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 39 

 40 
ABSTRACT 41 
 42 
Background 43 

Copper is a metal that plays a central role in biology, for example, as co-factor in various redox 44 
enzymes. Its stable isotopic composition is being used as tracer of its transport in living organisms and as 45 
a biomarker for diseases affecting its homeostasis. While the application of copper stable isotopes to 46 
biological studies is a growing field, there are presently no biological standards that are systematically 47 
analyzed in the different laboratory, as it is the case for geological samples (e.g., by using widely available 48 
basalt samples). It is therefore paramount for the community to establish such standard. Copper also binds 49 
oxygen in the respiratory protein, hemocyanin, in the hemolymph of mollusks and arthropods and is thus 50 
critical to respiration for these species.  51 
 52 
Methods 53 

Here, the Cu isotope composition of hemocyanin of different modern species of mollusks and 54 
arthropods (Megathura crenulate Keyhole limpet, Limulus polyphemus Horseshoe crab and Concholepas 55 
concholepas Chilean abalone), as well as theoretical constraints on the origin of these isotopic 56 
fractionations through ab initio calculations are reported.  57 

 58 
Results 59 

The isotopic fractionation factors for Cu(I) and Cu(II), both in hemocyanin and in seawater, 60 
predict an enrichment in the lighter isotope of Cu in the hemocyanin by over 1 permil compared to 61 
seawater. The hemocyanin of Chilean abalone and Horseshoe crab have Cu isotope compositions (δ65Cu = 62 
+0.63 ±0.04‰ and +0.61 ± 0.04‰, respectively, with δ65Cu the permil deviation of the 65Cu/63Cu ratio 63 
from the NIST SRM 976 standard), similar to that of the octopus reported in literature (+0.62‰), that are 64 
undistinguishable from seawater, suggesting quantitative Cu absorption for these organisms. Conversely, 65 
the Keyhole limpet is enriched in the lighter isotope of Cu, which is in line with the ab initio calculation 66 
and therefore Cu isotopic fractionation during incorporation of Cu into the hemocyanin.  67 

 68 
Conclusions 69 

Because these hemocyanin standard samples are widely available, they could serve in the future as 70 
inter-laboratory standards to verify the accuracy of the Cu isotopic measurements on biological matrices.  71 
 72 
 73 
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Introduction 88 
Copper has two naturally occurring stable isotopes, 63Cu and 65Cu, with relative abundances of 69.17% 89 
and 30.83% respectively. Copper is also a key micronutrient in seawater for all organisms in the food 90 
chain [e.g., 1, 2, 3, 4], but can be toxic at high concentrations of its free Cu2+ form [e.g., 1, 5]. 91 
Measurement of Cu isotope composition in seawater is challenging due to low Cu concentrations, 92 
especially for surface seawater [e.g., 6, 7]. However, recent analytical improvements have allowed the 93 
measurement of seawater samples, with for example an estimate for the global surface seawater isotope 94 
composition of δ65Cu = +0.49 ± 0.04 ‰ ([8], with δ65Cu the permil deviation of the 65Cu/63Cu ratio from 95 
the NIST SRM 976 standard), within variability reported in different ocean basins (+0.51 to +1.25 ‰; 96 
