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Abstract

Low-rank approximation with zeros aims to find a matrix of fixed rank and with
a fixed zero pattern that minimizes the Euclidean distance to a given data matrix.
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1. Introduction

The best rank-r approximation problem aims to find a real rank-r matrix that
minimizes the Euclidean distance to a given real data matrix. The solution of this
problem is completely addressed by the Eckart-Young-Mirsky theorem which
states that the best rank-r approximation is given by the first r components of the
singular value decomposition (SVD) of the data matrix.

We study the structured best rank-r approximation problem, namely we con-
sider additional linear constraints on rank-r matrices. We focus on coordinate
subspaces, i.e., linear spaces that are defined by setting some entries to zero. Let
S ⊂ [m] × [n] denote the indices of zero entries. Given U = (ui j) ∈ Rm×n, our
optimization problem becomes

min
X

dU(X) B
m∑

i=1

n∑
j=1

(xi j − ui j)2

s.t. xi j = 0 ∀(i, j) ∈ S and rank(X) ≤ r .

(1.1)

Structured low-rank approximation problem has been studied in [CFP03,
Mar08, Mar19]; see also [GG11] for low rank approximations with weights.
Exact solutions to this problem have been investigated by Golub, Hoffman and
Stewart [GHS87], and by Ottaviani, Spaenlehauer and Sturmfels [OSS14].
In [GHS87], rank-r critical points are studied under the constraint that entries
in a set of rows or in a set of columns of a matrix stay fixed. This situation is
more general than ours in the aspect that the fixed entries are not required to
be zero but more restrictive when it comes to the indices of the entries that are
fixed. In [OSS14], rank-r critical points restricted to generic subspaces of ma-
trices are studied. In our paper, the linear spaces set some entries equal to zero
and hence are not generic. Because of this, we cannot use many powerful tools
from algebraic geometry and intersection theory and we have to come up with
algebraic and computational techniques that exploit this special structure. For
some properties of determinantal ideals of matrices with 0 entries and their rela-
tions to problems in graph theory we refer the reader to [CW19] and references
therein. Horobet and Rodriguez study the problem when at least one solution of
a certain family of optimization problems satisfies given polynomial conditions,
and address the structured low-rank approximation as a particular case [HR20,
Example 15].

The global minimum of the optimization problem (1.1) always exists, be-
cause we can select any point X in the feasible region and consider the feasible
region intersected with the closed ball BdU (X)(U) centered at U and with radius

2



dU(X). Since the feasible region is a closed semialgebraic set, then the inter-
section is closed and bounded, and hence compact. The distance function is
continuous, thus achieves its minimum on this set. This minimum is a global
minimum of (1.1). The optimization problem (1.1) is nonconvex and often local
methods are used to solve it. They return a local minimum of the optimization
problem. There are heuristics for finding a global minimum, but these heuris-
tics do not guarantee that a local minimum is indeed a global minimum. We
refer to [Mar08] for various algorithms and to [SS16] for an algorithm with lo-
cally quadratic convergence. Cifuentes recently introduced convex relaxations
for structured low-rank approximation that under certain assumptions have prov-
able guarantees [Cif21]. Another interesting direction, closely related but not
directly applicable to our problem, is to employ recent optimization techniques
for simultaneously sparse and low rank approximation [PS17, SRV12].

To compute a global minimizer of (1.1) algebraically, we need to look at all
the complex critical points of the polynomial function dU : Cm×n → C on the
intersection LS

r B Xr ∩ L
S , where

Xr B {X ∈ Cm×n | rank(X) ≤ r} , LS B {X ∈ Cm×n | xi j = 0 ∀(i, j) ∈ S }, (1.2)

and then select the real solution that minimizes the Euclidean distance. The prob-
lem of finding critical points of dU on LS

r can be considered in the more general
setting when U is a complex data matrix. This setting includes the practically
meaningful setting when U has real entries. If U ∈ Cm×n is generic, namely if
it belongs to the complement of a Zariski closed set, then the number of critical
points is constant and is called the Euclidean Distance degree (ED degree) of
LS

r . We denote this invariant by EDdegree(LS
r ). The importance of the ED de-

gree is that it measures the algebraic complexity of writing the optimal solution
as a function of U. More generally, the ED degree of an algebraic variety is in-
troduced in [DHO+16]. The main goal of this paper is to study the critical points
and the ED degree of the minimization problem (1.1).

When rank is one, then characterizing critical points becomes a combinato-
rial problem. More precisely, listing all critical points translates to the problem
of listing minimal vertex covers of a bipartite graph. The complexity of count-
ing vertex covers in a bipartite graph is known to be #P-complete [PB83]. Our
main result about rank-one critical points is Proposition 3.3 which gives the ED
degree of LS

1 in terms of the minimal covers. For row/column and diagonal zero
patterns this results in explicit formulas (Corollaries 3.8 and 3.9).

Our first main result for rank-r critical points is Theorem 4.3 which studies
the linear span of rank-r critical points of dU . We call it the critical space in the
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structured setting. This is motivated by the notion of critical space of a tensor
in the unstructured setting defined by Draisma, Ottaviani and Tocino [DOT18].
From the algebraic perspective, Theorem 4.3 provides a lower bound on the min-
imal number of generators of degree one in the zero dimensional ideal of rank-r
critical points of dU . When LS

r is an irreducible variety, we expect this lower
bound to be also an upper bound, as stated in Conjecture 4.4.

In the unstructured setting, the rank-one critical points form a basis of the
critical space and the rank-r critical points are linear combinations of the basis
vectors with coefficients in {0, 1}. In the structured setting, there are not enough
rank-one critical points to give a basis of the critical space. We leave it as an
open question, whether there is a natural extension to a basis and whether the co-
efficients that give rank-r critical points as linear combinations of basis elements
have a nice description.

Our second main result is Proposition 4.12 that describes affine linear re-
lations that are satisfied by the rank-r critical points of dU in the unstructured
setting. In the structured setting, we conjecture the affine linear relations sat-
isfied by the rank-r critical points of dU . The last kind of constraints satisfied
by the rank-r critical points that we consider are nonlinear determinantal con-
straints given in Proposition 4.18. The ED degree of dU is studied in Section 5.
Our experiments indicate that the ED degree is exponential in |S |.

The optimization problem (1.1) is motivated by the nonnegative matrix fac-
torization (NMF) problem. Given a nonnegative matrix X ∈ Rm×n

≥0 , the nonnega-
tive rank of X is the smallest r such that

X = AB, where A ∈ Rm×r
≥0 and B ∈ Rr×n

≥0 .

NMF aims to find a matrix X of nonnegative rank at most r that minimizes the
Euclidean distance to a given data matrix U ∈ Rm×n

≥0 , see [Gil20] for further
details.

In Section 6, we apply the structured best rank-two approximation problem
to NMF. Let M2 be the set of matrices of nonnegative rank at most two and
consider a matrix U ∈ R3×3

≥0 . In order to compute the best nonnegative rank-2
approximation of U, we need to compute the critical points of the Euclidean dis-
tance function dU overM2∩L

S for all zero patterns S ⊂ [3]× [3]. We show that
the minimal number of critical points needed to determine the global minimum
of dU is 756 for a generic U. For the same case, we show experimentally that the
optimal critical point may have a few zeros.

The rest of the paper is organized as follows. In Section 2 we set our no-
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tations (Section 2.1), we recall the basics of ED minimization on an algebraic
variety (Section 2.2) and we discuss Frobenius distance minimization on a vari-
ety of low-rank matrices (Section 2.3). In Section 3 we address the best rank-one
approximation problem with assigned zero patterns (Section 3.1) and best rank-
r approximation for rectangular and block diagonal matrices (Section 3.2). In
Section 4 we investigate special polynomial relations among the critical points
of dU . In particular, in Sections 4.1 and 4.3 we concentrate on particular lin-
ear and affine relations among critical points respectively, and in Section 4.4 on
some special nonlinear relations. Observations for generic linear constraints not
necessarily coming from assigned zero patterns are given in Section 4.2. In Sec-
tion 5 we provide conjectural ED degree formulas for special formats and zero
patterns S , obtained from computational experiments. In Section 6 we relate the
minimization problem (1.1) to nonnegative matrix factorization. The results of
Sections 5 and 6 are supported by computations that use the HomotopyContin-
uation.jl [BT18] software package as well as the software Macaulay2 [GS] and
Maple™ 2016 [Map]. The code can be found at github.com/kaiekubjas/exact-
solutions-in-low-rank-approximation-with-zeros.

2. Preliminaries

The preliminaries section consists of three subsections on algebra basics and
notations (Section 2.1), Euclidean distance minimization (Section 2.2) and un-
structured low-rank approximation (Section 2.3).

2.1. Algebra basics and notation
We start by setting up the notations used throughout the paper. We always

work over the field F = R or F = C. Without loss of generality, we always
assume that m ≤ n when considering the vector space Fm×n. Given an m × n
matrix X ∈ Fm×n, we consider the subsets I ⊂ [m] and J ⊂ [n]. We always
assume that the elements of I and J are ordered in increasing order. We denote
by XI,J the submatrix obtained by selecting the rows of X with indices in I and
the columns of X with indices in J. Moreover, if |I| = |J| we denote by MI,J(X)
the minor of X corresponding to rows in I and columns in J. If I = J = ∅, we set
M∅,∅(X) B 1.

