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The nervous system is one of the most sophisticated animal tissues, consisting
of thousands of interconnected cell types. How the nervous system develops its
diversity from a few neural stem cells remains a challenging question. Spatial and
temporal patterning mechanisms provide an efficient model through which diversity
can be generated. The molecular mechanism of spatiotemporal patterning has been
studied extensively in Drosophila melanogaster, where distinct sets of transcription
factors define the spatial domains and temporal windows that give rise to different
cell types. Similarly, in vertebrates, spatial domains defined by transcription factors
produce different types of neurons in the brain and neural tube. At the same time,
different cortical neuronal types are generated within the same cell lineage with a specific
birth order. However, we still do not understand how the orthogonal information of
spatial and temporal patterning is integrated into the progenitor and post-mitotic cells
to combinatorially give rise to different neurons. In this review, after introducing spatial
and temporal patterning in Drosophila and mice, we discuss possible mechanisms that
neural progenitors may use to integrate spatial and temporal information. We finally
review the functional implications of spatial and temporal patterning and conclude
envisaging how small alterations of these mechanisms can lead to the evolution of new
neuronal cell types.

Keywords: neuronal diversity, spatial patterning, temporal patterning, evolution of developmental mechanisms,
fate specification, Drosophila, vertebrates

SPATIOTEMPORAL PATTERNING AND CELL FATE
DETERMINATION

Traditionally, neuronal types were classified by the distinct functions that they perform (Masland,
2004; Zeng and Sanes, 2017). Neurons can be categorized by their arborization and projection
pattern, the neurotransmitter they use, and their electrophysiology. Neurons can also be categorized
by the genes they express. The recent advent of high-throughput sequencing has demonstrated
that molecular cell types and morphological/functional cell types are largely consistent
(Shekhar et al., 2016; Li et al., 2017; Konstantinides et al., 2018b; Sathyamurthy et al., 2018;
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Delile et al., 2019; Allen et al., 2020; Özel et al., 2020; Yao et al.,
2021). How different types of neurons are generated is one of
the central questions in developmental neurobiology; the study
of spatiotemporal patterning aims to understand the molecular
developmental basis of cell type diversity. By deciphering the
logic underpinning the patterning process, we can potentially
understand how distinct neuronal functions are encoded
genetically. Comparing different patterning mechanisms across
species could also shed light on how new cell types evolve to
generate a more complex nervous system (Holguera and Desplan,
2018; Konstantinides et al., 2018a).

Spatial Patterning
Early in animal development, neural progenitors are partitioned
into different domains that express distinct transcription factors
(Figure 1A). For example, the nervous system of flies and
mammals is patterned along the anteroposterior (A–P) axis by
Hox genes (Tümpel et al., 2009; Philippidou and Dasen, 2013;
Estacio-Gómez and Díaz-Benjumea, 2014; Jung et al., 2014;
Figure 1B). Within each segment along the A–P axis, neural
progenitors are further patterned on the A-P and dorsoventral
(D–V) axis, forming non-intermingling progenitor populations
that will generate distinct neuronal types (Jessell, 2000; Briscoe
and Ericson, 2001; Karlsson et al., 2010; Benito-Sipos et al., 2013;
Birkholz et al., 2013; Figure 1C).

In each segment of the fly ventral nerve cord, neuroepithelial
cells are patterned by the expression of msh, ind, and vnd along
the D–V axis (Mellerick and Nirenberg, 1995; D’Alessio and
Frasch, 1996; Isshiki et al., 1997; Weiss et al., 1998) and wg, gsb,
en along the A–P axis (Doe, 1992; Gutjahr et al., 1993; Skeath
et al., 1995; Figure 1C). In the fly optic lobe, neuroepithelial cells
of the Outer Proliferation Center form a crescent containing six
domains defined by Vsx1, Optix, and Rx along the A–P axis and
by Hedgehog along the D–V axis (Erclik et al., 2008, 2017; Gold
and Brand, 2014; Figure 1D).

