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Brain charts for the human lifespan

Over the past few decades, neuroimaging has become a ubiquitous tool in basic 
research and clinical studies of the human brain. However, no reference standards 
currently exist to quantify individual differences in neuroimaging metrics over time, 
in contrast to growth charts for anthropometric traits such as height and weight1. 
Here we assemble an interactive open resource to benchmark brain morphology 
derived from any current or future sample of MRI data (http://www.brainchart.io/). 
With the goal of basing these reference charts on the largest and most inclusive 
dataset available, acknowledging limitations due to known biases of MRI studies 
relative to the diversity of the global population, we aggregated 123,984 MRI scans, 
across more than 100 primary studies, from 101,457 human participants between 115 
days post-conception to 100 years of age. MRI metrics were quantified by centile 
scores, relative to non-linear trajectories2 of brain structural changes, and rates of 
change, over the lifespan. Brain charts identified previously u nr ep or ted n eu ro de ve lo-
pmental milestones3, showed high stability of individuals across longitudinal 
assessments, and demonstrated robustness to technical and methodological 
differences between primary studies. Centile scores showed increased heritability 
compared with non-centiled MRI phenotypes, and provided a standardized measure 
of atypical brain structure that revealed patterns of n  e u  ro  a n  at  omical v       a   r     i  a    tion across 
neurological and psychiatric disorders. In summary, brain charts are an essential step 
towards robust quantification of individual variation benchmarked to normative 
trajectories in multiple, commonly used neuroimaging phenotypes.

The simple framework of growth charts to quantify age-related change 
was first published in the late eighteenth century1 and remains a corner-
stone of paediatric healthcare—an enduring example of the utility of 
standardized norms to benchmark individual trajectories of develop-
ment. However, growth charts are currently available only for a small 
set of anthropometric variables, such as height, weight and head cir-
cumference, and only for the first decade of life. There are no analogous 
charts available for quantification of age-related changes in the human 
brain, although it is known to go through a prolonged and complex 
maturational program from pregnancy to the third decade4, followed 
by progressive senescence from approximately the sixth decade5. The 
lack of tools for standardized assessment of brain development and age-
ing is particularly relevant to research studies of psychiatric disorders, 
which are increasingly recognized as a consequence of atypical brain 
development6, and neurodegenerative diseases that cause pathological 
brain changes in the context of normative senescence7. Preterm birth 
and neurogenetic disorders are also associated with marked abnormali-
ties of brain structure8,9 that persist into adult life9,10 and are associated 
with learning disabilities and mental health disorders. Mental illness 
and dementia collectively represent the single biggest global health 
burden11, highlighting the urgent need for normative brain charts as 
an anchor point for standardized quantification of brain structure 
over the lifespan12.

Such standards for human brain measurement have not yet material-
ized from decades of neuroimaging research, probably owing to the 
challenges of integrating MRI data across multiple, methodologically 
diverse studies targeting distinct developmental epochs and clinical 
conditions13. For example, the perinatal period is rarely incorporated 
in analysis of age-related brain changes, despite evidence that early 

biophysical and molecular processes powerfully influence life-long 
neurodevelopmental trajectories14,15 and vulnerability to psychiatric 
disorders3. Primary case–control studies are usually focused on a single 
disorder despite evidence of trans-diagnostically shared risk factors 
and pathogenic mechanisms, especially in psychiatry16,17. Harmoniza-
tion of MRI data across primary studies to address these and other 
deficiencies in the extant literature is challenged by methodological 
and technical heterogeneity. Compared with relatively simple anthro-
pometric measurements such as height or weight, brain morphomet-
rics are known to be highly sensitive to variation in scanner platforms 
and sequences, data quality control, pre-processing and statistical 
analysis18, thus severely limiting the generalizability of trajectories 
estimated from any individual study19. Collaborative initiatives spurring 
collection of large-scale datasets20,21, recent advances in neuroimaging 
data processing22,23 and proven statistical frameworks for modelling 
biological growth curves2,24,25 provide the building blocks for a more 
comprehensive and generalizable approach to age-normed quantifica-
tion of MRI phenotypes over the entire lifespan (see Supplementary 
Information 1 for details and consideration of previous work focused on 
the related but distinct objective of inferring brain age from MRI data). 
Here, we demonstrate that these convergent advances now enable the 
generation of brain charts that (1) robustly define normative processes 
of sex-stratified, age-related change in multiple MRI-derived pheno-
types; (2) identify previously unreported brain growth milestones; 
(3) increase sensitivity to detect genetic and early life environmental 
effects on brain structure; and (4) provide standardized effect sizes to 
quantify neuroanatomical atypicality of brain scans collected across 
multiple clinical disorders. We do not claim to have yet reached the 
ultimate goal of quantitatively precise diagnosis of MRI scans from 
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individual patients in clinical practice. However, the present work 
proves the principle that building normative charts to benchmark 
individual differences in brain structure is already achievable at global 
scale and over the entire life-course; and provides a suite of open sci-
ence resources for the neuroimaging research community to accelerate 
further progress in the direction of standardized quantitative assess-
ment of MRI data.