We use the notation F[X] to denote the ring of polynomials with variables xi j

of X and with coefficients in F. For a given subset Y ⊂ F[X], we indicate with
V(Y) the (algebraic) variety of Y , that is the zeros of Y in Fm×n. In particular
V(Y) = V(〈Y〉), where 〈Y〉 ⊂ F[X] is the ideal generated by elements of Y . The
subsets of Fm×n of the form V(Y) for some Y ⊂ F[X] constitute the closed sets
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of the Zariski topology of Fm×n. In particular, a closed setV(Y) is irreducible if
it is not the union of two non-empty proper subsets that are closed in the Zariski
topology. Finally, for a given subset Z ⊂ Fm×n, we denote by I(Z) the ideal of Z,
namely the ideal generated by all polynomials vanishing at the points of Z. We
refer the reader to [CLO92] for a more general commutative algebra background.

2.2. Euclidean distance minimization on a real algebraic variety
Let VR be a finite dimensional real vector space equipped with a positive

definite symmetric bilinear form 〈·, ·〉 : VR × VR → R. Without loss of gener-
ality, we can assume that 〈·, ·〉 is the standard Euclidean inner product, that is
〈x, y〉 =

∑
i xiyi, for x, y ∈ VR. Consider a real algebraic variety XR ⊂ VR. The

generalized version of (1.1) is the problem of minimizing the squared Euclidean
distance du(·) B 〈u − ·, u − ·〉 over XR. For a generic data point u, the mini-
mum of du is attained at a smooth point x ∈ XR, such that the vector u − x is
orthogonal to the tangent space TxX

R with respect to 〈·, ·〉. Such a point x is
called a critical point of the function du on XR. We can formulate the whole
problem algebraically, since all relations among critical points are described by
polynomials in the coordinates of x and u.

A complete study of the ideal of relations among critical points of du requires
us to work over an algebraically closed field. For this reason we extend VR to a
complex vector space V = VR⊗C and we letX be the complex variety associated
to XR. Finally, we denote again with du the complex-valued function defined by
du(x) B 〈u − x, u − x〉. We stress that 〈·, ·〉 is not the standard inner product in
the complex vector space V . After this extension, one might study all complex
critical points of the function du on X and then look for the real global minimizer
among all the complex solutions. The interesting property is that the number of
complex critical points of du is an invariant of X for a generic data point u ∈ V
and is called the Euclidean Distance degree (ED degree) of X. It is studied in
detail in [DHO+16].

The bilinear form 〈·, ·〉 induces a smooth quadric hypersurface Q ⊂ V of
equation 〈x, x〉 = 0. It is called the isotropic quadric of V . In particular, for
every x ∈ Q, the tangent space TxQ is the hyperplane of vectors y ∈ V such
that 〈x, y〉 = 0. An affine subspace W ⊂ V is transversal to Q if for every
x ∈ W ∩ Q, the span between TxQ and W generates V . In such case, the space V
is the direct sum between W and its orthogonal complement. In turn, this yields
a good notion of orthogonal projection πW : V → W onto W with respect to
Q. We refer to [Pie15, Section 4] and [Sod20, Section 1.1] for more details on
orthogonal projections with respect to the isotropic quadric Q.

The following two basic lemmas are needed in the following sections.
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Lemma 2.1. In the setting explained before, consider a proper affine subspace
W ⊂ V transversal to the isotropic quadric Q and an algebraic variety X ⊂ W.
Let πW : V → W be the orthogonal projection onto W. Then, for all u ∈ V, the
critical points on X of the squared distance functions du and dπW (u) coincide.

Proof. Let x ∈ X be a critical point of du. In particular 〈u − x, y〉 = 0 for all
y ∈ TxX. Furthermore 〈πW(u) − x, y〉 = 〈u − x, y〉 − 〈u − πW(u), y〉 = 0 − 0 = 0
since u − πW(u) and y sit in orthogonal subspaces.

Lemma 2.2. Consider the affine varietiesX1, . . . ,Xp in V and suppose thatXi 1
X j for all i , j. Then EDdegree(X1 ∪ · · · ∪ Xp) =

∑p
i=1 EDdegree(Xi).

Proof. Let u ∈ V be a generic data point and X = X1 ∪ · · · ∪Xp. A smooth point
x ∈ X is critical for du if the vector u − x is orthogonal to the tangent space TxX.
Since x is a smooth point of X, there exists a unique index i ∈ [p] such that x is a
smooth point of Xi and TxX = TxXi. Here we are using the hypothesis Xi 1 X j

for all i , j. Therefore x is a critical point for du onXi. This yields the inequality
EDdegree(X) ≤

∑p
i=1 EDdegree(Xi).

To prove the reverse inequality, consider an index i ∈ [p] and a critical point
x ∈ Xi for du. If u is sufficiently generic, then x lies outside the singular locus
of X and TxXi = TxX. Therefore x is a critical point for du on X. Repeating
the argument for every i ∈ [p], we derive the desired inequality EDdegree(X) ≥∑p

i=1 EDdegree(Xi).

2.3. Unstructred low-rank approximation
We consider the notation of Section 2.2. We specialize to the Euclidean space

(VR, 〈·, ·〉) = (Rm×n, 〈·, ·〉F), where 〈·, ·〉F is the Frobenius inner product in Rm×n.
It is defined by 〈A, B〉F B trace(ABT ) for any two m× n matrices A and B. Given
U ∈ Rm×n, we minimize the squared Frobenius distance

dU(X) = 〈X − U, X − U〉F =

m∑
i=1

n∑
j=1

(xi j − ui j)2 ,

over the real variety XR = XR
r of m × n matrices of rank at most r. Note that

dU(X) coincides with the squared Euclidean distance between X and U in Rm×n.
An important tool to study low-rank approximation problem is given by the

following decomposition of a real matrix.
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Theorem 2.3 (Singular Value Decomposition). Any matrix U ∈ Rm×n admits the
Singular Value Decomposition (SVD)

U = A Σ BT , (2.1)

where A ∈ Rm×m and B×Rn×n are orthogonal matrices and Σ ∈ Rm×n is such that
Σii = σi for some real numbers σ1 ≥ σ2 ≥ · · ·σm ≥ 0, otherwise Σi j = 0. The
numbers σi are called singular values of U. Denoting by ai and bi the columns
of A and B respectively, for all i ∈ [m] the pair (ai, bi) is called a singular vector
pair of U. If the singular values are all distinct, then all singular vector pairs
are unique up to a simultaneous change of sign.

Remark 2.4. Theorem 2.3 extends to complex matrices using unitary matrices
and their conjugates, but complex conjugation is not an algebraic operation.
If a matrix U ∈ Cm×n factors as in (2.1), then U admits an algebraic SVD.
The complex matrices admitting an algebraic SVD are characterized in [CH87,
Theorem 2 and Corollary 3], see also [DLOT17, Section 3].

Similarly as in Section 2.2, we rephrase our low-rank approximation problem
over C. In particular, we work in the space Cm×n and we compute all critical
points of the complex-valued function dU(X) = 〈U−X,U−X〉F on the varietyX =

Xr of complex m×n matrices of rank at most r. The following result characterizes
such critical points when the data matrix U is real. A similar statement holds
for every complex data matrix U admitting an algebraic SVD. We report the
statement used in [OP15, Theorem 2.9].

Theorem 2.5 (Eckart-Young-Mirsky). Consider a matrix U ∈ Rm×n of rank k
and its SVD as in (2.1). Let r ∈ [k]. Then all the critical points of dU on Xr are
of the form

A(Σi1 + · · · + Σir )B
T (2.2)

for all subsets {i1 < · · · < ir} ⊂ [k], where Σ j is the m × n matrix whose only
non-zero entry is Σ j, j = σ j. If the non-zero singular values of U are distinct, then
there are

(
k
r

)
critical points.

Therefore, Theorem 2.5 solves the best rank-r approximation problem and
the nice structure of critical points leads to various interesting consequences. In
particular, assuming that U is full rank, their number is independent from the
largest dimension n. Moreover, their linear span does not depend on the rank r;
it is studied in [OP15, DOT18] in the more general context of tensor spaces, see
also Proposition 2.6.
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Consider a data matrix U ∈ Rm×n and let ZU,r be the set of critical points of
dU on Xr. We denote by 〈ZU,r〉 the linear span of ZU,r in Rm×n. A consequence of
Theorem 2.5 is that 〈ZU,r〉 does not depend on the rank r, namely 〈ZU,r〉 = 〈ZU,1〉

for all r ∈ [m]. The following result is a special case of [DOT18, Theorem 1.1]
and gives the equations of 〈ZU,1〉.

Proposition 2.6. Given U ∈ Rm×n, the ideal I(ZU,1) = I(〈ZU,1〉) is generated by
the linear forms in R[X]1

r(i, j)
U (X) B (XUT − UXT )i j ∀ i, j ∈ [m] , c(i, j)

U (X) B (XT U − UT X)i j ∀ i, j ∈ [n] .
(2.3)

In particular, if U is sufficiently generic, then (assuming m ≤ n)

1. the
(

m
2

)
forms r(i, j)

U (X) are linearly independent,

2. m(n − 1) −
(

m
2

)
of the forms c(i, j)

U (X) are linearly independent,

3. none of the forms r(i, j)
U (X) is linear combination of some of the forms c(i, j)

U (X),
and viceversa.

Therefore dim(〈ZU,1〉) = m if U is sufficiently generic.

We explain an implication of Proposition 2.6 which is used in the proof of
Corollary 4.8.

