensively studied and attained remarkable results, see for
instance [14, 37] and references therein.

A challenging problem in numerical simulation of two immiscible fluids is then the motion of the free
interface. There are two classifications of numerical methods in solving binary fluids: sharp interface and
diffuse interface approaches. In the sharp approach, the fluid thermophysical properties such as density and
viscosity experience a sharp transition at the interface between two fluids, whereas a smooth transition of
fluid thermophysical properties happens in the case of diffuse interface approach. We refer the interested
reader of the diffuse interface and their finite element analysis to [3, 4, 15, 19–21, 26].

In this work, the time-dependent Navier-Stokes equations govern the fluid motion in both fluids. Each
fluid has a constant density and viscosity. As we are dealing with flow with more than one fluid, the surface
tension at the fluid interface has to be taken account. We make use of sharp interface approach to track this
interface. The surface tension is modelled as a body force concentrated at the interface by employing the
Continuum Surface Force (CSF) model of Brackbill et al. [9]. The CSF model allows us to treat the dynamic
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boundary condition at the interface implicitly. For example, if ϕ describes the position of the interface, the
basic equation underlying this method is:

∂ϕ

∂t
+ u · ∇ϕ = 0. (1.1)

Function ϕ can be taken (for instance) positive in one fluid and negative in the other whereas u is a given
velocity field assumed divergence-free.

Since the nature of equation (1.1) is hyperbolic, some oscillations may appear near discontinuities of ϕ
and numerical scheme may bring spurious diffusion, which implies an imprecise determination of the position
of the interface. There are many numerical schemes which have been developed to address this difficulty. For
example, moving interfaces can be handled with the Level Set method introduced S. Osher and al. [31, 40],
see also [30] for a more general review of all these results. The function ϕ is meant to be the signed distance
function to the interface, which is implicitly defined as the zero set of ϕ.

It should be noted that the level set method is one of the several interface-tracking techniques used
routinely for two immiscible incompressible flow simulations. Others are the front-tracking method, see for
instance [34, 44], the boundary integral method [24] and the volume-of-fluid (VOF) method [9, 27, 28]. The
main advantages of the level set method compared with other techniques are
(i) function ϕ is smooth (it has no discontinuities), which helps the numerical resolution of (1.1) with high
accuracy;
(ii) the attractive simplicity of its mathematical formulation and computing, and
(iii) the ability of the method to simulate complex interfacial flows with strong surface tension effects.
Moreover, it seems that the signed distance function to the interface gives more information on the interface
than the step function used in VOF approaches. Again, the difficulty lies in the fact that the solution to
(1.1) does not remain the signed distance function to interface |∇ϕ| 6= 1. Then the solution becomes very
steep or flat in some regions, which makes difficult the precise determination of the position of the interface.
To solve this difficulty, a first idea is to modify the velocity field u in (1.1) away from interface, so that the
solution remains closer to the signed distance function. Another idea in the spirit of the reconstruction step
of the VOF method is to use a reinitialization step, in order to recover the signed distance function. This
can be performed for example using the following fictitious dynamics:

∂ϕ

∂t
= sgn(ϕ) (1− |∇ϕ|) , (1.2)

whose solution in the long time limit is the signed distance function to the zero set of the initial condition
ϕ(t = 0). Recently, Reusken [35] introduces a new redistancing method for level set functions. This
method is based on a gradient recovery technique that results in approximations of ∇ϕh, where ϕh is an
approximation of ϕ. These approximations satisfy the condition of a quasi-normal field on Γh, which is
the zero level set of ϕh. The redistancing method does not need a reconstruction of the zero level set
ϕh. However, one difficulty of the level set method is to ensure the conservation of the mass of each
fluid component, since (1.1) is not a conservation law. Two solutions are presented in [11]. The authors
proposed two finite element implementations that do not present this ill behaviour. The first relies on a
discontinuous Galerkin discretization, and the second is a stabilized continuous FEM implementation based
on a stabilization method.

In the level set method, the surface tension force is traditionally modelled as a distributed body force,
though concentrated in a band around the interface and arranged in such a way that the force has a maximum
on the interface and decays rapidly with distance from it (see [39, 40]). Furthermore the width ε of this band
can be taken proportional to the mesh size h as ε ≈ 1.5h ( see [13, 22]). Thus, the variation of the surface
tension across the interface may be described in terms of a regularized (smoothed) delta function with
compact support. This approach removes the interface singularity from the standard continuum fluid flow
equations and ultimately allows the surface tension to be modelled using standard numerical techniques
on Eulerian grids. The jump in phase properties across the interface, such as density and viscosity, is
correspondingly modelled using a regularized Heaviside function. So the full model consists in the time-
dependent Navier–Stokes equations and a transport equation for the interface. A detailed description of a
similar model can be found for instance in [22], see also the references therein.
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In this work, we investigate the main properties of the model and in particular the existence of a solution
in the non-realistic case where the velocity satisfies homogeneous boundary conditions. Next, we propose a
discretization of it by the characteristics method in time (indeed each equation contains a convection term)
and standard conforming finite elements in space. We perform the a priori analysis of the discrete problem
and prove nearly optimal estimates of the error. We finally present some numerical experiments that confirm
the interest of both the model and its discretization.
The outline of the paper is as follows:
− In Section 2, we explain and write the model.
− In Section 3, we write its variational formulation and investigate its well-posedness.
− Section 4 is devoted to the description of the discretization and the well-posedness of the discrete problem.
− Its a priori analysis is performed in Section 5.
− In Section 6, we present some numerical experiments.
The work herein is an expanded and revised version of Bernardi et al. [5].

2. Mathematical description

Let Ω be a bounded connected open set in Rd, d = 2 or 3, with a Lipschitz-continuous boundary ∂Ω.
If we assume a domain Ω with two immiscible fluids Fi, i = 1, 2, then the time dependent subdomains
Ωi(t), t ∈ (0, Tf ), Tf > 0 are bounded by an external boundary ∂Ω and by a dynamic interface Γ(t), see
Figure 1. We assume that both fluids are homogeneous and therefore the physical properties are constant
in each Ωi which are a bounded connected domain with a Lipschitz–continuous and connected boundary
∂Ωi(t):

Ω = Ω1(t) ∪ Ω2(t), Ω1(t) ∩ Ω2(t) = ∅. (2.3)

We also define the interface between the two fluids

Γ(t) = ∂Ω1(t) ∩ ∂Ω2(t). (2.4)

Figure 1: Two examples of domain Ω.

Then, the standard model for isothermal two immiscible flows can be described by the incompressible
Navier-Stokes system in Ω× (0, Tf )

ρ

(
∂u

∂t
+ u · ∇u

)
+∇p−∇ · (ν∇u) = f + fσ

∇ · u = 0

∂ρ

∂t
+∇ · (ρu) = 0.

(2.5)

which contains an additional force term fσ due to the surface tension σ at the free interface Γ(t). The
unknowns are the velocity u (more precisely, each ui = u|Ωi

is the velocity of the fluid Fi, i = 1, 2) and the
pressure p, f denotes any body force such as gravitational acceleration. The density of each fluid is assumed
to be constant at t = 0: i.e ρ(x)|t=0 = ρi > 0, where ρi is a given constant, for i = 1, 2.

Since
∂ρ

∂t
+∇ · (ρu) = 0, for all points x ∈ Ωi(t) and ∀t > 0, we have

ρ(x, t) = ρi, for i = 1, 2. (2.6)
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Concerning the viscosities, we assume that: ν|Ωi = νi where each νi is non-negative constant. Surface
tension effects are taken into account through the following force balance at the interface Γ(t)

u1 = u2 and (ν1∇u1 − p1I) · n + (ν2∇u2 − p2I) · n = σ κn.

