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Abstract: Oxidative stress (OS) is the main pathophysiological mechanism involved in several
chronic diseases, including asthma. Fluorescent oxidation products (FlOPs), a global biomarker of
damage due to OS, is of growing interest in epidemiological studies. We conducted a genome-wide
association study (GWAS) of the FlOPs level in 1216 adults from the case-control and family-based
EGEA study (mean age 43 years old, 51% women, and 23% current smokers) to identify genetic
variants associated with FlOPs. The GWAS was first conducted in the whole sample and then
stratified according to smoking status, the main exogenous source of reactive oxygen species. Among
the top genetic variants identified by the three GWAS, those located in BMP6 (p = 3 × 10−6), near
BMPER (p = 9 × 10−6), in GABRG3 (p = 4× 10−7), and near ATG5 (p = 2× 10−9) are the most relevant
because of both their link to biological pathways related to OS and their association with several
chronic diseases for which the role of OS in their pathophysiology has been pointed out. BMP6 and
BMPER are of particular interest due to their involvement in the same biological pathways related
to OS and their functional interaction. To conclude, this study, which is the first GWAS of FlOPs,
provides new insights into the pathophysiology of chronic OS-related diseases.

Keywords: fluorescent oxidation products; oxidative stress; genome-wide association study; chronic
diseases; asthma; smoking

1. Introduction

Oxidative stress (OS) was defined in 1985 as “a disturbance in the pro-oxidant/
antioxidant balance in favour of the former” [1]. Beyond its essential role in life pro-
cesses, OS is involved in the pathophysiology of several chronic diseases, including car-
diovascular diseases, chronic kidney diseases, and asthma [2]. Sources of reactive oxygen
species include the diseases themselves, through their intracellular metabolisms, and some
exogenous sources, among which the most important is cigarette smoke [3].

Among the numerous biomarkers related to OS [1,4], Fluorescent Oxidation Products
(FlOPs), which reflect a global measurement of oxidation of lipids, proteins, carbohydrates,
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and DNA [5], is of growing interest for epidemiological studies [6], as an easily quantifiable
and stable biomarker of damage due to OS. The FlOPs level was found to be associated with
chronic diseases such as coronary heart disease (CHD) (e.g., incidence of CHD among men
without previous cardiovascular events, and risk of future CHD in healthy women) [7,8],
and chronic kidney diseases [9]. Recently, we reported that high FlOPs level was associated
with asthma attacks, the use of any asthma treatment, and poor control of asthma and
was a predictor of asthma evolution in adults from the French Epidemiological study on
the Genetics and Environment of Asthma (EGEA) [10,11]. We also found that smoking
increased the FlOPs level [11].

Understanding the aetiology of multifactorial and heterogeneous chronic diseases is
challenging. We hypothesised that genome-wide association studies (GWAS) of FlOPs may
provide new insights into the pathophysiology of complex chronic diseases related to the
OS pathway, including asthma. Indeed, previous GWAS of levels of circulating protein
biomarkers related to chronic obstructive pulmonary disease, another chronic lung disease,
was useful to identify new genes linked to this disease [12]. Such an approach was also
useful to identify new genes through the study of biomarkers of other chronic diseases such
as kidney or cardiovascular diseases [13,14]. To our knowledge, no GWAS of biomarkers
related to the OS pathway, and in particular FIOPs, has been published to date.

Taking advantage of the extensive biological, genotypic, and phenotypic characteri-
sation of >1000 adults from the EGEA study, we aimed to identify genetic loci associated
with the FlOPs level through a GWAS. As smoking is the main environmental source of OS
and is associated with the FlOPs level, we performed two supplementary GWAS analyses
separately in contrasted groups according to tobacco smoking status that could help us to
identify genetic loci that could have been missed in the whole sample.

2. Materials and Methods
2.1. Study Population (EGEA Study)

EGEA is a French cohort study based on an initial group of asthma cases recruited in
five chest clinics from Grenoble, Lyon, Marseille, Montpellier, and Paris, along with their
first-degree relatives, and population-based controls (EGEA1, 1991–1995). The protocol
of the study has been described previously [15,16]. Briefly, the asthma cases and their
first-degree relatives were recruited from respiratory or allergic clinics. The adult cases
were recruited in the five cities, and the child cases were recruited in Paris, Grenoble, and
Marseille. Control adults were recruited from electoral rolls in Paris, Lyon, Montpellier,
and Grenoble, a check-up centre in Marseille, and surgery clinic from the same hospital in
Paris and Grenoble. Control children were always recruited from surgery clinics. Overall
matching by month of exam, age decade, sex, and centre was done. A first follow-up of
the initial cohort was conducted between 2003 and 2007 (EGEA2) including 1602 partici-
pants (98% adults) with complete examination. At each survey, all participants answered
standardised and validated questionnaires to identify asthma and to determine respiratory
and allergic symptoms, treatments, environmental exposures, and lifestyle characteristics,
including tobacco smoking status. More details are given in Supplementary Materials. The
data used for the present analyses were elicited at EGEA2.

The EGEA collection was certified ISO 9001 from 2006 to 2018 [17]. All participants
signed a written informed consent, and ethical approval was obtained from the relevant
institutional review board committees (Cochin Port-Royal Hospital and Necker-Enfants
Malades Hospital, Paris, France).

2.2. FlOPs Level

Plasma samples were collected in EGEA2 between 2003 and 2006 and stored immedi-
ately at −80 ◦C during 5.0 to 8.0 years until FlOPs measurements. The plasma FlOPs level
was measured as previously described [7]. Briefly, plasma was extracted into a mixture
of ethanol/ether (3/1 v/v) and measured using a spectrofluorometer (360 nm excitation
wavelength, 430 nm emission wavelength). Fluorescence was expressed as a unit of relative
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fluorescence intensity (RFU)·mL−1 of plasma. Each sample was replicated. The intra-assay
coefficient of variation (CV) for FlOPs was less than 20%. The dosages for which the CV
were ≥20 % or those that were haemolysed were removed of analysis (n = 11 and n = 8,
respectively, see Figure S1 in Supplementary Materials).