[9]). Alternatively, deep sea corals have been used to estimate the Holocene and modern seawater 97 
composition, and provide similar isotopic composition as deep seawater samples [10]. It would, however, 98 
be important to develop a complementary proxy for the Cu isotopic composition of the seawater through 99 
time.  100 
 101 
Hemocyanins are the respiratory proteins that turn blue upon oxygen binding in the hemolymph of some 102 
mollusks (Protobranchi) and arthropods [11], equivalent to hemoglobin for vertebrates. In hemocyanins, 103 
the active site corresponds to two copper ions complexed by six histidine residues, that can bound a 104 
dioxygen molecule (Figure 1) to form a Cu2O2 cluster. Hemocyanins of mollusks and arthropods appeared 105 
~740 Ma [12, 13] and ~600 Ma [14] ago, respectively. Both type of hemocyanins have similar active sites 106 
and are large multimeric extracellular proteins composed of many subunits: molluscan hemocyanins are 107 
hollow cylindrical decamers or multidecamers (~4 MDa or > 8 MDa), whereas arthropod hemocyanin are 108 
hexamers or multihexamers (~450 kDa). For arthropods the functional unit corresponds to a subunit 109 
whereas a molluscan subunit can contain up to 8 functional units. Finally, the primary, ternary and 110 
quaternary structure of molluscan and arthropod hemocyanin is different and they are part of two distinct 111 
protein superfamilies [11]. 112 
 113 
Biological processes are known to have the ability to fractionate isotopes and create isotopic fractionation: 114 
Zn, Fe, Cu and Mg isotopic fractionation between plants and soils [e.g., 15- 24], between animals and 115 
their environment, or between organs in mice, dogs or humans and due to diseases affecting their 116 
homeostatis (e.g., 10, 24-43]. While the Cu stable isotopic measurements are routine for geological 117 
materials, with widely available geological samples analyzed systematically in all laboratories (e.g., 118 
United States Geological Survey basaltic rocks such as BHVO-2 or BCR-2), there are presently no 119 
biological standard that plays this role in this new field of isotope metallomics, and metal isotope 120 
compositions of certified reference materials of biological origin remain very scarce [e.g., 38, 44-46]. 121 
Given that more and more laboratories are not working on such topics, it is therefore paramount that the 122 
community use biological standards. Hemocyanin standards are widely available and given their high Cu 123 
content could play this role.  124 
 125 
However, apart from one measurement done on octopus (mollusk) hemocyanin (δ65Cu = +0.62‰; [47]), 126 
these respiratory proteins have not been studied using Cu isotopic methods yet. This value is close to the 127 
global seawater Cu isotopic composition, further suggesting the possibility to use hemocyanin as a proxy 128 
for seawater δ65Cu. Given the difference of structure between the hemocyanin of arthropods and mollusks, 129 
it would be important to evaluate the composition of some arthropods hemocyanins. Moreover, non-130 
traditional metal stable isotope systems, such as Cu and Zn, are good tools to monitor anthropogenic metal 131 
bioaccumulation into marine environments, notably in bivalve mollusk soft tissues due to homeostasis and 132 
species-specific physiological processes [e.g., 48-50]. 133 