Here n is the unit normal at the interface pointing for instance into Ω2, σ ≥ 0 is the surface tension coefficient
and κ = ∇ · n is the curvature of the interface Γ(t). The first condition implies continuity of the velocity
across the interface, whereas the second describes the force balance on Γ(t). To handle the curvature term,
it is often to rewrite it as a volume force, that means fσ = σ κn δΓ(t), where δΓ(t) is the Dirac delta function
localizing the surface tension forces to the interface Γ(t). In Lafaurie et al. [27], the authors propose an
other shape but still equivalent to this force by introducing the projection operator in the tangent plan:
I − n⊗ n and then writing

fσ = −∇ · T, such that T = σ(I − n⊗ n) δΓ(t).

According to the applied Continuous Surface Force (CSF) approach, see [9], we introduce the following
smooth regularization of the Heaviside function for a small ε > 0,

Hε(ψ) =


0 if ψ < −ε,

1

2

(
1 +

ψ

ε
+

1

π
sin(

πψ

ε
)
)

if− ε ≤ ψ ≤ ε,

1 if ψ > ε.

(2.7)

The smoothed density ρ and the viscosity ν are now given by

ρ(ϕ) = ρ1 + (ρ2 − ρ1)Hε(ϕ), (2.8)

ν(ϕ) = ν1 + (ν2 − ν1)Hε(ϕ). (2.9)

Since ϕ is a signed distance function (so that ∇ϕ is a normal vector to Γ(t)) and using the well-known
expressions, this tensor T can also be written as a function of ϕ, as follows:

T (ϕ) = σ
dHε(ϕ)

dϕ
(I −∇ϕ⊗∇ϕ), (2.10)

where ∇ϕ⊗∇ϕ stands for the tensor with coefficients ∂xi
ϕ∂xj

ϕ, 1 ≤ i, j ≤ d.
We recall that the unit normal n to the interface is classically obtained via ϕ : On the curve Γ(t) with

equation ϕ = 0, n =
∇ϕ
|∇ϕ|

.

Finally, the governing equations which describe two immiscible fluids with surface tension can be writing
as a coupled time-dependent Navier–Stokes equations with transport equation in Ω× (0, Tf )

ρ(ϕ)

(
∂u

∂t
+ u · ∇u

)
+∇p−∇ · (ν(ϕ)∇u)) +∇ · T (ϕ) = f

∇ · u = 0

∂ϕ

∂t
+ u · ∇ϕ = 0.

(2.11)

The last equation means that the interface Γ(t) is convected by the fluid.
To make the problem complete, we enforce suitable boundary and initial conditions. The Dirichlet

condition is imposed to the velocity and the level set function

u = uD on ∂Ω and ϕ = ϕD on Γu, (2.12)

where Γu denotes the part of boundary where the fluid goes in

Γu = {x ∈ ∂Ω; u(x, t) · n(x) < 0},
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and the initial conditions obviously read

u(x, 0) = u0(x) and ϕ(x, 0) = ϕ0(x) for a.e. x ∈ Ω. (2.13)

The existence of Γu and the boundary condition on ϕ come from the nature of the third line of (2.11) which
is a hyperbolic equation. However, in the case of the non-slip condition on ∂Ω for u, no essential boundary
conditions are needed on the level set function. Certain compatibility conditions must be satisfied by the
given data, mainly

∇ · u0 = 0 in Ω and uD(·, 0) · n = u0 · n on ∂Ω, (2.14)

in order to ensure the smoothness of the solution. From now on, we take ϕ negative on Ω1(t) and positive
on Ω2(t), whence some compatibility conditions on ϕ0 and ϕD.

3. Variational formulation and well-posedness

Of course, our dream would be that problem (2.11) provided with the initial and boundary conditions
(2.12)- (2.13) is well-posed. However this seems impossible, for the two following reasons:
• very few existence results are known for the transport equation (third line in (2.11)) when the velocity u
does not vanish on the boundary and they require too much regularity of the domain;
• the uniqueness of the solution of the time-dependent Navier-Stokes equation (first and second lines in
(2.11)) is actually unknown in dimension d = 3. So, we restrict ourselves to a simpler case.

In what follows, we use the whole scale of Sobolev spaces Wm,q(Ω), with m ≥ 0 and 1 ≤ q ≤ +∞,
equipped with the norm ‖ · ‖Wm,q(Ω) and seminorm | · |Wm,q(Ω), with the usual notation Hm(Ω) when q = 2.
We also need the space H1

0 (Ω) of functions in H1(Ω) vanishing on ∂Ω. For any separable Banach space E
equipped with the norm ‖ · ‖E , we denote by C0(0, Tf ;E) the space of continuous functions from [0, Tf ] with
values in E. For each integer m ≥ 0, we also introduce the space Hm(0, Tf ;E) as the space of measurable
functions on ]0, Tf [ with values in E such that the mappings: v 7→ ‖∂`tv‖E , 0 ≤ ` ≤ m, are square-integrable
on ]0, Tf [. We refer to [1] for the main properties of all these spaces.

Let us first consider the transport equation. In the case where uD is not zero, the only existence result
can be found in [8, Thm VI.1.6] but it requires too much regularity of the domain Ω and of the velocity u.
So, even if the case uD · n = 0 was treated in [12, Section IV.4], from now on we assume that

uD = 0. (3.15)

With this condition, it is rather easy to prove the existence of a solution via the characteristics method, see
[2, Thm II.7.6]. We are thus in a position to state the result concerning this equation.

Proposition 3.1. Assume that the function u is divergence-free and satisfies

u ∈ C0(0, Tf ;H1
0 (Ω)d) ∩ C0(0, Tf ;W 1,∞(Ω)d). (3.16)

Then, for any datum ϕ0 in L2(Ω), the problem
∂ϕ

∂t
+ u · ∇ϕ = 0 in Ω× (0, Tf ),

ϕ(·, 0) = ϕ0 in Ω,
(3.17)

admits a unique solution ϕ in C0(0, Tf ;L2(Ω)). Moreover, this solution satisfies

sup
0≤t≤Tf

‖ϕ(·, t)‖L2(Ω) ≤ ‖ϕ0‖L2(Ω). (3.18)

Proof. We establish successively the existence, the uniqueness and the stability property (3.18) of the solu-
tion.

5



1) Existence: Owing to the property (3.16) of u, applying the Cauchy–Lipschitz theorem [38, Th. 21.1]
yields that there exists for every (x, t) in Ω× [0, Tf ], a characteristic function X = X(x, t; ·) in C0(0, T ;Rd)
solution of the ordinary differential equation

dX

dt
= u ◦X in Ω× (0, Tf ),

X(x, t; t) = x in Ω.

Thus, it is readily checked that the function ϕ defined by

ϕ(x, t) = ϕ0(X(x, 0; t)), (3.19)

is a solution of problem (3.17).

2) Uniqueness: Let ϕ1 and ϕ2 be two solutions of problem (3.17). Setting ϕ = ϕ1 − ϕ2 and multiplying
the difference of the two equations by ϕ gives

1

2

∂ϕ2

∂t
+

1

2
u · ∇ϕ2 = 0.

Since u is divergence-free and vanishes on the boundary, integrating on Ω yields

1

2

d

dt
‖ϕ‖2L2(Ω) = 0,

whence, since ϕ(·, 0) is zero, ϕ(·, t) is zero. Thus, ϕ1 and ϕ2 coincide.

3) Stability: Multiplying as previously (3.17) by ϕ and integrating on Ω leads to
d

dt
‖ϕ‖2L2(Ω) = 0, whence

property (3.18).