In the mammalian forebrain, morphogen gradients pattern
radial glia and induce the expression of two orthogonal gradients
of spatial transcription factors (Figure 1E, upper panel) that
govern the potency of the neural progenitors to generate specific
cell types. Different types of cortical interneurons are also made
by spatially distinct progenitors. The medial ganglionic eminence
expresses Nkx2.1 and is the main source of parvalbumin-
and somatostatin-expressing interneurons (Xu, 2004; Flames
et al., 2007; Fogarty et al., 2007; Xu et al., 2008), the caudal
ganglionic eminence expresses Nr2f2 and generates serotonin-
sensing interneurons (Nery et al., 2002; Tripodi et al., 2004;
Kanatani et al., 2008; Lee et al., 2010), while the Pax6-
expressing lateral ganglionic eminence generates interneurons
in the olfactory bulb and the striatum (Wichterle et al., 2001;
Kohwi et al., 2007; Figure 1E, lower panel). Another classic
example of spatial patterning in vertebrates is the developing
retina. In zebrafish, neuroepithelial cells in the optic vesicle
are patterned along the D–V axis with foxd1 being expressed
in the ventral compartment and foxg1 in the dorsal (Hatini
et al., 1994; Yuasa et al., 1996; Picker and Brand, 2005). During
anterior eye rotation when the optic cup forms, the D-V spatial
domains become the nasal (projecting to the posterior tectum)

and temporal (projecting to the anterior tectum) hemiretina,
respectively (Figure 1F).

Temporal Patterning
The association between time and neural diversity has been
known for a long time in mammals. Layers of morphologically
distinct neurons in the mammalian cortex are born at specific
embryonic days, with each layer projecting to and receiving
information from different brain regions (Rakic, 1974; Raedler
and Raedler, 1978; Royce, 1983). Two mechanisms could be
envisaged to explain how temporal differences result in the
generation of distinct neuronal types. First, temporal differences
could be intrinsic to each neural progenitor, in which case
each progenitor undergoes a cascade of changes to generate
different types of neurons at different time points (Figure 2A).
Consistent with this model, clonal lineage tracing showed
that a single ventricular radial glia cell can generate neurons
in all layers (Gao et al., 2014). Alternatively, the neural
progenitor pool could be a mixture of different populations
that differ in when they start neurogenesis. In this model,
progenitors differ both in their potential of generating neurons
and the time they commit to neurogenesis (Figure 2A). In
support of this model, while the Olig2-expressing progenitors
give rise to both early-born spinal motor neurons and late-
born oligodendrocytes, there are two subtypes of progenitors:
the early ones that generate motor neurons and the ones
that are recruited later and only generate oligodendrocytes
(Ravanelli and Appel, 2015).

In mammals, recent studies have systematically discovered a
set of birthdate markers that are shared between different cell
types in the hindbrain and spinal cord of human and mouse
(Delile et al., 2019; Osseward et al., 2021; Rayon et al., 2021;
Figure 2B), and the expression of these markers are consistent
with known subtypes within several cardinal classes of spinal
neurons (Roy et al., 2012; Bikoff et al., 2016; Hayashi et al.,
2018). Some of these birthdate markers are required for early-
vs. late-born neuronal fate in neurons (e.g., in the mammalian
cortex, Satb2 is required for later-born callosal neurons from
layer 2 to 5, and Fezf2 and Ctip2 are necessary for early-
born ones in layer 5) (Chen et al., 2005, 2008; Alcamo et al.,
2008; Britanova et al., 2008) and in progenitors (e.g., Nfia and
Nfib for the generation of late-born neurons in the retina and
ventral spinal interneurons) (Xie et al., 2020; Sagner et al.,
2021). Consistent with the idea that neural progenitor temporal
factors specify the fate of daughter neurons, cortical neurons
inherit the gene modules that are present in radial glia at the
stage when the neurons were generated (Telley et al., 2019),
and the late-born fate regulators Nfia/b/x directly regulate late-
born fate associated genes in the mammalian retina (Clark
et al., 2019; Xie et al., 2020; Lyu et al., 2021). Whether it is a
general rule that these temporal window-specific gene modules
specify the neuronal fates of their daughter cells warrants further
investigation.

