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OPTIMAL TRANSPORT PSEUDOMETRICS

FOR QUANTUM AND CLASSICAL DENSITIES

FRANÇOIS GOLSE AND THIERRY PAUL

Abstract. This paper proves variants of the triangle inequality for the quan-

tum analogues of the Wasserstein metric of exponent 2 introduced in [F. Golse,
C. Mouhot, T. Paul: Commun. Math. Phys. 343 (2016), 165–205] to com-
pare two density operators, and in [F. Golse, T. Paul: Arch. Rational Mech.

Anal. 223 (2017), 57–94] to compare a phase space probability measure and
a density operator. The argument differs noticeably from the classical proof
of the triangle inequality for Wasserstein metrics, which is based on a disinte-

gration theorem for probability measures, and uses in particular an analogue
of the Kantorovich duality for the functional defined in [F. Golse, T. Paul:
loc. cit.]. Finally, this duality theorem is used to define ana analogue of the

Brenier transport map for the functional defined in [F. Golse, T. Paul: loc.
cit.] to to compare a phase space probability measure and a density operator.

1. Introduction

Quantum mechanics is known to be well approximated by classical mechanics in
situations where high frequency oscillations in the wave functions are involved, by
analogy with the approximation of “wave optics” by geometrical optics (as explicitly
mentioned by Landau and Lifshitz at the beginning of §46 in [17]).

However, there is no true analogue of the wave function (defined on the con-
figuration space) in classical mechanics which is formulated on the phase space of
the system. The classical limit of quantum mechanics can be expressed in terms of
the convergence of functions or distributions (the Wigner, or the Husimi functions)
on phase space associated to the orthogonal projections on the line spanned by
the wave functions (in the case of pure quantum states), or more generally with
the density operators (in the case of quantum mixed states) of the particles con-
sidered [18, 12]. The high frequency oscillations mentioned above are captured by
the momentum dependence of the values of these functions on phase space, which
remains present after passing to the limit in the sense of distributions. These are
the appropriate notions of convergence used in the mathematical description of the
classical limit: see for instance Theorems III.1 and III.2 in [18], or section 1 in [12].

On the other hand, the weak convergence of Borel probability measures in Eu-
clidean spaces is known to be metrized by a class of distances originating from
generalizations of the Monge problem of optimal transport. These distances are
associated with various names, and referred to as either Monge-Kantorovich, or
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Kantorovich-Rubinstein, or Wasserstein distances: see chapter 7 of [22] for a com-
plete description, and especially Theorem 7.12 in that chapter for the topological
properties of these distances. See also [5] for a fast and yet rather detailed descrip-
tion of the case of discrete measures.

This suggests the idea of comparing a quantum state and its classical limit
by measuring the Monge-Kantorovich-Rubinstein-Wasserstein distance between its
Husimi function and its weak limit. Similarly, one could compare two quantum
states by measuring the Monge-Kantorovich-Rubinstein-Wasserstein distance be-
tween their Husimi functions: this is the approach followed by Życzkowski and
S�lomczyński in [23]. This approach has the advantage of involving only well known
objects (the notion of Husimi function, defined in formula (25) of [18], and the
Monge-Kantorovich-Rubinstein-Wasserstein distances defined in chapter 7 of [22]).
Unfortunately, the evolution of the Husimi function of quantum states following the
quantum dynamics described by the Schrödinger, or Heisenberg, or von Neumann
equations is rather complicated [3] (even for polynomial potentials of high degree:
see equations (6)-(8) in [2]).

To avoid the difficulties incurred in translating the quantum dynamics in terms
of classical objects, another approach to the same problem was proposed in [13].
The new idea in [13] was to work directly on quantum objects, using the well
known formal analogy between (quantum) density operators on L2(Rd) and (Borel)
probability measures on the phase space R2d of classical mechanics, between the
trace of trace-class operators on L2(Rd) and the Lebesgue integral for functions of
L1(R2d), and between the commutator for operators on L2(Rd) and the Poisson
bracket on R2d. This idea was extended in [14] to compare directly (quantum)
density operators on L2(Rd) and (classical) probability measures on R2d — which
are obviously very different objects — by means of a functional denoted E� in [14].
Other quantum analogues of Wasserstein distances have been proposed and studied
by various authors: see for instance [7, 8, 9, 10, 16, 23].

The present paper achieves several different goals. First, the functional con-
structed in [13] to compare density operators on L2(Rd), and in [14] to compare
(quantum) density operators on L2(Rd) and probability measures on the (classi-
cal) phase space R2d are unified into a single functional d, a deformation of the
Monge-Kantorovich-Wasserstein distance of exponent 2 denoted distMK,2, defined
on D2 × D2, where D2 is the (disjoint) union of the set P2(R

2d) of phase-space
probability measures with finite second moment, and of the set D2(L

2(Rd)) of den-
sity operators (positive operators of trace 1, see (1) below) with finite energy for
the harmonic oscillator.

The complete technical definition of d and its main properties will require some
material exposed in Sections 2 and 3 below. Let us nevertheless give immediately
the definition of d: for μ, ν, fdxdξ ∈ P2(R

2d) and R,S ∈ D2(L
2(Rd))

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d(μ, ν) := distMK,2(μ, ν),

d(f,R) :=

(

inf
Q∈C(f,R)

∫

R2d traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

)1/2

,

d(R,S) :=

(

inf
T∈C(R,S)

traceH⊗H(T
1/2C�T

1/2)

)1/2

.
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Here C(f,R) is the set of couplings of f and R, namely the operator-valued
measurable functions Q(x, ξ) such that Q(x, ξ) = Q(x, ξ)∗ ≥ 0 and traceH Q(x, ξ) =
f(x, ξ) for a.e. (x, ξ) ∈ R2d while

∫

R2d Q(x, ξ)dxdξ = R, and the cost operator-

valued function c�(x, ξ) = |x − y|2 + |ξ + i�∇y|2 defined as a self-adjoint operator
on L2(Rd

y).
Meanwhile, C(R,S) is the set of couplings of R and S, namely the density oper-

ators on L2(Rd)⊗ L2(Rd) whose two marginals with respects to the two tensorial
factors are equal to R and S (once again see Section 2 for precise definition when f
is Lebesque absolutely continuous and Theorem 3.1 for the extension to the general
case f ∈ P2(R

2d).
It was observed already in [13] that the restriction of d to the set of density

operators, denoted MK�
2 in [13], is not a bona fide metric, since d(R,R) ≥

√
2d�

for all R ∈ D2(L
2(Rd)) (see Theorem 2.3 in [13]). Nevertheless, it is important

for applications to check whether d satisfies the other properties of metrics. That
the restriction of d to D2(H) is symmetric is obvious. But, on the other hand,
there seem to be very serious difficulties with the triangle inequality for the de-
formed “pseudometric” d. In particular, at variance with most other properties of
the pseudo-metric d, the question of the triangle inequality for d seems to require
arguments which significantly differ from those used in the proof of the triangle
inequality for the Monge-Kantorovich-Wasserstein metric distMK,2.

Our first main result in the present paper bears on a variant of the triangle
inequality for d.

Theorem A. (Triangle inequality) For all ρ1, ρ2, ρ3 ∈ D2, the deformation d of
the Monge-Kantorovich-Wasserstein distance distMK,2 satisfies
(a) the restricted triangle inequality if ρ2 is a Borel probability measure on R2d, or
if there exists j ∈ {1, 2, 3} such that ρj is a rank-one density operator :

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) ;

(b) the approximate triangle inequality in all other cases

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) +
√
d� .

It is worth mentioning at this point that DePalma and Trevisan [10] recently in-
troduced another “pseudometric” on the set of quantum density operators, different
from d, but for which they have obtained another variant of the triangle inequality,
of the form

d(R1, R3) ≤ d(R1, R2) + d(R2, R3) + d(R2, R2) .

This modified triangle inequality, or its analogue in Theorem A (b) of the present
paper can be understood as follows. At variance with the classical setting, in the
quantum setting, transporting a density operator on itself has a positive cost, and
this is the reason for the appearance of d(R2, R2) on the right hand side of the

inequality above. The same is true of d — except that the additional term
√
d�

on the right hand side of the inequality in Theorem A (b) does not depend on R1

or R2. Of course, the general lower bound d(R1, R2) ≥
√
2d� (see Theorem 2.3 in

[13]) implies the inequality

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) +
1√
2
d(ρ, ρ2) ,

which is of the same type as the DePalma-Trevisan inequality (with however a
better coefficient 1√

2
multiplying the additional term).
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In the case where ρ1, ρ2 are probability densities, the exact, but restricted triangle
inequality in Theorem A (a) had already been proved, and applied in [15] to produce
semiclassical upper bounds for d in situations more general than those considered
in either [13] or [14], which obtained such upper bounds in the only case of Töplitz
density operators (see Theorems 2.3 (1) in [13] and 2.4 (1) in [14]).

If the intermediate point ρ2 is a density operator, the proof of the triangle in-
equality for the Monge-Kantorovich-Wasserstein distances on the set of probability
measures on R2d makes use of mathematical objects or results which do not seem
to have analogues for density operators on L2(Rd). Statement (b) in Theorem A is
proved by a completely different method, based on the following Kantorovich du-
ality formula for the pseudometric defined in [14], which is our second main result
in this paper.