It follows from (3.19) that the regularity of ϕ depends only on that of u and ϕ0. So we state the regularity
properties that we need to study the full problem.

Corollary 3.2. If the assumptions of Proposition 3.1 hold, for any real number q, 1 ≤ q <∞, and for any
datum ϕ0 in W 1,q(Ω), the solution ϕ of problem (3.17) belongs to C0(0, Tf ;W 1,q(Ω)).

We now consider the Navier-Stokes equations. Their variational formulation consist to find (u, p) ∈
L2(0, T ;H1

0 (Ω)d) ∩ C0(0, T ;L2(Ω)d)× L2(0, T ;L2(Ω)) such that

u(·, 0) = u0, (3.20)

and for a.e. t ∈ [0, T ] and for all (v, q) ∈ H1
0 (Ω)d × L2(Ω)∫

Ω

ρ(ϕ)(x)

(
∂u

∂t
+ u · ∇u

)
(x) · v(x) dx−

∫
Ω

(∇ · v)(x)p(x) dx

+

∫
Ω

ν(ϕ)(x)∇u(x) : ∇v(x) dx−
∫

Ω

T (ϕ)(x) : ∇v(x) dx = 〈f ,v〉, (3.21)∫
Ω

(∇ · u)(x)q(x) dx = 0,

where 〈·, ·〉 denotes the duality pairing between H1
0 (Ω)d and its dual space H−1(Ω)d. The arguments for

proving its equivalence with the first two lines of (2.11) are fully standard, so we skip them.
To go further, we first note from the definitions (2.8) and (2.9) that, for any ϕ,

min{ρ1, ρ2} ≤ ρ(ϕ) ≤ max{ρ1, ρ2}, min{ν1, ν2} ≤ ν(ϕ) ≤ max{ν1, ν2}. (3.22)

6



Next, since
dHε

dϕ
is bounded independently of ϕ, for any ϕ in L4(0, Tf ;W 1,4(Ω)), the quantity T (ϕ) belongs

to L2(0, Tf ;L2(Ω)d×d). So all the terms in problem (3.21) are well-defined. Moreover, thanks to all these
properties, the existence of a solution for problem (3.21) is derived by exactly the same arguments as for
the standard Navier–Stokes equations. So we refer to [42, Chap. III, Thms 3.1 & 3.2] and [18, Chap. V,
Thms 1.4 & 1.5] for the next result.

Proposition 3.3. Assume that the function ϕ belongs to L4(0, Tf ;W 1,4(Ω)). Then, for any datum f in
L2(0, Tf ;H−1(Ω)d) and u0 in L2(Ω)d satisfying

∇ · u0 = 0 in Ω and u0 · n = 0 on ∂Ω, (3.23)

problem (3.20)− (3.21) has at least a solution (u, p). Moreover, in dimension d = 2, this solution is unique,
up to an additive constant on the pressure.

Unfortunately, it seems difficult to prove, especially in dimension d = 3, that this solution satisfies the
regularity properties required in Proposition 3.1 (even if they could be weakened). Up to our knowledge,
the only existence result for the full problem (3.17) − (3.20) − (3.21) is due to Milcent [29, Chap. IV, Th.
1]; we only quote it and refer to [29, Chap. IV] and [10, Thm 2.2] for its proof (which relies on space and
time regularization).

Proposition 3.4. Let Ω be a bounded smooth domain in R3, and let q be a real number > 3. We consider
data
(i) ϕ0 in W 2,q(Ω) such that |∇ϕ0| is larger than a positive constant in a neighbourhood of

{x ∈ Ω; ϕ0(x) = 0};

(ii) u0 in W 2,q(Ω)d ∩W 1,q
0 (Ω)d which is divergence-free in Ω.

Then, there exists a positive number T∗ only depending on the initial data such that problem (3.17)-(3.20)-
(3.21) has a solution in Ω× [0, T∗]. Moreover, this solution satisfies

u ∈ L∞(0, T∗;W
1,q
0 (Ω)d) ∩ Lq(0, T∗;W 2,q(Ω)d),

ϕ ∈ L∞(0, T∗;W
2,q(Ω)), ∇p ∈ Lq(0, T∗;Lq(Ω)d).

Even if neither the assumptions of this proposition nor the results are very realistic, it leaves the hope
that the problem we work with is reasonable.

4. The discrete problem and its well-posedness

To describe the discrete problem, we first need some notation. Next, we write it and prove its well-
posedness.

4.1. Some notation

Since we intend to work with non-uniform time steps, we introduce a partition of the interval [0, Tf ] into
subintervals [tn−1, tn], 1 ≤ n ≤ N , with 0 = t0 < t1 < · · · < tN = Tf . We denote by τn the time step
tn − tn−1, by τ the N -tuple (τ1, . . . , τN ) and by |τ | the maximum of the τn, 1 ≤ n ≤ N .
We assume that Ω is a polygon (d = 2) or a polyhedron (d = 3). For 0 ≤ n ≤ N , let (T nh )h be a regular
family of triangulations of Ω (by triangles or tetrahedra), in the sense that, for each h:
• Ω is the union of all elements of T nh ;
• The intersection of two different elements of T nh , if not empty, is a vertex or a whole edge or a whole face
of both of them;
• The ratio of the diameter hK of any element K of T nh to the diameter of its inscribed circle or sphere is
smaller than a constant independent of h and n.
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As usual, hn stands for the maximum of the diameters hK , K ∈ T nh . We also denote by Vnh the set of all
vertices of elements of T nh .

In what follows, c, c′, . . . are generic constants which may vary from line to line but are always indepen-
dent of the τn and hn. Also, we have decided to work with the Taylor–Hood finite element introduced in
[41]. So, denoting by Pk(K) the space of restrictions to K of polynomials with d variables and total degree
≤ k, we consider the finite element spaces

Ynh =
{
vh ∈ H1(Ω); ∀K ∈ T nh , vh|K ∈ P2(K)

}
, Xnh = (Ynh)d ∩H1

0 (Ω)d, (4.24)

and Mn
h =

{
qh ∈ H1(Ω); ∀K ∈ T nh , qh|K ∈ P1(K)

}
. (4.25)

Finally we denote by Inh the Lagrange interpolation operator at the nodes of Vnh with values in Mn
h.

4.2. Discretization of the transport equation

For reasons which appear later on, we still work with homogeneous boundary condition on the velocity,
i.e. we assume that (3.15) holds. We have decided to use the characteristics method to discretize the
transport equation, as introduced and firstly analysed in [32].

Assuming that the datum ϕ0 is continuous on Ω, we simply define

ϕ0
h = I0

hϕ0. (4.26)

Next, at time tn, assuming that un−1
h and ϕn−1

h are known, we define for all x in Vnh

xnh = x− τn un−1
h (x), (4.27)

thus, we define ϕ̃nh by
ϕ̃nh(x) = ϕn−1

h (xnh), (4.28)

and finally
ϕnh = Inh ϕ̃nh. (4.29)

The simplicity of this algorithm is obvious. Note simply that:
(i) If x belongs to ∂Ω, the fact that un−1

h belongs to H1
0 (Ω)d implies that xnh is equal to x, hence belongs

to Ω;
(ii) otherwise, τn must be chosen small enough for xnh to be in Ω. This condition is made precise later on.

Remark 4.1. Since the function ϕnh is continuous on Ω, we can define the curve

(4.30)

We hope that this curve is a good approximation of the interface Γ(t) at time t = tn. This will be investigated
later on.