 134 
Here we report new Cu isotope composition in three certified hemocyanin standards (Sigma 135 
Aldrich/Merck, Darmstadt, Germany) of different species (Megathura crenulate keyhole limpet [H7017], 136 
Limulus polyphemus Horseshoe crab [H1757] and Concholepas concholepas Chilean abalone [B8556]), 137 
and compare it with octopus hemocyanin Cu isotopic data from literature [47]. In addition of establishing 138 



the Cu isotopic composition of both arthropods and mollusks, these values from certified standards could 139 
be used in the future as reference value for interlaboratory comparison for Cu isotopic work on biological 140 
standards. Moreover, in order to predict the theoretical isotopic fractionation between seawater and 141 
hemocyanin, the first ab initio calculations on hemocyanin are computed. The combination of these 142 
calculations with future natural Cu isotopic data in hemocyanin may allow to better constrain the Cu 143 
isotope composition of seawater in the past. 144 
 145 
Analytical methods 146 
Copper purification and isotopic measurements were performed at the Institut de Physique du Globe de 147 
Paris (IPGP). Acids used in this study were distillated (4 times sub-boiled) from BASF Selectipur® AR 148 
grade acids (69% HNO3; 37% HCl) (BASF, Ludwigshafen, Germany). Dilutions used ultra-pure (18.2 149 
MΩ.cm resistivity) Milli-Q water. Between 2.5 and 19.7 mg (~0.6 to 7.3 µg of Cu) of the hemocyanin 150 
samples were dissolved using a mixture of 16 mol.L-1 HNO3 and a Fischer Chemicals Seastar© optima 151 
grade hydrogen peroxide solution (30-32% H2O2) (Thermo Fisher Scientific™, Bremen, Germany). 152 
Copper was then purified by ion exchange chromatography following the same procedure as described in 153 
Moynier et al. [34-35]. Hemocyanin samples were loaded in 1 mL of 7 mol.L-1 HCl on columns filled up 154 
with 1.6 mL of AG-MP1 resin (BioRad, Hercules, California, USA). After washing the resin with 7 mL of 155 
7 mol.L-1 HCl, the Cu was collected in 22 mL of 7 mol.L-1 HCl. The procedure was repeated twice to 156 
ensure a clean Cu fraction. Copper isotope compositions were determined using a Neptune Plus Multi-157 
Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS) (Thermo Fisher Scientific™, 158 
Bremen, Germany) located at IPGP, using the same method as in Moynier et al. (2019, 2020). Samples 159 
were introduced into the instrument using an ESI Teflon micro-nebulizer (100 µL.min-1) and a glass spray 160 
chamber. The MC-ICP-MS was operated at low resolution, with the 65Cu and 63Cu isotope beams 161 
collected in the L1 and L3 faraday cups, respectively. Matrix elements such as 62Ni and 64Zn were 162 
monitored in L4 and L2 cups in the same setup. The sample dilutions were adjusted to match the 163 
concentration of the standard (within ~5%). Under typical running conditions, a 50 ppb Cu solution 164 
generated a 5-6 V total signal using 10-11Ω resistors. Copper concentrations have been estimated by 165 
voltage equivalence on the MC-ICP-MS, by comparing sample Cu voltage to that of the IPGP-Cu 166 
standard of known concentration (Table 1). The total procedural blank contained ~0.3 ng of Cu, which is 167 
negligible in comparison to the amount of Cu present in each sample (Chilean abalone: 7.3 µg; Horseshoe 168 
crab: 3.4 µg; Keyhole limpet: 0.6 µg).  169 
 170 
Throughout the paper, all copper isotope data are reported relative to the SRM 976 standard (National 171 
Institute of Standards and Technology, Gaithersburg, Maryland, USA). Each sample was analyzed 172 
between 6 and 12 times, and the reported error is the 2 Standard Deviation (2SD) of these repeated 173 
measurements. We used a standard bracketing method that consists in measuring a standard before and 174 
after each sample and use the average of the two standards for the normalizing ratio [51]. During analysis 175 
session, we used the Cu-IPGP standard (Thermo Fisher Scientific™, Bremen, Germany), which has a 176 
δ65Cu of +0.271 ± 0.006‰ relative to the NIST SRM976 standard [34]. Thus, all the data presented here 177 
were converted to δ65Cu relative to NIST SRM 976 by adding 0.271. To ensure the quality of the 178 
measurements, we also processed the biological standard ERM CE464 (Tuna fish; Sigma Aldrich/Merck, 179 
Darmstadt, Germany), which has been previously analyzed for its Cu isotopic composition by multiple 180 
laboratories [38]. 181 
 182 
We also define Δ65CuX-Y, the difference of δ65Cu between two species X and Y as: 183 