2.3. Genotyping

The EGEA participants were genotyped using Illumina 610 Quad array at the Centre
National de Génotypage (CNG, Evry, France) as part of the European Gabriel consortium
asthma GWAS [18]. As part of this consortium, principal-components analysis was con-
ducted for all participants to control population admixture and was carried out using the
EIGENSTRAT2.0 software. Putative non-European samples were flagged as outliers and
eliminated from subsequent analyses [18]. Stringent quality control (QC) criteria were
used to select both individuals and genotyped Single Nucleotide Polymorphisms (SNPs)
for analysis [19]. Among participants with genotyped data (n = 1481), 44 with invalid
genotyped data were excluded (see Supplementary Materials: Figure S1, flow chart, for
details). The following SNPs quality controls were applied: genotyping call rates ≥ 97%
and departure from the Hardy–Weinberg equilibrium in the controls (p-value ≥ 1.0 × 10−4)
and minor allele frequencies (MAF) ≥ 5%. After this SNPs QC control, 66,422 SNPs were
excluded, and a total of 501 167 SNPs were available for the analysis. To investigate regions
of interest, including the top three SNPs, imputed SNPs from the reference panel 1000
Genome Phase I were used [20]. The software IMPUTE2 was used for imputation [21].
Imputed SNPs were kept for analysis if their imputation information score was greater
than or equal to 0.70 and if their minor allele frequency (MAF) was greater than or equal
to 0.05.

2.4. Definitions of Population’s Characteristics
2.4.1. Asthma

Ever-asthma status was generated as a dichotomous variable (never-asthmatic/ever-
asthmatic). Ever-asthmatics were participants who answered positively to at least one of
the two following questions: “Have you ever had attacks of breathlessness at rest with wheezing?”
or “Have you ever had asthma attacks?”, or those who were recruited as asthmatic cases at
EGEA1. Never-asthmatics were those who answered negatively to the two questions above;
they were not recruited as asthmatic cases at EGEA1.

2.4.2. Chronic Bronchitis

Chronic bronchitis was generated as a dichotomous variable (yes/no). Participants
with chronic bronchitis were those who answered positively to at least one of the two
following questions: “Do you usually cough during the day or at night in winter almost every
day for three months of continued every year?” or “Do you usually spit during the day or at night
in winter, almost every day for three months of continued every year?”.

2.4.3. Lung Function

A lung function test with spirometry and methacholine challenge was performed
using standardised protocol with similar equipment across centres and according to the
American Thoracic Society/European Respiratory Society guidelines [22]. The forced
expiratory volume in one second (FEV1) percent predicted value was based on Quanjer
et al. reference equations [23]. For participants with a FEV1 ≥ 80% of the predicted value,
a methacholine bronchial challenge test was performed (maximum dose 4 mg) using a
Biomedin spirometer (Biomedin Srl, Padua, Italy) in all centres, except in Lyon, where a
Pneumotach Jaeger spirometer (Jaeger) was used. The following measures of lung function
were used as continuous variables and expressed as %: FEV1 and Forced Vital Capacity
(FVC). FEV1 was also generated as a dichotomous variable (FEV1 < 80%, FEV1 ≥ 80%).
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2.4.4. Smoking Status

Tobacco consumption was defined by the answer to the question “Do you smoke or have
you smoked previously one cigarette per day or more, for at least a year?”. If so, participants were
asked their age at the start of smoking and the age of quitting, if applicable. Participants
were also asked to quantify the average daily consumption of cigarettes and the average
weekly consumption of cigars, if applicable. Current smoking status was generated as a
3-class categorical variable: never-smoker, ex-smoker, or current smoker. Lifelong cumu-
lative quantity of tobacco was generated as a continuous variable and also categorised
using a 4-class variable, with cut-offs defined a priori: never-smokers; <10 pack-year;
10–20 pack-year; and >20 pack-year.

2.4.5. Body Mass Index (BMI)

BMI was generated as a continuous variable and was also expressed as a dichotomous
variable (<30 kg/m2; ≥30 kg/m2).

2.4.6. Biological Parameters

Total serum Immunoglobulin E (IgE) determination was assessed by the UniCAP
system (Pharmacia®) from blood samples in a centralised laboratory and expressed in
international units (IU) per millilitre. For the analysis, total IgE level was examined as a
continuous variable.

Blood neutrophil and eosinophil counts were expressed in cells/mm3 and coded as
continuous variables [24,25].

2.5. Statistical Methods and Strategy of Analysis
2.5.1. Characteristics of the Studied Population and Association with the FlOPs Level

First, characteristics of the studied population were described and summarised as n (%)
or mean (m)± standard deviation (sd), according to the type of variable, either quantitative
or qualitative. Due to their skewed distribution, the FlOPs level was log-transformed and
expressed as geometric mean (GM) and values of first quartile (Q1) and third quartile (Q3).

In order to select potential confounding factors prior to GWAS, we estimated associa-
tions between log-FlOPs and several characteristics of the whole sample using Gaussian
linear models, taking into account EGEA family structure, by Generalised Estimated Equa-
tion (GEE, SAS v9.4 (SAS Institute, Cary, NC, USA), proc genmod, option repeated). We
previously identified the following characteristics as factors associated with FlOPs: age,
sex, current smoking status, lifelong cumulative quantity of tobacco, blood neutrophil
count, and FEV1. Age was entered either as a continuous variable or a categorical one, with
cut-points defined a priori (<25 years; 25–34 years; 35–44 years; 45–54 years; and≥55 years).
Regarding tobacco smoking, models included either smoking status as a categorical vari-
able (never smokers; ex-smokers; and current smokers), or lifelong cumulative quantity
of tobacco as a continuous variable or a 4-class categorical variable. The best model was
selected based on the QIC, an Akaike’s Information Criterion in the framework of GEE
models [26]. Among all models tested, the best model included age (continuous), sex, and
lifelong cumulative quantity of tobacco (never-smokers; <10 pack-year; 10–20 pack-year;
and >20 pack-year).