In the nervous system of flies, cascades of transcription
factors expressed in the same neural stem cell underlie temporal
patterning, and different regions utilize a distinct set of
temporal transcription factors (Brody and Odenwald, 2000;

Frontiers in Neuroscience | www.frontiersin.org 2 March 2022 | Volume 16 | Article 854422

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-16-854422 March 21, 2022 Time: 15:5 # 3

Chen and Konstantinides Integration of Spatiotemporal Patterning

Isshiki et al., 2001; Li et al., 2013; Suzuki et al., 2013; Bertet et al.,
2014; Apitz and Salecker, 2015; Erclik et al., 2017; Mora et al.,
2018; Pinto-Teixeira et al., 2018; Konstantinides et al., 2021; Zhu
et al., 2021; Figure 2C). The temporal cascade in neural stem cells
progresses by cross-regulation between temporal factors during
neurogenesis, either by a relay of activators (Reviewed in Doe,
2017; Rossi et al., 2017) or by a more robust repressor-decay
model (Averbukh et al., 2018). As a result, the expression of each
temporal factor in progenitors is responsible for the generation
of the neuronal types specific to each temporal window (Isshiki
et al., 2001; Mettler et al., 2006; Bayraktar and Doe, 2013;
Li et al., 2013; Konstantinides et al., 2021; Tang et al., 2021;
Zhu et al., 2021).

MOLECULAR LOGIC OF
SPATIOTEMPORAL INTEGRATION

The identity of a neural progenitor is defined by the spatial
domain from which it originates; the neural progenitor then
undergoes a temporal cascade and generates a specific subset of
neuronal types within each temporal window of the cascade. How
is spatiotemporal identity in progenitors translated to distinct
features that define mature neuronal types? In worms, flies, and
mammals, the features that define a type of neuron, including
neurotransmitter choices and innervation targets, are regulated
by post-mitotic regulators that are required and sufficient for
the establishment and/or maintenance of the terminal features.
For example, CHE-1 binds to a specific motif and defines ASE
neuron fate in worms (Uchida et al., 2003; Etchberger et al., 2007),
Bsh is required and sufficient for inducing Mi1 neuron fate in
the fly optic lobe (Hasegawa et al., 2013), and Ngn2, Isl1, and
Lhx3 specify spinal motor neurons in the mammalian spinal cord
(Thaler et al., 2002; Lee and Pfaff, 2003; Son et al., 2011; Mazzoni
et al., 2013).

For spatiotemporal patterning to specify neuronal types, each
spatial and temporal factor must prime the expression of specific
post-mitotic fate regulators. Indeed, the Drosophila Mi1 neuron
is generated during the Hth-expressing temporal window, and
the temporal factor Hth is required and sufficient for downstream
Bsh expression (Hasegawa et al., 2011; Li et al., 2013). Similarly,
Nkx6.1 and Olig2 define the motor neuron progenitor domain in
the neural tube and are required and sufficient for the expression
of downstream Isl1 and Lhx3 (Sander et al., 2000; Takebayashi
et al., 2002).

But how do spatial and temporal factors cooperate? Several
strategies could be employed:

(1) Spatial and temporal factors could directly cooperate by
forming a complex and regulating downstream genes
including the post-mitotic regulators (Figure 3A). This
strategy is utilized to generate Ap-expressing neurons in
the fly embryonic nervous system. Ap+ neurons are only
present in thoracic segments while the neural stem cells,
NB5-6, that generate them are present in every segment.
During neurogenesis, Antp, the spatial factor defining the
thoracic segments (Figure 1B) and the temporal factors,