Remark 2.7. Let U ∈ Rm×n and let UI,J be a submatrix of U. Consider the
system

r(i, j)
UI,J

= 0 ∀ i, j ∈ [|I|] , c(i, j)
UI,J

= 0 ∀ i, j ∈ [|J|] .

If |I| ≤ |J| and U is sufficiently generic, then

1. the first
(
|I|
2

)
equations are linearly independent,

2. there are |I|(|J| − 1)−
(
|I|
2

)
linearly independent equations in the second set,

3. no equation in one set is linear combination of equations in the other set.

3. Rank-one structured approximation and beyond

This section is divided into two subsections: In Section 3.1, we focus on
rank-one approximation with zeros, and in Section 3.2, on the simplest cases of
rank-r approximation with zeros for rectangular and block-diagonal matrices.
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3.1. Rank-1 structured approximation
Rank-one approximation with zeros is built on the observation that non-zero

entries of a rank-one matrix form a rectangular submatrix. After introducing
the notions of rectangular zero patterns in Definition 3.1 and minimal covers in
Definition 3.2, Proposition 3.4 gives the procedure for determining the best rank-
one approximation in the structured setting. The main result in this subsection
is Proposition 3.3 which gives the ED degree of LS

1 in terms of the minimal
covers. We recall that the variety LS

r = Xr ∩ L
S was defined in (1.2) for any

r ∈ [m]. For row/column and diagonal zero patterns, this results in explicit
formulas (Corollaries 3.8 and 3.9). We end the section with Algorithm 1 for
finding all minimal covers of a zero pattern S .

Definition 3.1. We say that a zero pattern S ⊂ [m] × [n] is rectangular if the
indices that are not in S form a rectangular matrix. More precisely, a rectangular
zero pattern has the form S = (S 1 × [n]) ∪ ([m] × S 2), for some S 1 ⊂ [m] and
S 2 ⊂ [n]. Sometimes we denote this zero pattern also by (S 1, S 2).

Definition 3.2. Let S ,T ⊂ [m] × [n] be two zero patterns.

1. The zero pattern T is a cover of the zero pattern S , if S ⊂ T and if T is
rectangular.

2. The zero pattern T is a minimal cover of S , if it is minimal among all
covers of the zero pattern S with respect to inclusion. We denote by
MC(S ,m, n) the set of all minimal covers of S ⊂ [m] × [n].

For example, if S = {(1, 1), (1, 2), (2, 2)}, then MC(S , 3, 3) = {([2], ∅), (∅, [2]), ({1}, {2})}
(see Figure 1).

0 0 2

1 0 1

2 1 3




0 0 2

1 0 1

2 1 3




0 0 2

1 0 1

2 1 3




Figure 1: Minimal covers of a 3 × 3 matrix with zero pattern S = {(1, 1), (1, 2), (2, 2)}.

The main difficulty in studying the best rank-one approximation problem
with assigned zero pattern S lies in identifying all the minimal covers of S .

Proposition 3.3. Let S ⊂ [m]× [n] be a zero pattern. Consider the variety X1 of
m × n matrices of rank at most one and the intersection LS

1 = X1 ∩ L
S . Then

EDdegree(LS
1 ) =

∑
(Ar ,Ac)∈MC(S ,m,n)

min(m − |Ar|, n − |Ac|) . (3.1)
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Proof. There is a bijection between the irreducible components of LS
1 and the

elements of MC(S ,m, n). More precisely, for every pair (Ar, Ac) ∈ MC(S ,m, n),
the corresponding component of LS

1 is isomorphic to the variety of (m − |Ar|) ×
(n − |Ac|) matrices of rank at most one, and by Theorem 2.5 this component has
ED degree equal to min(m− |Ar|, n− |Ac|). Moreover, given two distinct minimal
covers T1 and T2 in MC(S ,m, n) and their corresponding irreducible components
V1 and V2, then neither V1 ⊂ V2 nor V2 ⊂ V1. The statement follows by
Lemma 2.2.

Corollary 3.4. Let S ⊂ [m] × [n]. Given U ∈ Rm×n, its best rank-one approxi-
mation with zeros in S is found by the following procedure:

1. Identify all minimal covers of S .
2. Find the best rank-one approximation for each of the minimal covers of S .
3. Choose the best rank-one approximation over all the minimal covers of S .

Corollary 3.5. Let S = {(1, 1)}. It has two minimal covers, i.e., MC(S ,m, n) =

{({1}, ∅), (∅, {1})}. Given U ∈ Rm×n, its best rank-one approximation with a zero
in S is found by first identifying the best rank-one approximations for the two
minimal covers of S and then choosing out of the two rank-one matrices the one
that minimizes the Euclidean distance to U.

Definition 3.6. Let S ⊂ [m] × [n] be a zero pattern. The mask matrix of S is the
m × n matrix MS with entries in {0, 1} whose (i, j)-th entry is the characteristic
function χS (i, j) of S .

Definition 3.7. Two zero patterns S 1 and S 2 are said to be permutationally
equivalent if there exist permutation matrices P1 and P2 such that we can write
MS 1 = P1MS 2 P2.

Corollary 3.8. Let S ⊂ [m] × [n] be a zero pattern which is permutationally
equivalent to the row zero pattern {(1, 1), . . . , (1, |S |)}. Then

EDdegree(LS
1 ) = min{m, n − |S |} + min{m − 1, n} . (3.2)

Similarly, let S ⊂ [m]× [n] be a zero pattern which is permutationally equivalent
to the column zero pattern {(1, 1), . . . , (|S |, 1)}. Then

EDdegree(LS
1 ) = min{m, n − 1} + min{m − |S |, n} . (3.3)

11



Corollary 3.9. Let S ⊂ [m] × [n] be a zero pattern which is permutationally
equivalent to the diagonal zero pattern {(1, 1), . . . , (|S |, |S |)}. Then

EDdegree(LS
1 ) =

|S |∑
j=0

(
|S |
j

)
min{m − j, n − |S | + j} . (3.4)

Enumerating minimal covers of a zero pattern translates to the problem of
enumerating minimal vertex covers of a bipartite graph. A bipartite graph G can
be associated to a zero pattern of an m × n-matrix X = (xi j) in the following
way: the bipartite graph G has m and n vertices in the two parts, corresponding
to the rows and columns of the matrix. The edges of G correspond to the zero
entries of the matrix, i.e. (i, j) ∈ E(G) if and only if xi j = 0. A (minimal)
cover of a zero pattern is then equivalent to a (minimal) vertex cover of the
corresponding bipartite graph. Since counting vertex covers in a bipartite graph
is #P-complete [PB83], it follows that counting covers of a zero pattern is #P-
complete. Recall that #P is the class of counting problems, where the goal is
to count the number of solutions of a problem. We know that NP ⊆ #P but we
are not aware how high in the hierarchy #P is. We refer the interested reader to
[AB09, Chapter 9] for further details.

We suggest Algorithm 1, that is based on dynamic programming, to find all
minimal covers of a zero pattern S . To simplify notation, we present the algo-
rithm for the bipartite graph G corresponding to the zero pattern S . In particular,
we use the following notation. Let G = (U,V, E), where U = {u1, . . . , um} and
V = {v1, . . . , vn} are the two parts of vertices. For u ∈ U, we denote by N(u)
the set of neighbors of u. Let U′ ⊂ U and V ′ ⊂ V . We denote by G[U′,V ′] the
induced subgraph of G, i.e., the graph whose vertex set is U′ ∪ V ′ and whose
edge set is the subset of E that consists of edges whose both endpoints are in
U′ ∪ V ′. We consider the graph G[U′,V ′] as a bipartite graph with U′ and V ′

being the two parts of vertices.
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Algorithm 1: Minimal covers of a bipartite graph
G = (U,V, E)

1: procedure MinimalCovers(G = (U,V, E))
2: if G is null graph then
3: return {(∅, ∅)}
4: else
5: MC = ∅

6: MC1 = MinimalCovers(G[U \ {u1},V])
7: for (S 1, S 2) ∈ MC1 do
8: append (S 1 ∪ {u1}, S 2) to MC
9: end for

10: MC2 = MinimalCovers(G[U \ {u1},V \ N(u1)])
11: for (S 1, S 2) ∈ MC2 do
12: append (S 1, S 2 ∪ N(u1)) to MC
13: end for
14: return MC
15: end if
16: end procedure

The following example illustrates that it is not enough, even to consider min-
imal covers with the least number of elements.

Example 3.10. Consider the 3 × 4 matrix

U =

1 −1 −2 −2
1 0 1 −2
2 0 0 2

 .
We look for the closest rank-one matrix to U with zero pattern S = {(1, 1), (1, 2)}.
We have MC(S , 3, 4) = {({1}, ∅), (∅, [2])}. In particular, the first minimal cover
consists of four elements, while the second minimal cover consists of six ele-
ments. One verifies that the closest critical point to U is of the second type and
is equal to

X =

0 0 −0.627896 −2.36438
0 0 −0.430261 −1.62017
0 0 0.496139 1.86824

 .

13



3.2. Rank-r structured approximation for rectangular and block-diagonal ma-
trices

We finish this section with two results for structured best rank-r approxima-
tion problem in the simplest cases where non-zero entries form rectangular and
block-diagonal submatrices.