Adjusted log-FlOPs were obtained as residuals of the best linear model identified in
the previous step. Z-scores were then obtained by standardizing residuals, and adequacy
to Gaussian distribution was assessed using the Kolmogorov test. In order to exclude
participants whose log-FlOPs were poorly predicted by the linear model, participants with
the highest Z-score (i.e., |Z-score| > 3, corresponding to the 0.1th and 99.9th percentiles
of a standard Gaussian distribution) were excluded. The process was repeated until no
significant deviation from Gaussian distribution was evidenced. This process excluded
20 participants (see Figure S1 in Supplementary Materials).
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Adjusted log-FlOPs used for GWAS stratified on smoking status (see below) were gen-
erated by applying the same procedure as described above, except that lifelong cumulative
quantity of tobacco was not entered in the model.

2.5.2. GWAS of the FlOPs Level

We first conducted a GWAS of the FlOPs level in the whole sample with genotyped
data. Then, we conducted two supplementary GWAS separately in contrasted groups
according to smoking status at the time of measurement: never-smokers and current
smokers. Ex-smokers were excluded from this analysis.

An association analysis between adjusted log-FlOPs (standardised residual) and each
SNP was performed by the Gaussian linear model, adjusted for principal components
(PCs) to account for within European diversity. The EGEA family structure was taken into
account using a robust variance estimator for clustered data (STATA command: regress,
option vce(cluster), within family). SNPs were coded under an additive genetic model.

For the top three SNPs obtained by each of the three GWAS (in the whole sample, in
never-smokers and in current smokers), further analyses were conducted. First, we split
the sample into two actual independent sub-samples regarding the ascertainment mode
(controls vs. cases/relatives) to check the consistency of the results by using a homogeneity
test between the sub-samples. Second, due to the mode of ascertainment of EGEA families,
i.e., through asthmatic participants, the independence of the results regarding the asthma
status was verified by homogeneity test according to ever-asthma status (never-asthmatics
vs. ever-asthmatics). A test for homogeneity was performed by fitting the interaction term
between the SNP and dummy variables (cases/related vs. controls, and ever-asthmatics vs.
never-asthmatics, respectively) in models. The top three SNPs of the three GWAS (in the
whole sample, the never-smokers and the current smokers) was also focused on: we used
imputed data from the reference panel 1000 Genome project Phase 1 [20] CEU population,
spanning 500 kb on each side of each top SNP. For each region of interest, association results
were graphically represented using LocusZoom [27].

All analyses were performed using SAS v9.4 (SAS Institute, Cary, NC, USA) or STATA
v14.1 (StataCorp. 2015. Stata Statistical Software: Release 14. College Station, TX, USA:
StataCorp LP). All tests were two-sided. To account for multiple testing, the Bonferroni-
corrected significance p-value threshold applied to the Meff (effective number of indepen-
dent tests after discarding dependence due to linkage disequilibrium (LD) between the
SNPs) was calculated. For a chip of 610K SNPs, the significance p-value threshold was
estimated to be 1.3 × 10−7 [28].

2.5.3. eQTLs, meQTLs, and Functional Annotations

We investigated whether the top three SNPs (or their proxies, r2 ≥ 0.8) in the whole
sample, in never-smokers, and in current smokers were cis-expression Quantitative Trait
Loci (cis-eQTLs) or methylation Quantitative Trait Loci (meQTLs). For eQTLs and meQTLs,
we used the browser Phenoscanner v2 (http://www.phenoscanner.medschl.cam.ac.uk/,
accessed on 18 October 2021), which combines several databases, e.g., the Genotype-Tissue
Expression project (GTEx, https://www.gtexportal.org/home/, accessed on 18 October
2021) for eQTLs, and BioSQTL and Gaunt’s databases for meQTLs) and that includes e-QTL
data from many tissues [29–32]. Furthermore, functional annotations of these SNPs (or prox-
ies) were done using the HaploReg v4.1 tool (https://pubs.broadinstitute.org/mammals/
haploreg/haploreg.php, accessed on 18 October 2021). HaploReg annotates SNPs in terms
of colocalisation with regulatory elements, such as promoter and enhancer marks, DNase
I hypersensitivity sites, and transcription factor (TF) and protein-binding sites, based on
Roadmap Epigenomics data and Encyclopedia of DNA Elements data [33]. We checked the
potential deleteriousness of SNPs using the combined annotation-dependent depletion tool
(CADD v1.4, https://cadd.gs.washington.edu/, accessed on 1 April 2022). The CADD tool
scores the predicted deleteriousness of single nucleotide variants and insertion/deletions

http://www.phenoscanner.medschl.cam.ac.uk/
https://www.gtexportal.org/home/
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
https://cadd.gs.washington.edu/
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variants in the human genome by integrating multiple annotations [34]. Note that a CADD
score ≥ 15 indicates a deleterious effect of an SNP.

3. Results

The present analysis was carried out among adult participants (≥16 years old) at
EGEA2 with available data on the FlOPs level, valid genotyped data, and asthma and
tobacco smoking status. A total of 1216 adult participants were included in the analyses
(see Figure S1 in Supplementary Materials).

Compared to the 355 adult participants not included in the analyses, the 1216 participants
did not differ in terms of age, sex, and asthma status (data not shown).