Mapping normative brain growth
We created brain charts for the human lifespan using generalized addi-
tive models for location, scale and shape2,24 (GAMLSS), a robust and 
flexible framework for modelling non-linear growth trajectories rec-
ommended by the World Health Organization24. GAMLSS and related 
statistical frameworks have previously been applied to developmental 
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Fig. 1 | Human brain charts. a, MRI data were aggregated from over 100 primary 
studies comprising 123,984 scans that collectively spanned the age range from 
mid-gestation to 100 postnatal years. Box–violin plots show the age distribution 
for each study coloured by its relative sample size (log-scaled using the natural 
logarithm for visualization purposes). b, Non-centiled, ‘raw’ bilateral cerebrum 
tissue volumes for grey matter, white matter, subcortical grey matter and 
ventricles are plotted for each cross-sectional control scan as a function of age 
(log-scaled); points are coloured by sex. c, Normative brain-volume trajectories 
were estimated using GAMLSS, accounting for site- and study-specific batch 
effects, and stratified by sex (female, red; male, blue). All four cerebrum tissue 
volumes demonstrated distinct, non-linear trajectories of their medians (with 
2.5% and 97.5% centiles denoted as dotted lines) as a function of age over the 
lifespan. Demographics for each cross-sectional sample of healthy controls 

included in the reference dataset for normative GAMLSS modelling of each MRI 
phenotype are detailed in Supplementary Table 1.2–1.8. d, Trajectories of  
median between-subject variability and 95% confidence intervals for four 
cerebrum tissue volumes were estimated by sex-stratified bootstrapping (see 
Supplementary Information 3 for details). e, Rates of volumetric change across 
the lifespan for each tissue volume, stratified by sex, were estimated by the first 
derivatives of the median volumetric trajectories. For solid (parenchymal) tissue 
volumes, the horizontal line (y = 0) indicates when the volume at which each 
tissue stops growing and starts shrinking and the solid vertical line indicates the 
age of maximum growth of each tissue. See Supplementary Table 2.1 for all 
neurodevelopmental milestones and their confidence intervals. Note that y axes 
in b–e are scaled in units of 10,000 mm3 (10 ml).
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modelling of brain structural and functional MRI phenotypes in open 
datasets19,26–31. Our approach to GAMLSS modelling leveraged the 
greater scale of data available to optimize model selection empirically, 
to estimate non-linear age-related trends (in median and variance) 
stratified by sex over the entire lifespan, and to account for site- or 
study-specific ‘batch effects’ on MRI phenotypes in terms of multiple 
random effect parameters. Specifically, GAMLSS models were fitted 
to structural MRI data from control subjects for the four main tissue 
volumes of the cerebrum (total cortical grey matter volume (GMV), 
total white matter volume (WMV), total subcortical grey matter volume 
(sGMV) and total ventricular cerebrospinal fluid volume (ventricles or 
CSF)). Supplementary Tables 1.1–1.8 present details on acquisition, 
processing and demographics of the dataset; see Methods, ‘Model gen-
eration and specification’ and Supplementary Information 1 for further 
details regarding GAMLSS model specification and estimation; image 
quality control, which used a combination of expert visual curation and 
automated metrics of image quality (Supplementary Information 2); 

model stability and robustness (Supplementary Information 3, 4); 
phenotypic validation against non-imaging metrics (Supplementary 
Information 3 and 5.2); inter-study harmonization (Supplementary 
Information 5); and assessment of cohort effects (Supplementary 
Information 6). See Supplementary Information 19 for details on all 
primary studies contributing to the reference dataset, including mul-
tiple publicly available open MRI datasets32–42.

Lifespan curves (Fig. 1, Supplementary Table 2.1) showed an initial 
strong increase in GMV from mid-gestation onwards, peaking at 
5.9 years (95% bootstrap confidence interval (CI) 5.8–6.1), followed 
by a near-linear decrease. This peak was observed 2 to 3 years later 
than previous reports relying on smaller, more age-restricted sam-
ples43,44. WMV also increased rapidly from mid-gestation to early 
childhood, peaking at 28.7 years (95% bootstrap CI 28.1–29.2), with 
subsequent accelerated decline in WMV after 50 years. Subcorti-
cal GMV showed an intermediate growth pattern compared with 
GMV and WMV, peaking in adolescence at 14.4 years (95% bootstrap 
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Fig. 2 | Extended global and regional cortical morphometric phenotypes.  
a, Trajectories for total cerebrum volume (TCV), total surface area and mean 
cortical thickness. For each global cortical MRI phenotype, the following 
sex-stratified results are shown as a function of age over the lifespan. From top 
to bottom: raw, non-centiled data; population trajectories of the median (with 
2.5% and 97.5% centiles (dotted lines)); between-subject variance (with 95% 
confidence intervals); and rate of growth (the first derivatives of the median 
trajectory and 95% confidence intervals). All trajectories are plotted as a 
function of log-scaled age (x axis) and y axes are scaled in units of the 
corresponding MRI metrics (10,000 mm3 for TCV, 10,000 mm2 for surface area 
and mm for cortical thickness). b, Regional variability of cortical volume 
trajectories for 34 bilateral brain regions, as defined by the Desikan–Killiany 
parcellation47, averaged across sex (see Supplementary Information 7,8 for 

details). Since models were generated from bilateral averages of each cortical 
region, the cortical maps are plotted on the left hemisphere purely for 
visualization purposes. Top, a cortical map of age at peak regional volume 
(range 2–10 years). Middle, a cortical map of age at peak regional volume 
relative to age at peak GMV (5.9 years), highlighting regions that peak earlier 
(blue) or later (red) than GMV. Bottom, illustrative trajectories for the earliest 
peaking region (superior parietal lobe, blue line) and the latest peaking region 
(insula, red line), showing the range of regional variability relative to the GMV 
trajectory (grey line). Regional volume peaks are denoted as dotted vertical 
lines either side of the global peak, denoted as a dashed vertical line, in the 
bottom panel. The left y axis on the bottom panel refers to the earliest peak 
(blue line); the right y axis refers to the latest peak (red line).
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CI 14.0–14.7). Both the WMV and sGMV peaks are consistent with 
previous neuroimaging and postmortem reports45,46. By contrast, 
CSF showed an increase until age 2, followed by a plateau until age 
30, and then a slow linear increase that became exponential in the 
sixth decade of life. Age-related variance (Fig. 1d), explicitly esti-
mated by GAMLSS, formally quantifies developmental changes 
in between-subject variability. There was an early developmental 
increase in GMV variability that peaked at 4 years, whereas subcorti-
cal volume variability peaked in late adolescence. WMV variability 
peaked during the fourth decade of life, and CSF was maximally 
variable at the end of the human lifespan.

