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Intrinsic Motivations and Planning to Explain
Tool-Use Development: A Study With
a Simulated Robot Model

Kristsana Seepanomwan, Daniele Caligiore, Kevin J. O’Regan, and Gianluca Baldassarre

Abstract—Developmental psychology experiments on tool use
show that infants’ capacity to use a rake-like tool to retrieve a toy
arises quite suddenly around 18 months. We use a developmental-
robotics model to propose and test two alternative hypotheses to
explain this conundrum. Both hypotheses rely on the assumptions
that tool use involves goal-directed behavior processes guided by
the goal of retrieving the toy, and that ‘“‘understanding how to use
a tool” means acquiring the capacity to assemble a sequence of
actions to accomplish the goal (e.g., to ‘“hook’ and then “retrieve”
the toy). The first hypothesis is that the tool-use ability emerges
when the infant develops enough planning capabilities. The sec-
ond hypothesis is that the ability emerges when the infant’s
intrinsic motivation system develops and makes playing with
a couple of objects interesting enough so that the infant plays
with objects similar to the tool at home and thus acquires the
actions needed to retrieve the toy in the lab. These hypotheses
are tested through a neural-network architecture controlling a
simulated humanoid robot tested with the tool-rake task. Given
the assumptions made in the model, the results show that both
hypotheses can reproduce the average behavior of infants but
only the intrinsic-motivation hypothesis can reproduce the sudden
tool-use improvement.

Index Terms—Affordances and planning, development of tool
use, dynamic movement primitives (DMPs), embodied cogni-
tive development, goal generation and intrinsic motivations
(IMs), affordances and planning, neural networks, reinforcement
learning, simulated iCub humanoid robot.
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I. INTRODUCTION

OR AN adult, it is relatively easy to retrieve an

out-of-reach object through a tool, such as a stick or
a rake. However, this task represents a challenging problem
for infants. They can indeed interact with objects from an
early age but they start to use objects to interact with other
objects around eight months of age [1] and become able
to solve tasks involving tools only during the second year
of life when they have developed a good ability to com-
bine actions [2]. The tool-use ability might develop in infants
from object manipulation experience extending to multiple
objects [3]-[5] and relying on trial-and-error mechanisms that
sculpt the initial exploratory motor behavior into progressively
more sophisticated skills [6]. Tool use requires knowledge
about object—object interactions and the ability to mentally
manipulate such knowledge [2], [5], [7].

Rat-Fischer et al. [8], [9] performed two developmental psy-
chology tool-use experiments to investigate these issues. The
results of these experiments are used to validate the model
proposed here. The experiment reported in [8] used a cross
section experimental design involving 60 infants aged 14,
16, 18, 20, and 22 months; instead, the experiment reported
in [9], involving the same task, used a longitudinal experimen-
tal design focused on five infants. In these experiments, infants
were presented with an out-of-reach toy and a rake-like tool in
five conditions ranging from a condition where the toy and tool
tip were physically connected to a condition where they were
separated by a spatial gap. Even the youngest infants could
retrieve the toy connected to the tool tip but when the tool
and toy were separated by a spatial gap the first successes
were observed only around the age of 18 months. For the
single infant, this capacity seemed to emerge quite suddenly
between two succeeding experimental sessions [9]. Currently,
there is no explanation of the “puzzle” posed by the experi-
ment of Fagard et al., in particular, it is not clear why single
infants develop the tool-use capacity quite abruptly around
the age of 18 months [9]. In this respect, further experiments
addressed this problem by varying the conditions of the test to
focus on specific possible causes, such as specific motivations,
social interactions, and other cognitive limitations [10]-[12],
but so far the phenomenon has not yet received a satisfy-
ing explanation. The reason of this difficulty might be that
infants develop cognitive processes and have experiences in
real life that tend to progressively involve an increasing num-
ber of conditions: when these conditions become similar to the
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conditions studied in the lab, the infants’ abilities manifest in
an apparently sudden way and their causes are difficult to be
identified. In this article, we propose two hypotheses on such
processes, operationalized in a computational model.

The proposed hypotheses, and their implementation, might
also be relevant for autonomous robotics. Psychological con-
cepts related to intrinsic motivations (IMs) [13]-[16] initially
inspired the development of new algorithms for autonomously
learning agents [17]-[23] and are now attracting a growing
attention within developmental robotics and machine learn-
ing (e.g., [24]-[34]). The models as the one proposed here,
developed at the boundary between developmental psychology
and autonomous robotics, might inspire new ideas, espe-
cially at the level of general principles, on algorithms and
architectures useful for robotics.

We now first consider the interpretations of the target exper-
iments on tool use [8], [9] proposed by their authors, who
introduced concepts relevant to this article. We then expand
those concepts and introduce new ones drawn from the psy-
chological and computational literature: these concepts are
used to design the model proposed here. We close this sec-
tion by overviewing the model and highlighting its novel
contributions. The remainder of this article is organized as
follows. Section II overviews the architecture and functioning
of the model (the details are presented in the supplemen-
tary material). Section III shows the results of the model
tests. Section IV discusses the results and compares the model
with other relevant models. Finally, Section V draws the
conclusions.

A. Psychological Processes and Computational Mechanisms
That Might Underlie Tool-Use Emergence

In [8], the authors of the target experiment interpret
the development of tool use through Piaget’s development
stages [35]. At sensorimotor stage 4 (8—12 months), infants
start to assemble sequences of actions to attain goals but they
can retrieve an out-of-reach object with a tool only if the two
are linked, as when the toy is on a piece of fabric [36]. At
stage 5 (12-18 months), infants become able to combine two
objects but they are still unable to use tools to retrieve objects
if a spatial gap separates them [37]. Finally, at stage 6 (18-24
months), infants become able to mentally manipulate repre-
sentations of objects and to plan, and likely due to this they
become able to use tools to retrieve objects even if a spatial
gap separates them [2], [37].

The understanding of how to use a tool might rely on
the capacity to mentally imagine the consequences of own
actions ([38]; see [39] for a model). Evidence shows that
human infants form expectations on tool-use effects after they
have acquired actions related to their use [40]. The ability
to predict action consequences might rely on the acquisition
of internal representations of the world dynamics (“forward
models”): the capacity of imagining the possible consequences
of actions might allow infants to plan the action sequences
needed to solve tool-use tasks before performing them in
the environment. Planning is indeed a powerful means to
achieve complex goals, as shown by a vast computational

literature ([41], [42]; see [43]-[45] for bioinspired models,
where planning is based on ‘“imagination,” i.e., the internal
reactivation of static/dynamic representations corresponding to
percepts in the absence of their world referents).