Remark 4.2. It is well known that the interpolation (4.29) is very diffusive approach. Then, we can use
the following L2 projection: ∫

Ω

ϕnh(x)ψ(x) dx =

∫
Ω

ϕ̃nh(x)ψ(x) dx, ∀ψ ∈Mn
h. (4.31)

The following mathematical analysis will be valid. However, all simulations in Section 6 are performed using
the L2 projection (4.31).
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4.3. Discretization of the Navier–Stokes equations

This discretization relies on two arguments: using the characteristics method for handling the convection
term and a Galerkin method for the rest of the equation. As previously, assuming that the datum u0 is
continuous on Ω, we simply define

u0
h = I0

hu0. (4.32)

Next, at time tn, 1 ≤ n ≤ N , assuming that un−1
h and ϕnh are known, still relying on equation (4.27), we

define ũn−1
h as the interpolate in (Mn

h)d of the values un−1
h (xnh) at all nodes of Vnh which belong to Ω. Then,

the discrete problem reads: for all (v, q) ∈ Xnh ×Mn
h

Find unh in Xnh and pnh in Mn
h such that∫

Ω

ρ(ϕnh)(x)

(
unh − ũn−1

h

τn

)
(x)v(x) dx−

∫
Ω

(∇ · v)(x)pnh(x) dx

+

∫
Ω

ν(ϕnh)(x)∇unh(x) : ∇v(x) dx−
∫

Ω

T (ϕnh)(x) : ∇v(x) dx = 〈f(tn),v〉, (4.33)∫
Ω

(∇ · unh)(x)q(x) dx = 0.

4.4. Well-posedness of the discrete problem

To prove the well-posedness of problem (4.27)-(4.28)-(4.29), we must check that the xnh defined in (4.27)
belongs to Ω. This is proved in [36, Prop.1], see also [33, Rem.3] when the following condition holds

τn <
1

‖un−1
h ‖W 1,∞(Ω)d

. (4.34)

However, we have no a priori control on the quantity ‖un−1
h ‖W 1,∞(Ω)d . So we prefer to use the following

modified algorithm:

1. if the quantity defined in (4.27) belongs to Ω, take xnh equal to it;

2. otherwise, take xnh equal to
xnh = x− tun−1

h (x), (4.35)

for the smallest t in [0, τn] such that x− tun−1
h (x) belongs to ∂Ω.

Note that the modification introduced above is only used for a small number of nodes x which are very near
to ∂Ω. We are thus in a position to state the next proposition.

Proposition 4.3. For any ϕ0 continuous on Ω, problem (4.27) (or (4.35) )-(4.28) -(4.29) has a unique
solution ϕnh in Mn

h.

The well-posedness of problem (4.33) relies on standard arguments: Defining xnh by (4.27) or (4.35) as
previously, we know ũn−1

h . We also observe that the quantity T (ϕnh) belongs to L2(Ω)d×d. So the following
result is readily checked.

Proposition 4.4. For any datum u0 continuous on Ω, problem (4.33) has a unique solution (unh, p
n
h) in

Xnh ×Mn
h, up to an additive constant on the pressure pnh.

Proof. When ϕnh ( and T (ϕnh) ), ũn−1
h and f are known, this problem results in a square linear system. So

it suffices to prove that the only solution of the problem

∀v ∈ Xnh,
∫

Ω

ρ(ϕnh)(x)
unh(x)

τn
v(x) dx−

∫
Ω

(∇ · v)(x)pnh(x) dx

+

∫
Ω

ν(ϕnh)(x)∇unh(x) : ∇v(x) dx = 0,

∀q ∈Mn
h,

∫
Ω

(∇ · unh)(x)q(x) dx = 0,
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is zero, up to an additive constant on the pressure pnh. By taking v equal to unh, combining the two previous
equations and using (3.22), we easily derive that unh is zero. Thus, the fact that pnh is a constant follows
from the inf-sup condition, see for instance [18, Chap. II, Thm 4.2],

∀q ∈Mn
h,

∫
Ω

q(x) dx = 0, sup
v∈Xn

h

∫
Ω

(∇ · v)(x)q(x) dx

‖v‖H1(Ω)d
≥ β ‖q‖L2(Ω), (4.36)

where the constant β is positive.

Remark 4.5. The main advantage of the discretization that we propose is that it uncouples the computation
of the ϕnh and of the unh. However, this can lead to a lack of convergence for too large time steps or in the
case of time oscillations of the solution. To remedy this, we can use an iterative algorithm as follows: At
each time tn, knowing ϕn−1

h and un−1
h

1. define ϕn,0h as equal to ϕn−1
h and un,0h as equal to un−1

h ;

2. setting xn,kh = x− τn un,k−1
h (x) or the modified version (4.35), we define ϕn,kh as the interpolate in Mn

h

of the values ϕn,k−1(xn,kh ) at all nodes of Vnh and similarly ũn,k−1
h as the interpolate in Mn

h of the values

un,k−1(xn,kh ) at all nodes of Vnh which belong to Ω. Next, for all (v, q) ∈ Xnh ×Mn
h we find (un,kh , pn,kh ) in

Xnh ×Mn
h solution of the following problem∫

Ω

ρ(ϕn,kh )(x)

(
un,kh − ũn−1,k

h

τn

)
(x)v(x) dx− λk

∫
Ω

(∇ · v)(x)pn,kh (x) dx

+ λk

∫
Ω

ν(ϕn,kh )(x)∇un,kh (x) : ∇v(x) dx− λk
∫

Ω

T (ϕn,kh )(x) : ∇v(x) dx

= λk〈f(tn),v〉, and∫
Ω

(∇ · un,kh )(x)q(x) dx = 0.

Parameters λk are positive chosen in order to ensure the consistency of the algorithm.
3. For a fixed integer K, we set: ϕn = ϕn,K and un = un,K , and go back to step 1.

Analysis of this algorithm is nearly the same as for the previous problem (4.27)− (4.28)− (4.29)− (4.33),
so that we skip it.

5. A priori error analysis

In this section, we still work with uD = 0 and we admit that, for all x in Vnh , the xnh defined in (4.27)
belongs to Ω. Indeed, it is not so difficult in practice to satisfy condition (4.34): when ‖un−1

h ‖W 1,∞(Ω)d is
larger, it is possible to work with a smaller τn in order to enforce this condition.

We first state a stability property for the discrete transport equation.

Lemma 5.1. For any datum ϕ0 continuous on Ω, the next property holds

‖ϕnh‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω), for 1 ≤ n ≤ N. (5.37)

Proof. Since each ϕnh belongs to Mn
h, hence is piecewise affine, we have

‖ϕnh‖L∞(Ω) = max
x∈Vn

h

|ϕnh(x)|. (5.38)

Thus it follows from (4.28) and (4.29) that

‖ϕnh‖L∞(Ω) ≤ ‖ϕn−1
h ‖L∞(Ω).

By noting that
‖I0
hϕ0‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω),

the desired result is derived by induction on n.
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The error estimate is a little more tricky, even in the L∞- norm. We refer to [33, Prop. 1] for a similar
result in a different case.

Proposition 5.2. Assume that the solution ϕ of problem (3.17) satisfies

ϕ ∈ C0(0, Tf ;W 2,∞(Ω)) ∩W 1,∞(0, Tf ;L∞(Ω)). (5.39)

Then the following estimate holds for 1 ≤ n ≤ N

‖ϕ(·, tn)− ϕnh‖L∞(Ω) ≤ C
(
h2
n + τn(1 + ‖un−1

h ‖L∞(Ω)d)
)

+ ‖ϕ(·, tn−1)− ϕn−1
h ‖L∞(Ω), (5.40)

where the constant C only depends on the regularity of ϕ.