Extended neuroimaging phenotypes
To extend the scope of brain charts beyond the four cerebrum tis-
sue volumes, we generalized the same GAMLSS modelling approach 
to estimate normative trajectories for additional MRI phenotypes 
including other morphometric properties at a global scale (mean 
cortical thickness and total surface area) and regional volume at 
each of 34 cortical areas47 (Fig. 2, Supplementary Information 7–9, 
Supplementary Tables 1, 2). We found, as expected, that total sur-
face area closely tracked the development of total cerebrum vol-
ume (TCV) across the lifespan (Fig. 2a), with both metrics peaking 
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at approximately 11–12 years of age (surface area peak at 10.97 years 
(95% bootstrap CI 10.42–11.51); TCV peak at 12.5 years (95% bootstrap 
CI 12.14–12.89). By contrast, cortical thickness peaked distinctively 
early at 1.7 years (95% bootstrap CI 1.3–2.1), which reconciles previous 
observations that cortical thickness increases during the perinatal 
period48 and declines during later development49 (Supplementary 
Information 7).

We also found evidence for regional variability in volumetric neu-
rodevelopmental trajectories. Compared with peak GMV at 5.9 years, 
the age of peak regional grey matter volume varied considerably—from 
approximately 2 to 10 years—across 34 cortical areas. Primary sensory 
regions reached peak volume earliest and showed faster post-peak 
declines, whereas fronto-temporal association cortical areas peaked 
later and showed slower post-peak declines (Fig. 2b, Supplementary 
Information 8.2). Notably, this spatial pattern recapitulated a gradient 

from sensory-to-association cortex that has been previously associated 
with multiple aspects of brain structure and function50.

Developmental milestones
Neuroimaging milestones are defined by inflection points of the 
tissue-specific volumetric trajectories (Fig. 3, Methods, ‘Defining 
developmental milestones’). Among the total tissue volumes, only 
GMV peaked before the typical age at onset of puberty51, with sGMV 
peaking mid-puberty and WMV peaking in young adulthood (Fig. 3). 
The rate of growth (velocity) peaked in infancy and early childhood for 
GMV (5.08 months (95% bootstrap CI 4.85–5.22)), sGMV (5.65 months 
(95% bootstrap CI 5.75–5.83)) and WMV (2.4 years (95% bootstrap CI 
2.2–2.6)). TCV velocity peaked between the maximum velocity for GMV 
and WMV at approximately 7 months. Two major milestones of TCV 
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Fig. 4 | Case–control differences and heritability of centile scores. a, Centile 
score distributions for each diagnostic category of clinical cases relative to the 
control group median (depicted as a horizontal black line). The median 
deviation of centile scores in each diagnostic category is overlaid as a lollipop 
plot (white lines with circles corresponding to the median centile score for each 
group of cases). Pairwise tests for significance were based on Monte Carlo 
resampling (10,000 permutations) and P values were adjusted for multiple 
comparisons using the Benjamini–Hochberg false discovery rate (FDR) 
correction across all possible case–control differences. Only significant 
differences from the control group (CN) median (with corrected P < 0.001)  
are highlighted with an asterisk. For a complete overview of all pairwise 
comparisons, see Supplementary Information 10, Supplementary Table 3. 
Groups are ordered by their multivariate distance from the CN group (see c and 
Supplementary Information 10.3). b, The CMD is a summary metric that 
quantifies the aggregate atypicality of an individual scan in terms of all global 
MRI phenotypes. The schematic shows segmentation of four cerebrum tissue 