Cas and Grh (Figure 2C), bind together in a feed-
forward loop to activate Col, the post-mitotic regulator
for Ap+ neurons. The abdominal spatial factors Ubx,
Abd-A, and Abd-B together terminate the neurogenesis
before the Cas and Grh temporal window to prevent the
generation of Ap+ neurons in the abdominal segment
(Karlsson et al., 2010). Cis-regulatory modules targeted
by spatiotemporal factors underlie the integration: The
col cis-regulatory module requires binding by both Antp
and Cas to activate, while Antp and Col are required
to bind together for Ap and Eya to express and in
turn drive the expression of Nplp1, a neuropeptide used
by Ap+ neurons (Stratmann and Thor, 2017). Extrinsic
signals could also introduce regulators to participate in
cooperative regulation. For example, in C. elegans, AIY
neurons are specified by the expression of TTX-3 and
CEH-10 (Altun-Gultekin et al., 2001), which depends
on iterative integration of the asymmetric Wnt/β-catenin
signaling that is only active in the posterior daughter cell
(Lin et al., 1998): In a REF-2-expressing progenitor that will
generate four types of neurons including an AIY neuron,
REF-2 activates ttx-3 in the anterior daughter cell that is
not sensing Wnt (Murgan et al., 2015). When the TTX-
3-expressing progenitor divides again, TTX-3 cooperates
with β-catenin to activate ceh-10 and specify AIY neuron
(Bertrand and Hobert, 2009).

(2) However, spatial and temporal factors are not always
expressed at the same time, which requires regulators
that are expressed at different points to integrate across
time. One possibility for an earlier factor to interact with
a later factor is by epigenetic memory (Figure 3B). In
worms, ASER and ASEL neurons both express the same
post-mitotic regulator, CHE-1, but only ASEL expresses
LSY-6. The lineages giving rise to ASER/ASEL differ
in their early transient expression of TBX-37/38 and
become molecularly equivalent after 4 divisions. However,
the seemingly equivalent lineages remember their lineage
history. Early expression of TBX-37/38 in the ASEL lineage
results in transient transcription of lsy-6, which is required
and sufficient for keeping the locus accessible in the
ASEL but not in the ASER lineage, and the difference
of accessibility allows CHE-1 to activate lsy-6 in ASEL
but not ASER (Charest et al., 2020). In flies, spatial
factors in the ventral nerve cord and optic lobe are
expressed in the neuroepithelium and disappear in the
neuroblasts, while temporal factors are expressed only in
neuroblasts when they commit to neurogenesis. In the
ventral nerve cord neuroblasts, chromatin accessibility is
regulated differently between spatial domains through the
action of a spatial factor, Gsb. Reminiscent to how ASE
asymmetry is regulated, the binding pattern of a temporal
factor Hb, which is expressed later, is dependent on the
pre-existing chromatin landscape and can only bind to
the accessible regions (Sen et al., 2019). While chromatin
accessibility is determined by multiple factors including
histone modifications, DNA methylation (Cusack et al.,
2020), pioneer factors (Voss and Hager, 2014), etc., and
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FIGURE 1 | Spatial patterning in neurogenesis. (A) General principles of spatial patterning in neurogenesis: Progenitors expand in number and then diversify the set
of neuronal types that they can generate during neurogenesis, which is represented by different colors. (B) Nervous systems of vertebrates and invertebrates are
patterned along the anteroposterior axis by Hox genes. Orthologous Hox genes have the same color (McGinnis and Krumlauf, 1992). (OL: optic lobe; CB: central
brain; VNC: ventral nerve cord; MB: midbrain; HB; hindbrain; SC: spinal cord). (C) Vertebral neural tubes are patterned along the dorsoventral axis and form multiple
progenitor domains that will generate spinal motor neurons and various interneurons (pd1-6: Progenitors for dorsal interneurons dI1-dI6; p0-3: Progenitors for ventral
interneuron V0–V3; pMN: Spinal motor neuron progenitors). (D) Each segment of the fly ventral nerve cord (top) is partitioned along both the A–P and D–V axis by
the expression of spatial factors; similarly, the Outer Proliferation Center neuroepithelium generating the medulla (bottom) is compartmentalized into six distinct
domains. (E) Upper panel: In mammals, the cortical protomap is defined by the graded expression of transcription factors. SP8 and NR2F1 form opposing gradients
where SP8 is highest on the anteromedial side while NR2F1 is highest on the posterolateral side. PAX6 and EMX1/2 form another set of opposing gradients along
the anterolateral-posteromedial axis (Reviewed in Greig et al., 2013; Cadwell et al., 2019). Lower panel: Distinct subpallial progenitor domains are marked by specific
transcription factors and generate different types of cortical inhibitory interneurons (LGE: Lateral ganglionic eminence; MGE: Medial ganglionic eminence; CGE:
Caudal ganglionic eminence). (F) In zebrafish, the optic vesicle is dorsoventrally patterned by the expression of foxg1 and foxd1. During developmental eye rotation,
the D–V axis becomes the nasotemporal axis, and the nasal hemiretina projects to posterior tectal lobe, while the temporal hemiretina projects to the anterior tectal
lobe (hpf: hours post fertilization; ov: optic vesicle; tl: tectal lobe).