3.1. Characteristics of the Studied Population

The characteristics of the 1216 participants are presented in Table 1. The results are
presented for the whole sample and according to asthma status (ever-asthmatics and
never-asthmatics), to the current tobacco smoking status (never-smokers and current
smokers), and to the study design (controls and cases/relatives). In the whole sample
(mean age 43.3 years, 51% women), 44% had ever-asthma and 23% were current smokers.
The geometric mean (GM) (Q1, Q3) of the FlOPs level was 92.3 (80, 105) RFU/mL.

Associations between the FlOPs level and the characteristics of the whole sample are
presented in Table S1 (see Supplementary Materials). the FlOPs level was independently
associated with age, sex, and smoking (all p-values < 5.0 × 10−3): it increased significantly
with age, was significantly higher in women than in men, in ex-/current smokers (GM = 97.2
and 93.8 RFU/mL, respectively) as compared to never-smokers (GM = 89.1 RFU/mL), and
increased significantly with lifelong cumulated quantity of cigarettes smoked. The geomet-
ric mean (GM) (Q1, Q3) of the FlOPs level was 93.4 (81, 107), 98.7 (88, 108), and 100.3 (88,
114) RFU/mL in participants with lifelong quantity of cigarettes smoked of <10, 10–20, and
>20 pack-year, respectively (p < 1.0 × 10−4).

Table 1. The characteristics of the studied population.

Whole
Sample

Never-
Asthmatics

Ever-
Asthmatics

Never-
Smokers

Current
Smokers Controls Cases/Relatives

(n = 1216) (n = 684) (n = 532) (n = 604) (n = 275) (n = 243) (n = 973)

Age, m ± sd 43.3 ± 16.4 46.3 ± 15.9 39.4 ± 16.4 42.7 ± 16.9 35.5 ± 14.1 47.2 ± 17.2 42.3 ± 16.1
Sex, women, n (%) 621 (51.1) 374 (54.7) 247 (46.4) 338 (56.0) 131 (47.6) 125 (51.4) 496 (51.0)

Current smoking status,
n (%)

Never-smokers 604 (49.7) 342 (50.0) 262 (49.2) 604 (100) - 114 (46.9) 490 (50.4)
Ex-smokers 337 (27.7) 202 (29.5) 135 (25.4) - - 70 (28.8) 267 (27.4)

Current smokers 275 (22.6) 140 (20.5) 135 (25.4) - 275 (100) 59 (24.3) 216 (22.2)
Smoking, pack-year, n (%)

Never-smokers 604 (49.7) 342 (50.0) 262 (49.3) 604 (100) - 114 (46.9) 490 (50.4)
<10 384 (31.6) 197 (28.8) 187 (35.1) - 186 (67.6) 75 (30.9) 309 (31.8)

10–20 111 (9.1) 68 (9.9) 43 (8.1) - 44 (16.0) 23 (9.5) 88 (9.0)
>20 117 (9.6) 77 (11.3) 40 (7.5) - 45 (16.4) 31 (12.7) 86 (8.8)

BMI, kg·m−2, n (%) n = 1201 n = 676 n = 525 n = 597 n = 272 n = 240 n = 961
≥30 118 (9.8) 66 (9.8) 52 (9.9) 56 (9.4) 16 (5.9) 20 (8.3) 98 (10.2)
IgE n = 1214 n = 682 n = 532 n = 603 n = 274 n = 242 n = 972

IgE, IU/mL, m ± sd 222 ± 453 134 ± 352 333 ± 537 198 ± 431 304 ± 528 116 ± 258 248 ± 487
White blood count n = 1206 n = 677 n = 529 n = 601 n = 273 n = 242 n = 964

Neutrophils, cells/mm3,
m ± sd

3986 ± 1391 3959 ± 1317 4020 ± 1481 3879 ± 1278 4314 ± 1535 3985 ± 1317 3986 ± 1410

Eosinophils, cells/mm3,
m ± sd

202 ± 155 168 ± 125 244 ± 179 203 ± 166 220 ± 162 160 ± 116 212 ± 162

Lung Function n = 1197 n = 673 n = 524 n = 594 n = 272 n = 238 n = 959
FEV1, % predicted, m ± sd 103 ± 17.8 107 ± 16.3 97 ± 18.2 104 ± 17.5 100 ± 15.6 105 ± 15.4 102 ± 18.3
FVC, % predicted, m ± sd 110 ± 17.1 112 ± 17.5 108 ± 16.3 112 ± 17.1 107 ± 15.0 109 ± 15.3 111 ± 17.5
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Table 1. Cont.

Whole
Sample

Never-
Asthmatics

Ever-
Asthmatics

Never-
Smokers

Current
Smokers Controls Cases/Relatives

(n = 1216) (n = 684) (n = 532) (n = 604) (n = 275) (n = 243) (n = 973)

FEV1 ≥ 80%, n (%) 1097 (91.7) 644 (95.7) 453 (86.5) 556 (93.6) 253 (93.0) 228 (95.8) 869 (90.6)
Chronic bronchitis, n (%) n = 1205 n = 679 n = 526 n = 597 n = 274 n = 241 n = 964

Yes 114 (9.5) 39 (5.7) 75 (14.3) 47 (7.9) 40 (14.6) 19 (7.9) 95 (9.9)
FlOPs, RFU/mL, GM

(Q1, Q3) 92.3 (80, 105) 93.9 (82, 108) 90.4 (78, 102) 89.1 (77, 101) 93.8 (82, 107) 92.6 (81, 107) 92.3 (79, 105)

m, mean; sd, standard deviation; FEV1, forced expiratory volume in one second; FVC, force vital capacity; GM,
geometric mean; Q1, first quartile; and Q3, third quartile.