Proof. Let us start using the following triangle inequality

‖ϕ(·, tn)− ϕnh‖L∞(Ω) ≤ ‖ϕ(·, tn)− Inhϕ(·, tn)‖L∞(Ω) + ‖Inhϕ(·, tn)− ϕnh‖L∞(Ω).

Bounding the first term in the right-hand side relies on standard results [6, Chap. IX, Lemme 1.1]. To
bound the second one, we use (5.38) and for each x in Vnh , we compute

Inhϕ(x, tn)− ϕnh(x) = ϕ(x, tn)− ϕn−1
h (xnh)

= ϕ(x, tn)− ϕ(xnh, tn−1) + ϕ(xnh, tn−1)− ϕn−1
h (xnh).

From the definition of xnh and the Lipschitz continuity of ϕ, we derive

|Inhϕ(x, tn)− ϕnh(x)| ≤ cτn(1 + ‖un−1
h ‖L∞(Ω)d) + ‖ϕ(·, tn−1)− ϕn−1

h ‖L∞(Ω),

where c stands for the Lipschitz constant of ϕ on Ω×]0, Tf [. Combining all this gives the desired estimate.

In view of the quantity T (ϕ), we also need an estimate for ‖ϕ(·, tn)− ϕnh‖W 1,4(Ω).

Proposition 5.3. Assume that, for a real number q ≥ 1, the solution ϕ of problem (3.17) satisfies

ϕ ∈ C0(0, Tf ;W 2,q(Ω)). (5.41)

Then the following estimate holds for 1 ≤ n ≤ N

‖ϕ(·, tn)− ϕnh‖W 1,q(Ω) ≤ C hn + C}−1
n τn(1 + ‖un−1

h ‖L∞(Ω)d)

+ c}−1
n ‖ϕ(·, tn−1)− ϕn−1

h ‖L∞(Ω), (5.42)

where }n stands for the minimum of the diameters hK , K ∈ T nh .

Proof. We start once more from the triangle inequality

‖ϕ(·, tn)− ϕnh‖W 1,q(Ω) ≤ ‖ϕ(·, tn)− Inhϕ(·, tn)‖W 1,q(Ω) + ‖Inhϕ(·, tn)− ϕnh‖W 1,q(Ω).

and use [6, Chap. IX, Lemme 1.2] to evaluate the first term. On the other hand, denoting by ψx the
Lagrange function associated with each node in Vnh , switching to the reference element to evaluate the norm
of this function in W 1,q(Ω) and using the fact, due the regularity of the family of triangulations, the support
of each ψx only intersects the support of a finite number of other ones, we derive

‖Inhϕ(·, tn)− ϕnh‖
q
W 1,q(Ω) ≤ c

∑
x∈Vn

h

|Inhϕ(x, tn)− ϕnh(x)|q hd−qKx
,

where Kx is any element of T nh containing x. The maximum of the |Inhϕ(x, tn)−ϕnh(x)| has been evaluated
in the previous proof. We derive from the regularity of the family of triangulations that∑

x∈Vn
h

hdKx
≤ cmeas(Ω),

which leads to the desired result.
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We are now interested in the evaluation of the error issued from the discrete Navier–Stokes equations.
We refer to [7, Section 4.3] for this evaluation in a simpler case. We begin with the terms involving ϕnh and,
for simplicity, we denote by εn1 and εn2 the right-hand sides of estimates (5.40) and (5.42), respectively.

Lemma 5.4. If the assumptions of Propositions 5.2 and 5.3 are satisfied, the following estimates hold for
1 ≤ n ≤ N

‖ρ(ϕ(., tn))− ρ(ϕnh)‖L∞(Ω) + ‖ν(ϕ(., tn))− ν(ϕnh)‖L∞(Ω) ≤
εn1
ε
, (5.43)

and ‖T (ϕ(., tn))− T (ϕnh)‖L2(Ω)d×d ≤ c
(εn1
ε2

+
εn2
ε

)
. (5.44)

Proof. The two quantities in the left hand side of (5.43) can be estimate using the fact that Hε is Lipschitz-
continuous (the norm of its derivative is bounded by 1

ε ).
To prove (5.44), we use the triangle inequality

‖T (ϕ(., tn))− T (ϕnh)‖L2(Ω)d×d

≤ ‖σ
(dHε(ϕ(·, tn))

dϕ
− dHε(ϕ

n
h)

dϕ

)
(I −∇ϕ⊗∇ϕ)(·, tn)‖L2(Ω)d×d

+ ‖σdHε(ϕ
n
h)

dϕ
(∇(ϕ(·, tn)− ϕnh)⊗∇ϕ(·, tn))‖L2(Ω)d×d

+ ‖σdHε(ϕ
n
h)

dϕ
(∇ϕ(·, tn)⊗∇(ϕ(·, tn)− ϕnh))‖L2(Ω)d×d

+ ‖σdHε(ϕ
n
h)

dϕ
(∇(ϕ(·, tn)− ϕnh))⊗∇(ϕ(·, tn)− ϕnh))‖L2(Ω)d×d .

We observe that
dHε

dϕ
is also Lipschitz-continuous, with bounded Lipschitz constant (by π

2ε2 ). We use

Proposition 5.2 for the first term, Proposition 5.3 (with p = 4 for instance) for the last three terms, and
obtain the desired result.

To go further and in order to obtain the error estimate ‖u(., tn)− unh‖ at time tn, we subtract the first
line of (4.33) from the first line of equation (3.21), which gives for any v in Xnh,∫

Ω

(
ρ(ϕ)(x, tn)

(∂u
∂t

+ u · ∇u
)
(x, tn)− ρ(ϕnh)(x)

(unh − ũn−1
h

τn

)
(x)

)
v(x) dx

−
∫

Ω

(∇ · v)(x)
(
p(x, tn)− pnh(x)

)
dx

+

∫
Ω

(
ν(ϕ)(x, tn)∇u(x, tn)− ν(ϕnh)(x)∇unh(x)

)
: ∇v(x) dx

=

∫
Ω

(
T (ϕ(x, tn))− T (ϕnh)(x)

)
: ∇v(x) dx. (5.45)

The key idea consists in inserting in this equation the mean value

Mn(x) =
1

τn

∫ tn

tn−1

(∂u
∂t

+ u · ∇u
)
(x, t) dt.

Indeed, it is equal to

Mn(x) =
u(x, tn)− u(X(x, tn; tn−1))

τn
,
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thus easier to compare to the discrete one, and standard arguments yield that, if u belongs toH2(tn−1, tn;L2(Ω)d)
and Cn denotes its norm in this space then

‖(∂u
∂t

+ u · ∇u
)
(·, tn)−Mn‖L2(Ω)d ≤ Cnτn. (5.46)

Proposition 5.5. Assume that the solution ϕ of problem (3.17) satisfies (5.39) and that the solution (u, p)
of problem (3.20)− (3.21) is such that

u ∈W 1,∞( Ω×]0, Tf [ ) ∩H2(0, Tf ;L2(Ω)d) ∩ L∞(0, Tf ;H2(Ω)d),

p ∈ L∞(0, Tf ;H2(Ω)). (5.47)

Then, the following estimate holds for 1 ≤ n ≤ N(
τ−1
n ‖u(·, tn)− unh‖2L2(Ω)d + |u(·, tn)− unh|2H1(Ω)d

) 1
2

(5.48)

≤ C (hn + τn +
h2
n

τn
) + c

(εn1
ε2

+
εn2
ε

)
+ (τ−1

n )
1
2 ‖u(·, tn−1)− un−1‖L2(Ω)d ,

where the constant C only depends on the regularity of ϕ, u and p.