The concept of affordance is also important to explain
the development of tool use as it plays a key role for link-
ing perception, action, and cognition (e.g., [46] and [47]).
Affordances have been defined as what the environment offers
to an animal for its needs [48] or, more specifically, the actions
that are readily perceivable by an actor seeing an object [49].
Affordances are hence relational properties that depend on the
agent’s body and needs and the physical features of objects.
Tools, and also the physical and social context, participate in
the perception of object affordances [50], [S1]. The concept
of object affordance has been operationalized in the field of
developmental robotics as the effects that a set of (usually
hardwired) actions can produce on objects [52]. This con-
cept has been also applied to tools as “intermediate objects”
usable to produce effects on “primary objects” [53]. Recently,
affordances have been considered as a broader concept linking
objects, actions, and action outcomes to serve different func-
tions, such as planning and action recognition [54]. In [45],
we propose that affordances can be computationally spec-
ified as the expectation that an agent has that its actions
will achieve their intended effects (goals) if performed on a
given object: this definition, more closely related to the ini-
tial notion of affordance, allows one to link affordances to
planning processes [41], [55].

Infants acquire knowledge related to actions (motor skills),
imagination, and affordances through the spontaneous sen-
sorimotor exploration of the environment with play [56].
Motivations guide these processes by driving the performance
of exploratory behaviors and furnish the rewards needed to
consolidate successful motor skills [16]. Within motivations,
IMs play a prominent role, especially during the initial years
of development [16], [24]. The psychological literature has
proposed that IMs drive the performance of actions “for their
own sake” [14], [57]. IMs thus differ from extrinsic motiva-
tions (EMs) that in animals are directed to obtain valuable
resources, e.g., food or pain avoidance, and in robots are
directed to solve externally assigned tasks [24]. Within the
computational literature, IMs have been operationalized as
mechanisms driving behavior to support the acquisition of new
knowledge, in particular, knowledge on novel or surprising
stimuli [58] in order to, respectively, learn object representa-
tions [59] and world models [18], [60]. Moreover, IMs can
drive the discovery and learning of relevant action outcomes
that might be later reactivated as goals, i.e., desirable world
states that the agent aims to achieve; goals can then drive
the acquisition of new motor skills needed to accomplish
them [19], [61], [62]. Knowledge and skills acquired through
IMs could later support extrinsically motivated behaviors and
learning processes directed to satisfy survival and reproduc-
tion purposes, in the case of animals, or to solve tasks defined
by the user, in the case of robots [24].

Concerning IMs and the empirical literature, the experi-
ment reported in [8] shows different overt attention behaviors
of the infants at different ages. These attentional behaviors
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might reveal the underlying IM mechanisms since attention
targets the stimuli that elicit the highest interest [63]-[65].
The authors observe: “at 14 months, even if infants express
interest in the toy at some times during the trial, they seem to
be mainly interested in exploring the tool”: we interpret this as
an interest for exploring the novel tool object which overcomes
the interest for the toy. “At 16 months, infants are more likely
to focus their attention on the goal of retrieving the toy, but
ignore or discard the tool”: now, the tool might be familiar, and
thus uninteresting, and its sight does not yet afford actions rel-
evant for retrieving the toy. “From 22 months onward, infants
seem to become able to spread their attention simultaneously
on the toy and the tool and to make the link between the two”:
at this age, infants are interested in retrieving the toy and also
perceive the tool affordances.

B. Overview of the Model: Two Hypotheses Incorporated by
the Model and Its Novel Contributions

At the moment, there is no model that links in a coherent
fashion all the elements considered this far: motor learn-
ing, imagination and forward models, goals and planning,
affordances, and IMs; nor one that relates them to tool-use
development. In this article, we propose such a framework and
possible explanations of the tool-use puzzle in the form of a
computational model. The model has an architecture formed
by different components. During free exploration, some hard-
wired detectors of “intrinsically interesting events” allow the
agent to perceive some action outcomes, e.g., an action moving
an object in a certain way, as salient [19], [29]. In an initial
free-exploration intrinsic phase, typical of open-ended learn-
ing models [24], [45] and corresponding to the infant’s daily
play before the lab tests, these detectors drive the learning
of the motor skills (“actions”) needed to produce those out-
comes and the learning of the affordances and forward models
of the skills. The possible actions the agent might discover are
for example: “move the tool tip to a certain position close to
the toy” or “push the toy leftward with the tool”; affordances
predict which actions can reliably produce their intended effect
if performed on a target object; and forward models predict the
next state of the target object if a certain action is performed
on it. In the following exploitation phase, corresponding to
the lab test, if the agent desires to achieve a certain world
state (goal), the previously acquired actions, affordances, and
forward models allow it to use planning or trial-and-error
processes to assemble action sequences to do it.

The model accounts for the target experiment by incorpo-
rating two alternative hypotheses formulated on the basis of
the literature on IMs and planning discussed in Section I-A.
The first hypothesis is that infants of all ages already possess
the motor skills, affordances, and forward models needed to
solve the tool-use task, but their planning capabilities fully
develop only with time. In particular, older infants become
able to think and imagine for longer times what to do and this
allows them to “understand” the types of interactions between
the tool and objects that they might produce with action. When
these planning capabilities achieve a certain level of sophisti-
cation, the infants become able to solve the tool-use task. The

second hypothesis is that during daily play, infants are driven
by IMs to learn an increasing number of actions, affordances,
and forward models related to objects. At a certain age, these
learning processes also involve multiple objects and so allow
the infants to solve the tool-use task in the lab. In particular, the
needed action sequence is rapidly assembled by imagination
and planning, or by trial-and-error (in the case of planning,
the planning process is the same as in the first hypothesis but
it is fully developed since the beginning of the simulation).

The two hypotheses are tested with the model controlling
a simulated iCub humanoid robot engaged in a tool-use task
similar to the one considered by Rat-Fisher et al. [8], [9]. In the
setup, the tool is always attached to the hand of the robot, so
the model does not tackle the problem of the decision to grasp
the tool. This was done for simplicity as autonomous learning
of grasping is still not easy for robots and as we think the core
difficulties posed by tool use are still present in our scenario.
In particular, the problem posed by tool use is to realize that
a sequence of actions is needed to retrieve the object with
the tool: the fact that here we consider a shorter sequence of
actions of the type “hook the object with the tool; retrieve
the object” rather than the longer sequence “grasp, hook, and
retrieve,” only changes the “quantity” of the challenge but not
its quality. This is supported by the target experiments where
the experimental condition, in which the tool is given to the
infants, had the same results as when the tool was set on the
table [8], [9]. This is also similar to what done in [66] where an
iCub robot decided which tool to choose but then the tool was
set in the robot’s hand by the experimenter. In [67], a robot
with a gripper could grasp the tool but it did this through a
hardwired motor routine.

The results of the tests of our model show that both hypothe-
ses are able to reproduce the increasing ability for tool use of
the considered groups of infants. However, only the second
hypothesis is able to reproduce the sudden emergence of tool-
use abilities exhibited by different single infants at different
ages around 18 months.