Theorem B. (Kantorovich duality) For each probability density f on R2d with
finite second moments, and each density operator R on L2(Rd) with finite energy
for the harmonic oscillator, one has

d(f,R)2 = sup
a∈Cb(R

2d
x,ξ

;R), B=B∗∈L(L2(Rd
y))

a(x,ξ)I
L2(Rd

y)
+B≤|x−y|2+|ξ+I�∇y|2

(∫

R2d

a(x, ξ)f(x, ξ)dxdξ + trace(BR)

)

As a consequence of the various properties of d listed above, one can prove
first that the “pseudometric” d is indeed a deformation of the Monge-Kantorovich-
Wasserstein metric distMK,2 in the following sense.

Theorem C. (Classical limit) Let R�, S� be families of finite energy density
operators on L2(Rd), and let μ, ν be Borel probability measures on R2d such that
d(R�, μ) and d(ν, S�) satisfy

d(R�, μ) + d(ν, S�) → 0 as � → 0+

Then

distMK,2(μ, ν) = lim
�→0+

d(R�, S�) .

Another rather important consequence of the so-called restricted triangle in-
equality (Theorem A (a)) is the extension by continuity of d(ρ1, ρ2) to pairs ρ1, ρ2
where ρ1 or ρ2 is a (Borel) probability measure with finite second moments that
is not absolutely continuous with respect to the Lebesgue measure on phase-space,
and therefore not given by a probability density as in the original definition in [14].

The duality theorem above (Theorem B) has other consequences for the pseu-
dometric d than the approximate triangle inequality in Theorem A (b).

In the last section of the paper, we focus on d(r, S) for r ∈ P2(R
2d) and

S ∈ D2(R
d).

We investigate a (semi)quantum analogue of the Knott-Smith-Brenier Theo-
rem and a (semi)quantum analogue of the Legendre transform in the case where
the supremum in the Kantorovich duality is attained by two optimal potentials

ã ∈ Cb(R2d) and B̃ ∈ L(L2(Rd, dy)):

d(r, S)2 =

∫

R2d

ã(x, ξ)f(x, ξ)dxdξ + traceL2(Rd) B̃R.



OPTIMAL TRANSPORT PSEUDOMETRICS 5

In particular, we state a gradient aspect of our (semi)quantum Brenier Theorem in
the form of the two equalities (13), the analogue of the gradient structure in the
classical setting, and we show moreover that

a(x, ξ) := 1
2 (ξ

2 + x2 − ã(x, ξ))

is the semiquantum-Legendre transform of

B := 1
2 (−∇2

y + y2 − B̃),

in the sense that

a(x, ξ) = sup
φ∈Dom(B)

‖φ‖=1

(x · 〈φ|y|φ〉+ ξ · 〈φ| − i�∇y|φ〉 − 〈φ|B|φ〉).

The outline of this paper is as follows: the definition of d on D2 is recalled
in detail in section 2. The “restricted” triangle inequality Theorem A (a) (see
Theorem 3.1 below) is proved in section 3, along with the extension of d to Borel
probability measures on the classical phase space that are not absolutely continuous
with respect to the Lebesgue measure, by a density argument stated as Lemma 3.2.
We conclude section 3 with a detailed discussion of the difficulties in extending the
proof of Theorem A (a) to the case where the intermediate point ρ2 is a density
operator of rank larger than one.

The Kantorovich duality theorem (Theorem B) is proved in section 4 (see The-
orem 4.1).

With the duality theorem, one proves in section 5 an important inequality stated
as Theorem 5.4, which generalizes both Theorem 2.3 (2) in [13] and Theorem 2.4
(2) from [14]. Theorem A (b) then follows from Theorem A (a) and Theorem 5.4
by an elementary inequality (see Theorem 5.1).

The deformation theorem (Theorem C) is proved in section 5 as a consequence
of Theorem A (see Theorem 5.5). (Notice however, that Theorem C only uses part
(a) in Theorem A).

2. Extending the Monge-Kantorovich-Wasserstein Distance of

Exponent 2 to Quantum Density Operators

Henceforth we denote by P(Rn) the set of Borel probability measures on Rn,
and set

P2(R
n) :=

{
μ ∈ P(Rn) s.t.

∫

Rn |x|2μ(dx) < ∞
}
.

We also denote by Pac(Rn) the set of probability densities on Rn, identified with
Borel probability measures on Rn that are absolutely continuous with respect to
the Lebesgue measure, and set Pac

2 (Rn) = P2(R
n) ∩ Pac(Rn).

With H := L2(Rd), the sets of density operators, and of finite-energy density
operators on H, are defined respectively as follows:

D(H) :={T ∈ L(H) s.t. T = T ∗ ≥ 0 and traceH(T ) = 1} ,
D2(H) :={T ∈ D(H) s.t. traceH(T

1/2HT 1/2) < ∞} ,

where

H = H(x, �∇x) = − 1
2�

2Δx + 1
2 |x|

2 .
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In the sequel, we seek to extend the Monge-Kantorovich(-Wasserstein) distance
distMK,2 to the set1

(1) D2 := D2(H) ∪ P2(R
2d) .

The set of couplings, or transference plans, between two elements μ, ν of P(Rn)
is

C(μ, ν) :={ρ ∈ P(Rn ×Rn) s.t. for all φ, ψ ∈ Cb(R
n)

∫∫

Rn×Rn(φ(x)+ψ(y))ρ(dxdy)=
∫

Rn φ(x)μ(dx)+
∫

Rn ψ(y)ν(dy)} .

(See formula (1.2) in chapter 1 of [22]). Notice that μ ⊗ ν ∈ C(μ, ν), which is
therefore nonempty.

We recall the definition of the Monge-Kantorovich distance of exponent 2 be-
tween two probability measures μ, ν ∈ P2(R

n):

distMK,2(μ, ν) := min
ρ∈C(μ,ν)

(∫∫

Rn×Rn

|x− y|2ρ(dxdy)
)1/2

.

(See Definitions 7.1.1 and Theorem 7.3 in chapter 7 in [22]. That the inf is indeed
a min is explained in the last paragraph of Theorem 1.3 in chapter 1, and in
Proposition 2.1 in chapter 2 of [22].)

Obviously, extending distMK,2 to D2 requires first defining the notion of coupling
between two arbitrary elements ofD2. The notion of coupling between two elements
of D2 is defined by analogy with the case of two elements of P(Rn). For each pair
of density operators R,S ∈ D(H), one sets

C(R,S) := {T ∈ D(H⊗H) s.t. traceH⊗H(T (A⊗ IH+IH ⊗B))=traceH(RA+SB)} .

(This is Definition 2.1 in [13].) Here again, R⊗ S ∈ C(R,S), so that C(R,S) �= ∅.
For each probability density on phase space f ∈ Pac(R2d) and each density

operator R ∈ D(H), a coupling of f andR is an operator-valued measurable function

Rd ×Rd � (x, ξ) �→ Q(x, ξ) ∈ L(H)

such that

Q(x, ξ) = Q(x, ξ)∗ ≥ 0 and traceH(Q(x, ξ)) = f(x, ξ) for a.e. (x, ξ) ∈ R2d ,

while ∫

R2d

Q(x, ξ)dxdξ = R .

The set of couplings of f and R is denoted C(f,R) = C(R, f).
Observe that Q(x, ξ) ∈ L1(H) which is separable for a.e. (x, ξ) ∈ R2d, since f is

a probability density, and therefore is finite for a.e. (x, ξ) ∈ R2d. (See Definition
2.1 in [14].) The map f ⊗R : (x, ξ) �→ f(x, ξ)R always belongs to C(f,R), so that
C(f,R) �= ∅.

Next we define the transport cost. The (quantum-to-quantum) transport cost
between two quantum states corresponding with the position “variables” (oper-
ators) x and y, and the momentum “variables” (operators ) −i�∇x and −i�∇y

1Note that the index n refers to the dimension of spaces on which classical densities are defined.

Since the classical space underlying quantum mechanics is the phase-space of the classical system,
n = 2d where d is the dimension on which the quantum wave function leaves.
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is

C� = C(x, y,−i�∇x,−i�∇y) :=
d∑

j=1

(
(xj − yj)

2 − �
2(∂xj − ∂yj )

2
)
.

Similarly, the (classical-to-quantum) transport cost between a classical state with
phase space variables (x, ξ) and quantum states corresponding with the position
“variable” (operator) y, and the momentum “variable” (operator) −i�∇y is

c�(x, ξ) = c(x, ξ, y,−i�∇y) :=
d∑

j=1

(
(xj − yj)

2 + (ξj + i�∂yj )
2
)
.

Then, we define the extension d of distMK,2 to D2. For all μ, ν ∈ P2(R
2d), each

f ∈ Pac
2 (R2d) and each R,S ∈ D2(H), set

(2) d(μ, ν) := distMK,2(μ, ν) ∈ [0,+∞)

and
(3)

d(f,R) = d(R, f) :=

(

inf
Q∈C(f,R)

∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

)1/2

,

(see Definition 2.2 in [14], with a slight change in the normalization of the transport
cost operator c�(x, ξ)), while

(4) d(R,S) :=

(

inf
T∈C(R,S)

traceH⊗H(T
1/2C�T

1/2)

)1/2

(as in Definition 2.2 of [13]). Observe that we have not yet defined d(μ,R) for
μ ∈ P2(R

2d) \ Pac
2 (R2d). This will be done later by a density argument.

We begin our discussion of the properties of d with the following observations.

Lemma 2.1. For each f ∈ Pac
2 (R2d) and each R,S ∈ D2(H), one has

d(f,R) ∈ [
√
d�,+∞) and d(R,S) ∈ [

√
2d�,+∞) .