Δ65CuX-Y = δ65Cu(X) − δ65Cu(Y) 184 
 185 
 186 
 187 
Computational methods  188 



Orbital geometries and vibrational frequencies of Cu species were computed using the density functional 189 
theory (DFT) as implemented by the Gaussian09 code [52, 53]. The DFT method employed here is a 190 
hybrid density functional consisting of Becke’s three-parameter non-local hybrid exchange potential (B3) 191 
[54] with Lee-Yang-and Parr (LYP) [55] non-local functionals. The DFT computational protocol was the 192 
same with our previous studies [56, 57]. The 6-311+G(d,p) basis set, which is an all-electron basis set, 193 
was chosen for H, C,N,  O, and Cu. Molecules were modeled without any forced symmetry. An “ultrafine” 194 
numerical integration grid was used and the SCF (self-consistent field) convergence criterion was set to 195 
10−9. 196 
 197 
Logarithm of isotope fractionation factor ln β which is identical with the ln RPFR (reduced partition 198 
function ratio) defined by Bigeleisen and Mayer [58] and Urey [59] was evaluated by the same manner 199 
with Fujii et al. (2013). In previous studies, various Cu complexes have been computed [51, 56, 57, 60- 200 
62]. Here, we present the result computed for Cu histidylhistidine, which is considered to be an analogue 201 
of hemocyanin [63] (Table 1). Complexation of Cu(I) with ligands forms a linear structure [56]. The linear 202 
structure tends to remain via the oxidation of Cu(I) to Cu(II) [60] and predict that the strength of the bond 203 
increases with ionization energy or electronegativity from S to N and O. Thus, Cu binding with histidine, 204 
such as in superoxide dismutase, is expected to be isotopically heavy (high δ65Cu), whereas Cu binding 205 
with cysteine, such as in ceruloplasmin, will be isotopically light (low δ65Cu). The model molecule of Cu 206 
histidylhistidine is shown in Figure 3. The Cu atom is surrounded by three N-donors of histidines. A linear 207 
structure of N-Cu(I)-N with the angle of ∠NCuN=178° has been reported by Adam et al. [63], for which 208 
our DFT calculation resulted in ∠NCuN=162°. Oxidation of Cu(I) to Cu(II) changes the angle to 209 
∠NCuN=173°, which agreed with the literature value of ∠NCuN=171° [63]. 210 
 211 
Results 212 
First, the biological standard ERM CE464 has a δ65Cu value (0.19 ± 0.03 2SD) which is consistent within 213 
error with previously reported values (e.g., 0.11 ± 0.14 2SD, [38]). The Cu isotopic data for Keyhole 214 
limpet [H7017], Horseshoe crab [H1757] and Chilean abalone [B8556], are reported in Table 2 and in 215 
Figure 2. Hemocyanins for Chilean abalone and Horseshoe crab are similar within error, with δ65Cu values 216 
of +0.63 ± 0.04‰ (2SD) and +0.61 ± 0.04‰ (2SD), respectively. These values are also similar within 217 
error with the Cu isotopic composition measured in a Mediterranean octopus hemocyanin by Zhu et al. 218 
[47] (+0.62 ± 0.05‰, 2SD, Figure 2). It is worth noting that this later value is similar to the Mediterranean 219 
surface seawater value (+0.48 ± 0.11‰; [64]) within error. Conversely, the Keyhole limpet hemocyanin 220 
gives an isotopically lighter value of -0.29 ± 0.06‰.  221 
 222 
To estimate the isotopic effect of Cu incorporation into the hemocyanin we have calculated the theoretical 223 
isotopic fractionation between hemocyanins (containing Cu(I) or Cu(II)) and seawater (at 277K, see Table 224 
3 and Figure 3). Here we have approximated the structure of the hemocyanin by histidyl histidine (Figure 225 
1). Our calculations are therefore first order prediction of the isotopic effect, but it has been shown in 226 
previous studies that doing such approximations was correct [e.g., 33]. These calculations predict an 227 
isotopic fractionation of Δ65Cu ~ +1.5‰ between Cu(II) hydrated (the dominant form of Cu in seawater, 228 
whereas Cu(I) is non mobile) and the reduced and oxidized forms of hemocyanins at ~4°C. The 229 
temperature-dependence of the calculations are reported in Figure 4.  230 
 231 
Discussion 232 
The Cu isotopic composition for surface seawater (<100 m depth) is very variable, ranging between +0.47 233 
and +1.2‰ [e.g., 8-10, 24, 64-67] with an average of δ65Cu = +0.49 ± 0.04‰ for the global surface 234 
seawater [8] (Figure 2). Thus, it appears that unlike what is predicted by ab initio calculations, there are 235 
very limited Cu isotopic fractionation between seawater and hemocyanin (+0.61 to +0.63‰) for all 236 
animals except the Keyhole limpet (-0.29‰). This result is in agreement with average Holocene and 237 
modern coral Cu isotope composition being similar to the mean published deep seawater δ65Cu values 238 
[10], even though mollusks and arthropods considered in this study live in much shallower waters (up to 239 