As further discussed in Section IV-A concerning other mod-
els, the model presented here has the following novelties with
respect to understanding tool-use development: 1) the opera-
tionalization of the two hypotheses discussed above and 2) the
use of the two hypotheses to account for specific tool-use
empirical data. Regarding existing computational systems, the
model presents these novelties: 1) the use of IMs to drive the
free exploration of tools allowing the acquisition of multiple
actions, affordances, and forward models, a feature shared
with few other models and 2) the capacity of assembling the
acquired actions on the basis of either the trial-and-error or
planning processes, with the latter based on imagined action
effects.

II. METHODS
A. Simulated Robot and Tool-Use Scenario

Fig. 1 shows the robotic setup used to reproduce the
behavior of the infants involved in the target experiments of
Rat-Fisher et al. [8], [9]. The model controls the right arm of
the simulated iCub robot [68]. iCub is a humanoid robot with
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Fig. 1. Simulated tool-use scenario. The green rake-like tool is attached to
the right hand of the robot. The small red cylinder represents the toy the robot
has to retrieve with the tool. The blue square area on the table is the target
position where the robot has to bring the toy through the tool to “successfully
retrieve” it.

TABLE 1
RANGE OF THE ROBOT-CONTROLLED JOINTS IN DEGREES

Joint number

Setting 1 2 3 4 5 6 7
Min -60 30 -20 0 30 -60 20
Max 0 90 40 60 30 0 20

Home 0 30 0 40 0 0 0

multiple degrees of freedom (DOF), built for studying cog-
nitive development [68]-[70]. Each iCub arm has 16 joints:
three for the shoulder (Jo—7), one for the elbow (J3), three for
the wrist (J4_g), and nine for the hand (J7_15).

The simulated setup is similar to the scenario of the target
experiment. The robot is located in front of a table and a
toy is placed at a location on the table outside the reaching
space of the robot. The rake-like tool consists of a stick with
a flat rectangle on the tip that can be used to hook the toy.
For simplicity, the tool is attached to the palm of the robot
hand during the whole test so that movements of the right
arm directly cause movements of the tool. The task requires
the robot to use the tool to bring the toy to a “target area”
located close to the robot, where it could possibly grasp it with
hands. To solve the task, the robot can use seven DOFs of the
right arm, while all other DOFs are kept to a fixed value (e.g.,
the fingers are kept straight open). Each controlled joint can
assume values within the range shown in Table 1. This setup
has been also reproduced with the real robot in a companion
paper [71] that used a different model (see Section IV-A for
more details).

B. Overview of the Model

This section overviews the architecture, functioning, and
learning mechanisms that allow the model to solve the tool-
use task (Fig. 2). This description is qualitative and allows all
readers, also those with little mathematical knowledge, to have
an intuition of how the model works and reproduces the target
results. The detailed equations of the model are presented in
the supplementary material.

In the target experiments [8], [9], the behavior of infants
is observed in the lab but not in daily life. An important
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Fig. 2. Architecture of the model. Bold names: components of the model
architecture. DMP: dynamic movement primitive. PIBB: policy iteration
black box.

idea behind the model is that infants undergo a developmental
process during life that allows them to progressively acquire
knowledge and skills driven by IMs [24]. When observed in
the lab, infants are confronted with a new problem and solve
it by relying on the knowledge and skills acquired during
daily life. The model operationalizes these ideas by dividing
the life of the model in two phases. In the first IM learning
phase, reflecting daily life exploration and learning, infants
learn how to interact with objects directly or through other
objects (tools). In the lab phase, corresponding to the lab tests,
motivations (possibly extrinsic) drive the infant to retrieve the
toy. The two phases are interleaved as the lab tests are repeated
at different ages.

In both phases, the model behavior is divided in actions,
each consisting in a movement (arm motor trajectory) lasting
5 s (trial). The robot performs an action through a control
model called dynamic movement primitive (DMP; [72]). A
DMP has a set of parameters that leads it to perform a given
motor trajectory. Here, we will refer to different “actions” or
“DMPs” to mean different values of the DMP parameter set
causing different motor trajectories.

In the simulations, the actions of the intrinsic phase, and
the object retrieval attempts of the lab phase each involving a
sequence of actions (as illustrated below), started from four
possible conditions featuring different tool-object relations.
The target experiments [8], [9] considered five conditions:
1) toy attached to the tool; 2) toy hooked by the rake and
touching it; 3) toy hooked by the rake but not touching it; 4)
toy distant from the rake; and 5) rake put in the infant’s hand.
As mentioned earlier, in the simulations, the robot always
holds the tool to avoid the difficult problem of grasping. We
thus considered two conditions.

1) Tool-Close-To-Toy [Fig. 3(a)]: The tool tip is hooked
and is close to the toy but detached from it; this con-
dition, although similar to condition “2” of the target
experiment, actually corresponds to the easiest condition
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(2) (b)

(©) (d)

(2 (h)

Fig. 3. Four initial conditions involving different tool—toy relations (left) and
resulting filtered visual images captured by the robot camera (right). (a) and
(b) No spatial gap between toy and tool tip: this condition mimics the “tool-
attached-to-the-toy condition” of the target infant experiment; (c) and (d) Tool
tip close and above the toy; (e) and (f) Tool far and above the toy; and
(g) and (h) Tool far, above, and on the side of the toy: this condition mimics
the “tool-far-from-toy condition” of the target experiment. Note that in the
(g) and (h) case, the right snapshot shows that the tool tip is not visible to
the robot as its color is too different from the green reference color used
for the tip visual filtering (see the dark color of the tip in Fig. 4); this is an
example of the challenges posed by the use of a realistic simulation.

“1” of such experiment where infants have not yet under-
stood the tool-object relation but they are successful
because the toy is physically attached to the rake; indeed,
as shown below, the robot is endowed with an action
of “pulling the object whatever it is” that is always
successful.

2) Tool-Far-From-Toy: The tool tip is far from the
toy; to require that the model is robust to differ-
ent initial postures, for this condition, we consid-
ered three different tool-toy initial possible relations
[Fig. 3(c), (e), and (g)]; this condition corresponds to
the more challenging conditions “4” and “5” of the tar-
get experiment that infants cannot solve by chance and
require that they “understand” that the tool is important
for retrieving the toy.

During the intrinsic phase, at the beginning of each trial, the
toy and robot are set to one possible initial condition randomly
chosen between the four conditions described above. During
the lab phase, at the beginning of each trial, the toy and robot
are set to either the first condition (“tool-close-to-toy”) or the
fourth condition (“tool-far-from-toy”; the performance in the
second and third conditions, ensuring the system robustness,
is similar to the one in the fourth condition): these first and
fourth conditions reproduce the first and fourth/fifth conditions
of the target experiment. The robot then performs a sequence
of actions that terminates with either a successful toy retrieval
or a maximum number of performed actions.

Before and after performing each action, the robot per-
ceives the tool-toy relation through its right camera. During
the intrinsic phase, the robot uses this information to evaluate
the effects of actions and feed the IM mechanism illustrated
below and detecting interesting “events” after action execu-
tion. During the lab phase, the camera input is used to trigger
actions in sequence to retrieve the toy.