Proof. First, let us introduce the kernel space Vnh of b(·, ·) in Xnh:

Vnh :=

{
vnh ∈ Xnh, ∀q ∈Mn

h,

∫
Ω

(∇ · vnh)(x) q(x) dx = 0

}
.

Next, we add and subtract Mn in the first term of (5.45) and consider v = wn
h − unh, for all wn

h ∈ Vnh, then
we get

ρ1τ
−1
n ‖wn

h − unh‖2L2(Ω)d + ν1|wn
h − unh|2H1(Ω)d

= −τ−1
n

∫
Ω

ρ(ϕnh)(x)
(
u(x, tn)−wn

h(x)
)

(wn
h − unh) (x) dx

−
∫

Ω

ν(ϕnh)(x, tn) (∇(u(x, tn)−wn
h(x)) : ∇ (wn

h − unh) (x) dx

+

∫
Ω

(T (ϕ)(x, tn)− T (ϕnh)(x)) : ∇ (wn
h − unh) (x) dx

−
∫

Ω

ρ(ϕ)(x, tn)

(
(
∂u

∂t
+ u · ∇u)(x, tn)−Mn

)
· (wn

h − unh) (x) dx

+

∫
Ω

(∇ · (wn
h − unh)) (x) (p(x, tn)− pnh(x)) dx

−
∫

Ω

(ν(ϕ)(x, tn)− ν(ϕnh)(x)) ∇u(x) : ∇ (wn
h − unh) (x) dx

−
∫

Ω

(ρ(ϕ)− ρ(ϕnh)) Mn (wn
h − unh) (x) dx

+

∫
Ω

ρ(ϕnh)(x)

(
u(X(x, tn; tn−1))− ũn−1

h (x)

τn

)
(wn

h − unh) (x) dx

=

8∑
j=1

Ij .

(5.49)

Using successively Cauchy–Schwarz and Holder inequalities together with Young’s inequality, we bound
each term Ij , 1 ≤ j ≤ 8 in the right hand side as follow: ∀α > 0

I1 ≤ ρ2τ
−1
n ‖u(·, tn)−wn

h‖L2(Ω)d‖wn
h − unh‖L2(Ω)d

≤ τ−1
n

(
ρ2

2

2α
‖u(·, tn)−wn

h‖2L2(Ω)d +
α

2
‖wn

h − unh‖2L2(Ω)d

)
13



and

I2 ≤ ν2|u(·, tn)−wn
h|H1(Ω)d |wn

h − unh|H1(Ω)d

≤ ν2
2

2α
|u(·, tn)−wn

h|2H1(Ω)d +
α

2
|wn

h − unh|2H1(Ω)d .

Using (5.44), we have

I3 ≤ ‖T (ϕ(·, tn))− T (ϕnh)‖L2(Ω)d |wn
h − unh|H1(Ω)d

≤ 1

2α
‖T (ϕ(·, tn))− T (ϕnh)‖2L2(Ω)d +

α

2
|wn

h − unh|2H1(Ω)d

≤ c

2α

(
εn1
α2

+
εn2
α

)2

+
α

2
|wn

h − unh|2H1(Ω)d .

Thanks to (5.46), I4 can be bounded as follow

I4 ≤ ρ2

∥∥∥∥(∂u∂t + u · ∇u
)

(·, tn)−Mn

∥∥∥∥
L2(Ω)d

‖wn
h − unh‖L2(Ω)d

≤ ρ2CP

∥∥∥∥(∂u∂t + u · ∇u
)

(·, tn)−Mn

∥∥∥∥
L2(Ω)d

|wn
h − unh|H1(Ω)d

≤ ρ2
2C

2
P

2α

∥∥∥∥(∂u∂t + u · ∇u
)

(·, tn)−Mn

∥∥∥∥2

L2(Ω)d
+
α

2
|wn

h − unh|2H1(Ω)d

≤ ρ2
2C

2
P

2α
τ2
n +

α

2
|wn

h − unh|2H1(Ω)d .

Observe that the term I5 involving the pressure can be written as

I5 := −
∫

Ω

(∇ · (wn
h − unh)) (x)

(
p(x, tn)− pnh(x)

)
dx

= −
∫

Ω

(∇ · (wn
h − unh)) (x)

(
p(x, tn)− Inhp(x)

)
dx.

Then,

I5 ≤
1

2α
‖p(·, tn)− Inhp(·, tn)‖2 +

α

2
|wn

h − unh|2H1(Ω)d .

From (5.43), we deduce that

I6 ≤ ‖ν(ϕ)(·, tn)− ν(ϕnh)‖L∞(Ω) |u|
2
H1(Ω)d |w

n
h − unh|H1(Ω)d

≤ 1

2α
|u|2H1(Ω)d‖ν(ϕ)(·, tn)− ν(ϕnh)‖2L∞(Ω) +

α

2
|wn

h − unh|2H1(Ω)d

≤ 1

2α
|u|2H1(Ω)d

εn1
2

α
+
α

2
|wn

h − unh|2H1(Ω)d

and owing to (5.43), we get

I7 ≤ ‖ρ(ϕ)− ρ(ϕnh))‖L∞(Ω)‖Mn‖L2(Ω)d‖wn
h − unh‖L2(Ω)d

≤ τ−1
n c(u) ‖ρ(ϕ)− ρ(ϕnh))‖L∞(Ω)‖wn

h − unh‖L2(Ω)d

≤ τ−1
n

(
c(u)2

2α
‖ρ(ϕ)− ρ(ϕnh))‖2L∞(Ω) +

α

2
‖wn

h − unh‖2L2(Ω)d

)
≤ c(u)2

2α2
τ−1
n εn1 +

α

2
τ−1
n ‖wn

h − unh‖2L2(Ω)d .
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Now, in order to estimate I8, we will bound
∥∥u(X(·, tn; tn−1))− ũn−1

h

∥∥
L2(Ω)d

. By triangle inequality, we

have

‖u(X(·, tn, tn−1))− ũn−1
h ‖L2(Ω)d ≤ ‖u(X(·, tn, tn−1))− u(Xn

h )‖L2(Ω)d

+ ‖u(Xn
h )− un−1

h (Xn
h )‖L2(Ω)d + ‖un−1

h (Xn
h ))− ũn−1

h ‖L2(Ω)d .

Using the mean value theorem for the first term, we obtain

‖u(X(·, tn, tn−1))− u(Xn
h )‖L2(Ω)d ≤ ‖∇u‖∞‖X(·, tn, tn−1)−Xn

h ‖L2(Ω)d

We write

x−X(x, tn; tn−1) =

∫ tn

tn−1

u(X(x, tn, t), t)dt ' τnu(X(x, tn, tn), tn) = τnu(x, t).

On the other hand, we have from (4.27)

x−Xn
h (x, tn; tn−1) = τnu

n−1
h (x).

Thus, we have from [6, Chap. IX, lemme 1.1]

‖un−1
h (Xn

h )− ũn−1
h ‖L2(Ω)d ≤ chn‖un−1

h ‖H1(Ω)d .

We conclude by choosing an adequate nonnegative real number α and combining all obtained bounds of
(Ij)1≤j≤8 with the triangle inequality and interpolation estimates.

Remark 5.6. Owing to the inf-sup condition (4.36), an error estimate for the pressure p(·, tn) − pnh can
also be derived, we skip it for brevity.

We observe that the estimate (5.48) contains error terms at time tn−1, so we need an induction on n to
conclude. We denote by h the maximum of the hn, 0 ≤ n ≤ N .