Lemma 3.11 (Rectangular low-rank approximation). Let S ⊆ [m] × [n] be such
that ([m] × [n])\S = T ′ × T ′′ for some T ′ ⊆ [m] and T ′′ ⊆ [n]. Given U ∈ Rm×n,
let U′ ∈ Rm×n be the matrix that is obtained from U by setting the entries in S
equal to zero. The best rank-r approximation of U with zeros in S is equal to the
best (unstructured) rank-r approximation of U′. If the non-zero singular values
of U′ are distinct, then by Theorem 2.5 there are

(
min(|T ′ |,|T ′′ |)

r

)
critical points and

they are given by the Singular Value Decomposition (2.1) of U′.

Lemma 3.12 (Block-diagonal low-rank approximation). Let S ⊆ [m] × [n] be
such that ([m] × [n])\S = (T ′1 × T ′′1 ) ∪ (T ′2 × T ′′2 ) ∪ . . . ∪ (T ′s × T ′′s ) for some non-
empty pairwise disjoint T ′1,T

′
2, . . . ,T

′
s ⊆ [m] and non-empty pairwise disjoint

T ′′1 ,T
′′
2 , . . . ,T

′′
s ⊆ [n]. Consider all vectors (r1, . . . , rs) ∈ Ns

0 such that
∑

ri = r.
For a fixed vector (r1, . . . , rs), let Z(r1, . . . , rs) be the set of matrices such that for
1 ≤ i ≤ s, the projection to T ′i × T ′′i is a critical point of the unstructured rank-ri

approximation problem for U |T ′i ×T ′′i . The union of Z(r1, . . . , rs) over all vectors
(r1, . . . , rs) ∈ Ns

0 satisfying
∑

ri = r gives the set of all critical points for the the
structured best rank-r approximation problem (1.1) for U.

Example 3.13. Consider the 3 × 3 matrix

U =

1 2 3
4 5 6
7 8 9

 .
Let S = {(1, 3), (2, 3), (3, 1), (3, 2)}. We look for the closest rank-two matrix to
U with zero pattern S . The support of this closest rank-two matrix is block-
diagonal, i.e., the non-zero entries are ([3]×[3])\S = ({1, 2}×{1, 2})∪({3}×{3}).
There are s = 2 blocks and three vectors (r1, r2) ∈ N2

0 satisfying r1 + r2 = 2,
namely the vectors (2, 0), (1, 1) and (0, 2). The critical point corresponding to
the vector (2, 0) is

C1 =

1 2 0
4 5 0
0 0 0

 .
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The critical points corresponding to the vector (1, 1) are

C2 =

1.3332 1.7455 0
3.8857 5.0873 0

0 0 9

 and C3 =

−0.3332 0.2545 0
0.1143 −0.0873 0

0 0 9

 .
There are no critical points corresponding to the vector (0, 2), since the size of
the last block is one and hence it cannot have rank two. The critical point that
minimizes the squared Frobenius distance to U is C2.

4. Special relations among critical points

In this section we provide (some of) the generators of the ideal of critical
points on LS

r of dU . In particular, in Sections 4.1 and 4.3 we concentrate on
particular linear and affine relations among critical points respectively, and in
Section 4.4 on some special nonlinear relations. Observations for generic lin-
ear constraints not necessarily coming from assigned zero patterns are given in
Section 4.2.

We stress that in our statements we always consider a real m × n matrix U.
However, as we explained in Section 2.3, our optimization problem is defined in
the ambient space of m × n complex matrices, since in the structured setting the
critical points of dU are not necessarily real.

4.1. Linear relations among critical points
Let ZS

U,r be the set of critical points of dU on LS
r . When S = ∅ we simply

write ZU,r as in Section 2.3. The study of the linear span 〈ZS
U,r〉 is more involved

when S , ∅. The main result in this section is Theorem 4.3 which states that
certain linear equations from the unstructured setting in Proposition 2.6 are sat-
isfied by the rank-r critical points of dU in the structured setting. In the rest of
the section, we investigate when do these linear equations define 〈ZS

U,r〉 (Conjec-
ture 4.4, Examples 4.5-4.7) and give a lower bound on the codimension of 〈ZS

U,r〉

(Corollary 4.8).

Definition 4.1. Let S ⊂ [m] × [n] be a zero pattern. Recall that MS denotes
the mask matrix of S as introduced in Definition 3.6. We introduce the following
equivalence relations ∼S

R and ∼S
C in the sets [m] and [n], respectively:

• i ∼S
R j if and only if the i-th and the j-th rows of MS coincide,

• i ∼S
C j if and only if the i-th and the j-th columns of MS coincide.
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Definition 4.2. We define critical space of U ∈ Rm×n to be the linear space HS
U

defined by relations〈
r(i, j)

U | i ∼S
R j

〉
+

〈
c(i, j)

U | i ∼S
C j

〉
+

〈
xi j | (i, j) ∈ S

〉
. (4.1)

Observe that HS
U does not depend on the rank r. Moreover, the previous

definition is inspired by [DOT18, Definition 2.8] in the context of unstructured
low-rank tensor approximation. In particular, for S = ∅ we denote the critical
space simply by HU .

Proposition 2.6 tells us that 〈ZU,r〉 = HU for all r ∈ [m − 1]. The next result
shows that at least one of the two inclusions in the last equality is still true when
S , ∅.

Theorem 4.3. Let S ⊂ [m] × [n], U ∈ Rm×n and r ∈ [m − 1]. Then 〈ZS
U,r〉 ⊂ HS

U .

Proof. Let L1, . . . , Ls be the constraints that set s entries of the matrix to be equal
to zero. We denote by JacXr (X) and JacLS (X) the Jacobian matrices of Xr and LS

evaluated at X, respectively. The rank-r critical points X ∈ LS
r of dU satisfy the

equality constraintsMI,J(X) = 0 ∀ |I| = |J| = r + 1
Lk(X) = 0 ∀ k ∈ [s]

[
λ µ 1

]
JacXr (X)
JacLS (X)

X − U

 =
[

0 0 0
]
,

(4.2)
where λ = (λI,J)I,J and µ = (µ1, . . . , µs) are vectors of Lagrange multipliers.

We denote by v the vector of polynomials that is obtained when multiplying
the vector and the augmented Jacobian matrix in (4.2). Its entries are naturally
indexed by (1, 1),. . . ,(m, n). Let

Xi↔ j B
[
0 · · · 0 −x j1 · · · −x jn 0 · · · 0 xi1 · · · xin 0 · · · 0

]T

be the vector with the entry −x jk at the position (i, k) and the entry xik at the
position ( j, k) for all k ∈ [n].

We show that v ·Xi↔ j is equal to a linear constraint in (4.1) plus some (r + 1)-
minors MI,J(X) and linear constraints Lk(X) multiplied with Lagrange multipli-
ers. To do this, we study the products of the rows of the augmented Jacobian
with the vector Xi↔ j.

First, observe that the last row of the augmented Jacobian multiplied with
Xi↔ j is precisely the linear form r(i, j)

U . Secondly, we show that the rows of the aug-
mented Jacobian corresponding to minors multiplied with Xi↔ j are either zero or
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a sum of (r+1)-minors. Let A = {a1, . . . , ar+1} ⊂ [m] and B = {b1, . . . , br+1} ⊂ [n].
We consider the product [

∂MA,B(X)
∂xi1

· · ·
∂MA,B(X)
∂xin

]
· X( j) . (4.3)

If i < A, then the product (4.3) is equal to zero. Otherwise i ∈ A and the
product (4.3) can be seen as the Laplace expansion of the matrix with rows in
(A \ {i}) ∪ { j} considered as a multiset and columns in B. Hence if j < A, then
the product (4.3) is equal to the minor corresponding to rows in (A \ {i})∪{ j} and
columns in B. Finally, if j ∈ A, then the product (4.3) is zero again, because the
row indexed by j appears twice.

Finally, we consider the rows of the augmented Jacobian corresponding to
constraints that xkl = 0. The Jacobian of xkl consists of the entry (k, l) being
equal to one and all other entries being equal to zero. If i , k and j , k, then
the Jacobian of this constraint multiplied by Xi↔ j is clearly zero. Otherwise the
Jacobian of xkl multiplied by Xi↔ j is either xil of x jl. However both xil = x jl = 0
by the assumption i ∼S

R j.
This proves that r(i, j)

U ∈ I(ZS
U,r) for all i ∼S

R j. Similarly, one verifies that
c(i, j)

U ∈ I(ZS
U,r) for all i ∼S

C j by applying the same argument with the vector

Xi↔ j B
[
−x1 j 0 · · · 0 x1i 0 · · · 0 −xn j 0 · · · 0 xni 0 · · · 0

]T
.

Conjecture 4.4. Let S ⊂ [m]× [n], U ∈ Rm×n and r ∈ [m− 1]. Then 〈ZS
U,r〉 = HS

U
if and only if LS

r is irreducible.

Example 4.5 (m = n = 3, r = 2, S = {(1, 1)}). By experimental computation, we
observe that EDdegree(LS

2 ) = 8 (see Table 2). If linearly independent, the eight
critical points should span an eight-dimensional linear space 〈ZS

U,2〉 ⊂ C3×3.
We verified symbolically using Gröbner bases and elimination that I(〈ZS

U,2〉) =

〈r(2,3)
U , c(2,3)

U , x11〉, thus confirming Conjecture 4.4.

We will show in Examples 4.6 and 4.7 that if LS
r is not irreducible, then

〈ZS
U,r〉 can be strictly contained in HS

U . Example 4.6 is for structured rank-one
approximation. We know from Proposition 3.3 that LS

1 is never irreducible if
S , ∅, and hence Conjecture 4.4 suggests that in the structured setting 〈ZS

U,1〉 is
always strictly contained in HS

U . Example 4.7 is for rank-two approximation.