volumes, followed by estimation of univariate centile scores, leading to the 
orthogonal projection of a single participant’s scan (Subx) onto the 
four respective principal components of the CN (coloured axes and arrows). 
The CMD for Subx is then the sum of its distances from the CN group mean  
on all four dimensions of the multivariate space. c, Probability density plots of 
CMD across disorders. Vertical black line depicts the median CMD of the 
control group. Asterisks indicate an FDR-corrected significant difference from 
the CN group (P < 0.001). d, Heritability of raw volumetric phenotypes and 
their centile scores across two twin studies (Adolescent Brain Cognitive 
Development (ABCD) and Human Connectome Project (HCP)); Supplementary 
Information 19), see Supplementary Information 13 for a full overview of 
statistics for each individual feature in each dataset. Data are mean ± s.e.m. 
(although some confidence intervals are too narrow to be seen). MCI, mild 
cognitive impairment. See Fig. 3 for other diagnostic abbreviations. 
FDR-corrected significance: *P < 0.05, **P < 0.01, ***P < 0.001.
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and sGMV (peak velocity and size) (Fig. 3) coincided with the early 
neonatal and adolescent peaks of height and weight velocity52,53. The 
velocity of mean cortical thickness peaked even earlier, in the prena-
tal period at −0.38 years (95% bootstrap CI −0.4 to −0.34) (relative to 
birth), corresponding approximately to mid-gestation. This early peak 
in cortical thickness velocity has not been reported previously—to our 
knowledge—in part owing to challenges in acquiring adequate and 
consistent signal from typical MRI sequences in the perinatal period54. 
Similarly, normative trajectories revealed an early period of GMV:WMV 
differentiation, beginning in the first month after birth with the switch 
from WMV to GMV as the proportionally dominant tissue compart-
ment, and ending when the absolute difference of GMV and WMV 
peaked around 3 years (Supplementary Information 9). This epoch of 
GMV:WMV differentiation, which may reflect underlying changes in 
myelination and synaptic proliferation4,55–58, has not been demarcated 
in previous studies45,59. It was probably identified in this study owing to 
the substantial amount of early developmental MRI data available for 
analysis in the aggregated dataset (in total across all primary studies, 
N = 2,571 and N = 1,484 participants aged less than 2 years were avail-
able for analysis of cerebrum tissue volumes and extended global MRI 
phenotypes, respectively). The period of GMV:WMV differentiation 
encompasses dynamic changes in brain metabolites60 (0–3 months), 
resting metabolic rate61 (RMR) (minimum = 7 months, maximum = 4.2 
years), the typical period of acquisition of motor capabilities and other 
early paediatric milestones62, and the most rapid change in TCV (Fig. 3).

Individualized centile scores
We computed individualized centile scores that benchmarked each 
individual scan in the context of normative age-related trends (Meth-
ods, ‘Centile scores and case–control differences’ and Supplementary 
Information 1–6 for further details). This approach is conceptually 
similar to quantile rank mapping, as previously reported26,28,29, where 

the typicality or atypicality of each phenotype in each scan is quantified 
by its score on the distribution of phenotypic parameters in the norma-
tive or reference sample of scans, with more atypical phenotypes having 
more extreme centile (or quantile) scores. The clinical diversity of the 
aggregated dataset enabled us to comprehensively investigate case–
control differences in individually specific centile scores across a range 
of conditions. Relative to the control group (CN), there were highly 
significant differences in centile scores across large (N > 500) groups 
of cases diagnosed with multiple disorders (Fig. 4a, Supplementary 
Information  10), with effect sizes ranging from medium (0.2 < Cohen’s 
d < 0.8) to large (Cohen’s d > 0.8) (see Supplementary Tables 3, 4 for all 
false discovery rate (FDR)-corrected P values and effect sizes). Clinical 
case–control differences in cortical thickness and surface area gener-
ally followed the same trend as volume differences (Supplementary 
Information 10). Alzheimer’s disease showed the greatest overall dif-
ference, with a maximum difference localized to grey matter volume in 
biologically female patients (median centile score = 14%, 36 percentage 
points difference from CN median, corresponding to Cohen’s d = 0.88; 
Fig. 4a). In addition, we generated a cumulative deviation metric, the 
centile Mahalanobis distance (CMD), to summarize a comparative 
assessment of brain morphology across all global MRI phenotypes 
relative to the CN group (Fig. 4b, Supplementary Information 1.6). 
Notably, schizophrenia ranked third overall behind Alzheimer’s disease 
and mild cognitive impairment (MCI) on the basis of CMD (Fig. 4c). 
Assessment across diagnostic groups, based on profiles of the multi-
ple centile scores for each MRI phenotype and for CMD, highlighted 
shared and distinct patterns across clinical conditions (Supplementary 
Information 10, 11). However, when examining cross-disorder similar-
ity of multivariate centile scores, hierarchical clustering yielded three 
clusters broadly comprising neurodegenerative, mood and anxiety, 
and neurodevelopmental disorders (Supplementary Information 11).

Across all major epochs of the lifespan63, the CMD was consistently 
greater in cases relative to controls, irrespective of diagnostic category. 
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Fig. 5 | Schematic overview of brain charts, highlighting methods for 
out-of-sample centile scoring. Top, brain phenotypes were measured in a 
reference dataset of MRI scans. GAMLSS modelling was used to estimate the 
relationship between (global) MRI phenotypes and age, stratified by sex, and 
controlling for technical and other sources of variation between scanning sites 
and primary studies. Bottom, the normative trajectory of the median and 
confidence interval for each phenotype was plotted as a population reference 
curve. Out-of-sample data from a new MRI study were aligned to the 

corresponding epoch of the normative trajectory, using maximum likelihood 
to estimate the study specific offsets (random effects) for three moments of 
the underlying statistical distributions: mean (μ), variance (σ), and skewness  
(ν) in an age- and sex-specific manner. Centile scores of each phenotype could 
then be estimated for each scan in the new study, on the same scale as the 
reference population curve, while accounting for study-specific ‘batch effects’ 
on technical or other sources of variation (see Supplementary Information 1.8 
for details). MLE, maximum likelihood estimation.
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The largest case–control differences across epochs occurred in late 
adulthood when risk for dementia increases and in adolescence, which 
is well-recognized as a period of increased incidence of mental health 
disorders (Supplementary Information 10.3). In five primary stud-
ies covering the lifespan, average centile scores across global tissues 
were related to two metrics of premature birth (gestational age at birth: 
t = 13.164, P < 2 × 10−16; birth weight: t = 36.395, P < 2 × 10−16; Supplemen-
tary Information 12), such that greater gestational age and birth weight 
were associated with higher average centile scores. Centile scores also 
showed increased twin-based heritability in two independent stud-
ies (total N = 913 twin pairs) compared with non-centiled phenotypes 
(average increase of 11.8 percentage points in narrow sense heritability 
(h2) across phenotypes; Fig. 4d, Supplementary Information 13). In 
summary, centile normalization of brain metrics reproducibly detected 
case–control differences and genetic effects on brain structure, as well as 
long-term sequelae of adverse birth outcomes even in the adult brain10.