3.2. GWAS of the FlOPs Level
3.2.1. Whole Sample

Table 2 reports the results of the associations in the whole sample for the 10 SNPs
showing the strongest signals. The Manhattan plot is available in Supplementary Materials,
Figure S2A, and the Q-Q plot in Figure S3A shows that there was no inflation in the statistical
test, with the genomic inflation factor estimated to 1.002. The top three SNPs were rs270404,
located in the BMP6 gene on chromosome 6p24.3 (p = 3.0 × 10−6); rs13223298, located
upstream (from 2 kb apart) of the BMPER gene on chromosome 7p14.3 (p-value = 8.7 × 10−6);
and rs491274, located in the intergenic region nearest SEMA6D (from 607 kb apart) genes
on chromosome 15q21.1 (p = 8.9 × 10−6). The association analysis for these top three SNPs
in the two independent sub-samples (controls vs. cases/relatives) showed no indication of
heterogeneity (all p-values > 0.6, see Table S2 in Supplementary Materials).

The associations stratified by asthma status (never-asthmatics, ever-asthmatics) for the
top three SNPs associated with the FlOPs level in the whole sample are reported in Table 3.
No indication of heterogeneity was observed (all p-values ≥ 0.25).

An analysis using imputed SNPs spanning 500 kb on each side of each top SNP in the
regions of the top three SNPs located in BMP6, near BMPER and near SEMA6D, confirmed
the initial results (see Supplementary Materials: Figure S4A–C). Analyses of imputed
SNPs in these regions found signals with similar or slightly improved significance levels
at genotyped SNPs, and for at least two other imputed SNPs, which were close to and in
strong linkage disequilibrium (LD, r2 > 0.8) with the genotyped top SNP (Figure S4A–C).

Table 2. The top 10 SNPs associated with the FlOPs level in 1216 adults from the EGEA study.

Chr Gene Nearest
Gene

Genomic
Location Marker Position

bp (hg38) Band A1/A2 EAF Beta ± se p

6 BMP6 TXNDC5 Intronic rs270404 7,757,141 p24.3 A/G 0.41 −0.20 ± 0.04 3.0 × 10−6

7 BMPER 3′-UTR rs13223298 34,158,658 p14.3 G/T 0.08 −0.34 ± 0.08 8.7 × 10−6

15 SEMA6D Intergenic rs491274 46,577,328 q21.1 A/G 0.09 −0.31 ± 0.07 8.9 × 10−6

1 RGL1 APOBEC4 Intronic rs6664058 183,687,143 q25.3 C/T 0.36 0.21 ± 0.05 1.2 × 10−5

7 PKD1L1 TNS3 Intronic rs10276437 47,766,479 p12.3 C/T 0.78 0.21 ± 0.05 1.3 × 10−5

14 VRK1 Intergenic rs4905587 97,213,901 q32.2 G/T 0.12 0.31 ± 0.07 1.4 × 10−5

1 RGL1 APOBEC4 Intronic rs6424909 183,727,521 q25.3 A/G 0.36 0.21 ± 0.05 1.5 × 10−5

16 HS3ST6 5′-UTR rs344363 1,922,547 p13.3 C/T 0.17 −0.26 ± 0.06 1.7 × 10−5

20 PMEPA1 ZBP1 Intronic rs6025728 57,697,562 q13.31 C/T 0.63 0.20 ± 0.05 2.0 × 10−5

12 CACNA1C FKBP4 Intronic rs4765961 2,559,306 p13.33 C/T 0.82 0.23 ± 0.05 2.2 × 10−5

Chr, chromosome; A1/A2, baseline/effect allele; and EAF, effect allele frequency estimated from the reference
panel 1000 G (European population). Beta and standard error (se) were estimated using the Gaussian linear model,
taking into account the EGEA family structure and adjusted for principal components.
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Table 3. A stratified analysis according to asthma status for the top three SNPs in the whole sample.

Chr Gene Nearest
Gene

Genomic
Location Marker A1/A2 EAF Never-Asthmatics (n = 684) Ever-Asthmatics (n = 532) Homogeneity

Test

Beta ± se p Beta ± se p Khi2 p

6 BMP6 TXNDC5 Intronic rs270404 A/G 0.41 −0.20 ± 0.06 5.1 × 10−4 −0.20 ± 0.06 5.4 × 10−4 0.01 0.91
7 BMPER 3′-UTR rs13223298 G/T 0.08 −0.42 ± 0.10 4.5 × 10−5 −0.23 ± 0.12 5.5 × 10−2 1.32 0.25
15 SEMA6D Intergenic rs491274 A/G 0.09 −0.36 ± 0.08 2.7 × 10−5 −0.23 ± 0.11 4.1 × 10−2 0.75 0.39

Chr, chromosome; A1/A2, baseline/effect allele; and EAF, effect allele frequency estimated from the reference
panel 1000 G (European population). Beta and standard error (se) were estimated using Gaussian linear model,
taking into account EGEA family structure and adjusted for principal components.

3.2.2. In Never-Smokers and in Current Smokers

Table 4 presents the associations with FlOPs for the top 10 SNPs in never-smokers and
in current smokers. Manhattan plots are available for the two GWAS in Supplementary
Materials; Figure S2B,C; and the Q-Q plots in Figure S3B,C and show that there was no
inflation in the statistical test for the two GWAS, with genomic inflation factors estimated
to 1.006 and 1.03, respectively.

Table 4. The GWAS of FlOPs: the top 10 SNPs in never-smokers and in current smokers.