Example 4.6 (m = n = 3, r = 1, S = {(1, 1)}). In this case, the variety LS
1 has

two irreducible components corresponding to the minimal coverings ({1}, ∅) and
17



(∅, {1}). Moreover EDdegree(LS
1 ) = 4 by Corollary 3.9. The four critical points

on LS
1 are obtained in this way:

(i) by computing the SVD of the 3 × 3 matrix having zero first row and coin-
ciding with U elsewhere (two critical points C1,C2),

(ii) by computing the SVD of the 3 × 3 matrix having zero first column and
coinciding with U elsewhere (two critical points C3,C4).

One verifies immediately that the critical space HS
U is six-dimensional. Therefore

〈ZS
U,1〉 is strictly contained in HS

U and motivates our hypothesis in Conjecture 4.4.

A higher rank example is showed below.

Example 4.7 (m = n = 3, r = 2, S = {(1, 1), (1, 2)}). The determinant of a 3 × 3
matrix X = (xi j) with zero pattern S is det(X) = x13(x21x32 − x31x22). Then the
variety LS

2 has two componentsV1 = V(x11, x12, x13),V2 = V(x11, x12, x21x32 −

x31x22) and by Lemma 2.2

EDdegree(LS
2 ) = EDdegree(V1) + EDdegree(V2) = 1 + 2 = 3 .

The critical point on V1 is the projection of U onto V1. The two critical points
on V2 come by projecting the third column of U and computing the SVD of the
non-zero 2 × 2 block. In particular, the linear span 〈ZS

U,2〉 is three-dimensional,
whereas the critical space HS

U has dimension five.

Corollary 4.8. Let S ⊂ [m] × [n]. If U is sufficiently generic, then the codimen-
sion of HS

U ⊂ Cm×n is

codim(HS
U) =

∑
C∈[m]/∼S

R

(
|C|
2

)
+

∑
D∈[n]/∼S

C

γD + |S |,

where

γD =


(
|D|
2

)
if |D| ≤ m

m(|D| − 1) −
(

m
2

)
if |D| ≥ m .

Proof of Corollary 4.8. We have to show how many of all the linear polynomials
appearing in (4.1) are linearly independent.

The first two sets of generators in (4.1) are precisely of the type explained
in Remark 2.7. On one hand, since m ≤ n, then |C| ≤ n for every equivalence
class C ∈ [m]/∼S

R. This means that all relations r(i, j)
U , where i, j ∈ C, are linearly
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independent. By Remark 2.7 and since equivalence classes on rows are disjoint,
this gives in total the first

∑
C∈[m]/∼S

R

(
|C|
2

)
independent conditions. On the other

hand, if D ∈ [n]/∼S
C and |D| ≤ m, then again by Remark 2.7 all relations c(i, j)

U ,
where i, j ∈ D, are linearly independent, thus giving

(
|D|
2

)
independent conditions.

Otherwise if |D| ≥ m, then m(|D| − 1) −
(

m
2

)
among the last equations are linearly

independent. Since equivalence classes on columns are disjoint, this gives in total
the second

∑
D∈[n]/∼S

C
γD independent conditions. Moreover, again by Remark

2.7, each condition on rows is not a linear combination of equations involving
columns, and vice versa.

Finally, consider the last |S | conditions coming from the zero pattern. Triv-
ially each relation xi j is independent from the other variables xrs with (r, s) ∈ S .
Moreover, all the conditions {xi j | (i, j) ∈ S } are independent from the first two
sets of equations because the first two contain no variables with indices in S .

If Conjecture 4.4 is true, then the statement in Corollary 4.8 holds for 〈ZS
U,r〉

when LS
r is irreducible.

Remark 4.9. Consider again the situation of Example 4.5 with m = n = 3,
r = 2, S = {(1, 1)}. We recall that in this case I(〈ZS

U,2〉) = 〈r(2,3)
U , c(2,3)

U , x11〉, thus
confirming Conjecture 4.4. In particular dim(〈ZS

U,2〉) = dim(HS
U) = 6. One might

try to extend the basis {C1,C2,C3,C4} of 〈ZS
U,1〉 given in Example 4.6 to form a

basis of 〈ZS
U,2〉, in the most “natural” way. In this example, we consider the addi-

tional two rank-one matrices C5,C6 obtained by computing the SVD of the 3 × 3
matrix having zero first row and column and coinciding with U elsewhere. One
might check that the six rank-one matrices C1, . . . ,C6 are linearly independent
and form a basis of HS

U .
The matrices C5 and C6 are “good” in the sense that they are computed

directly from the data matrix U via projections and SVDs. Any critical point
X ∈ LS

2 may be written as X = α1C1 + · · · + α6C6 for some complex coefficients
α1, . . . , α6. In Table 1 we display the coefficients αi of the eight critical points on
LS

2 with respect to the data matrix

U =

 78.57 93.47 51.33
−58.54 −7.64 34.34
53.53 −89.96 −87.14

 .
More generally, knowing the ideal of critical points X ∈ LS

r for dU and a
basis {C1, . . . ,Ck} of 〈ZS

U,r〉 whose elements depend only on U, allows to com-
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α1 α2 α3 α4 α5 α6

X1 0.96 -0.11 0.01 -0.27 0.04 1.06
X2 0.02 1.05 0.00 1.13 -0.03 -1.06
X3 0.04 -0.12 0.99 -0.29 -0.01 0.77
X4 1.00 0.99 1.00 0.97 -1.00 -0.93
X5 0.77-0.87 i -1.39-0.41 i 0.73-0.30 i -2.67-0.72 i -0.28+1.31 i 3.75+3.41 i
X6 0.77+0.87 i -1.39+0.41 i 0.73+0.30 i -2.67+0.72 i -0.28-1.31 i 3.75-3.41 i
X7 2.45-0.71 i -0.86-3.45 i 1.65-0.37 i 2.81+5.93 i -3.59+1.46 i 3.73-4.66 i
X8 2.45+0.71 i -0.86+3.45 i 1.65+0.37 i 2.81-5.93 i -3.59-1.46 i 3.73+4.66 i

Table 1: The critical points Xi ∈ L
S
2 ⊂ C3×3 of dU in the basis {C1, . . . ,C6}.

pute the ideal Jα ⊂ C[α1, . . . , αk] of relations among the coefficients αi of a
representation of X.

This idea needs further investigation and is motivated by the unstructured
case. Indeed, given U ∈ Rm×n, the critical points C1, . . . ,Cm on X1 of dU com-
puted from the SVD of U form a basis of 〈ZS

U,r〉 = HS
U for any r ∈ [m]. By Theorem

2.5, the critical points on Xr are written uniquely as X = α1C1 + · · · + αmCm for
some coefficients α j ∈ {0, 1}. In this case, the ideal Jα is zero-dimensional in
C[α1, . . . , αm] and its degree is equal to EDdegree(Xr) =

(
m
r

)
.

4.2. Linear relations among critical points for generic subspaces
The statement of Theorem 4.3 can be adapted to arbitrary linear subspaces L

of Cm×n.

Proposition 4.10. Let U ∈ Rm×n. Let L ⊂ Cm×n be the linear subspace defined
by the linear forms L1, . . . , Ls and let ZLU,r be the set of critical points of dU on
the variety Lr. For all i < j, i, j ∈ [m] and k ∈ [s], if ∇Lk · Xi↔ j ∈ 〈L1, . . . , Ls〉,
then r(i, j)

U ∈ I(ZLU,r). Similarly, for all i < j, i, j ∈ [n] and k ∈ [s], if ∇Lk · Xi↔ j ∈

〈L1, . . . , Ls〉, then c(i, j)
U ∈ I(ZLU,r).

Symbolic computations in Macaulay2 motivate the following question for
generic subspaces.

Question 4.11. Let us replace LS with a non-zero proper subspace L ⊂ Cm×n.
Is it true that L = 〈ZLU,r〉 for every r ∈ [m − 1] if L is generic?

We have checked symbolically with a Macaulay2 code that L = 〈ZLU,r〉 when
L is a generic subspace of codimension codim(L) ∈ {1, 2} and for small for-
mats. This suggests that the answer to Question 4.11 is positive. As showed in
Theorem 4.3, the same is not true for L = LS for some zero pattern S .
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4.3. The affine span of critical points
In the previous sections, we regarded structured critical points on LS

r as vec-
tors in Cm×n and studied all linear relations among them. In this section, we look
for their affine span. This is important to understand how the critical points of dU

are distributed inside the critical space HS
U . The affine span in the unstructured

case is characterized in Proposition 4.12 and Corollary 4.13. Conjecture 4.15
suggests affine relations satisfied by the rank-r critical points in the structured
setting.

Proposition 4.12. Assume m = n and S = ∅. Given U ∈ Rm×m of rank k,
for every r ∈ [k] the

(
k
r

)
critical points of dU on Xr span an affine hyperplane

WS
U,r ⊂ HS

U of equation

WS
U,r : 〈X,C(U)〉F − r det(U) = 0 ,

where C(U) is the cofactor matrix of U whose (i, j)-th entry is (−1)i+ jM[m]\{i},[m]\{ j}(U).
In particular, if det(U) , 0, then {WS

U,r}r∈[m] is a finite family of parallel hyper-
planes contained in HS

U . Otherwise if det(U) = 0, then WS
U,r is a linear hyper-

plane whose equation does not depend on the rank r.