is used as a proxy of inheritable chromatin modifications,
the molecular nature of epigenetic memory remains to
be investigated.

(3) Finally, spatiotemporal factors that seem not to be co-
expressed could also integrate fate information if the
regulator that is expressed earlier turns on a downstream
factor that continues to be expressed before eventually
cooperating with a later-expressing regulator (Figure 3C).

The models for spatiotemporal integration are not mutually
exclusive. On the contrary, spatiotemporal factors are likely to
regulate their targets in a hybrid mode. In the fly ventral nerve
cord, temporal factors not only regulate their targets directly
but could also cooperate with Polycomb complexes to set the
epigenetic landscape to restrict the generation of motor neurons

to certain temporal windows (Touma et al., 2012). Additionally,
genes that are known to be spatiotemporal factors could also
play multiple roles in fate specification. For example, in Ap+

neurons in the ventral nerve cord, Antp is not only required for
the activation of a post-mitotic regulator, Col, but also directly
regulates Ap and Eya together with Col, effectively making
Antp not only a spatial factor but also a neuronal regulator of
post-mitotic features. Finally, while we only used activators as
examples in this section, a regulator could serve simultaneously
as an activator and a repressor for different sets of targets (Clovis
et al., 2016). Therefore, repressors can have a role in all three
models: a repressor can suppress the expression of some of the
regulators in the complex and change the composition and target
genes in the direct cooperation model; a repressive chromatin
modifier could silence a locus and prevent later regulators from
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FIGURE 2 | Temporal patterning in neurogenesis. (A) Generating distinct neurons at different stages could be either achieved by a common multipotent progenitor
that undergoes a cascade (left) or by a pool of progenitors that differ both in potency and in the time to commit to neurogenesis (right). (B) Mammalian temporal
patterning and neurons generated in each temporal window. Upper panel: Birth date of cortical projection neurons (Caviness, 1982) and V1 spinal interneuron (Stam
et al., 2012) with temporal transcription factor expression in neural progenitors at each temporal window (Sagner et al., 2021); lower panel: Birth date of retinal cells
and corresponding temporal transcription factors in retinal progenitors [RGC: retinal ganglion cell; HC: horizontal cell; AC: amacrine cell; Rod: rod cell
(photoreceptor); BC: bipolar cell; MC: Müller cell] (Elliott et al., 2008; Mattar et al., 2015; Javed et al., 2020). (C) Different regions in the fly nervous system undergo
different cascades of temporal factors to generate different types of neurons.

accessing it in the epigenetic memory model; finally, regulator
relay could not only be achieved by an activator cascade but also
a sequential decay of repressors (Averbukh et al., 2018).