Chr Gene Nearest
Gene

Genomic
Location Marker Position

bp (hg38) Band A1/A2 EAF Beta ± se p

Never-smokers
(n = 604)

6 COL21A1 DST Intronic rs17823624 56,348,021 p12.1 A/G 0.92 0.44 ± 0.08 2.3 × 10−7

15 GABRG3 GABRA5 Intronic rs6606856 27,022,887 q12 C/T 0.70 −0.28 ± 0.05 4.1 × 10−7

5 NUDT12 Intergenic rs2962642 104,131,010 q21.2 A/G 0.24 0.30 ± 0.06 4.4 × 10−7

10 PAOX MTG1 Intronic rs6537600 133,391,295 q26.3 C/T 0.88 0.40 ± 0.08 6.5 × 10−7

5 NUDT12 Intergenic rs7725285 104,111,482 q21.2 G/T 0.75 −0.29 ± 0.06 1.5 × 10−6

10 PAOX MTG1 Intronic rs10776679 133,389,090 q26.3 C/T 0.05 −0.49 ± 0.10 1.6 × 10−6

8 DEFB135 DEFB136 Intronic rs6985349 11,982,562 p23.1 C/T 0.06 −0.43 ± 0.09 2.0 × 10−6

8 DEFB135 DEFB136 Intronic rs7004833 11,982,502 p23.1 A/G 0.06 −0.43 ± 0.09 2.0 × 10−6

3 ZNF385D Intronic rs1391857 20,857,452 p24.3 A/G 0.61 −0.27 ± 0.06 2.5 × 10−6

10 ECHS1 PAOX Missense rs1049951 133,370,622 q26.3 A/G 0.06 −0.41 ± 0.09 3.6 × 10−6

Current smokers
(n = 275)

6 CRYBG1 ATG5 Intronic rs3851212 106,375,664 q21 A/G 0.94 −0.81 ± 0.13 2.4 × 10−9

12 COL2A1 TMEM106C Intronic rs1793958 47,998,650 q13.11 A/G 0.61 −0.40 ± 0.08 4.7 × 10−7

12 PTPRO Intergenic rs17174795 15,603,555 p12.3 G/T 0.87 −0.62 ± 0.12 9.2 × 10−7

15 ISG20 AEN Intronic rs8041687 88,655,329 q26.1 A/G 0.07 0.56 ± 0.11 1.1 × 10−6

3 CMC1 AZI2 Intronic rs7641491 28,301,843 p24.1 A/G 0.53 0.39 ± 0.08 2.8 × 10−6

3 CMC1 AZI2 Intronic rs13085075 28,309,712 p24.1 C/T 0.48 −0.39 ± 0.08 3.1 × 10−6

7 CREB5 Intergenic rs10228137 28,848,469 p14.3 A/C 0.81 −0.43 ± 0.09 4.3 × 10−6

2 LRP1B Intergenic rs961109 142,396,452 q22.2 C/T 0.91 0.66 ± 0.14 4.6 × 10−6

4 TENM3 DCTD Intronic rs4557308 182,734,597 q35.1 A/G 0.26 0.41 ± 0.09 5.0 × 10−6

13 ATP7B 5′-UTR rs4943040 51,919,816 q14.3 C/T 0.55 0.38 ± 0.08 5.2 × 10−6

Chr, chromosome; A1/A2, baseline/effect allele; and EAF, effect allele frequency estimated from the reference
panel 1000 G (European population). Beta and standard error (se) were estimated using Gaussian linear model,
taking into account EGEA family structure and adjusted for principal components.

In never-smokers, the top three SNPs (all p-values < 5.0 × 10−7) were rs17823624
located in the COL21A1 gene on the chromosome 6p12.1 (p = 2.3 × 10−7), rs6606856 located
in GABRG3 gene on chromosome 15q12 (p = 4.1 × 10−7), and rs2962642 located in an
intergenic region near NUDT12 (from 568 kb apart) on chromosome 5q21.2 (p = 4.4 × 10−7).
For these top three SNPs, association analysis in the two independent sub-samples (controls
vs. cases/relatives) showed no indication of heterogeneity (all p-values > 0.6, see Table S3
in Supplementary Materials). Besides that, association analysis for these top SNPs yielded
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similar results in never-asthmatics and in ever-asthmatics, with no indication of hetero-
geneity (p ≥ 0.10, Table 5). Note that none of the top three SNPs found in never-smokers
showed indication of association in current smokers (all p-values > 0.10).

In current smokers, the top three SNPs were rs3851212 located in CRYBG1 on chro-
mosome 6q21 (p = 2.4 × 10−9, exceeding the significance level of 1.3 × 10−7), rs1793958
located in COL2A1 on chromosome 12q13.11 (p = 4.7 × 10−7), and rs17174795 located
upstream PTPRO (from 1.4 kb apart) on chromosome 12 p12.3 (p = 9.2 × 10−7). For these
top three SNPs, association analysis in the two independent sub-samples (controls vs.
cases/relatives) showed no indication of heterogeneity (all p-values ≥ 0.4, see Table S3 in
Supplementary Materials). No heterogeneity of association signals was detected according
to asthma status (all p-values ≥ 0.7, except for rs17174795 with p-value = 0.05, but not
significant after correction for multiple testing; see Table 5). The top three SNPs found in
current smokers showed no indication of association in never-smokers (p > 0.20) or only a
weak signal (p = 0.05).

Table 5. The stratified analysis according to asthma status for the top three SNPs, in never-smokers
and in current smokers.

Never-Asthmatics Ever-Asthmatics Homogeneity
Test

Chr Gene Nearest
Gene

Genomic
Location Marker Position

bp (hg38) A1/A2 EAF Beta ± se p Beta ± se p khi2 p

Never-
smokers
(n = 604)

n = 342 n = 262

6 COL21A1 DST Intronic rs17823624 56 348 021 A/G 0.92 0.46 ± 0.11 2.9 × 10−5 0.43 ± 0.13 1.1 × 10−3 0.07 0.79
15 GABRG3 GABRA5 Intronic rs6606856 27 022 887 C/T 0.70 −0.29 ± 0.08 2.4 × 10−4 −0.30 ± 0.08 1.7 × 10−4 0.00 0.97
5 NUDT12 Intergenic rs2962642 104 131 010 A/G 0.24 0.36 ± 0.07 2.0 × 10−6 0.22 ± 0.09 1.5 × 10−2 1.89 0.17

Current
smokers
(n = 275)

n = 140 n = 135

6 CRYBG1 ATG5 Intronic rs3851212 106 375 664 A/G 0.94 −0.79 ± 0.22 5.5 × 10−4 −0.85 ± 0.16 3.2 × 10−7 0.08 0.78
12 COL2A1 TMEM106C Intronic rs1793958 47 998 650 A/G 0.61 −0.38 ± 0.12 1.7 × 10−3 −0.42 ± 0.10 4.9 × 10−5 0.09 0.77
12 PTPRO Intergenic rs17174795 15 603 555 G/T 0.87 −0.85 ± 0.18 5.1 × 10−6 −0.36 ± 0.16 2.7 × 10−2 3.86 0.05

Chr, chromosome; A1/A2, baseline/effect allele; and EAF, effect allele frequency estimated from the reference
panel 1000 G (European population). Beta and standard error (se) were estimated using Gaussian linear model,
taking into account EGEA family structure and adjusted for principal components.