Proof. Let U ∈ Rm×m of rank k, written in SVD form as U = AΣBT . One verifies
immediately that C(U) = AC(Σ)BT and that the j-th diagonal entry of C(Σ) is
equal to

∏
l, j σl for all j ∈ [m]. Given r ∈ [k], by Theorem 2.5 a critical point

X ∈ Xr of dU is of the form X = AΣI BT for some I = {i1 < · · · < ir} ⊂ [m],
where ΣI = diag(0, . . . , σi1 , . . . , σir , . . . , 0). Without loss of generality, assume
I = [r] ⊂ [m]. We denote by a1, . . . , am and b1, . . . , bm the orthonormal columns
of A and B, respectively. Then

〈X,C(U)〉F =
〈
AΣ[r]BT , AC(Σ)BT

〉
F

=

〈 r∑
i=1

σiaibT
i ,

m∑
j=1

∏
l, j

σl

 a jbT
j

〉
F

=

r∑
i=1

m∑
j=1

σi

∏
l, j

σl

 〈aibT
i , a jbT

j

〉
F

=

r∑
i=1

σi

∏
l,i

σl

 = r det(Σ) = r det(U) ,
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where we have applied the identity (δi j is the Kronecker delta)〈
aibT

i , a jbT
j

〉
F

= trace
(
aibT

i b jaT
j

)
= δi jtrace

(
aiaT

j

)
= δi j aT

i a j = δi j .

The following corollary generalizes Proposition 4.12 to non-squared case.

Corollary 4.13. Assume m ≤ n and S = ∅. Given U ∈ Rm×n of rank k, for every
r ∈ [k] the

(
k
r

)
critical points of dU on Xr span an affine hyperplane WS

U,r ⊂ HS
U of

equation
WS

U,r :
〈
X[m],I ,C(U[m],I)

〉
F − r det(U[m],I) = 0 ,

where I = {i1 < · · · < im} ⊂ [n] and, modulo the ideal I(HS
U), the above equation

does not depend on the particular choice of I.

In the next example we observe which of the affine relations of Corollary
4.13 still hold true in the structured case.

Example 4.14. Let U ∈ R3×4. In this example we investigate the best rank-two
approximation of U with zero pattern S = {(1, 1)}. We verified symbolically that
EDdegree(LS

r ) = 8. The eight critical points of dU span a seven-dimensional
linear space 〈ZS

U,2〉 = HS
U whose ideal is

I(HS
U) = 〈r(2,3)

U , c(2,3)
U , c(2,4)

U , c(3,4)
U , x11〉 .

Moreover, the critical points satisfy the affine relation in HS
U〈

X[3],I ,C(U[3],I)
〉

F − 2 det(U[3],I) = 0 for I = {2, 3, 4} .

The previous example motivates the following conjecture in structured set-
ting.

Conjecture 4.15. Assume that LS
r is irreducible. Given a subset I ⊂ [n] with

|I| = m, the complex critical points of dU on LS
r satisfy the additional affine

relation 〈
X[m],I ,C(U[m],I)

〉
F − r det(U[m],I) = 0 (4.4)

if any only if S ∩ ([m] × I) = ∅.

Conjecture 4.15 is not valid if LS
r is not irreducible, as showed in the next

example.
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Example 4.16 (m = n = 3, r = 2, S = {(1, 1), (1, 2)}). Following up Example
4.7, we observe that the ideal of affine relations among the critical points is〈

r(2,3)
U , c(1,2)

U , x11, x12, x23 − u23, x33 − u33,
〈
X̃,C(Ũ)

〉
F
− 2 det(Ũ)

〉
, (4.5)

where the matrices Ũ and X̃ coincide with U and X outside S , respectively, and
are zero otherwise. The seven affine relations are independent and thus define an
affine plane in C3×3.

The first four relations are linear and define the critical space HS
U . The last

affine relation in (4.5) is equivalent to 〈X,C(U)〉F−r det(U) = 0 modulo I(LS ) =

〈x11, x12〉, since by Lemma 2.1 the matrix U shares the same critical points of its
projection πLS (U) ontoLS . On one hand, this affine relation coincides with (4.4)
for I = J = [3]. On the other hand, in this case S ∩ ([3] × [3]) , ∅.

4.4. Special nonlinear relations among structured critical points
In Section 4.1, we observed that the special linear constraints LS coming

from zero patterns S ⊂ [m] × [n] preserve some of the linear relations among
unstructured critical points. In this subsection, we deal with special nonlinear
relations among unstructured or structured critical points. The following is a
consequence of [DHO+16, Theorem 5.2] and Theorem 2.5.

Proposition 4.17. Let U ∈ Rm×n. Every critical point X ∈ Xr of dU is such that
U − X ∈ X∨r = Xm−r and U − X is a critical point of dU as well. In particular, for
every subset A ⊂ [m] and B ⊂ [n] with |A| = |B| ≥ m − r + 1, we have that

MA,B(U − X) = 0 . (4.6)

The main result of this subsection is the next proposition which states that
some of the relations in (4.6) hold even in the structured case.

Proposition 4.18. Let S ⊂ [m] × [n], U ∈ Rm×n and consider a critical point
X = (xi j) ∈ LS

r of dU . Let A × B ⊂ [m] × [n] with |A| = |B| ≥ m − r + 1 and such
that S ∩ (A × B) = ∅. Then MA,B(U − X) = 0.

Proof. In the following, we denote by L1, . . . , L|S | the constraints that set the
entries in S ⊂ [m] × [n] of the structured matrices to be equal to zero. We recall
from Theorem 4.3 that the critical points X = (xi j) ∈ LS

r of dU are the solutions
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of the system
MI,J(X) = 0 ∀ |I| = |J| = r + 1
Lk(X) = 0 ∀ k ∈ [|S |]
ui j − xi j =

∑
I,J

∂MI,J

∂xi j
λI,J +

∑t
k=1

∂Lk
∂xi j
µk ∀ (i, j) ∈ [m] × [n] .

(4.7)

Let A × B ⊂ [m] × [n] with |A| = |B| = s and assume S ∩ (A × B) = ∅.
Equivalently we have ∂Lk

∂xi j
= 0 for all k ∈ [t] and for all (i, j) ∈ A × B. Define the

matrix

∂( f ) B
(
∂ f
∂xi j

)
∈ Cm×n ∀ f = f (X) ∈ C[X] .

Using the third set of equations in (4.7), we get the identity

MA,B(U − X) = MA,B

∑
I,J

∂(MI,J(X))λI,J

 C FA,B. (4.8)

Under the assumption S ∩ (A× B) = ∅, the polynomial FA,B does not depend
on the linear constraints Lk(X) = 0, and thus it is independent of S . Hence the
equality (4.8) for S = ∅ involves the same FA,B as for any other S satisfying
S ∩ (A× B) = ∅. By Proposition 4.17, MA,B(U − X) = 0 in the unstructured case,
and hence MA,B(U − X) = 0 in the structured case.

Remark 4.19. The polynomial FA,B is homogeneous in the `I,J’s. The coefficients
of the monomials of FA,B in the `I,J’s are polynomials in C[X]. In particular, they
belong to the ideal I(Xr) for all A × B ⊂ [m] × [n] with s ≥ m − r + 1.

Remark 4.20. The condition S ∩ (A×B) = ∅ in Proposition 4.18 is sufficient but
not necessary to prove that MA,B(U − X) = 0. For example, let m = n = 3, r = 2,
s = 1 and S = {(1, 1)}. If A = B = [3], we obtain that (here λ[3],[3] = λ, µ1 = µ
and M[3],[3](X) = det(X))

F[3],[3] = det(X)2λ3 + x11 det(X)λ2µ ,

that is, F[3],[3] ∈ I(X2) and consequently det(U − X) = 0.

The statement of Proposition 4.18 can be generalized to arbitrary linear sec-
tions Lr of Xr. The condition which replaces S ∩ (A × B) = ∅ is simply that
∂L
∂xi j

= 0 for all L ∈ I(L), namely no linear constraint depends by variables xi j

with indices in A × B. Again this condition is far from being necessary. To show
this, below we restrict to one constraint L =

∑
i, j vi jxi j and to the variety of corank
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one square matricesXm−1 ⊂ Cm×m. We prove that the rank of U−X is completely
characterized by the rank of the coefficient matrix V = (vi j).

Proposition 4.21. Consider a linear form L =
∑m

i, j=1 vi jxi j for some matrix V =

(vi j) ∈ Cm×m. Let U ∈ Rm×m and let X ∈ Lm−1 = Xm−1 ∩V(L) be a critical point
of dU . Then for all 2 ≤ k ≤ m

rk(U − X) ≤ k − 1 if and only if rank(V) ≤ k − 2 .

In particular rank(U − X) ≥ 1 if V , 0 and rank(U − X) = 1 if and only if V = 0,
namely in the unstructured case.