Our current knowledge of how spatial and temporal
patterning are integrated and define cell fates comes from studies
of a few genes in a few cell types and is rather limited. The
integration of spatial and temporal patterning is more than spatial
and temporal factors functioning independently and regulating
their own targets. Instead, we know that there are genes that
are not activated by either a spatial or a temporal factor alone
but only expressed when a specific combination of spatial and
temporal factors is present. For example, in the fly optic lobe,
Svp is only expressed in neurons generated from the early Hth
window from the Vsx and Rx domains but neither Hth nor
Vsx or Rx alone is sufficient for the expression of Svp (Erclik
et al., 2017). In the ventral nerve cord, Ap neurons are only
generated in the Cas window in the thoracic segment defined by
Antp (Karlsson et al., 2010). Similarly in vertebrates, Calbindin
is only expressed in the early-born V1 interneurons from the
p1 progenitor domain but not in early-born neurons from other

spatial domains of the spinal cord (Stam et al., 2012). To have
a more comprehensive understanding of the molecular logic
of spatiotemporal integration, models with known spatial and
temporal regulators will be a great entry point, like the fly
central nervous system and the mammalian retina and neural
tube. To understand the origin of molecular spatiotemporal
integration, we need to identify more spatiotemporal factors in
various nervous tissues in different species to investigate how
these mechanisms have evolved; the advent of high-throughput
profiling of gene expression and chromatin landscape specific for
each spatiotemporal identity holds the promise to decipher both
the rules and exceptions of spatiotemporal integration.

HOW DOES SPATIOTEMPORAL
PATTERNING CONTRIBUTE TO
FUNCTION?

Spatiotemporal patterning provides an elegant way to generate a
wide array of neuronal types that provide the basis for nervous
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FIGURE 3 | Possible mechanisms of spatiotemporal integration. (A) Direct cooperation: New regulators are introduced by an intrinsic cascade or by extrinsic signals
and regulate target genes cooperatively with early regulators that are already present to establish distinct gene signatures for different neuronal types. (B) Epigenetic
memory: Spatial and temporal factors might cooperate by early regulators establishing the chromatin landscape and defining a permissive subset of targets to be
regulated by other regulators that are expressed later. The restriction of targets defines a specific set of post-mitotic regulators to be expressed after cell cycle exit. In
ASE neurons, transient transcription in early development is sufficient to establish accessibility (Charest et al., 2020). (C) Regulator relay: When spatiotemporal
factors are not co-expressed, the regulator that is expressed earlier might activate a downstream factor that is persistently expressed. When the later regulator is set
to express, it directly cooperates with the downstream factor of the early regulator and activates a specific set of post-mitotic regulators. (t1: first time-point, e.g.,
neural stem cell, t2: second time-point, e.g., neuron).

system function. For example, spatial patterning of the neural
tube in vertebrates changed concordantly with the emergence of
walking in tetrapods and new subtypes of spinal motor neurons
were specified to innervate the limbs (Jung et al., 2014, 2018).

Besides providing a gene regulatory framework to enable
neurons to acquire their molecular identity, temporal

synchronization in neurogenesis helps limit the number of
possible targets each neuron encounters and make neural
wiring robust and precise during development. Alternatively,
temporal patterning allows different types of daughter neurons
to be generated next to each other, and this adjacency between
daughter neurons could help them to preferentially connect
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to each other and reduce the number of possible partners by
excluding neurons that are farther away. Consistent with this,
neurons generated from the same neural progenitor tend to form
a circuit, and when each circuit is activated, specific movements,
like walking or wing waving, are generated in the fly ventral
nerve cord (Harris et al., 2015).