Proof. The lower bounds appear in Theorems 2.3 of [13] and Theorem 2.4 of [14].
They are consequences of the operator inequalities

c�(x, ξ) ≥ d�IH for all x, ξ ∈ Rd , and C� ≥ 2d�IH⊗H

(see [13] on p. 183 and section 3.1 of [14] on p. 71).
For each Q ∈ C(f,R), one has

∫

R2d

traceH

(
Q(x, ξ)

1
2 (|x|2 + |ξ|2)Q(x, ξ)

1
2

)
dxdξ =

∫

R2d

(|x|2 + |ξ|2)f(x, ξ)dxdξ < ∞

while, for each n ≥ 1,
∫

R2d

traceH
(
(I + 1

nH(y, �∇y))
−1H(y, �∇y)Q(x, ξ)

)
dxdξ

= traceH

(

(I + 1
nH(y, �∇y))

−1H(y, �∇y)

∫

R2d

Q(x, ξ)dxdξ

)

= traceH
(
(I + 1

nH(y, �∇y))
−1H(y, �∇y)R

)
.
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By Proposition A.3 in [15]
∫

R2d

traceH

(
Q(x, ξ)

1
2 (I + 1

nH(y, �∇y))
−1H(y, �∇y)Q(x, ξ)

1
2

)
dxdξ

→ traceH

(
R

1
2H(y, �∇y)R

1
2

)
< ∞ ,

and, for a.e. (x, ξ) ∈ R2d,

traceH
(
(I + 1

nH(y, �∇y))
−1H(y, �∇y)Q(x, ξ)

)

→ traceH

(
Q(x, ξ)

1
2H(y, �∇y)Q(x, ξ)

1
2

)
.

Thus, by monotone convergence,
∫

R2d

traceH

(
Q(x, ξ)

1
2H(y, �∇y)Q(x, ξ)

1
2

)
dxdξ

= traceH

(
R

1
2H(y, �∇y)R

1
2

)
< ∞ .

For a.e. (x, ξ) ∈ R2d, the operator Q(x, ξ) ∈ L1(H) is a nonnegative self-adjoint
operator, and has a spectral decomposition of the form

Q(x, ξ) =
∑

k≥1

λk(x, ξ)|ek(x, ξ)〉〈ek(x, ξ)|

where λk is a measurable real-valued function and ek a measurable H-valued func-
tion for each k ≥ 1 such that

λk(x, ξ) ≥ 0 for a.e. (x, ξ) ∈ R2d ,
∑

k≥1

λk(x, ξ) = f(x, ξ) ,

while

(ek(x, ξ))k≥1 is a complete orthonormal system in H for a.e. (x, ξ) ∈ R2d .

Thus
∑

k≥1

∫

R2d

λk(x, ξ)〈ek(x, ξ)|H(y, �∇y)|ek(x, ξ)〉dxdξ

=

∫

R2d

traceH

(
Q(x, ξ)

1
2H(y, �∇y)Q(x, ξ)

1
2

)
dxdξ < ∞

so that

λk(x, ξ) > 0 =⇒ ek(x, ξ) ∈ L2(Rd; |y|2dy) ∩H1(Rd) .

Now, one has the elementary pointwise inequalities

(xj − yj)
2 ≤ 2(x2

j + y2j ) ,

and its analogue for operators

(ξj + i�∂yj )
2 ≤ 2(ξ2j − �

2∂2
yj
) ,

meaning that

〈ψ|(ξj + i�∂yj )
2|ψ〉 ≤ 2ξ2j ‖ψ‖2H + 2‖�∂yjψ‖2H = 2〈ψ|ξ2j − �

2∂2
yj
|ψ〉
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for all j = 1, . . . , d. Hence

∑

k≥1

d∑

j=1

∫

R2d

λk(x, ξ)〈ek(x, ξ)|(xj − yj)
2 + (ξj + i�∂yj )

2|ek(x, ξ)〉dxdξ

=

∫

R2d

traceH(Q(x, ξ)
1
2 c(x, ξ, y, �∇y)Q(x, ξ)

1
2 )dxdξ

=

∫

R2d

traceH(Q(x, ξ)
1
2 (|x|2 + |ξ|2 +H(y, �∇y))Q(x, ξ)

1
2 )dxdξ < ∞

for each Q ∈ C(f,R) with f ∈ Pac
2 (R2d) and each R ∈ D2(H). Since we have seen

that C(f,R) �= ∅, this implies in particular that d(f,R) < ∞.

If T ∈ C(R,S) with R,S ∈ D2(H), applying Proposition A.3 in [15] shows that

traceH⊗H((((I +
1
nH)−1H)⊗ IH)T ) = traceH(((I +

1
nH)−1H)R)

→ traceH

(
R

1
2HR

1
2

)
< ∞ ,

while

traceH⊗H((((I +
1
nH)−1H)⊗ IH)T ) → traceH⊗H

(
T

1
2 (H ⊗ IH)T

1
2

)
.

Thus

traceH⊗H

(
T

1
2 (H ⊗ IH)T

1
2

)
= traceH

(
R

1
2HR

1
2

)
< ∞ ,

and similarly

traceH⊗H

(
T

1
2 (IH ⊗H)T

1
2

)
= traceH

(
S

1
2HS

1
2

)
< ∞ .

Write the spectral decomposition of T as

T =
∑

k≥1

τk|Φk〉〈Φk|

where (Φk)k≥1 is a complete orthonormal system in H⊗ H, while

τk ≥ 0 for all k ≥ 1 and
∑

k≥1

τk = 1 .

Hence

∑

k≥1

d∑

j=1

τj

∫∫

Rd×Rd

(
x2
jΦk(x, y)

2 + (�∂xjΦk(x, y))
2
)
dxdy = traceH

(
R

1
2HR

1
2

)
< ∞

∑

k≥1

d∑

j=1

τj

∫∫

Rd×Rd

(
y2jΦk(x, y)

2 + (�∂yjΦk(x, y))
2
)
dxdy = traceH

(
S

1
2HS

1
2

)
< ∞

so that

τj > 0 =⇒ Φj ≡ Φj(x, y) ∈ L2(Rd
y;L

2(Rd; |x|2dx) ∩H1(Rd
x))

∩L2(Rd
x;L

2(Rd; |y|2dy) ∩H1(Rd
y)) .

We use the operator inequality

(−i�∂xj + i�∂yj )
2 ≤ −2�2(∂2

xj
+ ∂2

yj
) ,

meaning that, for all ψ ≡ ψ(x, y) ∈ L2(Rd
x;H

1(Rd
y)) ∩ L2(Rd

y;H
1(Rd

x)), one has

〈ψ|(−i�∂xj + i�∂yj )
2|ψ〉 ≤ 2‖�∂xjψ‖2L2 + 2‖�∂yjψ‖2L2 = 〈ψ| − 2�2(∂2

xj
+ ∂2

yj
)|ψ〉 .
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Thus, for each k ≥ 1 such that τk > 0, one has

〈Φk|(xj − yj)
2 − �

2(∂xj − ∂yj )
2|Φk〉 ≤ 2〈Φk|x2

j − �
2∂2

xj
|Φk〉+ 2〈Φk|y2j − �

2∂2
yj
|Φk〉 ,

so that, for each T ∈ C(R,S) with R,S ∈ D2(H),

traceH⊗H

(
T

1
2C�T

1
2

)
=

∑

k≥1

τk

d∑

j=1

〈Φk|(xj − yj)
2 − �

2(∂xj − ∂yj )
2|Φk〉

≤ 2
∑

k≥1

τk

d∑

j=1

(〈Φk|x2
j − �

2∂2
xj
|Φk〉+ 〈Φk|y2j − �

2∂2
yj
|Φk〉)

= 2 traceH⊗H

(
T

1
2 (H ⊗ IH + IH ⊗H)T

1
2

)

= 2 traceH

(
R

1
2HR

1
2 + S

1
2HS

1
2

)
< ∞ .

Since we have seen that C(R,S) �= ∅, this implies in particular that d(R,S) < ∞
for each R,S ∈ D2(H). �

3. Restricted Triangle Inequality

The main result in this section is the following theorem. Let us recall that, so
far, we have defined d(μ,R) = d(R,μ) for all R ∈ D2(H) only in the case where
μ ∈ Pac

2 (R2d), and not for all μ ∈ P2(R
2d).

Theorem 3.1. There is a unique extension of d defining a map D2×D2 → [0,+∞)
still denoted d, satisfying the triangle inequality for each ρ1, ρ2, ρ3 ∈ D2:

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3)

if ρ2 ∈ P2(R
2d), or if ρj ∈ {R ∈ D2(H) s.t. R2 = R} for some j ∈ {1, 2, 3}.

This theorem is an extension of Theorem 3.5 of [15], which proves the triangle
inequality in the case where ρ1, ρ2 ∈ Pac

2 (R2d) and ρ3 ∈ D2(H).

Proof. The proof of this theorem is split in several steps.

Step 1: extension to D2. As a consequence of Theorem 3.5 of [15], one has

|d(ρ1, ρ3)− d(ρ2, ρ3)| ≤ d(ρ1, ρ2) = distMK,2(ρ1, ρ2)

for all ρ1, ρ2 ∈ Pac
2 (R2d) and all ρ3 ∈ D2(H).

Lemma 3.2. The set Pac
2 (Rn) is dense in P2(R

2d) for the metric distMK,2.

The proof of this lemma is deferred until after the proof of Theorem 3.1.

Taking Lemma 3.2 for granted, we conclude that the Lipschitz continuous func-
tion d on Pac

2 (R2d) with values in the complete space [0,+∞) has a unique contin-
uous extension to P2(R

2d).