Proof. Recall the notation introduced at the beginning of Section 4.
We have I(Lm−1) = 〈det(X), L〉. Suppose that rk(U−X) ≤ k−1, namely MA,B(U−
X) = 0 for all A, B ⊂ [m] with |A| = |B| = k. Using the system (4.7) we get that

MA,B(U − X) = MA,B(λ∂(det(X)) + µ∂(L)) = MA,B(λC(X) + µV) , (4.9)

where C(X) = (Ci j(X)) is the cofactor matrix of X. Assume A = B = [k]. Our
goal is to expand the polynomial at the right-hand side of (4.9), which we call
Gk for brevity. First, we consider the following expansion of M[k],[k](P + Q) for
all P,Q ∈ Cm×m:

M[k],[k](P + Q) =
∑

I,J⊂[k]
|I|=|J|

(−1)I+J MI,J(P)M[k]\I,[k]\J(Q) ,

where (−1)I+J = (−1)
∑

i∈I i+
∑

j∈J j. This identity follows from the Laplace expan-
sion of the determinant in multiple columns, that can be found for example in
[CSS13, Lemma A.1( f )]. We apply it in the case P = λC(X) and Q = µV:

Gk =
∑

I,J⊂[k]
|I|=|J|

(−1)I+J MI,J(C(X))M[k]\I,[k]\J(V) λ|I|µk−|I| .

Then we apply the identity

MI,J(C(X)) =

1 if I = J = ∅

(−1)I+J det(X)|I|−1M[k]\I,[k]\J(X) if |I| = |J| ≥ 1

which follows from the relation C(X) = det(X) X−T and the Jacobi complemen-
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tary minor Theorem, see [Lal96] and [CSS13, Lemma A.1(e)]. Hence we get

Gk = M[k],[k](V)µk +
∑

I,J⊂[k]
|I|=|J|≥1

det(X)|I|−1M[k]\I,[k]\J(X)M[k]\I,[k]\J(V) λ|I|µk−|I| .

Finally, using the condition det(X) = 0, the previous identity simplifies to

Gk = M[k],[k](C)µk +
∑

i, j∈[k]

M[k]\{i},[k]\{ j}(X)M[k]\{i},[k]\{ j}(V) λµk−1 .

Similarly, for arbitrary A, B ⊂ [m] with |A| = |B| = k, we get that

MA,B(U − X) = MA,B(C)µk +
∑

i∈A, j∈B

MA\{i},B\{ j}(X)MA\{i},B\{ j}(V) λµk−1 .

The consequence is that a critical point X of dU is such that rank(U − X) ≤ k − 1
if and only if MA\{i},B\{ j}(V) = 0 for all i ∈ A, j ∈ B and A, B ⊂ [m] with
|A| = |B| = k, or equivalently rank(V) ≤ k − 2.

The main observation coming from Proposition 4.21 is that a generic linear
constraint L destroys the structure of critical points coming from Theorem 2.5, in
particular the relations MA,B(U−X) for suitable A and B. However, if L is special,
these conditions might still hold, even in the case when L involves entries xi j with
(i, j) ∈ A × B.

5. Computations of Euclidean Distance degrees

In this section we present various experiments that study the ED degree of
LS

r , when r ≥ 2 and the zero pattern S involves only elements in the diagonal.

First, we restrict to square matrices and consider the zero pattern S = {(1, 1)}.
Since the number of (complex) critical points of dU on LS

n−1 is constant for a
generic (complex) data matrix U, it is reasonable to apply a monodromy tech-
nique for computing these critical points numerically. For this, we use the Homo-
topyContinuation.jl [BT18] software package. The number of solutions obtained
(that is, the ED degree of LS

n−1 with respect to the Frobenius inner product) is re-
ported in Table 2. We checked symbolically in Maple™ 2016 [Map] that the
number of numerical solutions obtained coincides with the degree of the ideal of
rank-r critical points I(ZU,n−1), that is the ED degree of LS

n−1.
Our experimental results support the following conjecture.
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n 3 4 5 6 7 8 9 10
EDdegree(LS

n−1) 8 13 18 23 28 33 38 43

Table 2: ED degrees for n × n matrices of rank ≤ n − 1 and S = {(1, 1)}.

Conjecture 5.1. Consider the variety LS
n−1 ⊂ Cn×n, where S = {(1, 1)}. Then

EDdegree(LS
n−1) = 5(n − 1) − 2 .

Next, we fix the diagonal zero pattern S = {(1, 1), . . . , (s, s)} for s ∈ [4], and
we consider the variety LS

2 ⊂ Cm×n. We present in Tables 3,4,5,6 the values
of EDdegree(LS

2 ) computed depending on the format m × n. Our experiments
support the following conjectural formulas.

Conjecture 5.2. Consider the variety LS
2 ⊂ Cm×n with S = {(1, 1), . . . , (s, s)} for

s ∈ [4]. Let l = min(m, n). Then

EDdegree(LS
2 ) =



3(l − 1)2 − 2(l − 1) if s = 1
18(l − 2)2 + 6(l − 2) + 1 if s = 2 and m , n
18(l − 2)2 + 10(l − 2) + 1 if s = 2 and m = n
108(l − 3)2 + 144(l − 3) + 30 if s = 3 and m = n
648(l − 4)2 + 1600(l − 4) + 488 if s = 4 and m = n .

s
n

3 4 5 6 7 8 9 10 11 12

3 8 8 8 8 8 8 8 8 8 8
4 8 21 21 21 21 21 21 21 21 21
5 8 21 40 40 40 40 40 40 40 40
6 8 21 40 65 65 65 65 65 65 65
7 8 21 40 65 96 96 96 96 96 96
8 8 21 40 65 96 133 133 133 133 133
9 8 21 40 65 96 133 176 176 176 176

10 8 21 40 65 96 133 176 225 225 225
11 8 21 40 65 96 133 176 225 280 280
12 8 21 40 65 96 133 176 225 280 341

Table 3: Values of EDdegree(LS
2 ) for S = {(1, 1)}.
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s
n

3 4 5 6 7 8 9 10 11 12

3 25 29 29 29 29 29 29 29 29 29
4 29 85 93 93 93 93 93 93 93 93
5 29 93 181 193 193 193 193 193 193 193
6 29 93 193 313 329 329 329 329 329 329
7 29 93 193 329 481 501 501 501 501 501

Table 4: Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2)}.

s
n

3 4 5 6 7

3 30 62 66 66 66
4 62 282 358 366 366
5 66 358 750 870 882
6 66 366 870 1434 1598
7 66 366 882 1598 2334

Table 5: Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2), (3, 3)}.

s
n

4 5 6 7 8

4 488 968 1072 1080 1080
5 968 2736 ? ? ?

Table 6: Values of EDdegree(LS
2 ) for S = {(1, 1), (2, 2), (3, 3), (4, 4)}.
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Remark 5.3. The values of EDdegree(LS
2 ) in Table 3 are known as octagonal

numbers: writing 0, 1, 2, . . . in a hexagonal spiral around 0, then these are num-
bers on the line starting from 0 and going in the direction of 1 [Slo, A000567].
Also the diagonal entries of Table 4 form another interesting integer sequence,
see [Slo, A081272].

Our experiments suggest a formula for EDdegree(LS
2 ) in the square case.

Conjecture 5.4. Consider the variety LS
2 ⊂ Cm×m, where S is the zero pattern

{(1, 1), . . . , (s, s)} for some s ≥ 2. Then for some constant c

EDdegree(LS
2 ) = 3s 2s−1(n − s)2 + ss−1(s + 1)ds/2e(n − s) + c .

Remark 5.5. In Tables 3,4,5,6 we observe the following symmetry property for
the variety LS

r ⊂ Cm×n, where S = {(1, 1), . . . , (s, s)} for some s ≥ 2:

EDdegree(LS
r )(m, n, r, s) = EDdegree(LS

r )(n,m, r, s) .

This identity always holds, because the two structured best rank-r approximation
problems are the same after relabeling variables.

We conclude by performing the same experiments showed at the beginning
of the section, but restricting our study to the subspace Symn(C) ⊂ Cn×n of n × n
symmetric matrices. We denote again by LS

2 the variety of symmetric matrices
of rank at most 2 with (symmetric) zero pattern S ⊂ [n] × [n]. The values of
EDdegree(LS

2 ) with respect to the diagonal zero pattern S = {(1, 1), . . . , (s, s)}
are reported in Table 7.

s
n

2 3 4 5 6 7 8 9 10

1 1 4 7 10 13 16 19 22 25
2 1 7 16 25 34 43 52 61 70
3 4 31 58 85 112 139 166 193
4 28 109 190 271 352 433 514

Table 7: Values of EDdegree(LS
2 ) ⊂ Symn(C) for S = {(1, 1), . . . , (s, s)}.
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Conjecture 5.6. Consider the varietyLS
2 ⊂ Symn(C) with S = {(1, 1), . . . , (s, s)}

for all s ∈ [4]. Then

EDdegree(LS
2 ) =


3(n − 1) − 2 if s = 1
9(n − 2) − 2 if s = 2
27(n − 3) + 4 if s = 3
81(n − 4) + 28 if s = 4 .

6. Nonnegative low-rank matrix approximation

In this section, we apply rank-two approximation with zeros to the problem
of nonnegative rank-two approximation. Our goal is to find the best nonnegative
rank-two approximation with a guarantee that we have found the correct solution.
There are two options for the critical points of the Euclidean distance function
overM2:

1. A critical point of the Euclidean distance function over M2 is a critical
point of the Euclidean distance function over the set X2 of matrices of
rank at most two.

2. A critical point of the Euclidean distance function over M2 lies on the
boundary ofM2, i.e. the critical point contains one or more zero entries.

In Example 6.2, we consider 3 × 3 matrices and show that computing the
Euclidean distance to 756 points guarantees finding the best nonnegative rank-
two approximation. This example together with the ED degree computations in
Section 5 suggests that the exact nonnegative rank-two approximation problem is
highly nontrivial, although in general problems on nonnegative decompositions
tend to be easier for decompositions of size at most 2 or 3.