In mammals, the projection pattern of excitatory cortical
neurons has long been known to associate with their birthdate
(Rakic, 1974; Raedler and Raedler, 1978; Royce, 1983), and
clonally related excitatory neurons preferentially connect with
each other (Yu et al., 2009, 2012; Li et al., 2012; Ohtsuki
et al., 2012). Recently, the organization and projections of spinal
neurons were also found to be dependent on their birthdate:
Early-born spinal neurons are positioned laterally and enriched
in neurons that project a long range, while late-born ones are
positioned medially and enriched in neurons that project locally
(Osseward et al., 2021). Spatial patterning is also shown to
influence multiple neuronal features: Spatial origin is associated
with electrophysiological properties of cortical interneurons
(Butt et al., 2005) and defines a wide variety of interneurons
and motor neurons in the spinal cord (Jessell, 2000; Sagner and
Briscoe, 2019). It remains an open question if neurons born at
similar stages in different regions of the mammalian nervous
system, e.g., the cerebellum and spinal cord, also take advantage
of the synchronicity of neurogenesis and preferentially connect
and form a circuit among neurons born at similar time windows.

Little is known about the consequences of spatiotemporal
patterning dysregulation. In flies, perturbation of temporal
patterning by knocking down eyeless, an early temporal factor
in the central complex, results in impairment of navigation
(Sullivan et al., 2019). Similar disruption of navigation is
observed when neurons generated during the Eyeless window
are silenced (Giraldo et al., 2018; Green et al., 2018; Sullivan
et al., 2019). In mice, overproduction of late-born layer 2/3
cortical neurons by prolonging the proliferation of intermediate
progenitors results in compulsive behavior and deficits in
social behavior reminiscent of autism spectrum disorder (Fang
et al., 2013, 2014). Autism spectrum disorder (ASD), a disease
involving neocortical function, has been long hypothesized to
be associated with miswiring of neural circuitry, and it is
tempting to speculate that patterning failure in the cortex
results in autistic features if spatiotemporal patterning makes
neurogenesis and wiring less error prone. Consistent with this
hypothesis, mutations of mammalian cortical layer markers are
often associated with ASD (Kwan, 2013). Recently, disorganized
cortical lamina and changes in cortical layer thickness were
also reported in ASD patients, which indicates that temporal
patterning might malfunction during neurogenesis in patients
with autism (Wegiel et al., 2010; Stoner et al., 2014; Trutzer et al.,
2019).

SPATIOTEMPORAL PATTERNING AND
EVOLUTION OF NEW CELL TYPES

It has long been hypothesized that cell type duplication
and diversification underlie nervous system evolution. In this

model, the number of neurons expands and then diversifies
to serve novel roles to form a more complicated nervous
system. Indeed, brain volume and layer thickness differ
substantially among vertebrates (Tosches and Laurent, 2019).
The gain or loss of spatiotemporal factors is among the
plausible mechanisms to diversify an expanded population
of neurons. Consistent with this model, recent comparative
studies in vertebrates have shown that evolutionary novel
subtypes often share the gene expression profile with a
conserved cardinal type. For example, birds have only two
cerebellar nuclei, medial and interposed, while mammals have
three: medial, interposed, and lateral. Neurons from each
of the three nuclei in chicken, mice, and humans can be
categorized into two molecular classes, while the neurons
of the same class from different nuclei still differ from
each other (Kebschull et al., 2020). While it remains to
be determined if changes in spatiotemporal patterning are
responsible for the emergence of new subtypes during evolution,
it provides a feasible molecular infrastructure for duplication and
diversification to occur.

The recent advent of high-throughput profiling techniques
not only made possible the discovery of a shared set of
temporal regulators across different vertebrate neuronal tissues
(Lu et al., 2020; Sagner et al., 2021) but also opened
the opportunity to understand the gene regulatory networks
governed by these temporal factors (Telley et al., 2019; Lyu
et al., 2021) and other birthdate-specific post-mitotic regulators
(Di Bella et al., 2021). Our rapidly expanding knowledge of
the molecular logic of spatiotemporal integration and fate
specification in various species will set the stage for more
comparative studies, such as the investigation of how the
targets of conserved spatiotemporal regulators differ between
species, how novel spatial domains or temporal windows emerge,
and, ultimately, how new cell types are generated during
development and evolution.
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