The simulations mimic the intrinsic phase (daily infants’
life) by allowing the robot to freely explore an object with
the tool that is also used in the lab phase. This differs from
the target experiment where during daily play, infants are not
given the tool of the lab test. This simplifying assumption
is an abstraction of the fact that infants have generalization
capabilities allowing them to use different objects as tools
once they have learned to use some of them. The assumption
is justified by the fact that developing artificial systems with
generalization capabilities similar to human ones is a difficult
challenge [73] going beyond the scope of this article.

During the exploration, the robot performs actions (DMPs)
with randomly chosen parameters to find movement trajec-
tories that cause interesting effects (events) on the toy, where
the “interestingness” of such effects is based on IMs. We have
seen in Section I that IMs can drive the learning of knowledge
and skills and that different IM mechanisms exist. Here, we
are not interested in investigating the specific causes of IMs,
but rather their possible effects on the emergence of the tool-
use capacity. We hypothesize that infants are endowed with a
general mechanism (studied in more detail in [29] and [71])
for which the outcome of an action is considered interesting if
it causes a change in the environment (“event”). The rationale
of this mechanism is that what infants (and robots) ultimately
need to learn are the actions that cause changes in the environ-
ment as this gives them the power to change it as desired in
the future. We further hypothesize that when an infant discov-
ers the possibility to cause an event with an action, then she
actively exercises multiple times to cause the event so as to
learn to produce it reliably when desired (a process mimicking
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Piaget’s circular reactions [35] (see [6], [74] for models). We
also hypothesize that infants progressively discover an increas-
ing number of different interesting events, each guiding the
acquisition of a different motor skill. As a consequence, at dif-
ferent ages, infants have an increasing number of skills usable
to obtain different desired effects in the environment, either
through the direct manipulation of objects or by means of
other objects.

To contain complexity, the model reproduces these devel-
opmental processes in an abstract way. In particular, we
endow the robot with the capacity of visually detecting
gross changes/events involving the objects. The change is
detected by the agent by comparing the images (the pixel-
based Euclidean distance) of the environment before and after
the action to determine if there was a variation (distance
above a threshold) in the environment itself. For simplicity,
the images are taken with the arm out of the scene so the
robot’s body does not contribute to the change. This mech-
anism for goal self-generation is partially related to IMs as:
1) different from the distinctive features of IMs [24], “change”
is not related to an increase of knowledge of the agent but
to something happening in the outer world and 2) however,
to be relevant, the change has to be novel with respect to
already experienced changes, a feature detected by the model.
The detected changes are classified into five possible cate-
gories depending on the average position of the image pixels
that change: four involving movements of the object toward
the four possible cardinal directions (north, east, west, and
south), and a “jerk-on-the-spot” change corresponding to the
object being hit from the top. This classification is an abstract
representation of the fact that infants can distinguish between
different effects and learn different actions to cause them (one
hypothesis explored here is based on the progressive develop-
ment of this capacity). Fig. 4 shows such possible directions of
movement of the object that trigger the detection of an event
(called here the “IM-event”) marked as interesting by the robot
IM system. The five IM-events have the potential to cause the
learning of five different motor skills called for reference “N,
E, W, S, and T” actions.

In addition to these five actions, we also assume that the
robot acquires two additional actions related to retrieving
objects located in the hand, whatever they are. These actions
are acquired under the (possibly extrinsic) reward related to
having the target object in proximity to own body so as to
use it (e.g., to eat it if it is food) or to further interact with it
(e.g., in the case it is a toy). The first action is a “retrieval”
action (“R”) that is trained by giving the robot a reward when
it succeeds to bring the object attached to the tool tip within
the retrieval area, while the second is a “pull” (“P”) action
that is trained by giving a reward when the robot succeeds to
bring the tool tip, without object, within such area (see Fig. 4;
the idea of using a retrieval area is taken from [67]). These
two basic actions are possibly the ones observed in the experi-
ments of Rat-Fischer ef al. when infants have a young age and
retrieve objects by directly using the hand: at this age, if the
tool is detached from the toy, the infants pull it to themselves
to further explore it; if the tool is connected to the toy, they
pull both to themselves thus seemingly solving the task. In

Fig. 4. Tool-use scenario with the tool (green) and object (red). Possible
movements of the object (“N,” “E,” “W.,” “S,” and “T”) that are considered
as interesting IM-events by the robot and can drive the acquisition of suitable
motor skills to cause them. The blue area represents the “target/retrieval area,”
used to reward the robot when it manages to bring the object within it: this
reward drives the acquisition of the “retrieval” (R) motor skill. It is also
assumed that the robot has a “pull” (P) motor skill that simply brings the tool
tip within the retrieval area without the object.

the model, the need to consider the two actions R and P sepa-
rately, notwithstanding they require the same motor trajectory,
derives from the need of planning to discriminate between
different conditions and action outcomes so as to concatenate
actions.

When the exploration of the toy produces an IM-event,
the robot focuses on such an event and spends some time
to learn (Fig. 2): 1) a suitable DMP params set to reliably
cause the IM-event from different possible initial conditions;
2) the affordances of actions, related to the fact that if executed
from a certain initial condition, the action causes the IM-event
under focus (Abstraction— DMP-pointers connections); and
3) a forward model, able to predict the image (tool-object
image) caused by the action: the model allows the robot to
plan suitable courses of actions before performing them in the
environment (DM P-pointers— Action-outcome connections).

During the lab phase, infants are challenged to retrieve the
toy object with the tool. The model mimics this phase by
allowing the robot to perform multiple action sequences to
retrieve the toy. The model can learn and perform these action
sequences either through reactive behavior and reinforcement
learning or through planning. Planning is based on reinforce-
ment learning run “in the head” through the forward model,
rather than in the environment [44], [75]. The use of reinforce-
ment learning or planning depends on which one of the two
hypotheses proposed here to explain tool-use development is
tested with the model. In both cases, the account of the target
experiment on the tool use is obtained by testing the model
multiple times at “different ages” characterized by an increased
planning capability (first hypothesis) or by an increasingly
complex intrinsic-motivation system (second hypothesis: this
uses either planning or reinforcement learning).

We now consider more in detail how the two hypothe-
ses account for the target experiment. According to the first
hypothesis, the robot already has the motor skills needed to
solve the task at all the tested ages. However, its planning capa-
bilities needed to assemble sequences of actions to retrieve the
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Fig. 5. Intrinsic-motivation phase: examples of movement trajectories during
skill acquisition guided by IM-event detectors. The graph shows four sets of
trajectories related to different initial postures.

object are initially limited and increase only with age. The
increasing planning capacity is simulated by endowing the
robot with an increasing number of planning cycles. When
the available planning cycles are limited, the robot fails to
“realize” (i.e., to mentally simulate) that a suitable sequence
of actions might lead to retrieve the toy. For example, the robot
might not think that the action of “moving the object to the
left” would lead to hook the toy and create the preconditions
to successfully perform the retrieval action. Only when the
planning capabilities reach a certain degree of sophistication,
the robot can foresee such possibilities.