Recall, that for a m × n matrix M there is an algorithm for nonnegative
factorization with complexity O((mn)O(r22r)), where r is the nonnegative rank
[AGKM16], see also [Moi16]. We can also compute a rank-r approximate non-
negative factorization, under the Frobenius norm ‖M‖F , in 2poly(r lg(1/ε)) with rel-
ative error O(ε1/2r1/4) [AGKM16]. We notice that both algorithms run in poly-
nomial time when the rank is fixed. Nevertheless, their implementation is far
from straightforward and the exact constants hidden in the big-O notation could
be rather big.

We end this section with simulations demonstrating that most of the time, the
optimal solution is given by a critical point with a few zeros. The reader might
wonder whether it is interesting to consider the 3 × 3 case, when in practical
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applications much larger matrices are considered. We believe that thoroughly
understanding small cases is important for understanding the structure of the
problem, and might provide insights for developing better numerical algorithms.

In the following example, we demonstrate that in the case of 3 × 3-matrices,
the critical points of the rank-two approximation with zeros can be often de-
scribed explicitly.

Example 6.1. Let U = (ui j) ∈ R3×3. We consider the best rank-two approxima-
tion problem with zeros in S = {(1, 1), (1, 2), (2, 2)}. Then there are three critical
points, each of which has in addition to the entries in S one further entry equal
to zero and all other entries are equal to the corresponding entries of the matrix
U. Specifically, the critical points are 0 0 0

u21 0 u23

u31 u32 u33

 ,
 0 0 u13

0 0 u23

u31 u32 u33

 ,
 0 0 u13

u21 0 u23

u31 0 u33

 .
The additional entries that are set to zero can be read from the determinant of
the matrix  0 0 x13

x21 0 x23

x31 x32 x33

 ,
that is x13x21x32. Its factors correspond precisely to the additional entries that
are set to zero to obtain the three critical points.

In other words, we consider the Euclidean distance minimization problem to
the variety defined by x13x21x32. Since this variety is reducible, we can consider
the Euclidean distance minimization problem to each of its three irreducible
components. Each of the irreducible components has ED degree 1.

This example generalizes to n × n matrices whose non-zero entries form a
lower triangular submatrix. The determinant of such a matrix is the product of
the diagonal elements, and hence the critical points of the best rank (n − 1)-
approximation problem are obtained by adding a zero to the diagonal.

A more interesting example is given when S = {(1, 1), (1, 2)}. In this case, the
determinant is x13(−x22x31 + x21x32). One of the critical points has the entry x13

equal to zero and other entries equal to the corresponding entries of U. The two
other critical points agree with U in the third column and the 2 × 2 submatrix
defined by the rows 2, 3 and columns 1, 2 is equal to one of the critical points of
the rank-one approximation for the corresponding 2 × 2 submatrix of U.

This example generalizes to a zero pattern that contains all but one entry
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in a row or in a column. Then the determinant factors as a variable times a
(n − 1) × (n − 1) subdeterminant. One critical point is obtained by adding the
missing zero and the rest of the critical points are obtained by rank (n − 2)-
approximations for the (n− 1)× (n− 1) submatrix whose determinant is a factor
in the above product.

In the following example, we discuss how to find the best nonnegative rank-
two estimate of a 3 × 3-nonnegative matrix with guarantee.

Example 6.2. Consider the group whose elements are simultaneous permuta-
tions of rows and columns of a 3 × 3 matrix, and permutations of rows with
columns. This group acts on the set zero patterns of a 3× 3 matrix. There are 26
orbits of this group action, 13 of which are listed in Table 8. The columns of Ta-
ble 8 list an orbit representative, the orbit size, the ED degree and the description
of critical points if available.

The 13 orbit representatives listed in Table 8 have the property that there is
no zero pattern S with less zeros such that the zero pattern of a critical point
for S is contained in the orbit representative. For example, no zero pattern that
contains a row or a column is listed in Table 8, because a critical point on the
line three of the table has a row of zeros. If a critical point agrees with U at all
its non-zero entries, then adding more zeros causes the Euclidean distance to the
data matrix to increase, so such critical points can be discarded.

Moreover, we can also discard the seven orbits of zero patterns marked with
star in Table 8, because their critical points either appear earlier in the table or
the zero patterns of critical points contain the zero pattern of a critical point that
appears earlier in the table.

In summary, there are five different kinds of critical points to be considered:

1. Sum of any 2 components of the SVD of U. In total: 1 · 3 = 3.
2. Critical points of diagonal zero patterns. In total: 9·8+18·25+6·30 = 702.
3. Critical points that set one row or column of U to zero. In total: 6 · 1 = 6.
4. Critical points where a 2×2-submatrix is given by a rank-one critical point

of the corresponding submatrix of U. These critical points also have two
zeros and one row or column equal to the corresponding row or column of
U. In total: 18 · 2 = 36.

5. Critical points where zeros form a 2 × 2-submatrix. In total: 9 · 1 = 9.

In total, the number of critical points is 3 + 702 + 6 + 36 + 9 = 756. Thus, given
a nonnegative 3 × 3-matrix U, if we construct the 756 critical points described
above and choose among the nonnegative critical points the one that is closest
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to U, then it is guaranteed to be the best nonnegative rank-two approximation of
the matrix U.

Example 6.2 suggests that finding the best nonnegative rank-two approxima-
tion of a generic matrix with guarantee might be hopeless, because we expect the
number of critical points to increase at least exponentially in the matrix size by
the conjectures in Section 5. In practice, the best rank-two approximation often
has a few zeros.

Using Macaulay2 we sampled uniformly randomly 105 matrices from the set
of 3×3 matrices with real nonnegative entries and the sum of entries being equal
to 1000 and for each data sample we computed numerically a best nonnegative
rank-two approximation. In 88561 cases, the best approximation has no zeros; in
10550 cases, the best approximation has one zero; in 889 cases, the best approx-
imation has two zeros in different rows and columns. Based on this experiment,
we observed two interesting phenomena:

(a) We never encountered a best nonnegative rank-two approximation with
three zeros or with two aligned zeros.

(b) If the best nonnegative rank-two approximation has zero pattern S , then
the best rank-two approximation given by SVD has negative entries in S .

These facts lead to the following open questions.

Question 6.3. 1. Are the experimental observations (a) and (b) true for any
nonnegative matrix U ∈ R3×3?

2. Given a nonnegative matrix U ∈ Rm×n
≥0 whose best nonnegative rank-2 ap-

proximation has zero pattern S , does the best rank-2 approximation given
by SVD have negative entries in S ?

3. For which zero patterns S ⊂ [m] × [n] and target ranks r ∈ [m − 1] there
exists a full rank nonnegative matrix U ∈ Rm×n

≥0 whose best nonnegative
rank-r approximation has zero pattern S ?
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We thank Giorgio Ottaviani, Grégoire Sergeant-Perthuis, Pierre-Jean Spaenle-
hauer, and Bernd Sturmfels for helpful discussions and suggestions. We thank
two anonymous reviewers for insightful comments which improved the origi-
nal manuscript. Kaie Kubjas and Luca Sodomaco are partially supported by the
Academy of Finland Grant No. 323416. Elias Tsigaridas is partially supported
by ANR JCJC GALOP (ANR-17-CE40-0009), the PGMO grant ALMA, and the
PHC GRAPE.

33



S #orbit EDdegree(LS
r ) critical points

1


· · ·

· · ·

· · ·


1 3 sum of any 2 components of SVD

2


0 · ·

· · ·

· · ·


9 8 no interpretation

3


0 0 ·

· · ·

· · ·


18 3


0 0 0

· · ·

· · ·


or rank(X{2,3},{1,2}) = 1

4


0 · ·

· 0 ·

· · ·


18 25 no interpretation

5*


0 0 ·

0 · ·

· · ·


36 3


0 0 ·

0 0 ·

· · ·


or


0 0 0

0 · ·

· · ·


or


0 0 ·

0 · ·

0 · ·



6*


0 0 ·

· · 0

· · ·


36 3


0 0 0

· · 0

· · ·


or rank(X{2,3},{1,2}) = 1

7


0 · ·

· 0 ·

· · 0


6 30 no interpretation

8


0 0 ·

0 0 ·

· · ·


9 1 projection onto LS

9*


0 0 ·

0 · 0

· · ·


36 3


0 0 0

0 · 0

· · ·


or


0 0 ·

0 0 0

· · ·


or


0 0 ·

0 · 0

0 · ·



10*


0 0 ·

0 · ·

· · 0


36 3


0 0 0

0 · ·

· · 0


or


0 0 ·

0 0 ·

· · 0


or


0 0 ·

0 · ·

0 · 0



11*


0 0 ·

· · 0

· · 0


9 3


0 0 0

· · 0

· · 0


or rank(X{2,3},{1,2}) = 1

12*


0 0 ·

0 · 0

· 0 ·


36 3


0 0 0

0 · 0

· 0 ·


or


0 0 ·

0 0 0

· 0 ·


or


0 0 ·

0 · 0

0 0 ·



13*


0 0 ·

0 · 0

· 0 0


6 3


0 0 0

0 · 0

· 0 0


or


0 0 ·

0 0 0

· 0 0


or


0 0 ·

0 · 0

0 0 0



Table 8: The 13 orbit representatives of zero patterns of 3 × 3 matrices that have the property
that there is no zero pattern S with less zeros such that the zero pattern of a critical point for S is
contained in the orbit representative.
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