Step 2: triangle inequality when ρ2 ∈ Pac
2 (R2d). The triangle inequality has

already been proved in Theorem 3.5 of [15] for ρ1, ρ2 ∈ Pac
2 (R2d) and ρ3 ∈ D2(H).

It remains only to treat the case where ρ1, ρ3 ∈ D2(H) while ρ2 ∈ Pac
2 (R2d).

We first recall the disintegration result stated as Lemma A.4 in [15].
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Lemma 3.3. Let f ∈ Pac(R2d) and R ∈ D2(H), and let Q ∈ C(f,R). There exists
a σ(L1(H),L(H)) weakly measurable operator valued function (x, ξ) �→ Qf (x, ξ)
defined a.e. on R2d such that

Qf (x, ξ) = Qf (x, ξ)
∗ ≥ 0 , traceH(Qf (x, ξ)) = 1 , and Q(x, ξ) = f(x, ξ)Qf (x, ξ)

for a.e. (x, ξ) ∈ R2d.

Let us briefly recall the notion of weak measurability. Any continuous linear
functional on L1(H) is of the form T �→ traceH(AT ) for some A ∈ L(H), so that the
topological dual of L1(H) is L(H). The σ(L1(H),L(H)) weak topology on L1(H)
is defined as in section 2 of chapter 3 in [4]. Then, the map Qf is σ(L1(H),L(H))
weakly measurable if (x, ξ) �→ traceH(AQ(x, ξ)) is a complex-valued measurable
function on R2d for all A ∈ L(H).

For each Q1 ∈ C(ρ1, ρ2) and each Q3 ∈ C(ρ2, ρ3), set

Q13(x, ξ) := Q1(x, ξ)⊗Q3
ρ2
(x, ξ) .

By construction,

Q13(x, ξ) = Q13(x, ξ)∗ ≥ 0 ,

and one has

traceH⊗H(Q
13(x, ξ)(A⊗ I)) = traceH(Q

1(x, ξ)A) traceH(Q
3
ρ2
(x, ξ))

= traceH(Q
1(x, ξ)A) ,

while

traceH⊗H(Q
13(x, ξ)(I ⊗A)) = traceH(Q

1(x, ξ)) traceH(Q
3
ρ2
(x, ξ)A)

= ρ2(x, ξ) traceH(Q
3
ρ2
(x, ξ)A) = traceH(Q

3(x, ξ)A) .

This immediately implies that

T13 =

∫

R2d

Q13(x, ξ)dxdξ ∈ C(ρ1, ρ3) .

Next we recall the “Peter-Paul inequality” for operators (Lemma A.1 in [15]).

Lemma 3.4. Let L1, L2 be (unbounded) self-adjoint operators on L2(Rn). For
each α > 0

〈ψ|L1L2 + L2L1|ψ〉 ≤ α〈ψ|L2
1|ψ〉+ 1

α 〈ψ|L
2
2|ψ〉 , ψ ∈ Dom(L1) ∩Dom(L2) .

With this lemma, we prove the following operator inequality.

Lemma 3.5. For each α > 0 and each (y, η) ∈ R2d, one has

C(x, �∇x, z, �∇z) ≤ (1 + α)c(y, η, x, �∇x)⊗ IH + (1 + 1
α )IH ⊗ c(y, η, z, �∇z) .

In other words, for all α > 0

φ≡φ(x, z)∈L2(Rd
x;L

2(Rd
z , |z|2dz)∩H1(Rd

z))∩L2(Rd
x;L

2(Rd
z , |z|2dz) ∩H1(Rd

z))

=⇒ 〈φ|C(x, �∇x, z, �∇z)|φ〉 ≤(1 + α)

∫

Rd

〈φ(·, z)|c�(y, η)|φ(·, z)〉dz

+(1 + 1
α )

∫

Rd

〈φ(x, ·)|c�(y, η)|φ(x, ·)〉dx .
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The proof of this lemma is postponed until after the proof of Theorem 3.1.

For a.e. (y, η) ∈ R2d, the operators Q1(y, η), Q3(y, η) ∈ L1(H) are nonnegative
self-adjoint and have spectral decompositions of the form

Q1(y, η) =
∑

k≥1

λ1
k(y, η)|e1k(y, η)〉〈e1k(y, η)| ,

Q3(y, η) =
∑

k≥1

λ3
k(y, η)|e3k(y, η)〉〈e3k(y, η)| ,

where λ1
k, λ

3
k are measurable real-valued functions, while e1k, e

3
k are measurable H-

valued functions for each k ≥ 1 such that

λ1
k(y, η), λ

3
k(y, η) ≥ 0 for a.e. (y, η) ∈ R2d ,

∑

k≥1

λ1
k(y, η) =

∑

k≥1

λ3
k(y, η) = ρ2(y, η) ,

while, for a.e. (y, η) ∈ R2d,

(e1k(y, η))k≥1 and (e3k(y, η))k≥1 are complete orthonormal systems in H .

Hence

Q13(y, η) =
∑

k,l≥1

λ13
kl (y, η)|e1k(y, η)⊗ e3l (y, η)〉〈e1k(y, η)⊗ e3l (y, η)|

with λ13
kl measurable on R2d such that

λ13
kl (y, η) ≥ 0 ,

∑

k≥1

λ13
kl (y, η) = λ3

l (y, η) ,
∑

l≥1

λ13
kl (y, η) = λ1

k(y, η)

for a.e. (y, η) ∈ R2d. In particular

λ13
kl (y, η) ≤ max(λ1

k(y, η), λ
3
l (y, η)) .

Therefore, as explained in the proof of Lemma 2.1

λ13
kl (y, η) > 0 =⇒

{
e1k(y, η) ∈ L2(Rd; |y|2dy) ∩H1(Rd) ,

e3l (y, η) ∈ L2(Rd; |y|2dy) ∩H1(Rd) ,

so that

〈e1k(y, η)⊗ e3l (y, η)|C(x, �∇x, z, �∇z)|e1k(y, η)⊗ e3l (y, η)〉
≤ (1 + α)〈e1k(y, η)⊗ e3l (y, η)|c�(y, η)⊗ IH|e1k(y, η)⊗ e3l (y, η)〉
+(1 + 1

α )〈e
1
k(y, η)⊗ e3l (y, η)|IH ⊗ c�(y, η)|e1k(y, η)⊗ e3l (y, η)〉

= (1 + α)〈e1k(y, η)|c�(y, η)|e1k(y, η)〉
+(1 + 1

α )〈e
3
l (y, η)|c�(y, η)|e3l (y, η)〉 .
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By monotone convergence
∫

R2d

traceH⊗H

(
Q13(y, η)

1
2C�Q

13(y, η)
1
2

)
dydη

=
∑

k,l≥1

∫

R2d

λ13
kl (y, η)〈e1k(y, η)⊗e3l (y, η)|C�|e1k(y, η)⊗e3l (y, η)〉dydη

≤ (1 + α)
∑

k,l≥1

∫

R2d

λ13
kl (y, η)〈e1k(y, η)|c�(y, η)|e1k(y, η)〉dydη

+(1 + 1
α )

∑

k,l≥1

∫

R2d

λ13
kl (y, η)〈e3l (y, η)|c�(y, η)|e3l (y, η)〉dydη

= (1 + α)
∑

k≥1

∫

R2d

λ1
k(y, η)〈e1k(y, η)|c�(y, η)|e1k(y, η)〉dydη

+(1 + 1
α )

∑

l≥1

∫

R2d

λ3
l (y, η)〈e3l (y, η)|c�(y, η)|e3l (y, η)〉dydη

= (1 + α)

∫

R2d

traceH

(
Q1(y, η)

1
2 c�(y, η)Q

1(y, η)
1
2

)
dydη

+(1 + 1
α )

∫

R2d

traceH

(
Q3(y, η)

1
2 c�(y, η)Q

3(y, η)
1
2

)
dydη .

Using Proposition A.3 in [15] and the monotone convergence theorem shows that

traceH⊗H

(
(I + 1

nC�)
−1C�T13

)

=

∫

R2d

traceH⊗H

(
(I + 1

nC�)
−1C�Q

13(y, η)
)
dydη

→
∫

R2d

traceH⊗H

(
Q13(y, η)

1
2C�Q

13(y, η)
1
2

)
dydη

= traceH⊗H

(
T

1
2
13C�T

1
2
13

)
.

Since we already know that T13 ∈ C(ρ1, ρ3), we have proved that

d(ρ1, ρ3)
2 ≤ traceH⊗H

(
T

1
2
13C�T

1
2
13

)

≤ (1 + α)

∫

R2d

traceH

(
Q1(y, η)

1
2 c�(y, η)Q

1(y, η)
1
2

)
dydη

+(1 + 1
α )

∫

R2d

traceH

(
Q3(y, η)

1
2 c�(y, η)Q

3(y, η)
1
2

)
dydη .

Minimizing the last right hand side in Q1 ∈ C(ρ2, ρ1) and in Q3 ∈ C(ρ2, ρ3) shows
that

d(ρ1, ρ3)
2 ≤ (1 + α)d(ρ1, ρ2)

2 + (1 + 1
α )d(ρ2, ρ3)

2 ,

and minimizing the right hand side of this inequality in α > 0 leads to the desired
triangle inequality.

Step 3: triangle inequality when at least one ρj is a rank-one projection.
In the case where R = |ψ〉〈ψ| for some ψ ∈ H such that ‖ψ‖H = 1, the structure of
couplings of an element of D2(H) or of Pac

2 (R2d) with R is very simple.