According to the second hypothesis, the robot that simu-
lates infants at different ages is endowed with an increasing
number of IM-event detectors (at the same age, different sim-
ulated infants are endowed with different IM-events). This
mimics the fact that infants’ IM system might get progressively
more sophisticated with age, possibly because of maturation
processes or because of the possibility to explore an increas-
ing number of possible effects of actions. When in the lab at
different ages, each infant is thus endowed with an increasing
number of different actions to assemble in sequence to solve
the task. When the available actions are enough to solve the
task, infants have a high chance to solve it, otherwise, they
fail. In this hypothesis, the planning capacity is assumed to be
fully developed from early ages. However, we will see that the
same results are obtained if the skills are assembled by trial
and error rather than by planning (real infants might actually
mix planning and reinforcement learning).

IIT. RESULTS

A. Skill Learning Based on Intrinsic Motivations and
Solution of the Tool-Use Lab Task

In this section, we consider the results related to the
autonomous acquisition of actions based on the IM-events dur-
ing the IM phase. We, in particular, refer to the case where
the robot has all the seven IM-event detectors.

Fig. 5 shows some examples of exploratory motor trajecto-
ries (of the tool tip) performed by the robot in order to discover
an IM-event. The test used four different initial postures and
the toy was always located in the same position.

DMP pointers DMP params

Input

Fig. 6. Example of “links” (summarizing the connection weights dif-
ferent from 0) between the abstraction component (here, the input images
corresponding to the four possible initial postures are reported) and the DMP-
pointer component units acquired during the intrinsic learning phase (thin
links) and the solution of the tool-use lab task (thick links). The example
refers to a simulated infant that learned to retrieve the toy from both the
“tool-close-to-toy” (through the action R) and “tool-far-from-toy” conditions
(through the action sequence <S, R>).

Fig. 6 refers to two developed (late-age) infants having
all the seven IM-events and maximum planning capability.
In particular, the graph shows examples of the connection
weights that the infants might learn, that link the units of
the abstraction component to the units of the DMP-pointer
component (left part of each graph). For each DMP-pointer,
the graph also shows with a link the type of trajectory
movement (<P,R,T,N,E, W,S>) produced by the corre-
sponding parameter set. In the figure, the thin connections link-
ing the abstraction units to the DMP-pointers units represent
the affordances acquired during the intrinsic learning phase,
whereas the thick connections represent the weights acquired
with Q-learning during the tool-use lab test. Regarding such
affordances, the model learned that the first condition (tool-
close-to-toy) affords the actions W, T, R, S, and E but not N
(which requires to move the tool around the toy and then push
it) nor P (which requires to drag the toy to the retrieval area
with the tool). Regarding the other three postures involving the
tool far from the toy, the model learned that they afford all
actions with the exception of R, which would require a com-
plex trajectory (hooking the toy and bringing it to the retrieval
area) to be discovered by the exploratory DMPs.

The Q-learning connections shown in the figure were
learned by the model during the tool-use lab task solution,
in the conditions involving the first posture (tool-close-to-toy)
and the fourth posture (tool-far-from-toy). In the first condi-
tion, where the robot sees the tool close to the toy, the robot
learns to select the DMP-pointer 2 related to R that leads to
the retrieval of the object and to get the reward. In the second
condition, where the robot sees the tool far from the toy, the
robot learns to select the DMP-pointer 7 related to S as this
brings the tool behind the toy: this is a condition where the
robot can then perform a second R action to get the reward.
This example shows how the acquisition of the ability to move
objects with the tool (e.g., with action S), acquired with free
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Fig. 7. Real infants: success rate measured in the target tool-use lab

test, related to the “tool-connected-to-toy” condition (corresponding to the
tool-close-to-toy condition in the simulations) and the “tool-far-from-toy”
condition, for groups of infants with different age (cross section experi-
mental design; mean and standard error of 12 real infants per group). Data
from [8] (these data are complementary to those reported in [9] using the same
experimental conditions but a longitudinal experimental design, Fig. 10).

exploration under the drive of intrinsically motivating events,
later reveals useful to solve the lab task.

B. Solution of the Tool-Use Lab Task at Different Ages

This section presents the results related to the ability of the
model to solve the tool-use lab task at different ages simulated
on the basis of the two hypotheses, namely, the increase of
the planning abilities or the increase of the available skills
(IM-event detectors). The two hypotheses were, in particular,
tested with the data from real infants shown in Fig. 7. The
figure shows that when the toy is connected to the tool, then
the infants at all tested ages readily retrieve it. Instead, when
the tool is far from the toy, only infants with 18 months or
older succeed to retrieve the toy.

We addressed these results with the model set on the basis
of the two hypotheses. For each age (14, 16, 18, 20, 22, and 24
months), we replicated the experiment ten times with differ-
ent seeds of the random number generator: these replications
represented different infants that learned during the IM phase
and later were tested with the tool-use lab test, thus form-
ing different connection weights at the level of motor skills
(DMP parameters), affordances, Q-learning connections, for-
ward models, and IM-event inhibition. We then tested such
artificial infants for the two conditions “tool-close-to-toy” and
“tool-far-from-toy.” We now consider the results obtained with
the two hypotheses.

1) Hypothesis 1 (Development of Tool Use When the
Advancement of the Robot Age Increases on the Number of
Planning Trials): We first tested the model where age was sim-
ulated on the basis of the hypothesis illustrated in Section II,
i.e., by giving all IM-event detectors to infants of all ages, but
the number of planning sequences increased with age.

Fig. 8(a) shows that in this condition, in the case of the
toy connected to the tool, the simulated infants of all ages
succeed to retrieve the toy. The reason is that the sight of the
toy connected to the tool immediately affords the R action that
leads to successfully retrieve the toy.
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Fig. 8. Simulated infants: tool-use performance with increasing age

(14-24 months). (a) Age simulated as an increasing number of planning cycles
(action sequences each formed by up to five actions), in particular from 0 to 50
with increases of 10. (b) Age simulated as an increasing number of available
IM-event detectors, and hence of skills acquired before the test, in particu-
lar from 3 to 7 IM-events. Each graph reports the average performance and
standard error of ten simulated infants in the two conditions where the tool
tip is either close to the toy or far from it. The two curves are qualitatively
similar to the one related to real infants, reported in Fig. 7; in particular for
the tool-far-from-toy condition, Pearson’s R correlation coefficient was 0.77
and 0.73 for, respectively, the two hypotheses with respect to the real infant
data.

Instead, with the tool-far-from-toy, the younger infants are
not able to retrieve the toy. The reason is that even if they have
the actions to bring the rake to the toy, they fail to mentally
“understand” that the outcome of some actions would be useful
to produce the condition from which to trigger the retrieval
action. Only the older infants that are able to plan for time, rather
than just triggering whatever action is afforded by the object
and/or tool, manage to retrieve the toy and exhibit a success
rate increasing with age (i.e., with the time spent planning).