Longitudinal centile changes
Owing to the relative paucity of longitudinal imaging data (about 
10% of the reference dataset), normative models were estimated 
from cross-sectional data collected at a single time point. However, 
the generalizability of cross-sectional models to longitudinal assess-
ment is important for future research. Within-subject variability of 
centile scores derived from longitudinally repeated scans, measured 
with the interquartile range (IQR) (Methods, ‘Longitudinal stability’, 
Supplementary Information 1.7), was low across both clinical and CN 
groups (all median IQR < 0.05 centile points), indicating that centile 
scoring of brain structure was generally stable over time, although 
there was also some evidence of between-study and cross-disorder dif-
ferences in within-subject variability (Supplementary Information 14). 
Notably, individuals who changed diagnostic categories—for example, 
those who progressed from mild cognitive impairment to Alzheimer’s 
disease over the course of repeated scanning—showed small but sig-
nificant increases in within-subject variability of centile scores (Sup-
plementary Information 14, Supplementary Tables 5, 6). Within-subject 
variability was also slightly higher in samples from younger individuals 
(Supplementary Information 14), which could reflect increased noise 
due to the technical or data quality challenges associated with scan-
ning younger individuals, but is also consistent with the evidence of 
increased variability in earlier development observed across other 
anthropometric traits64.

Centile scoring of new MRI data
A key challenge for brain charts is the accurate centile scoring of 
out-of-sample MRI data, not represented in the reference dataset used 
to estimate normative trajectories. We therefore carefully evaluated the 
reliability and validity of brain charts for centile scoring of such ‘new’ 
scans. For each new MRI study, we used maximum likelihood to esti-
mate study-specific statistical offsets from the age-appropriate epoch 
of the normative trajectory; we then estimated centile scores for each 
individual in the new study benchmarked against the offset trajectory 
(Fig. 5, Methods, ‘Data-sharing and out-of-sample estimation’, Supple-
mentary Information 1.8). Extensive jack-knife and leave-one-study-out 
analyses indicated that a study size of N > 100 scans was sufficient for 
stable and unbiased estimation of out-of-sample centile scores (Sup-
plementary Information 4). This study size limit is in line with the size 
of many contemporary brain MRI research studies. However, these 
results do not immediately support the use of brain charts to generate 
centile scores from smaller-scale research studies, or from an indi-
vidual patient’s scan in clinical practice—this remains a goal for future 
work. Out-of-sample centile scores proved highly reliable in multiple 
test–retest datasets and were robust to variations in image processing 
pipelines (Supplementary Information 4).

Discussion
We have aggregated the largest neuroimaging dataset to date to mod-
ernize the concept of growth charts for mapping typical and atypical 
human brain development and ageing. The approximately 100-year 
age range enabled the delineation of milestones and critical periods in 
maturation of the human brain, revealing an early growth epoch across 
its constituent tissue classes—beginning before 17 post-conception 
weeks, when the brain is at approximately 10% of its maximum size, 
and ending by age 3, when the brain is at approximately 80% of the 
maximum size. Individual centile scores benchmarked by normative 
neurodevelopmental trajectories were significantly associated with 
neuropsychiatric disorders as well as with dimensional phenotypes 
(Supplementary Information 5.2, 12). Furthermore, imaging–genetics 
studies65 may benefit from the increased heritability of centile scores 
compared with raw volumetric data (Supplementary Information 13). 
Perhaps most importantly, GAMLSS modelling enabled harmonization 
across technically diverse studies (Supplementary Information 5), and 
thus unlocked the potential value of combining primary MRI studies 
at scale to generate normative, sex-stratified brain growth charts, and 
individual centile scores of typicality and atypicality.

The analogy to paediatric growth charts is not meant to imply that 
brain charts are immediately suitable for benchmarking or quantita-
tive diagnosis of individual patients in clinical practice. Even for tradi-
tional anthropometric growth charts (height, weight and BMI), there 
are still important caveats and nuances concerning their diagnostic 
interpretation in individual children66; similarly, it is expected that 
considerable further research will be required to validate the clinical 
diagnostic utility of brain charts. However, the current results bode 
well for future progress towards digital diagnosis of atypical brain 
structure and development67. By providing an age- and sex-normalized 
metric, centile scores enable trans-diagnostic comparisons between 
disorders that emerge at different stages of the lifespan (Supplemen-
tary Information 10, 11). The generally high stability of centile scores 
across longitudinal measurements also enabled assessment of brain 
changes related to diagnostic transition from mild cognitive impair-
ment to Alzheimer’s disease (Supplementary Information 14), which 
provides one example of how centile scoring could be clinically useful 
in quantitatively predicting or diagnosing progressive neurodegenera-
tive disorders in the future. Our provision of appropriate normative 
growth charts and online tools also creates an immediate opportu-
nity to quantify atypical brain structure in clinical research samples, 
to leverage available legacy neuroimaging datasets, and to enhance 
ongoing studies.