14 F. GOLSE AND T. PAUL

Lemma 3.6. If R = |ψ〉〈ψ| for some ψ ∈ H such that ‖ψ‖H = 1, one has

C(f,R) = C(R, f) = {f ⊗R} and C(R,S) = {R⊗ S}
for each f ∈ Pac(R2d) and each S ∈ D2(H).

We postpone the proof of this lemma until after the proof of Theorem 3.1.

On the other hand, using Lemma 3.4 leads to the following operator inequalities.

Lemma 3.7. For each α > 0

|x− z|2 + |ξ − ζ|2 ≤(1 + α)c(x, ξ, y, �∇y) + (1 + 1
α )c(z, ζ, y, �∇y) ,

c(x, ξ, z, �∇z) ≤(1 + α)c(x, ξ, y, �∇y) + (1 + 1
α )C(y, �∇y, z, �∇z) ,

C(x, �∇x, z, �∇z) ≤(1 + α)C(x, �∇x, y, �∇y) + (1 + 1
α )C(y, �∇y, z, �∇z) .

In other words, for each ψ ≡ ψ(y) ∈ H1(Rd) ∩ L2(Rd; |y|2dy)
(|x− z|2 + |ξ − ζ|2)‖ψ‖2H ≤ (1 + α)〈ψ|c�(x, ξ)|ψ〉+ (1 + 1

α )〈ψ|c�(z, ζ)|ψ〉 ,
while, for each φ ≡ φ(z) ∈ H1(Rd) ∩ L2(Rd; |z|2dz)

〈φ|c�(x, ξ)|φ〉‖ψ‖2H ≤ (1 + α)〈ψ|c�(x, ξ)|ψ〉‖φ‖2H + (1 + 1
α )〈ψ ⊗ φ|C�|ψ ⊗ φ〉 .

Similarly, for each φ1 ≡ φ1(w) and φ3 ≡ φ3(w) ∈ L2(Rd; |w|2dw) ∩ H1(Rd), one
has

〈φ1 ⊗ φ3|C�|φ1 ⊗ φ3〉‖ψ‖2H ≤(1 + α)

∫

Rd

〈φ1 ⊗ ψ|C�|φ1 ⊗ ψ〉|φ3(z)|2dz

+ (1 + 1
α )

∫

Rd

〈ψ ⊗ φ3|C�|ψ ⊗ φ3〉|φ1(x)|2dx .

We shall give the proof of these inequalities at the end of the present section.

Thus, for each f, g ∈ Pac
2 (R2d), pick Φ convex on R2d such that an optimal

coupling of f and g for distMK,2 is f(x, ξ)δ((z, ζ) − ∇Φ(x, ξ)) (such a Φ exists by
Theorem 2.12 in chapter 2 of [22]),

Q(x, ξ, z, ζ) := f(x, ξ)δ((z, ζ)−∇Φ(x, ξ))|ψ〉〈ψ| ,
where R = |ψ〉〈ψ| with ψ ∈ L2(Rd; |y|2dy) ∩ H1(Rd) and ‖ψ‖H = 1. The first
inequality in Lemma 3.7 implies that

(|x−∇xΦ(x, ξ)|2 + |ξ −∇ξΦ(x, ξ)|2)f(x, ξ) ≤(1 + α)f(x, ξ)〈ψ|c�(x, ξ)|ψ〉
+ (1 + 1

α )f(x, ξ)〈ψ|c�(∇Φ(x, ξ))|ψ〉 .
Integrating both sides of this inequality leads to

d(f, g)2 =

∫

R2d

(|x−∇xΦ(x, ξ)|2 + |ξ −∇ξΦ(x, ξ)|2)f(x, ξ)dxdξ

≤(1 + α)

∫

R2d

f(x, ξ)〈ψ|c�(x, ξ)|ψ〉dxdξ

+ (1 + 1
α )

∫

R2d

f(x, ξ)〈ψ|c�(∇Φ(x, ξ))|ψ〉dxdξ

≤(1 + α)

∫

R2d

f(x, ξ)〈ψ|c�(x, ξ)|ψ〉dxdξ

+ (1 + 1
α )

∫

R2d

g(z, ζ)〈ψ|c�(z, ζ)|ψ〉dzdζ

≤(1 + α)d(f,R)2 + (1 + 1
α )d(R, g)2
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since C(f,R) = {f⊗R} and C(g,R) = {g⊗R} by Lemma 3.6. Minimizing in α > 0
implies that

d(f, g) ≤ d(f,R) + d(R, g) .

For all f ∈ Pac
2 (R2d) and each S ∈ D2(H), write the spectral decomposition of

S

S =
∑

k≥1

σk|ek〉〈ek| , with σk ≥ 0 and
∑

k≥1

σk = 1

where ek ∈ L2(Rd, |z|2dz)∩H1(Rd) for each k ≥ 1 with σk > 0 is such that (ek)k≥1

is a complete orthonormal system in H. Similarly, let (x, ξ) �→ Q(x, ξ) be a coupling
of f and R, with spectral decomposition

Q(x, ξ) =
∑

j≥1

χj(x, ξ)|ψx,ξ
j 〉〈ψx,ξ

j | , with χj(x, ξ) ≥ 0 and
∑

j≥1

χj(x, ξ) = f(x, ξ)

for a.e. (x, ξ) ∈ R2d. Here again ψx,ξ
j ∈ L2(Rd, |y|2dy) ∩ H1(Rd) for each j ≥ 1

with χj(x, ξ) > 0 is such that (ψx,ξ
j )j≥1 is a complete orthonormal system in H.

In the case considered here, either S is a rank-one operator, in which case σ1 = 1
and σk = 0 for all k ≥ 2, or R = |ψ〉〈ψ| with ‖ψ‖H = 1, in which case the only
coupling of f and R is Q(x, ξ) = f(x, ξ)R by Lemma 3.6. In this latter case, one

can take ψx,ξ
1 = ψ, and χ1(x, ξ) = f(x, ξ) with χj(x, ξ) = 0 for all j ≥ 2.

The second inequality in Lemma 3.7 implies that

〈ek|c�(x, ξ)|ek〉 = 〈ψx,ξ
j |ψx,ξ

j 〉〈ek|c�(x, ξ)|ek〉

≤ (1 + α)〈ψx,ξ
j |c�(x, ξ)|ψx,ξ

j 〉〈ek|ek〉+ (1 + 1
α )〈ψ

x,ξ
j ⊗ ek|C�|ψx,ξ

j ⊗ ek〉

≤ (1 + α)〈ψx,ξ
j |c�(x, ξ)|ψx,ξ

j 〉+ (1 + 1
α )〈ψ

x,ξ
j ⊗ ek|C�|ψx,ξ

j ⊗ ek〉

for all j, k ≥ 1 and a.e. (x, ξ) ∈ R2d such that χj(x, ξ) > 0.
Multiplying both sides of this inequality by χj(x, ξ)σk, summing in j, k ≥ 1 and

integrating in (x, ξ) shows that

d(f, S)2 ≤
∫

R2d

f(x, ξ) traceH

(
S

1
2 c�(x, ξ)S

1
2

)
dxdξ

=

∫

R2d

∑

j,k≥1

χj(x, ξ)σk〈ek|c�(x, ξ)|ek〉dxdξ

≤(1 + α)

∫

R2d

∑

j≥1

χj(x, ξ)〈ψx,ξ
j |c�(x, ξ)|ψx,ξ

j 〉dxdξ traceH(S)

+ (1 + 1
α )

∫

R2d

∑

j,k≥1

χj(x, ξ)σk〈ψx,ξ
j ⊗ ek|C�|ψx,ξ

j ⊗ ek〉

=(1 + α)

∫

R2d

traceH(Q(x, ξ)
1
2 c�(x, ξ)Q(x, ξ)

1
2 )dxdξ

+ (1 + 1
α )

∫

R2d

traceH((Q(x, ξ)⊗ S)
1
2C�(Q(x, ξ)⊗ S)

1
2 )dxdξ .
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Arguing as in the proof of Lemma 2.1 by monotone convergence, using Proposition
A.3 in [15], one has

∫

R2d

traceH((Q(x, ξ)⊗ S)
1
2C�(Q(x, ξ)⊗ S)

1
2 )dxdξ

= lim
n→∞

∫

R2d

traceH((Q(x, ξ)⊗ S)
1
2 (I + 1

nC�)
−1C�(Q(x, ξ)⊗ S)

1
2 )dxdξ

= lim
n→∞

∫

R2d

traceH((Q(x, ξ)⊗ S)(I + 1
nC�)

−1C�)dxdξ

= lim
n→∞

traceH((R⊗ S)(I + 1
nC�)

−1C�)

= lim
n→∞

traceH((R⊗ S)
1
2 (I + 1

nC�)
−1C�(R⊗ S)

1
2 )

= traceH((R⊗ S)
1
2C�(R⊗ S)

1
2 ) = d(R,S)2

since C(R,S) = {R ⊗ S} by Lemma 3.6 because R or S is a rank-one projection.
Thus

d(f, S)2 ≤ (1 + α)

∫

R2d

traceH(Q(x, ξ)
1
2 c�(x, ξ)Q(x, ξ)

1
2 )dxdξ

+(1 + 1
α )d(R,S)2 .

Minimizing in Q ∈ C(f,R) leads to

d(f, S)2 ≤ (1 + α)d(f,R)2 + (1 + 1
α )d(R,S)2 ,

and minimizing in α > 0 the right hand side of this inequality gives

d(f, S) ≤ d(f,R) + d(R,S) .