Theorem 5.7. Assume that the solution (ϕ,u, p) of problem (3.17)-(3.20)-(3.21) is such that

ϕ ∈ C0(0, Tf ;W 2,∞(Ω)), p ∈ L∞(0, Tf ;H2(Ω))

and u ∈W 1,∞(Ω×]0, Tf [) ∩H2(0, Tf ;L2(Ω)d) ∩ C0(0, Tf ;H2(Ω)d). (5.50)

p ∈ L∞(0, Tf ;H2(Ω)). (5.51)

For 1 ≤ n ≤ N , let us choose the parameters τ and h such that,

h ≤ c }n, |τ | ≤ c }2
n. (5.52)

Then, the following estimates hold for 1 ≤ n ≤ N

‖ϕ(·, tn)− ϕnh‖L∞(Ω) ≤ Cn (h2 + |τ |), (5.53)

‖u(·, tn)− unh‖H1(Ω)d ≤ Cn (h+ |τ |), (5.54)

where the constant Cn depends on the regularity of ϕ, u and p, and also on n.

Proof. We proceed by induction on n.
1) For n = 0, estimates (5.53) and (5.54) are obvious since ϕ0

h and u0
h are the interpolates of ϕ0 and u0,

respectively.
2) Assume that (5.53) and (5.54) hold for n− 1. We use the following inverse inequality (with η > 0)

‖un−1
h ‖L∞(Ω)d ≤ ‖wh‖L∞(Ω)d

+ }1−( d
2 +η)

n−1

(
‖u(·, tn−1)−wh‖H1(Ω)d + ‖u(·, tn−1)− un−1

h ‖H1(Ω)d
)
, (5.55)
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where wh is any approximation of u(·, tn−1) in Xn−1
h . By triangle inequality and the Sobolev embedding

from H2 into L∞, the first term in the above inequality is bounded as follow:

‖wh‖L∞(Ω)d ≤ c‖wh − u(·, tn−1)‖L∞(Ω)d + c‖u(·, tn−1)‖L∞(Ω)d

≤ c(h2− d
2 + 1)‖u(·, tn−1)‖H2(Ω)d . (5.56)

To evaluate the second term, we derive from the approximation estimates that

}1−( d
2 +η)

n−1 ‖u(·, tn−1)−wh‖H1(Ω)d ≤ c}
1−( d

2 +η)
n−1 hn−1 ‖u(·, tn−1)‖H2(Ω)d . (5.57)

Owing to (5.52), we obtain

}1−( d
2 +η)

n−1 ‖u(·, tn−1)−wh‖H1(Ω)d ≤ ch
2−( d

2 +η) ‖u(·, tn−1)‖H2(Ω)d . (5.58)

We use the induction assumption and (5.52) to estimate the third term:

}1−( d
2 +η)

n−1

∥∥u(·, tn−1)− un−1
h

∥∥
H1(Ω)d

≤ Cn−1 }
1−( d

2 +η)
n−1 (h+ |τ |)

≤ Cn−1 h
1−( d

2 +η) (h+ |τ |) . (5.59)

From (5.55), (5.56), (5.58) and (5.59), we deduce that ‖un−1
h ‖L∞(Ω)d is bounded and

τn‖un−1
h ‖L∞(Ω)d ≤ Cnτn and }−1

n τn‖un−1
h ‖L∞(Ω)d ≤ Cn}−1

n τn ≤ }n.

Next, inserting the induction hypothesis in (5.40) and (5.48) gives (5.53) and (5.54), respectively.

Despite the technicity of the proofs, estimates (5.53) and (5.54) are fully optimal. But condition (5.52) is
too restrictive: it involves both a hard Courant–Friedrichs–Lévy (CFL) condition and the uniform regularity
of the family of triangulations. Fortunately the same arguments as in the previous proof lead to the following
result.

Corollary 5.8. Assume that the solution (ϕ,u, p) of problem (3.17) − (3.20) − (3.21) satisfies (5.50). For
1 ≤ n ≤ N , let us choose the parameters τ and h such that, for a positive constant η,

h2 + |τ | ≤ c }n
d
2 +η. (5.60)

Then, the following estimates hold for 1 ≤ n ≤ N

‖ϕ(·, tn)− ϕnh‖L∞(Ω) ≤ Cn (h2 + |τ |), (5.61)

and ‖u(·, tn)− unh‖H1(Ω)d ≤ Cn }n−1(h2 + |τ |), (5.62)

where the constant Cn depends on the regularity of ϕ, u and p, and also on n.

Proof. By the same arguments used in the previous proof, we establish by induction on n (5.61) and (5.62).
Combining (5.57) and (5.60), this yields

}1−( d
2 +η)

n−1 ‖u(·, tn−1)−wh‖H1(Ω)d ≤ c}n−1 h
−2 hn−1. ≤ c.

Owing to induction hypothesis and (5.60)

}1−( d
2 +η)

n−1

∥∥u(·, tn−1)− un−1
h

∥∥
H1(Ω)d

≤ Cn−1 }
1−( d

2 +η)
n−1 }−1

n−1

(
(h2 + |τ |

)
≤ Cn−1.

Then, ‖un−1
h ‖L∞(Ω)d is bounded. This conclude the proof.

Assumption (5.60) is much more realistic and the convergence of the discretization holds for standard
properties of the family of triangulation.

Remark 5.9. The fact that the constant Cn in estimates (5.53), (5.54), (5.61) and (5.62) depends on n
can be avoided either by weakly strengthening conditions (5.52) and (5.60) or working with specific family
of parameters: for instance, it can be assumed that the quantity h2

n + τn decreases with n.
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6. Numerical results

We now concentrate on the numerical properties of the discretization suggested above. We present three
numerical tests. The first simulation is based on a manufactured solution in order to compute the time and
space accuracy order of the algorithm. In the second and third tests, the Rayleigh–Taylor problem (RTP),
see for instance [43] and the rising bubble [25], illustrate the numerical relevance of the proposed algorithm
as we produce results comparable to the literature for this well known tests.

All numerical simulations are done using the software Freefem++ [23].

6.1. Time and space accuracy

This subsection is devoted to adding a quantitative flavor to Theorem 5.7 and Corollary 5.8 by deter-
mining numerically the convergence rates obtained in (5.53), (5.54)( or (5.62) ). However, in the absence of
analytical solutions, which are very hard to come by for this model, we decide to build an reference solution
which will be our exact solution.

We use the square domain Ω = (−1, 1)2 and we consider the system (2.11) with:

(ν1, ν2) = (1, 1), (ρ1, ρ2) = (1, 3), σ = 0.1 and ε = 0.1.

and suitable forcing functions such that the exact solution is given by

ϕ = 2 + sin(t) cos(πx) cos(π y)

u1 = π sin(t) sin(2πy) sin(πx) sin(πx)

u2 = −π sin(t) sin(2πx) sin(πy) sin(πy)

p = sin(t) cos(πx) sin(πy).

In order to link the spatial and temporal refinements together, we introduce the following quantities

Eϕ(h, τ) = h2 + τ,
Eu(h, τ) = h+ τ.

(6.63)

First, dividing successively the uniform time step τ by four and the mesh size h by two, the convergence
order is then estimated by:

Oh,τ (ϕ) = log

(
Eϕ(h, τ)

Eϕ(h/2, τ/4)

)
= 2.

Simillary, to obtain the convergence order of the velocity, the couple (τ, h) was halved successively:

Oh,τ (u) = log

(
Eu(h, τ)

Eu(h/2, τ/2)

)
= 1.

The results of the velocity error in H1-norm and the position of the interface error in L∞-norm are given
respectively in Tables 1 and 2. As predicted by (5.61) and (5.62) in Corollary 5.8, the estimates orders are
observed for u and ϕ.

We can conclude that the numerical results are in concordance with our theoretical analysis.