40 m deep versus 170-2260 m for the corals). This absence of large isotopic fractionation (at the exception 240 
of the Keyhole limpet) could also suggest that the ab initio calculations are too approximated, but it would 241 
be rather unlikely that these calculations were wrong by > 1.5 ‰, or more likely that the incorporation of 242 
Cu from seawater to hemocyanin is quantitative. In other words that the organisms absorbed most of the 243 
Cu available in their environment.  244 
 245 
The lighter isotopic composition of the Keyhole limpet (δ65Cu = -0.29 ± 0.06‰) compared to seawater 246 
(δ65Cu between +0.47 and 1.2‰) (see Figure 2) is consistent with the predicted isotopic fractionation 247 
between Cu(II) hydrated and hemocyanins. The different Cu isotopic composition of the Keyhole limpet 248 
may either reflect (1) some interspecies variability or (2) that the Cu absorption was not quantitative 249 
unlike what is observed in the other animals or (3) that there was an isotopic fractionation processes 250 
during sample preparation as the hemocyanins considered in this study were purchased certified standards. 251 
These hypotheses could be tested in the future by laboratory control growth of the animals in Cu-rich 252 
medium together with systematic measurements of the Cu isotopic composition of the seawater in which 253 
the organisms grew up in, in order to better constrain the origin of such interspecies variability. 254 
 255 
Conclusion 256 
The Cu isotopic composition of the hemocyanin from a Keyhole limpet [H7017], a Horseshoe crab 257 
[H1757] and a Chilean abalone [B8556] as well as ab initio calculation for the Cu isotopic fractionation 258 
between hemocyanin and hydrated Cu are reported. The Cu isotopic composition of the Horseshoe crab 259 
and Chilean abalone where indistinguishable from seawater composition, while ab initio calculation would 260 
predict an enrichment in the lighter isotopes in the hemocyanin. This likely reflect quantitative absorption 261 
of Cu in the organisms. Conversely, hemocyanin from the Keyhole limpet is enriched in the lighter 262 
isotope of Cu compared to seawater, in line with the theoretical prediction. Finally, as these hemocyanin 263 
standards are widely available, this dataset could be used for future interlaboratory comparisons, as well as 264 
additional studies related to organotropism in marine invertebrates or aquarium-controlled 265 
experimentation to elucidate Cu isotope fractionation between environment and hemocyanin. If the 266 
conservative transposition of Cu isotope composition in seawater to hemocyanin is confirmed in further 267 
studies, it could lead to biomonitoring studies designed to detect anthropogenic Cu emissions. 268 
 269 
 270 
  271 
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Figures and figure captions 540 
 541 

 542 
 543 
Figure 1. Active site with two copper ions (orange), six histidine residues and a bound dioxygen molecule 544 
(red) [11]. 545 
 546 
 547 

 548 
Figure 2. δ65Cu values for hemocyanins and seawater.  549 
 550 



 551 
 552 

 553 
Figure 3. Theoretical isotopic fractionation between different forms of hemocyanins and seawater at 554 
277K. 555 
 556 
 557 
 558 
 559 

 560 
 561 

Figure 4. Temperature dependence of ln β. The ln β65/63 values of copper in water and hemocyanin shown 562 
as linear functions of T-2. 563 
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Table and table captions 566 
 567 

Table 1. Logarithm of the reduced partition function, ln β (‰), for copper in seawater and hemocyanin. 568 

Table 2. Copper isotope compositions in hemocyanins. 569 

Table 3. Theoretical isotopic fractionation between different forms of copper and hemocyanin at 277K. 570 
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 572 

 573 

Table 1. Logarithm of the reduced partition function, ln β (‰), for copper in seawater and hemocyanin. 574 

Species lnβ65/63 (277K) lnβ65/63 (310K) 

Cu(I) hydrated 3.34 2.66 

Cu(II) hydrated 5.29 4.22 

Cu(I) histidine 3.62 2.92 

Cu(II) histidine 3.84 3.10 
 575 

 576 



Table 2. Copper isotope compositions in hemocyanins. 577 

Sample   ID Mass (mg) n �
65Cu_CuIPGP �

65Cu_SRM976 Reference 

          Mean 2� SE     
Concholepas concholepas 
Chilean abalone  

Mollusk B8556 19.7 12 0.36 0.14 0.04 0.63 This study 

Limulus polyphemus 
Horseshoe crab 

Arthropod H1757 3.3 6 0.33 0.10 0.04 0.61 This study 

Megathura crenulate Keyhole 
limpet 

Mollusk H7017 2.5 10 -0.56 0.19 0.06 -0.29 This study 

Octopus Mollusk 0.62 [47] 

� is the standard deviation; SE is the standard error, which corresponds to 2�/√n 

Relative to NIST SRM 976, the Cu_IPGP standard has δ65Cu = +0.271 ± 0.006‰ (2�; n = 55) [34]. 
 578 

 579 



Table 3. Theoretical isotopic fractionation between different forms of copper and hemocyanin at 277K 580 

calculated in this study. 581 

Species ∆65Cu 

Cu(I) hydrated vs Cu(II) hydrated 1.95 

Cu(I) histidine vs Cu(I) hydrated 0.29 

Cu(I) histidine vs Cu(II) hydrated 1.66 
Cu(II) histidine vs Cu(II) 
hydrated 1.44 

Cu(I) histidine vs Cu(II) histidine 0.22 
 582 