Finally, let R,S, T ∈ D2(H), and let P ∈ C(R,S). Write the spectral decompo-
sitions of P and T as

P =
∑

k≥1

�k|φk〉〈φk| , with �k ≥ 0 and
∑

k≥1

�k = 1 ,

T =
∑

l≥1

τl|fl〉〈fl| , with τl ≥ 0 and
∑

l≥1

τl = 1 ,

where φk ≡ φk(x, y) lies in the form domain of C� for each k ≥ 1 such that �k > 0,
while fl ∈ L2(Rd, |w|2dw) ∩H1(Rd) for each l ≥ 1 with τl > 0, and are such that
(φk)k≥1 and (fk)k≥1 are complete orthonormal systems in H⊗H and H respectively.

Assume that S or T is a rank-one projection. If the rank of S is one, then
C(R,S) = {R⊗ S} by Lemma 3.6, so that P = R⊗ S. Otherwise, T has rank one,
in which case τ1 = 1, and τj = 0 for all j ≥ 2, so that T = |f1〉〈f1|.

The third inequality in Lemma 3.7 implies that

∫

Rd

〈φk(·, y)⊗ fl|C�|φk(·, y)⊗ fl〉dy ≤ (1 + α)〈φk|C�|φk〉〈fl|fl〉

+(1 + 1
α )

∫

Rd

〈φk(x, ·)⊗ fl|C�|φk(x, ·)⊗ fl〉dx .
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Multiplying both sides of this inequality by �kτl and summing in k, l shows that

traceH⊗H((R⊗ T )
1
2 (I+ 1

nC�)
−1C�(R⊗ T )

1
2 )=traceH⊗H((R⊗ T )(I+ 1

nC�)
−1C�)

=
∑

k,l≥1

�kτl

∫

Rd

〈φk(·, y)⊗ fl|(I + 1
nC�)

−1C�|φk(·, y)⊗ fl〉dy

≤
∑

k,l≥1

�kτl

∫

Rd

〈φk(·, y)⊗ fl|C�|φk(·, y)⊗ fl〉dy

≤ (1 + α) traceH⊗H(P
1
2C�P

1
2 ) traceH(S)

+(1 + 1
α )

∑

k,l≥1

�kτl

∫

Rd

〈φk(x, ·)⊗ fl|C�|φk(x, ·)⊗ fl〉dx .

Using again monotone convergence and Proposition A.3 on [15] as in the proof of
Lemma 2.1 shows that

d(R, T )2 ≤ traceH⊗H((R⊗ T )
1
2C�(R⊗ T )

1
2 )

= lim
n→∞

traceH⊗H((R⊗ T )
1
2 (I + 1

nC�)
−1C�(R⊗ T )

1
2 ) ,

and similarly

∑

k,l≥1

�kτl

∫

Rd

〈φk(x, ·)⊗ fl|C�|φk(x, ·)⊗ fl〉dx

= lim
n→∞

∑

k,l≥1

�kτl

∫

Rd

〈φk(x, ·)⊗ fl|(I + 1
nC�)

−1C�|φk(x, ·)⊗ fl〉dx

= lim
n→∞

traceH⊗H⊗H((P ⊗ T )(I ⊗ (I + 1
nC�)

−1C�))

= lim
n→∞

traceH⊗H((S ⊗ T )(I + 1
nC�)

−1C�)

= traceH⊗H((S ⊗ T )
1
2C�(S ⊗ T )

1
2 ) = d(S, T )2 ,

since C(S, T ) = {S ⊗ T} by Lemma 3.6 because S or T is a rank-one orthogonal
projection. Thus

d(R, T )2 ≤ (1 + α)d(R,S)2 + (1 + 1
α )d(S, T )

2 ,

and minimizing in α > 0 implies that

d(R, T ) ≤ d(R,S) + d(S, T ) .

Step 4: remaining cases. After Step 2, we know that the triangle inequality

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3)

holds for ρ1, ρ3 ∈ Pac
2 (R2d)∪D2(H) and all ρ2 ∈ Pac

2 (R2d). By the density argument
of Step 1 and the continuity of d on P2(R

2d) in each of its argument, this inequality
must hold for all ρ1, ρ3 ∈ D2 and all ρ2 ∈ P2(R

2d). �

Finally, we prove the lemmas taken for granted in the proof of Theorem 3.1. We
begin with the density of Pac

2 (R2d) in P2(R
2d) for the metric distMK,2.
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Proof of Lemma 3.2. Let μ ∈ Pac
2 (Rn), and let χε(x) =

1
εnχ(

x
ε ) be an even molli-

fier. For each φ ∈ C0(R
n), one has ‖φ− χε � φ‖L∞ → 0 as ε → 0, so that

∣
∣
∣
∣

∫

Rn

φ(x)μ(dx)−
∫

Rn

φ(x)(χε � μ)(x)dx

∣
∣
∣
∣ ≤

∫

Rn

|φ− χε � φ|(x)μ(dx) → 0

as ε → 0. Hence χε � μ → μ weakly as ε → 0. On the other hand
∫

|x|≥R

|x|2(χε � μ)(x)dx =

∫

Rn

χε � (1|x|≥R|x|2)μ(dx)

and, assuming without loss of generality that supp(χ) ⊂ B(0, 1) and 0 < ε < 1, one
has

χε � (1|x|≥R|x|2) =
∫

Rn

1|x−εy|≥R|x− εy|2χ(y)dy

≤1|x|+1≥R

∫

Rn

|x− εy|2χ(y)dy

≤21|x|+1≥R

(

|x|2 + ε2
∫

Rn

|y|2χ(y)dy
)

≤ 21|x|+1≥R(|x|2 + 1)

Hence

sup
0<ε<1

∫

|x|≥R

|x|2(χε � μ)(x)dx ≤ 2

∫

|x|>R−1

(|x|2 + 1)μ(dx) → 0

by dominated convergence. By Theorem 7.12 of [22],

distMK,2(μ, μ � χε) → 0 as ε → 0 .

�

Next we prove that the set of couplings of a density operator, or of a probability
density with a rank-one orthogonal projection is trivial.

Proof of Lemma 3.6. The case of C(R,S) is Lemma 7.1 of [6]. Next assume that
R = |ψ〉〈ψ| with ‖ψ‖H = 1. Then, for each Q ∈ C(f,R), one has

∫

R2d

〈φ|Q(x, ξ)|φ〉dxdξ = 〈φ|R|φ〉 = 0 for each φ ∈ (Cψ)⊥ .

Since Q(x, ξ) = Q(x, ξ)∗ ≥ 0 for a.e. (x, ξ) ∈ R2d, this implies that

Q(x, ξ)φ = 0 for all φ ∈ (Cψ)⊥ , for a.e. (x, ξ) ∈ R2d ,

so that

Q(x, ξ)Cψ ⊂ Cψ , for a.e. (x, ξ) ∈ R2d .

In other words, there exists λ(x, ξ) ∈ C such that

Q(x, ξ)ψ = λ(x, ξ)ψ , for a.e. (x, ξ) ∈ R2d .

Choose a complete orthonormal system (ej)j≥1 in (Cψ)⊥; setting e0 = ψ, the
system (ej)j≥0 is orthonormal and complete in H, so that

λ(x, ξ) = 〈ψ|Q(x, ξ)|ψ〉 =
∑

j≥0

〈ej |Q(x, ξ)|ej〉 = traceH(Q(x, ξ)) = f(x, ξ)

for a.e. (x, ξ) ∈ R2d. Thus

Q(x, ξ)ψ = f(x, ξ)ψ , Q(x, ξ)φ = 0 for all φ ∈ (Cψ)⊥ ,
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which means that

Q(x, ξ) = f(x, ξ)R , for a.e. (x, ξ) ∈ R2d .

In other words, C(f,R) = {f ⊗R}. �

Finally we prove the operator inequalities used in the proof of Theorem 3.1

Proof of Lemma 3.5. Observe that

C(x, �∇x, z, �∇z) =
d∑

j=1

(
(xj − yj + yj − zd)

2 + (−i�∂xj + i�∂yj − i�∂yj + i�∂zj )
2
)

so that, expanding each square in the sum leads to

C(x, �∇x, z, �∇z) = c(x, �∇x, y, η) + c(y, η, z, �∇z)

+2
d∑

j=1

(
(xj − yj)(yj − zd) + (−i�∂xj + i�∂yj )(−i�∂yj + i�∂zj )

)
.

Now we apply Lemma 3.4, first with with L1 = (xj − yj) and L2 = (yj − zj), then
with L1 = −i�∂xj + i�∂yj and L2 = −i�∂yj + i�∂zj , so that

2(xj − yj)(yj − zd) + 2(−i�∂xj + i�∂yj )(−i�∂yj + i�∂zj )

≤ α(xj − yj)
2 + 1

α (yj − zd)
2 + α(−i�∂xj + i�∂yj )

2 + 1
α (−i�∂yj + i�∂zj )

2 ,

meaning that

φ ≡ φ(x, z) ∈ L2(Rd
x;L

2(Rd
z , |z|2dz) ∩H1(Rd

z)) ∩ L2(Rd
x;L

2(Rd
z , |z|2dz) ∩H1(Rd

z))

=⇒ 2〈φ|(xj − yj)(yj − zd) + (−i�∂xj + i�∂yj )(−i�∂yj + i�∂zj )|φ〉
≤ α〈φ|(xj − yj)

2 + (−i�∂xj + i�∂yj )
2|φ〉

+ 1
α 〈φ|(yj − zd)

2 + (−i�∂yj + i�∂zj )
2|φ〉

for j = 1, . . . , d. Therefore

φ ≡ φ(x, z) ∈ L2(Rd
x;L

2(Rd
z , |z|2dz) ∩H1(Rd

z)) ∩ L2(Rd
x;L

2(Rd
z , |z|2dz) ∩H1(Rd

z))

=⇒ 〈φ|C(x, �∇x, z, �∇z)|φ〉 ≤ (1 + α)〈φ|c(y, η, x, �∇x)|φ〉
+(1 + 1

α )〈φ|c(y, η, z, �∇z)|φ〉

for each (y, η) ∈ R2d, which is the operator inequality in Lemma 3.5. �

Proof of Lemma 3.7. Write

|x− z|2 = |x− y + y − z|2 =
d∑

j=1

(
(xj − yj)

2 + (yj − zj)
2 + 2(xj − yj)(yj − zj)

)
.