Analysis using imputed SNPs spanning 500 kb on each side of each top SNP in the
regions of the top three SNPs in both never-smokers and current smokers confirmed the
initial results, with a similar significance level as those observed with genotyped SNPs
(Figures S5A–C and S6A–C in Supplementary Materials). Analyses of imputed data in the
region around two of the top six SNPs found additional signals at imputed SNPs close
to and in strong linkage disequilibrium (LD, r2 > 0.8), with the genotyped top SNPs, 12
for rs2962642 located near NUDT12 with similar significance level (Figure S5C) and two
for rs17174795 located near PTPRO with improved significance level (Figure S6C). These
results also supported the initial findings for these top two SNPs.

3.3. eQTLs, meQTLs, and Functional Annotations

Using the browser Phenoscanner v2 (http://www.phenoscanner.medschl.cam.ac.
uk/, accessed on 18 October 2021), we found that top two SNPs, one in never-smokers
(rs17823624 in COL21A1) and one in current smokers (rs1793958 in COL2A1), were asso-
ciated with gene expression in a whole blood sample from subject of European ancestry
(Table S4 in Supplementary Materials). The SNP rs1783624 was associated with gene
expression of DST (p-value = 2.0 × 10−15), while the SNP rs1793958 was associated with
the expression of five genes belonging to the 12q13.11 region: OR10AD1, PFKM, SENP1,
TMEM106C, and VDR (all p-values < 2.5 × 10−8). No eQTL was found for the other top
SNPs. Furthermore, we found from 1 to 26 CpG sites considering all top three SNPs of
GWAS in the whole sample, in never-smokers and in current smokers (See Table S5 in
Supplementary Materials). Most CpG sites were located near or in the same gene as the
associated SNP. The SNP rs13223298 in BMPER was found to be more associated with the

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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methylation level of one CpG site located on another chromosome than BMPER, in the
PTPN22 gene on chromosome 1p13.2 (p-value = 9.3 × 10−8, not significant after correction
for multiple testing).

Note that a proxy of rs3851212 (the top SNP in current smokers located in CRYBG1)
rs79231630 had a CADD score equal to 14.5. Detailed results for CADD scores are presented
in Table S6.

Using the functional annotation tool HaploReg-v4.1, we found that all top three SNPs
(or their proxies) evidenced respectively in the whole sample, in never-smokers and in
current smokers, mapped to marks of active regulatory elements, including cells from heart,
lung, kidney, breast, and brain. Detailed results for functional annotations are presented in
Table S6 (see Supplementary Materials).

4. Discussion

This first genetic study on the FlOPs level identified several variants, among which
those located in BMP6, near BMPER and between SQOR and SEMA6D were the most
strongly associated with this biomarker in the whole sample. Stratified analyses on tobacco
smoking status identified other genetic variants: among them, the top three SNPS in never-
smokers located in COL21A1, in GABRG3, and near NUDT12, and the top three SNPS in
current smokers located in CRYBG1, in COL2A1, and near PTPRO.

Our study is based on the hypothesis that GWAS of FlOPs may provide new insights
nito the pathophysiology of chronic diseases related to the OS pathway. The GWAS analyses
we performed were based on the EGEA study, whose participants had extensive clinical,
genetic, biological, and environmental characterisation. To our knowledge, there was
no other epidemiological study with such data for a replication sample. Interestingly,
all our association results were supported by consistent results observed in controls and
cases/relative sub-samples. Furthermore, analyses of imputed data in the region around
each top SNP confirmed our initial association results obtained with genotyped data.
However, all our findings should be validated/replicated in other independent cohorts.

Due to the ascertainment mode of families in the EGEA study, i.e., through asthmatic
participants, and the involvement of the OS pathway in the pathophysiology of asthma, we
repeated our analyses in ever- and never-asthmatics in order to evaluate the associations in-
dependently of the disease. The results were consistent between never- and ever-asthmatics,
which showed the independence of our results from the disease. Furthermore, we verified
that any of our top SNPs were associated with lung function or adult-onset asthma in
EGEA sample [19]. All these results suggest that our main results are not driven by asthma.

In the whole population, the strongest association signals were observed for rs270404
located in BMP6 and rs13223298 located near BMPER (i.e., 2.2 kb from that gene). BMP6
and BMPER were reported to interact physically in a functional study [35]. In line with
this result, we tested the effect of the statistical interaction between these SNPs on FlOPs
and found a borderline significant interaction (p-value = 0.07). BMP6 (Bone Morphogenetic
Protein 6) encodes a secreted ligand of the transforming growth factor-beta (TGF-beta) su-
perfamily of proteins, and BMPER (BMP Binding Endothelial Regulator) encodes a secreted
protein that interacts with and inhibits the bone morphogenetic protein (BMP) function. It
is noteworthy that these two genes belong to the biological process “regulation of pathway
restricted SMAD protein phosphorylation” pathway (GO:006093) that is involved in the
TGF-beta receptor signalling pathways [36]. The role of TGF-beta has been discussed
in chronic asthma, as a potent fibrogenic growth factor overexpressed in the asthmatic
lung [37]. Moreover, BMPER belongs to the biological process “immune response” pathway
(GO:0006954) [38]. From the GWAS Catalog [39], we found that BMP6 was associated with
FVC [40–42]; FEV1 [42]; and, to a lesser extent, chronic obstructive pulmonary disease [43]
and small cell lung carcinoma [44]. In previous GWAS, associations were reported be-
tween BMPER and FVC [40], FEV1 [45], and other chronic diseases such as Alzheimer’s
disease [46] and metastatic colorectal cancer [47]. Moreover, the top two SNPs in BMP6 and
near the BMPER map to marks of active regulatory elements in heart, lung, brain, breast,
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and kidney tissues and the top SNP near BMPER was associated with the methylation level
of one CpG site located in PTPN22 (Protein Tyrosine Phosphatase Non-Receptor Type 22),
a gene involved in “NF-Kappa B signalling” and “immune response” pathways.