Several important caveats are worth highlighting. Even this large MRI 
dataset was biased towards European and North American populations 
and European ancestry groups within those populations. This bias is 
unfortunately common in many clinical and scientific references, includ-
ing anthropometric growth charts and benchmark genetic datasets, 
representing an inequity that must be addressed by the global scientific 
community68. In the particular case of brain charts, further increasing 
ethnic, socioeconomic and demographic diversity in MRI research will 
enable more population-representative normative trajectories69,70 that 
can be expected to improve the accuracy and strengthen the interpreta-
tion of centile scores in relation to appropriate norms26. The available 
reference data were also not equally distributed across all ages—for 
example, foetal, neonatal and mid-adulthood (30–40 years of age) 
epochs were under-represented (Supplementary Information 17–19).  
Furthermore, although our statistical modelling approach was 
designed to mitigate study- or site-specific effects on centile scores, 
it cannot entirely correct for limitations of primary study design, such 
as ascertainment bias or variability in diagnostic criteria. Our decision 
to stratify the lifespan models by sex followed the analogous logic 
of sex-stratified anthropometric growth charts. Males have larger 
brain-tissue volumes than females in absolute terms (Supplementary 
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Information 16), but this is not indicative of any difference in clinical or 
cognitive outcomes. Future work would benefit from more detailed and 
dimensional self-report variables relating to sex and gender71. The use 
of brain charts also does not circumvent the fundamental requirement 
for quality control of MRI data. We have shown that GAMLSS modelling 
of global structural MRI phenotypes is in fact remarkably robust to 
inclusion of poor-quality scans (Supplementary Information 2), but it 
should not be assumed that this level of robustness will apply to future 
brain charts of regional MRI or functional MRI phenotypes; therefore, 
the importance of quality control remains paramount.

We have focused primarily on global brain phenotypes, which were 
measurable in the largest achievable sample, aggregated over the widest 
age range, with the fewest methodological, theoretical and data-sharing 
constraints. However, we have also provided proof-of-concept brain 
charts for regional grey matter volumetrics, demonstrating plausible 
heterochronicity of cortical patterning, and illustrating the potential 
generalizability of this approach to a diverse range of fine-grained MRI 
phenotypes (Fig. 2, Supplementary Information 8). As ongoing and 
future efforts provide increasing amounts of high-quality MRI data, we 
predict an iterative process of improved brain charts for an increasing 
number of multimodal72 neuroimaging phenotypes. Such diversifica-
tion will require the development, implementation and standardization 
of additional data quality control procedures27 to underpin robust brain 
chart modelling. To facilitate further research using our reference 
charts, we have provided interactive tools to explore these statistical 
models and to derive normalized centile scores for new datasets across 
the lifespan at www.brainchart.io.
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Methods

Ethics
The research was reviewed by the Cambridge Psychology Research 
Ethics Committee (PRE.2020.104) and The Children’s Hospital of Phila-
delphia’s Institutional Review Board (IRB 20-017874) and deemed not 
to require PRE or IRB oversight as it consists of secondary analysis of 
de-identified primary datasets. Informed consent of participants (or 
their guardians) in primary studies is referenced in Supplementary 
Information 19 and Supplementary Table 1.

Model generation and specification
To accurately and comprehensively establish standardized brain 
reference charts across the lifespan, it is crucial to leverage multi-
ple independent and diverse datasets, especially those spanning 
prenatal and early postnatal life. Here we sought to chart norma-
tive brain development and ageing across the largest age-span and 
largest aggregated neuroimaging dataset to date using a robust 
and scalable methodological framework2,24. We used GAMLSS2 to 
estimate cross-sectional normative age-related trends from 100 
studies, comprising a reference dataset of more than 100,000 scans 
(see Supplementary Tables 1.1–1.7 for full demographic informa-
tion and Supplementary Information 19 for dataset descriptions). 
We optimised GAMLSS model specification and parameterization 
to estimate non-linear normative growth curves, their confidence 
intervals and first derivatives, separately for males and females, 
allowing for random effects on the mean and higher order moments 
of the outcome distributions.

The reliability of the models was assessed and endorsed by 
cross-validation and bootstrap resampling procedures (Supplementary 
Information 3). We leveraged these normative trajectories to bench-
mark individual scans by centile scores, which were then investigated as 
age-normed and sex-stratifed measures of diagnostic and longitudinal 
atypicalities of brain structure across the lifespan.

The GAMLSS approach allowed not only modelling of age-related 
changes in brain phenotypes but also age related-changes in the vari-
ability of phenotypes, and in the form of both linear and nonlinear 
changes over time, thereby overcoming potential limitations of 
conventional additive models that only allow additive means to be 
modelled2. In addition, study-specific offsets (mean and variance) 
for each brain phenotype were also modelled as random effects. 
These modelling criteria are particularly important in the context of 
establishing growth reference charts as recommended by the World 
Health Organization24, as it is reasonable to assume the distribution 
of higher order moments (for example, variance) changes with age, 
sex, site/study and pre-processing pipeline, and it is impossible to 
circumvent some of these issues by collecting standardized data 
longitudinally for individuals spanning the approximately 100-year 
age range. Furthermore, recent studies suggest that changes in 
between-subject variability might intersect with vulnerability for 
developing a mental health condition74. The use of data spanning 
the entire age range is also critical, as data from partial age-windows 
can bias estimation of growth charts when extrapolated to the whole 
lifespan. In short, using a sex-stratified approach24, age, preprocess-
ing pipeline and study were each included in the GAMLSS model 
estimation of first order (μ) and second order (σ) distribution param-
eters of a generalized gamma distribution using fractional polynomi-
als to model nonlinear trends. See Supplementary Information for 
more details regarding GAMLSS model specification and estimation 
(Supplementary Information 1), image quality control (Supplemen-
tary Information 2), model stability and robustness (Supplementary 
Information 3, 4), phenotypic validation against non-imaging met-
rics (Supplementary Information 3, 5.2), inter-study harmonization 
(Supplementary Information 5) and assessment of cohort effects 
(Supplementary Information 6).