6.2. Rayleigh–Taylor Problem

The widely used test problem for numerical simulations for two-fluid flow is the Rayleigh–Taylor problem
(RTP), see for instance [43]. When a layer of heavier fluid is placed on top of another lighter layer in a
gravitational field with gravity pointing downward, the initial planar interface is unstable. Any disturbance
will grow to produce spikes of heavier fluid moving downwards and bubbles of lighter fluid moving upwards.
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Table 1: Accuracy test of the velocity

τ h ‖uh − u‖H1(Ω) Oh,τ (u)
0.01 0.1 0.307 ...
τ/2 h/2 0.088 1.80
τ/4 h/4 0.0288 1.61
τ/8 h/8 0.0116 1.3
τ/16 h/16 0.0054 1.1
τ/20 h/20 0.00428ß 1.04

Table 2: Accuracy test of ϕ

τ h ‖ϕh − ϕ‖L∞(Ω) Oh,τ (ϕ)
0.01 0.1 0.00038 ...
τ/4 h/2 4.95e-05 2.95
τ/16 h/4 6.33e-06 2.97
τ/64 h/8 1.22e-06 2.37
τ/256 h/16 3.e-07 2.04

This is the so-called Rayleigh–Taylor instability. In this test case a heavy fluid is placed on the top of a
light fluid and the initial position of the perturbed interface between two fluids is

ϕ(x) = tanh
y − 2− 0.1 cos(2π x)

0.01
√

2
.

The computational domain is the rectangle Ω =]0, 1[×]0, 4[ and the density difference is normally represented

by the Atwood number At =
ρ2 − ρ1

ρ2 + ρ1
, where ρ2 > ρ1 correspond to the heavier and lighter fluids, respectively.

We also introduce the following Reynolds number Re =
ρ1a

3
2 g

1
2

ν
. According to [43], the governing equations

are made dimensionless by using the following references: ρref = ρ1, aref = a and tref = t
√
aAt g. A no-slip

condition u = (0, 0) is enforced at the bottom and top walls while the first component of velocity u1 = 0 is
imposed on the two vertical sides, which correspond to u · n = 0. The time step τn is taken uniform and
equal to ∆t = 0.01. Also, we consider an uniform triangulation of the domain which consists of 50 × 200
regular grid. Finally, we work with ε = 0.05 and σ = 0. The interface shape at different dimensional times
(for instance, t = 0s, 1s, 2s, 3s, 4s) are plotted in Figure 2. In the first one, the Reynolds number Re is
equal to 100 and the Atwood number is equal to At = 0.3, while in the second one we take Re = 1000 and
At = 0.5. During the early stages, the growth of the interface is slow and remains symmetrical. However,
the characteristic mushroom shape emerges in the vicinity of the central vortex. Later, the heavier fluid
falls continuously and the lighter fluid keep rising to form bubbles along the vertical side boundary, and the
heavier fluid begins to roll up into two counter–rotating vortices.

6.3. Two-dimensional rising bubble

The next application is a circular bubble rising in a viscous fluid. For this simulation, we use data from
the numerical experiment of Hysing et al [25] where the bubble is initially circular with radius r = 0.25 and
center coordinates (0.5, 0.5) placed at the bottom of a rectangular domain ]0, 1[×]0, 2[ with another fluid of
higher density and viscosity. Figure 3 illustrates the initial configuration of this problem and the boundary
conditions we use.
The parameter ε is taken equal to 0.025. Buoyancy effects will make the drop move to the top of the domain
and undergo some deformation. The result shape depends naturally on different physical parameters, for
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(e) t = 4s(d) t = 3s(a) t = 0s (b) t = 1s (c) t = 2s

(a) t = 0s (b) t = 1s (c) t = 1.2s (d) t = 1.75s (e) t = 2.25s

Figure 2: Rayleigh-Taylor instability: Evolution of the interface shape in time. On the top: At = 0.3 and Re = 100. On the
bottom At = 0.5 and Re = 1000

instance on Reynolds number Re =
2rρ1

√
2rg

ν1
and on the so-called Eötvös number which gives the ratio of

gravitational forces to surface tension effects Eo =
4r2gρ1

σ
. The density and viscosity of the heavy fluid are

ρ1 = 1000, ν1 = 10 whereas density and viscosity of the fluid occupied by the bubble are ρ2 = 1, ν2 = 0.1.
This yields Re = 35 and Eo = 10 (then the surface tension σ equal to 24.5).

Subsequently, we introduce the following quantities allowing the quantitative comparison with Hysing et
al results [25]: the centroid or center of mass in order to track the translation of bubble

(xc, yc) (t) =

∫
Ω2

xdx/

∫
Ω2

dx

and the rise velocity u2(xc, yc; t) which is the velocity component in the direction opposite to the gravitational
vector.

The uniform time step τn = ∆t = 0.0025 and the initial triangulation of the domain consist of 100×200
regular grid of triangles adapted (local refinement, edge swapping and vertex suppression) based on the P2
interpolation of the initial value of

ϕ0 = tanh

(√
(x− 0.5)2 + (y − 0.5)2 − 0.25

2ε

)
.

Afterward, at each 5 times step, the mesh is adapted with respect to (u, ϕ) by metric control which
is a standard function offered by FreeFEM++ [23]. The mesh generator uses Delaunay–type algorithms
developed in [16, 17]. As expected the mesh is denser at the vicinity of the moving interface (see Figures
3 and 5).
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u1 = u2 = 0

u1 = u2 = 0

fluid 1

fluid 2

Figure 3: Rising bubble: geometry and illustration of an initial mesh obtained from the mesh adaptation based on the quadratic
approximation of the analytical expression of ϕ0. On the right a zoom of the interface region (red zone in the middle).

Furthermore, as usual, since the level set function ϕ may lose its hyperbolic tangent shape, we reinitialize
it at each 5 times step by iterate few times (4 iterations) the time discrete formulation of equation (1.2)
using an fictitious time step ∆t = 1e− 4 .

The evolution of the bubble at different time t between t = 0.6 and t = 3 is presented in figure 4 and
the corresponding adaptive mesh, see Figure 5. The evolution of the center of mass and rise velocity are
presented in Figure 6. These results are similar to those obtain in [25].

(a) t = 0.6 (b) t = 1.2 (c) t = 1.8 (d) t = 2.2

(e) t = 2.4 (f) t = 2.6 (g) t = 2.8 (h) t = 3

Figure 4: Evolution of the interface at different time
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(a) t = 0.6 (b) t = 1.2 (c) t = 1.2 (d) t = 2.2

(f) t = 2.6 (g) t = 2.8 (h) t = 3 (h) t = 3

Figure 5: Typical time evolution of the adaptive mesh

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1.0

1.2

0 0.5 1 1.5 2 2.5 3
0.0

0.1

0.2

0.3

Figure 6: Rising bubble: evolution of : center of mass ( left), rise velocity ( right).
Present work on the top and Hysing et al [25] results on the bottom.
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7. Conclusion

In this work, the analysis of the complex differential problem which governs the flow of two immiscible
fluids including surface tension effects is presented. The nature of free–surface problem is faced adopting
the level set method and the surface tension contribution in the momentum equation is accounted for using
the CSF approach.

The well posedness of its variational formulation is proved under the rather restrictive condition of
homogeneous Dirichlet boundary conditions.

The problem is discretized using the finite element method and the characteristics method is adopted to
treat the advection terms in both the momentum and level set equations. We have performed its a priori
error analysis and tested the convergence order using a manufactured solution approach. Finally, using the
Rayleigh–Taylor problem and the single rising bubble as a benchmarks, we illustrated the relevance of the
proposed method.
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