Since

2(xj − yj)(yj − zj) ≤ α(xj − yj)
2 + 1

α (yj − zj)
2

by Lemma 3.4, we conclude that

(5)
|x− z|2 ≤

d∑

j=1

(
(1 + α)(xj − yj)

2 + (1 + 1
α )(yj − zj)

2
)

=(1 + α)|x− y|2 + (1 + 1
α )|y − z|2 .
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Then

|ξ − ζ|2 =
d∑

j=1

(
ξj + i�∂yj − i�∂yj − ζj

)2

=

d∑

j=1

(
(ξj + i�∂yj )

2 + (−i�∂yj − ζj)
2 + 2(ξj + i�∂yj )(−i�∂yj − ζj)

)
.

Applying Lemma 3.4 with L1 = ξj + i�∂yj and L2 = −i�∂yj − ζj shows that

2〈ψ|(ξj + i�∂yj )(−i�∂yj − ζj)|ψ〉
≤ α〈ψ|(ξj + i�∂yj )

2|ψ〉+ 1
α 〈ψ|(−i�∂yj − ζj)

2|ψ〉

for all ψ ∈ H1(Rd) and all ξ, ζ ∈ Rd, so that

(6) |ξ − ζ|2‖ψ‖2H ≤ (1 + α)〈ψ||ξ + i�∇y|2|ψ〉+ (1 + 1
α )〈ψ|| − i�∇y − ζ|2|ψ〉 .

Therefore

(|x− z|2 + |ξ − ζ|2)‖ψ‖2H ≤(1 + α)〈ψ|c(x, ξ, y, �∇y)|ψ〉
+ (1 + 1

α )〈ψ|c(z, ζ, y, i�∇y)|ψ〉

for all α > 0, all x, ξ, z, ζ ∈ Rd and all φ ∈ H1(Rd), which is the first inequality in
Lemma 3.7.

Next

|ξ + i�∇z|2 =
d∑

j=1

(
ξj + i�∂yj − i�∂yj + i�∂zj

)2

=
d∑

j=1

(
(ξj + i�∂yj )

2 + (−i�∂yj + i�∂zj )
2 + 2(ξj + i�∂yj )(−i�∂yj + i�∂zj )

)
.

Applying Lemma 3.4 with L1 = ξj + i�∂yj and L2 = −i�∂yj + i�∂zj shows that

2〈ψ ⊗ φ|(ξj + i�∂yj )(−i�∂yj + i�∂zj )|ψ ⊗ φ〉
≤ α〈ψ|(ξj + i�∂yj )

2|ψ〉‖φ‖2H + 1
α 〈ψ ⊗ φ|(−i�∂yj + i�∂zj )

2|ψ ⊗ φ〉

for all φ, ψ ∈ H1(Rd), so that

(7)
〈φ||ξ + i�∇z|2|φ〉‖ψ‖2H ≤〈ψ||ξ + i�∇y|2|ψ〉‖φ‖2H

+ 1
α 〈ψ ⊗ φ|| − i�∇y + i�∇z|2|ψ ⊗ φ〉 .

With (5), this implies that

〈φ|c(x, ξ, z, �∇z)|φ〉‖ψ‖2H ≤(1 + α)〈ψ|c(x, ξ, y, �∇y)|ψ〉‖φ‖2H
+ (1 + 1

α )〈ψ ⊗ φ|C(y, �∇y, z, �∇z)|ψ〉‖ψ ⊗ φ‖2H ,

which is the second inequality in Lemma 3.7.
Finally

| − i�∇x + i�∇z|2 =
d∑

j=1

(−i�∂xj + i�∂yj − i�∂yj + i�∂zj )
2

= | − i�∇x + i�∇y|2 + | − i�∇y + i�∇z|2 + 2
d∑

j=1

(−i�∂xj + i�∂yj )(−i�∂yj + i�∂zj ) ,



OPTIMAL TRANSPORT PSEUDOMETRICS 21

and Lemma 3.4 implies that

2〈φ1 ⊗ φ3|(−i�∂xj + i�∂yj )(−i�∂yj + i�∂zj )|φ1 ⊗ φ3〉‖ψ‖2H
≤ α〈φ1 ⊗ ψ|(−i�∂xj + i�∂yj )

2|φ1 ⊗ ψ〉‖φ3‖2H
+ 1

α 〈ψ ⊗ φ3|(−i�∂yj + i�∂zj )
2|ψ ⊗ φ3〉‖φ1‖2H

for each φ1, φ3, ψ ∈ H1(Rd). Thus

(8)

〈φ1 ⊗ φ3|| − i�∇x + i�∇z|2|φ1 ⊗ φ3〉‖ψ‖2H
≤ (1 + α)〈φ1 ⊗ ψ|| − i�∇x + i�∇y|2|φ1 ⊗ ψ〉‖φ3‖2H

+(1 + 1
α )〈ψ ⊗ φ3|| − i�∇x + i�∇y|2|ψ ⊗ φ3〉‖‖2H‖φ1‖2H .

With (5), this implies that

〈φ1 ⊗ φ3|C(x, �∇x, z, �∇z)|φ1 ⊗ φ3〉‖ψ‖2H
≤ (1 + α))〈φ1 ⊗ ψ|C(x, �∇x, y, �∇y)|φ1 ⊗ ψ〉‖φ3‖2H
+(1 + 1

α )〈ψ ⊗ φ3|C(y, �∇y, z, �∇z)|ψ ⊗ φ3〉‖φ1‖2H
which is precisely the last inequality in Lemma 3.7. �

We conclude this section with a comment on the “restricted” triangle inequality
established in Theorem 3.1, and in particular on the restriction to the cases where
ρ2 ∈ P2(R

2d), or ρ2 is a rank-one orthogonal projection.

The proof of Theorem 3.1 is based on the following pattern:

(a) Given ρ1, ρ2, ρ3 of D2, and for all T12 ∈ C(ρ1, ρ2) and all T23 ∈ C(ρ2, ρ3), one
constructs T123 satisfying the following conditions

T123 = T ∗
123 ≥ 0

and

proj1T123 = T23 , proj3T123 = T12 ,

where projk is the partial trace, or the integral in the k-th variable in T123, for
k = 1, 2, 3.
(b) For each α > 0, one proves the following inequality between cost functions or
operators:

C13 ≤ (1 + α)C12 + (1 + 1
α )C23 ,

where Cjk is the transport cost from the jth to the kth “variable”.
(c) Then

T
1
2
123C13T

1
2
123 ≤ (1 + α)T

1
2
123C12T

1
2
123 + (1 + 1

α )T
1
2
123C23T

1
2
123

and one “averages in all variables” both sides of this inequality. Observing that
T13 = proj2T123 ∈ C(ρ1, ρ3), one finds that

d(ρ1, ρ3)
2 ≤ proj1proj3(T

1
2
13C13T

1
2
13) =proj1proj3proj2(T

1
2
123C13T

1
2
123)

≤(1 + α)proj1proj2proj3(T
1
2
123C12T

1
2
123)

+ (1 + 1
α )proj2proj3proj1(T

1
2
123C23T

1
2
123)

≤(1 + α)proj1proj2(T
1
2
12C12T

1
2
12)

+ (1 + 1
α )proj2proj3(T

1
2
23C23T

1
2
23) .
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Minimizing the right hand side in T12 and T23 leads to the inequality

d(ρ1, ρ3)
2 ≤ (1 + α)d(ρ1, ρ2)

2 + (1 + 1
α )d(ρ2, ρ3)

2

and one concludes by further minimizing the right hand side in α > 0.

This argument closely follows the proof of the triangle inequality for distMK,2

in chapter 7 of [22], except that, for a general exponent p �= 2, step (b) is re-
placed with the triangle inequality for the Euclidean distance, and step (c) involves
the Minkowski inequality in Lp. The reader can check that, for p = 2, Villani’s
argument can be replaced with steps (b)-(c) above.

Step (a) corresponds to the “glueing lemma”, Lemma 7.6 in chapter 7 of [22] —
see also Remark 5.3.3 in chapter 5 of [1]. A first step in the proof of Lemma 7.6 is
based on the disintegration of measure theorem (formula (7.2) in chapter 7 of [22]),
or Theorem 5.3.1 in [1]). Lemma 2.3 (or Lemma A.4 in [15]) is the analogue of the
disintegration of measure theorem for couplings between a probability density on
phase space and an arbitrary element of D2. In truth, Lemma 2.3 treats only the
case of a coupling of a probability density with an element of D(H), but the case
of a coupling of a probability density with an element of P(R2d) is already known
from formula (7.2) in chapter 7 of [22].