More formally, the GAMLSS framework can be specified in the fol-
lowing w ay : 

∼Y F μ σ ν τ( , , , ) (1)

∑g μ X β Z γ s x( ) = + + ( )μ μ μ μ μ
i

μ i i,

∑g σ X β Z γ s x( ) = + + ( )σ σ σ σ σ
i

σ i i,

∑g ν X β Z γ s x( ) = + + ( )ν ν ν ν ν
i

ν i i,

∑g τ X β Z γ s x( ) = + + ( )τ τ τ τ τ
i

τ i i,

Here, the outcome vector, Y , follows a probability distribution F  
parameterized by up to four parameters, μ σ ν τ( , , , ). The four param-
eters, depending on the parameterization of the probability density 
function, may correspond to the mean, variance, skewness, and kur-
tosis—that is, the first four moments. However, for many distributions 
there is not a direct one-to-one correspondence. Each component is 
linked to a linear equation through a link-function, ∙g (), and each 
component equation may include three types of terms: fixed effects, 
β (with design matrix X); random effects, γ (with design matrix Z); 
and non-parametric smoothing functions, s.,i applied to the ith covar-
iate for each parameter. The nature of the outcome distribution 
determines the appropriate link functions and which components 
are used. In principle any outcome distribution can be used, from 
well-behaved continuous and discrete outcomes, through to mixtures 
and truncations.

Here we have used fractional polynomials as a flexible, but not unduly 
complex, approach to modelling age-related changes in MRI phenotypes. 
Although non-parametric smoothers are more flexible, they can become 
unstable and infeasible, especially in the presence of random effects. 
Hence, the fractional polynomials enter the model within the X terms, 
with associated coefficients in β. The GAMLSS framework includes the 
ability to estimate the most appropriate powers of fractional polynomial 
expansion within the iterative fitting algorithm, searching across  
the standard set of powers, p ∈ { − 2, − 1, − 0.5,0,0.5, 1, 2, 3},where the  
design matrix includes the covariate (in this case, age) raised to the 
power, namely, x p. Fractional polynomials naturally extend to 
higher-orders, for example a second-order fractional polynomial of the 
form, x x+p p1 2 (see Supplementary Information 1.3 for further details).

There are several options for including random effects within the 
GAMLSS framework depending on the desired covariance structures. 
We consider the simplest case, including a factor-level (or group-level) 
random intercept, where the observations are grouped by the study 
covariate. The random effects are drawn from a normal distribu-
tion with zero mean and variance to be estimated, γ ∼Ν(0,δ2). The 
ability to include random effects is fundamental to accounting for 
co-dependence between observations. It is therefore possible to take 
advantage of the flexibility of ‘standard’ GAMLSS, as typically used 
to develop growth charts24,62,75, while accounting for co-dependence 
between observations using random effects. The typical applica-
tions of GAMLSS assume independent and identically distributed 
outcomes; however, in this context it is essential to account for 
within-study covariance implying the observations are no longer 
independent.

The resulting models were evaluated using several sensitivity anal-
yses and validation approaches. These models of whole-brain and 
regional morphometric development were robust to variations in 
image quality, and cross-validated by non-imaging metrics. However, 
we expect that several sources of variance, including but not limited to 
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MRI data quality and variability of acquisition protocols, may become 
increasingly important as brain charting methods are applied to more 
innovative and/or anatomically fine-grained MRI phenotypes. It will 
be important for future work to remain vigilant about the potential 
impact of data quality and other sources of noise on robustness and 
generalizability of both normative trajectories and the centile scores 
derived from them.

Based on the model selection criteria, detailed in Supplementary 
Information 1, the final models for normative trajectories of all MRI 
phenotypes were specified as illustrated below for GMV:

μ σ ν

μ α α α β β

β γ

σ α α β β γ

ν α

GMV Generalizsed Gamma( , , ) with

log( ) = + (sex) + (ver) + (age) + (age)

+ (age) log(age) +

log( ) = + (sex) + (age) + (age) +

=

(2)

μ μ μ μ μ

μ μ

σ σ σ σ σ

ν

,sex ,ver ,1
−2

,2
−2

,3
−2 2

,study

,sex ,1
−2

,2
3

study

∼

For each component of the generalized gamma distribution, α terms 
correspond to fixed effects of the intercept, sex (female or male), and 
software version used for pre-processing (five categories); β terms 
correspond to the fixed effects of age, modelled as fractional polyno-
mial functions with the number of terms reflecting the order of the 
fractional polynomials; and γ terms correspond to the study-level 
random effects. Note that we have explicitly included the link-functions 
for each component of the generalized gamma, namely the natural 
logarithm for μ and σ (since these parameters must be positive) and 
the identity for ν.

Similarly for the other global MRI phenotypes:

∼ μ σ ν

μ α α α β β

β γ

σ α α β β γ

ν α
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No smoothing terms were used in any GAMLSS models implemented 
in this study, although the fractional polynomials can be regarded as 
effectively a parametric form of smoothing. Reliably estimating higher 
order moments requires increasing amounts of data, hence none of 
our models specified any age-related fixed-effects or random effects 
in the ν term. However, αν was found to be important in terms of model 
fit and hence we have used a generalized gamma distribution (Sup-
plementary Information 1).