2) Hypothesis 2 (Development of Tool Use When the
Advancement of the Robot Age Increases on the Number of
the Acquired Motor Skills): We then tested the model where
age was simulated on the basis of the second hypothesis illus-
trated in Section II, i.e., by giving to all infants the possibility
of planning for 50 action sequences before acting, but a limited
number of IM-events increasing with age.

Fig. 8(b) shows that in the case of the toy connected to the
tool, the simulated infants of all ages succeed to retrieve the
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toy as all of them are endowed with P and R actions (i.e.,
“pulling the tool” and “pulling the tool and the toy”).

Instead, in the condition of the tool-far-from-toy, younger
infants are not able to retrieve the toy. The reason is that even
if they would have the cognitive capacity to mentally assemble
the needed sequences of actions, they still lack the actions and
affordances needed to control the tool and bring it to have a
spatial relation with the toy that affords a successful retrieval.
Only the older infants that are able to bring the tool tip close
to the toy and hook it can succeed. This happens because in
daily life, they had IMs that drove them to explore different
interactions between objects and so learned the actions needed
to prepare a successful retrieval, and affordances to “see” such
possibility.

What would happen in the case of the second hypothesis
if the infants had limited planning capabilities? Would older
infants still be able to solve the tool-use lab task in the hard
condition? For this to be possible, the infants would still need
to form action sequences. A possibility to do this would be
to learn such sequences by trial-and-error learning rather than
by planning, either before coming to the lab or during the
lab sessions (or both). To test the computational viability of
this possibility, we prevented the model from planning but
allowed it to learn to solve the lab task by trial-and-error for
an increasing number of learning sequences, i.e., in a way
similar to what done for planning but with the difference that
the model performed the actions in the environment rather than
“in the head” (i.e., through the forward models).

The results are shown in Fig. 9. These results are qualita-
tively similar to those obtained with the planning hypothesis
[Fig. 8(b)], showing that the capacity of planning is not strictly
needed if one assumes that the infants have enough time to
either learn to solve the tool-use task during the lab sessions or
before then (in the latter case, one should also assume infants
can generalize such knowledge to the lab task).

Incidentally, notice how, in the tool-far-from-toy condition
and the second hypothesis, the performance of the trial-
and-error learning model (Fig. 9) is slightly worse than the
performance of the planning model [Fig. 8(b)]. The reason is
that with planning, there is no noise that can cause the mental
images corresponding to the action outcomes to differ from the
image of the desired goal, thus the matching process is more
accurate and the formation of the Q-learning connections is
faster.

C. Development of Tool Use by Single Simulated Infants Is
Better Explained by the Second Hypothesis

The previous section shows that both the planning and the
IM-based hypotheses correctly predict the steady increase of
infants” performance in the tool-use lab task. However, can
the two hypotheses similarly predict the developmental pat-
tern exhibited by single infants? In this respect, Fig. 10 shows
the capacity exhibited by different infants in the longitudinal
experiment [9] where the tool-use ability of the same infant
was monitored at different ages to track his/her developmen-
tal trajectory. Recall that this experiment reports data collected
in the same experimental conditions used in the cross section
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Fig. 9. Simulated infants: success rate of infants with different ages simulated
as an increasing number of IM-event detectors (mean and standard error of ten
simulated infants). In this simulation, the model learned the action sequence
to solve the lab task through a trial-and-error (reinforcement learning) process
rather than with planning.
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Fig. 10. Real infants, longitudinal data on tool-use performance: individ-

ual performance at different ages of five infants. The timing of the tests
for the different infants had some variability. Data obtained from [9] (these
data are complementary to those reported in [8] using the same experimental
conditions but a cross section experimental design, see Fig. 7).

experiment considered this far ([8]; Fig. 7). Fig. 10 clearly
shows that: 1) each infant seems to “suddenly” acquire the
ability at a certain age, meaning that such ability passes from
a close-to-zero level to a notable percent of success and 2) dif-
ferent infants acquire the tool-use ability at different ages, thus
showing that they have a different developmental history.
Fig. 11 shows the performance of individual simulated
infants at different ages, mimicking the longitudinal experi-
ment. The test refers to three conditions: 1) planning hypoth-
esis; 2) the IM-event hypothesis with planning; and 3) the
IM-event hypothesis with trial-and-error learning. The results
show that in the case of the planning hypothesis [Fig. 11(a)]
each single infant has a tool-use ability that tends to pro-
gressively increase with age. This is due to the increasing
number of planning cycles that produce an increasing chance
to succeed. Instead, in the case of the IM-event hypothe-
sis [Fig. 11(b)], the single infants exhibit a sudden increase
of the tool-use ability, and this happens at different ages.
This developmental pattern qualitatively mirrors the pattern
of real infants (Fig. 10). This also happens in case the
actions are assembled by trial-and-error rather than by plan-
ning [Fig. 11(c)]. The explanation is that these simulated
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Fig. 11. Simulated infants: success rate in the lab longitudinal test of three
groups (different graphs) of ten infants each (curves in each graph). (a) Age
simulated as an increasing number of planning action sequences. (b) Age
simulated as an increasing number of IM-events, and lab test solved with
planning. (c) Age simulated as an increasing number of IM-events, and lab
test solved with trial-and-error learning.

infants face the lab test endowed with a repertoire of affor-
dances and skills acquired in daily life, and if this repertoire
involves the actions needed to solve the task they immediately
anticipate this possibility based on object affordances and so
readily assemble the needed action sequence by planning or
by trial and error.

D. Analysis of the Model Functioning

In this section, we analyze some aspects of the internal
functioning of the model. To this purpose, we consider
two simulated infants tested longitudinally at different ages,
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Fig. 12.  Simulated infants: success rate in the tool-use lab test of two
simulated infants, one with an age simulated as an increasing number of
planning cycles before action performance, and the second as an increasing
number of IM-events and hence actions acquired in daily life before the lab
test.

reproduced, respectively, with the planning-based hypothesis
(and fully developed IMs) and the IM-event hypothesis (with
fully developed planning) in the tool-far-from-toy condition.
Fig. 12 shows the performance of the two infants at differ-
ent ages. We now focus on these two representative simulated
infants but the main result, i.e., the progressive development
of the tool-use ability with the planning hypothesis and its
sudden development with the IM hypothesis, is very robust,
as shown in Fig. 11 related to ten simulated different infants
for each of the two conditions.