The third strongest association signal was observed for rs491274 located nearest
SEMA6D (i.e., 607 kb appart). SEMA6D (Semaphorin 6D) was found to be associated with
parental longevity [48,49] and lung carcinoma [44] in previous GWAS.

As cigarette smoke is the most important exogenous source of ROS, we performed
GWAS separately in two contrasted sub-groups according to smoking status and identi-
fied specific association signals in each sub-group. In never-smokers, the top SNP was
rs1782324 located in COL21A1 (Collagen Type XXI Alpha 1 Chain). In previous GWAS,
COL21A1 showed associations with lung function [40] and to a lesser extend with allergic
sensitisation [50] and small cell lung carcinoma [44]. We also found that rs17823624 was
eQTL of DST (Dystonine), a gene close to COL21A1, for which variants were found to
be associated with lung function [40,42] and Alzheimer’s disease [51]. The next top SNP
rs6606856 was located in GABRG3 (Gamma-Aminobutyric Acid Type A Receptor Subunit
Gamma3), a gene involved in the “response to drug” biological pathway (GO:0042493).
This gene was shown to be associated with gene methylation in the lung tissue of smokers,
as reported in a previous GWAS [52]. An association between GABRG3 and several chronic
diseases, including Alzheimer’s disease [53], ovarian carcinoma [54,55], and non-melanoma
carcinoma [56], was also reported in other previous GWAS. Finally, the third highest SNP
rs2962642 was located near (i.e., 568 kbp apart) to NUDT12 (Nudix Hydrolase 12). This
gene was involved in the “NADH metabolic process” biological pathway (GO:0006734),
and was shown to be associated with longevity [57] and smoking behaviour [58] in previ-
ous GWAS. Furthermore, proxies of rs2962642 map onto the regulatory motifs altered for
histone deacetylase 2 (HDAC2), whose activity is regulated by oxidative stress.

In current smokers, the top SNP, rs3851212, was located in CRYBG1, which exceeded
the genome-wide significance threshold level of 4.3 × 10−8 when accounting for the three
GWAS. The role of CRYBG1 (crystallin beta-gamma domain containing 1), also called
AIM1 (absent in melanoma 1 protein) in malignant melanoma, is well-known [59]. To note,
rs3851212 is located 50 kb from ATG5 (autophagy-related 5), which belongs to the biological
pathway “immune system process” (GO:0002376) and is involved in mitochondrial quality
control after oxidative damage, and in subsequent cellular longevity. In previous GWAS,
ATG5 was found to be associated with allergic diseases [60], including asthma [61–64],
and with several other chronic diseases such as systemic lupus erythematous [65–68],
rheumatoid arthritis [69,70], and multiple myeloma [71]. Furthermore, note that a proxy of
rs3851212—rs79231630—has a CADD score close to 15, indicating deleterious effect of the
SNP. The next top SNP is rs1793958, located in COL2A1 (collagen type II alpha 1 chain),
a gene involved in “regulation of immune response” biological process (GO:0050776).
COL2A1 was found to be associated with rheumatoid arthritis [72] and with prostate carci-
noma [73–75] in previous GWAS. On the other hand, the third highest SNP rs17174795 is
located 1.4 kb apart from PTPRO (Protein Tyrosine Phosphatase Receptor type O), which
has been suggested as a candidate tumour suppressor via the NF-Kappa B signalling path-
way [76,77], and the transcription factor NF-Kappa B plays a central role in inflammatory
airway diseases such as asthma [78].

None of the top signals found in one sub-group of smoking status were found in the
other sub-group, nor in the whole sample, showing that, as we hypothesised, accounting
for smoking status may help one to identify loci not found in the whole sample. These
results are likely explained by the existing interactions between the environment (here
smoking) and genes that lead to “up” or “down” regulation of the pathways that influence
the level of FlOPs.

None of the top signals found in the whole sample were found in the two contrasted
sub-groups according to smoking status, which is an interesting result. Indeed, these
analyses were carried out with the objective to identify genetic loci that could have been
missed in the whole sample as smoking is the main environmental source of OS and is
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associated with FlOPs. The two GWAS in groups contrasted by smoking revealed additional
genetic loci to those found in the whole sample.

Overall, many of the top SNPs identified by the three GWAS are located in regions
comprising promising candidate genes. Among them, BMP6, BMPER, GABRG3, and ATG5
are the most relevant because of both their link to biological pathways related to OS and
their association with several chronic diseases, for which the role of OS in their patho-
physiology has been pointed out. BMP6 and BMPER are of particular interest due to their
involvement in the same biological pathways related to OS and their functional interaction.

5. Conclusions

In conclusion, the present study identified, for the first time, new and promising
candidate genes associated with the FlOPs level potentially involved in the pathophysiology
of chronic diseases through their link with the oxidative stress pathway. Although further
studies are needed to replicate these findings, this work highlights the interest in performing
genome-wide analyses of biomarkers to identify new genes and potential mechanisms
related to specific pathways common to chronic diseases.
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