Defining developmental milestones
GAMLSS modelling also allowed us to leverage the aggregated 
life-spanning neuroimaging dataset to derive developmental mile-
stones (that is, peaks of trajectories) and compare them to existing 
literature. The cerebrum tissue classes from 100 studies (Fig. 1, Sup-
plementary Tables 1.1–1.7, Supplementary Information 18) showed 
clear, predominantly age-related trends, even prior to any modelling. 
Comparing these models with multiple non-MRI metrics of brain size 
demonstrated high correspondence across the lifespan (Supplemen-
tary Information 3). Peaks were determined based on the GAMLSS 
model output (50th centile) for each of the tissue classes and TCV, 
for both total tissue volumes and rates of change or growth (velocity). 
A similar series of methodological steps was performed for the set 
of extended global and regional cortical morphometric phenotypes 
(Fig. 2, Supplementary Information 7, 8). To further contextualize 
the neuroimaging trajectories, diagnostic age ranges from previous 
literature73,76 (blue boxes in Fig. 3) were compared with empirical age 
ranges of patients with a given diagnosis across the aggregated neu-
roimaging dataset (black boxes in Fig. 3). Note that age of diagnosis 
is significantly later than age of symptom onset for many disorders73. 
Developmental milestones were also compared to published work 
for brain resting metabolic rate61, from its minimum in infancy to its 
maximum in early childhood; anthropometric variables (height and 
weight), which reach a first peak in velocity during infancy and a sec-
ond peak in velocity in adolescence52; typical acquisition of the six 
gross motor capabilities62; and pubertal age ranges as defined based 
on previous reports51,53.

Centile scores and case–control differences
These normative trajectories of brain development and aging also 
enabled each individual scan to be quantified in terms of its relative 
distance from the median of the age-normed and sex-stratified distri-
butions provided by the reference model67,77 (Fig. 4, Supplementary 
Information 10, 11). Individual centile scores were estimated relative to 
the reference curves, in a way that is conceptually similar to traditional 
anthropometric growth charts (Supplementary Information 1). These 
centiles represent a novel set of population- and age-standardized 
clinical phenotypes, providing the capacity for cross-phenotype, 
cross-study and cross-disorder comparison. A single multivariate met-
ric (CMD, Supplementary Information 1.6) was estimated by combining 



centile scores on multiple MRI phenotypes for each individual (Fig. 4c). 
Case–control differences in centile scores were analysed with a boot-
strapped (500 bootstraps) non-parametric generalization of Welch’s 
one-way ANOVA. Pairwise, sex stratified, post-hoc comparisons were 
conducted using non-parametric Monte Carlo permutation tests 
(10,000 permutations) and thresholded at a Benjamini–Hochberg 
FDR of q < 0.05.

Longitudinal stability
To use centile scores in a diagnostically meaningful or predictive way, 
they need to be stable across multiple measuring points. To assess this 
intra-individual stability, we calculated the subject-specific IQR of 
centiles across timepoints for the datasets that included longitudinal 
scans (N = 9,306, 41 unique studies). Exploratory longitudinal clinical 
analyses were restricted to clinical groups that had at least 50 subjects 
with longitudinal data to allow for robust group-wise estimates of lon-
gitudinal variability. In addition, there was a subset of individuals with 
documented clinical progression over the course of longitudinal scans, 
for instance from mild cognitive impairment to Alzheimer’s disease, 
where we expected an associated change in centile scored brain struc-
ture. To test this hypothesis, we assessed whether these individuals 
showed longitudinal variation of centile scores (as assessed with IQR) 
with a direction of change consistent with their clinical progression. 
See Supplementary Information 14 for further details about the lon-
gitudinal stability of centile scores.

Data sharing and out-of-sample estimation
We have provided an interactive tool (www.brainchart.io) and made 
our code and models openly available (https://github.com/brain-
chart/Lifespan). The tool allows the user to visualize the underlying 
demographics of the primary studies and to explore the normative 
brain charts in a much more detailed fashion than static images 
allow. It also provides the opportunity for interactive exploration 
of case–control differences in centile scores across many diagnostic 
categories that is beyond the scope of this paper. Perhaps most sig-
nificantly, the brain chart interactive tool includes an out-of-sample 
estimator of model parameters for new MRI data that enables the 
user to compute centile scores for their own datasets without the 
computational or data-sharing hurdles involved in adding that data 
to the reference dataset used to estimate normative charts (Fig. 5). 
Bias and reliability of out-of-sample centile scoring was extensively 
assessed and endorsed by resampling and cross-validation studies 
for ‘new’ studies comprising at least 100 scans. Although already 
based on the largest and most comprehensive neuroimaging data-
set to date, and supporting analyses of out-of-sample data, these 
normative brain charts will continue to be updated as additional 
data are made available for aggregation with the reference data-
set. See Supplementary Information 1.8, 4 for further details about 
out-of-sample estimation.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Model parameters and out-of-sample centile scores are available 
at www.brainchart.io and on https://github.com/brainchart/Lifes-
pan. Summary statistics are available in the Supplementary Tables 
(Supplementary Tables 1–8). Links to open datasets are also listed 
on https://github.com/brainchart/Lifespan. Availability of other MRI 
datasets aggregated here is through application procedures individu-
ally managed at the discretion of each primary study, with additional 
information provided in Supplementary Table 1.1 and Supplementary 
Information 19.

Code availability
All code is available at https://github.com/brainchart/Lifespan. 
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