Table II in the supplementary material considers the
planning-hypothesis infant and shows data on one action
sequence per each age that the infant produced to solve the
lab test in the tool-behind-toy condition (for each age, one
table row refers to one action cycle of the sequence). Recall
that each sequence terminates with either a successful retrieval
of the toy (reward = 1) or when a maximum of five actions
are produced. For each age/action sequence, Table II reports:
1) the actions that the simulated infant acquired in daily life
out of the seven possible ones, and with which it is endowed
when it comes to the lab test; 2) the probabilities of selec-
tion of the actions produced by the softmax function; 3) the
action actually selected in the action-selection cycle; and 4) the
reward after the action performance. The action selection prob-
abilities of the first sequence (age 14) are caused only by the
affordances acquired during the IM phase whereas those of the
following ages are caused by both the affordances and the Q-
learning connection weights, the latter acquired with planning
before the action sequence shown in the table is performed.

Table II shows that the initial image of the tool-behind-toy
condition affords only the actions R, W, and S. This implies
that during planning, the infant considers only these actions:
the restriction of the choice to three actions implies that dur-
ing the five actions of the sequence, R is selected with a
high chance even at 14 months and leads to successfully
accomplish the task (reward = 1), here at the third action
after the action sequence <W, S, R>. At later ages, planning
strengthens the useful Q-learning connections of R and so the
chance of selecting it in the suitable condition moves from
0.24 to 0.96. This leads to a successful retrieval at the first
action-selection most of the times.
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Table III in the supplementary material shows similar data
for the same infant but for the tool-far-from-toy condition.
Now, the initial image affords all actions with the exception
of R (see the first line of the table). At 14 months of age,
the simulated infant performs two P actions without chang-
ing the toy condition and so the affordances remain the same
(recall that after P or R, the robot is reset to the initial pos-
ture, similar to the target experiment, but the sequence is not
interrupted). Then, it performs actions W and S that change
the image and hence the affordances: their outcome is that the
tool hooks the toy and so R, W, and § actions become afforded
while the other ones are no more afforded. The sequence ter-
minates unsuccessfully (reward = 0). In the following ages,
with more planning cycles, the infant “understands” that in the
initial condition the action § has to be favored as it creates the
achievement of a suitable precondition for R (the probability
of S passes from 0.19 to 0.98). At the same time, when the
toy is hooked (e.g., after the performance of §), the action R
progressively acquires a higher chance of being selected (from
0.01 to 1). The result is that at older ages, the robot tends to
select an efficient <S, R> action sequence that successfully
accomplishes the task (reward = 1).

Table IV in the supplementary material reports analogous
data for the simulated infant having an age involving an
increasing number of skills, in the tool-behind-toy condition.
At the age of 14 months, where only P, R, and T actions were
acquired by the infant in the IM phase before the lab test (see
table), the scene affords only the action R and so the infant
successfully accomplishes the task. With the increasing age,
the infant acquires new actions in daily life but both the affor-
dances and the Q-connections resulting from planning allow
the infant to focus on the R action and efficiently solve the
lab task.

Table V in the supplementary material reports data of the
same infant in the tool-far-from-toy condition. In this case, at
early ages (14, 16), the simulated infant fails to solve the task
as it does not have any action that can allow it to hook the toy
with the tool. Only at the age of 18 months, a potentially use-
ful S action becomes available for that purpose and planning
favors it (its probability is 0.55). However, the infant still fails
to retrieve the toy even when R follows S (as shown in Fig. 12
for ten tests): this happens because the learned motor trajec-
tory of S is not good for hooking the toy, the precondition
needed to successfully perform R. In the following months,
the infant becomes increasingly able to solve the task by using
the now-available action W to hook the toy. Note that in the
case reported in Table III in the supplementary material, S was
instead preferred to W: that case and the one considered here
show an instance of developmental differentiation due to the
specific motor trajectories acquired with free exploration.

IV. DISCUSSION

The results show that both hypotheses are able to repro-
duce the target data. In particular, in both cases, infants of
all ages are able to solve the tool-use task when the tool
is connected to the toy as this requires only one retrieval
action. Instead, when the tool is far from the toy and the

solution of the task requires performing an action sequence—
bringing the tool behind the toy to hook it and then retrieving
it—only older infants can solve the task. Based on the first
hypothesis, this happens because younger infants possess all
needed motor skills, related affordances, and forward mod-
els, but have poor planning capabilities. This leads them to
act before they realize by planning that a successful accom-
plishment of the task requires a two-action sequence. Based
on the second hypothesis, younger infants do not possess the
skills/affordances/forward models needed to hook the object
with the tool. This lack of knowledge is due to the low
level of development of their IM system that during daily
life activities does not lead them to acquire the necessary
abilities before facing the lab task. Only at a later age, the
two groups of infants can solve the task, respectively, because
they have a sufficient planning capacity or because they have
sufficient motivations driving the acquisition of the needed
skills/affordances/forward models in daily life.

Notwithstanding the similarity of the predictions of the two
hypotheses at the group level, the individual differences in
the tool-use behavior exhibited by single infants when ana-
lyzed in longitudinal studies (the same infant tested at different
ages) can be reproduced only by the second hypothesis. In this
respect, a key feature of the target data is that single infants
exhibit a lack of ability to solve the tool-use task up to a
certain age and then they suddenly exhibit a high capacity to
solve it at different ages around 18 months. Only the model
where age determines the development of the IM system, but
not the one where it determines the planning ability, is able
to reproduce this sudden emergence of the tool-use ability.
Indeed, the simulated infants whose planning ability strength-
ens progressively with age also show a progressive increase
in the probability of success in the lab task. Instead, the sim-
ulated infants that progressively develop the IM system start
to suddenly have full success in the lab task as soon as they
develop the needed skills in daily life outside the lab due to
the development of the related IM interest.

A. Comparision With Other Models

Previous robotic models faced the problem of tool use
by relying on the concept of affordance. In [67], during
an exploratory phase, an arm-gripper robot learned affor-
dances of different tools by performing a number of hardwired
actions (e.g., extend arm and move arm left) and by observ-
ing the resulting effects (object displacements). The authors
showed how the autonomously learned affordances can be
later used to solve a tool-based retrieval task by sequencing
the actions (e.g., “grasp tool, move arm, and move object”)
through a domain-specific procedure using the action expected
outcomes. In comparison to our model, the actions were
not autonomously learned and the planning procedure was
not general. Moreover, despite the fact that the model was
built starting from a psychological background on tool use
in animals and humans, it was not used to address specific
developmental issues.

Another model [66] faced tool-use tasks with the iCub robot.
The tool-use scenario involved object retrieval tasks in which
a toy was placed far from the robot at different locations on
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a table and the robot had to select a suitable tool (a rake,
a hoe, or a stick) to retrieve it. The model was based on
an architecture encompassing different modules each capable
of implementing a function needed to solve the task: object
recognition, action performance, affordance learning, inverse
kinematic models, etc. The robot chose the tool depending
on the position of the object that afforded a certain action.
The model solved the tool-task based on a specific procedure
evaluating the tool-object distance rather than with a general
planning procedure as here. Moreover, the model was inspired
by the development of tool use in infants but it did not address
and explain specific developmental data.

A first model to use “salient states” marked by environ-
ment changes to form skills, called “options” as the system
was developed within the reinforcement learning framework,
was proposed in [19]. The system also used IMs based on the
prediction of the termination of options to focus learning on
skills needing further training. The system, tested in a grid-
world scenario with abstract objects, showed the importance
of IMs for guiding the learning of reusable skills. In [29], we
proposed a general architecture for goal self-generation and
goal-based skill learning called “GRAIL—Goal-Discovering
Robotic Architecture for Intrinsically Motivated Learning.”
The architecture controlled a simulated iCub robot and was
able to self-generate goals on the basis of novel changes
caused in the environment, to focus on them based on
competence-based IMs (as here), and so to learn the skills
to accomplish them. In the following work [71], we focused
on the use of goals and skills previously acquired with goal
self-generation as in GRAIL for the solution of extrinsic user-
defined goals. The system was, in particular, tested with a
real iCub that had to move a ball to multiple desired posi-
tions (user-defined goals) by using a tool attached to the robot
hand (as here). The robot solved these tasks by recalling,
and possibly improving, the skills whose goal was most sim-
ilar to the user-defined goal. Another work [76] presents a
robotic system that learns to control, via a joystick, another
robot arm that can act on a ball in turn possibly affecting
some lights. The system self-generates goals based on novel
action effects and uses competence-based IMs to focus on
the different objects/experiences. This allows it to exhibit an
autonomous “curriculum learning” starting from the acquisi-
tion of the robot control and arriving at the acquisition of the
control of the lights. All these systems inspired several aspects
of the model presented here but they were not used to study in
detail the emergence of tool use as measured in developmental
psychology experiments.

The model presented here also builds on previous compu-
tational models, tested with the simulated iCub robot, that
we proposed to study mental rotation and decision-making
abilities in humans [39], [77]. The model presented here has
important innovations with respect to such models: 1) the
introduction of IM mechanisms that allow the robot to acquire
skills by an autonomous exploration of the environment; 2) the
use of IM mechanisms to simulate developmental processes
leading to the acquisition of multiple motor skills; 3) the
introduction of mechanisms able to implement planning based
on the actions acquired autonomously by the robot; and

4) the use of these new elements of the model to tackle
specific developmental experiments on tool use. The model
presented here also draws some features from another model
of ours [45]. Designed within an open-ended learning frame-
work, this model used IMs to learn affordances and forward
models. The model implemented image-based planning but
only for one action ahead. The model was used to study
the learning of stochastic affordances based on IMs and their
relation with action preconditions. With respect to the model
presented here, the model was tested only in a very simpli-
fied 2-D environment, involving colored-shaped objects and
abstract physical interactions, and used hardwired motor skills.
Finally, the model did not tackle tool use and developmental
issues related to it. Such a model built on an earlier model
that used multiaction planning based on image trajectories
and goals [43], [44]. This model was created after the idea
of Dyna architectures [78], initially working with grid-world
states, to train a reinforcement learning model through internal
models rather than in the environment.

V. CONCLUSION

The model proposed here was built within a developmen-
tal robotics framework. Its design and test were based on
the experiments on tool use with infants from the develop-
mental psychology experiments of Rat-Fischer ef al. [8], [9].
These experiments showed that infants developed a capacity to
solve tool-use tasks around the age of 18 months. The model
proposed two hypotheses to explain these results. The first
was related to the development of increasingly powerful plan-
ning abilities for composing the action sequences needed to
solve the tool-use lab task. The second hypothesis claimed
that the lab data were a manifestation of the effects of learn-
ing processes happening during the infants’ life outside the lab.
With age, these processes lead infants to acquire an increas-
ing number of motor skills, and related affordances/forward
models, until they also acquire those needed to solve the lab
task. Both hypotheses explained the emergence of the tool-use
capacity in the whole population of infants, but only the sec-
ond hypothesis was able to reproduce the sudden emergence
of the tool-use ability observed in single infants in longitudi-
nal studies. The reason is that the increase of planning abilities
leads to a progressive increase of the probability to solve the
lab task. Instead, the development of IMs leads to a sudden
interest in the acquisition, in daily life, of the skills needed to
solve the task in the lab.

Future empirical experiments might test the latter hypoth-
esis on IMs. For example, two groups of infants might be
allowed to play with two different sets of toys, one afford-
ing actions and action sequences in a “tool-like” fashion, and
one not doing that. Afterward, the experiment could present
different tool-use tasks as those studied here, and monitor
the infants’ performance. This article would allow the inves-
tigation of the link existing between the free explorations
during the initial play sessions and the solution of the tool-use
tasks [12], [79], [80].

Although the model achieved encouraging results, we are
aware it has various limitations that could be tackled in future
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work. A general limitation, shared with all system-level inte-
grative models, is that it has many mechanisms and parameters
that allow it to fit different data. Notwithstanding this problem,
we think these types of models have a useful theoretical role in
supporting clear formal thinking on psychological problems,
and a heuristic value to suggest new experiments. Moreover,
as expanded in the supplementary material, various strategies
might be followed to face the problem of the many mecha-
nisms/parameters: 1) addressing many experiments rather than
one; 2) introducing constraints at multiple brain/behavioral
levels; and 3) requiring the models to scale up to more complex
scenarios and behaviors.

Also from the autonomous robotics perspective, the model
has limitations to be faced in future work. In particular,
the model has the components needed to face the two key
phases of open-ended learning [23], [45]: 1) the intrinsic phase
where the robot autonomously acquires affordances/motor
skills/forward models and 2) the extrinsic phase where the
robot uses the previously acquired knowledge to solve tasks
useful for the user. Such components were kept simple to
focus on the target developmental issues, so they should be
further developed to scale up to more complex scenarios use-
ful for autonomous robotics, for example, in the ways we
now discuss.

The IM-event detectors used here could only detect
interesting events corresponding to moving the object in the
four cardinal directions. In future work, more general IM-event
detectors should be investigated [29], [30], [81]. Moreover,
here we considered the IM-event detectors as the markers
of interesting action outcomes, but such outcomes were not
stored by the system, in particular as possible future goals:
the only goal considered here was the whole tool-use task
solution stored in a hardwired fashion. Future work should
hence introduce general mechanisms to store goals so as to
allow the robot to solve multiple extrinsic tasks [65], [71].
In addition, for each IM-event, we considered here a limited
number of initial postures: future work should investigate if
and how DMPs could cover larger portions of the continuous
posture space (see [82], [83]).

Planning was here implemented for combining actions
drawn from a small action repertoire to build action sequences
formed by at most two actions. Future work should scale
up the proposed planning mechanisms to more complex
scenarios [84], [85]. Moreover, the used forward models
work through detailed primitive perceptual inputs (camera
images). Future work should develop prediction and plan-
ning processes working at different levels of abstraction
(e.g., [81], [85], and [86]).

Overall, the model proposes new possible explanations of
the puzzle of the sudden emergence of tool-use abilities in
infants, worth further investigation. Moreover, the robotic
implementation of the model proposes various ideas and
challenges relevant to open-ended learning autonomous robots.
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