We do not know whether there exists an analogous disintegration formula for a
coupling of C(R,S), where R,S ∈ D(H), and even in the affirmative, it is unclear
how this would help us achieving Step (a) in general in the case where ρ2 ∈ D(H). Of
course, if ρ2 is a rank one projection, C(ρ2, ρ1) = {ρ2⊗ρ1} and C(ρ2, ρ3) = {ρ2⊗ρ3},
and one chooses T123 = T12 ⊗ ρ3.

One can also forget about the disintegration of measure theorem (formula (7.2)
in chapter 7 of [22]), or Theorem 5.3.1 in [1]) and its analogue Lemma 2.3 above,
and consider the problem posed in Step (a) in the case where ρ2 ∈ D(H) is not
rank-one. If ρ1, ρ2, ρ3 are rank-two density operators, T123 is to be sought in the
set of linear maps on Ran(ρ1) ⊗ Ran(ρ2) ⊗ Ran(ρ3). That T123 exists is possible
only if the compatibility condition proj1proj3T123 = proj3proj1T123 holds, which is
the case since T12 ∈ C(ρ1, ρ2) and T23 ∈ C(ρ2, ρ3), so that

proj1proj3T123 = ρ2 = proj3proj1T123 .

The set of linear maps T123 = T ∗
123 on Ran(ρ1) ⊗ Ran(ρ2) ⊗ Ran(ρ3), which is a

8-dimensional space, has dimension 36; the linear constraints proj1T123 = T23 and
proj3T123 = T12 each involve 10 scalar linear equations, which are not independent
since the second marginal of T12 and the first marginal of T23 are equal. Even
with the 16 remaining degrees of freedom, it is not clear to us that the positivity
constraint T123 ≥ 0 in Step (a) can be satisfied.

Summarizing, we have not been able to prove the existence of T123 satisfying the
conditions stated in Step (a) for all ρ1, ρ2, ρ3 ∈ D2, which is left to the reader as an
open problem. Whenever ρ1, ρ2, ρ3 ∈ D2 are such that Step (a) can be achieved,
one has

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) .

The restricted triangle inequality reported in Theorem 3.1 holds because Step (a)
can be achieved for ρ2 ∈ Pac

2 (R2d) or for ρ2 = |ψ〉〈ψ| with ψ ∈ H and ‖ψ‖H = 1.

If ρ2 ∈ D2(H) has rank at least 2, we do not know whether Step (a) can be
achieved, and the triangle inequality with ρ2 as intermediate point cannot be stud-
ied following the pattern above. However, we shall prove an “approximate” triangle
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inequality of the form

d(ρ1, ρ3) ≤ d(ρ1, ρ2) + d(ρ2, ρ3) +O
(√

�

)
.

We shall see below that the proof of this “approximate” triangle inequality is com-
pletely different from the pattern involving Steps (a)-(c).

4. Kantorovich Duality

The Kantorovich duality theorem is a fundamental result in the theory of optimal
transport. In the case of the metric distMK,2, it can be stated as follows (Theorem
1.3 or Proposition 1.22 in chapter 1 of [22], or Theorem 6.1.1 on chapter 6 of [1]).
Kantorovich Duality Theorem Let μ, ν ∈ P2(R

n). Then

distMK,2(μ, ν)
2 = min

ρ∈C(μ,ν)

∫∫

R2n

|x− y|2ρ(dxdy)

= sup
a,b∈Cb(R

n;R)

a(x)+b(y)≤|x−y|2

(∫

Rn

a(x)μ(dx) +

∫

Rn

b(x)ν(dx)

)

.

In [6], we have proved the following analogue of the Kantorovich duality theorem
for density operators.
Kantorovich Duality Theorem for Density Operators. Let R,S ∈ D2(H).
Then

d(R,S)2 = min
T∈C(R,S)

traceH⊗H

(
T

1
2C�T

1
2

)
= sup

A=A∗, B=B∗∈L(H)
A⊗IH+IH⊗B≤C�

traceH(RA+ SB) .

The inequality constraint

A⊗ IH + IH ⊗B ≤ C�

is to be understood as

〈Φ|C� −A⊗ IH − IH ⊗B|Φ〉 ≥ 0

for all Φ ∈ Form-Dom(C�), i.e. for all Φ ≡ Φ(x, y) ∈ L2(R2d; (1 + |x − y|2)dxdy)
such that

(∂xj − ∂yj )Φ ∈ L2(R2d) , j = 1, . . . , d .

In the present section, we complete the extension of the Kantorovich duality to
the set D2 for the “pseudometric” d.

Theorem 4.1. Let p ∈ Pac
2 (R2d) and S ∈ D2(H). Then

d(p, S)2 = min
Q∈C(p,S)

∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

= sup
a∈Cb(R

2d;R), B=B∗∈L(H)

a(x,ξ)IH+B≤c�(x,ξ)

(∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(BS)

)

.

Notice that the duality theorem implies in particular the existence of at least
one optimal coupling Q ∈ C(p, S).
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Proof. The proof is split in several steps.

Step 1: the functions f and g. Consider the Banach space E := Cb(R
2d;L(H)),

with

‖T‖E := sup
(x,ξ)∈R2d

‖T (x, ξ)‖ ,

and set

f(T ) :=

{
0 if T (x, ξ) = T (x, ξ)∗ ≥ −c�(x, ξ) for all (x, ξ) ∈ R2d ,

+∞ otherwise,

while

g(T ) :=

⎧
⎪⎨

⎪⎩

∫

R2d

ap(x, ξ)dxdξ+traceH(BS)
if T (x, ξ)=T (x, ξ)∗=a(x, ξ)IH+B ,

for all (x, ξ) ∈ R2d ,

+∞ otherwise,

The constraint T (x, ξ) = T (x, ξ)∗ ≥ −c�(x, ξ) means that, for each (x, ξ) ∈ R2d,
one has

〈φ(x, ξ)|T (x, ξ) + c�(x, ξ)|φ(x, ξ)〉 ≥ 0

for all φ ∈ Form-Dom(c�(x, ξ)). On the other hand, the nullspace of the linear map

Cb(R
2d)× L(H) � (a,B) �→ Γ(a,B) ≡ a(x, ξ)IH +B ∈ E

is

Ker(Γ) = {(t,−tIH) , t ∈ R} .
Since p is a probability density while traceH(S) = 1, one has

g((a+t)IH+(B−tIH))=g(aIH+B)+t

∫

R2d

p(x, ξ)dxdξ−t traceH(S)=g(aIH+B) ,

and the prescription above defines g on Ran(Γ) � (Cb(R
2d)× L(H))/Ker(Γ).

Observe that

g((aIH +B)∗) = g(āIH +B∗) =

∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(B
∗S)

=

∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH((SB)∗)

=

∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(SB)

=g(aIH +B) ,

so that (aIH + B)∗ = aIH + B =⇒ g(aIH + B) ∈ R. Thus the definition above
implies that g takes its values in R ∪ {+∞}.

The functions f and g are convex. Indeed, g is the extension by +∞ of aR-linear
functional defined on the set of self-adjoint elements of Ran(Γ), which is a linear
subspace of E. As for f , it is the indicator function (in the sense of the definition
in §4 of [20] on p. 28) of the convex set

{T ∈ E s.t. T (x, ξ) = T (x, ξ)∗ ≥ −c�(x, ξ) for all (x, ξ) ∈ R2d}

and is therefore convex. Besides f(0) = g(0) = 0, and f is continuous at 0. Indeed

c�(x, ξ) ≥ d�IH for all (x, ξ) ∈ R2d ,
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so that, for each T ∈ E

T (x, ξ) = T (x, ξ)∗ and ‖T (x, ξ)‖ < 1
2d� for all (x, ξ) ∈ R2d

=⇒ T (x, ξ) ≥ −c�(x, ξ) for all (x, ξ) ∈ R2d =⇒ f(T ) = 0 .

In particular f is continuous at 0.

Step 2: applying convex duality. By the Fenchel-Rockafellar convex duality theorem
(Theorem 1.12 in [4])

inf
T∈E

(f(T ) + g(T )) = max
Λ∈E′

(−f∗(−Λ)− g∗(Λ)) .

Here f∗ and g∗ are the Legendre duals of f and g, and are computed below.
First

f∗(−Λ) = sup
T∈E

(〈−Λ, T 〉 − f(T )) = sup
T∈E

T (x,ξ)=T (x,ξ)∗≥−c�(x,ξ)

〈−Λ, T 〉 .

If Λ ∈ E′ is not a nonnegative linear functional, there exists T0 ∈ E such that
T0(x, ξ) = T0(x, ξ)

∗ ≥ 0 such that 〈Λ, T0〉 = −α < 0. Since

nT0(x, ξ) = nT0(x, ξ)
∗ ≥ 0 ≥ −d�IH ≥ −c�(x, ξ) for all (x, ξ) ∈ R2d ,

one has
f∗(−Λ) ≥ sup

n≥1
〈−Λ, nT0〉 = sup

n≥1
(nα) = +∞ .

For Λ ∈ E′ such that Λ ≥ 0, we define

〈Λ, c�〉 := sup
T∈E

T (x,ξ)=T (x,ξ)∗≤c�(x,ξ)

〈Λ, T 〉 ∈ [0,+∞] .

(Observe indeed that T = 0 satisfies the constraints since c�(x, ξ) = c�(x, ξ)
∗ ≥ 0

for each (x, ξ) ∈ R2d.) With this definition, one has clearly

f∗(−Λ) :=

{
〈Λ, c�〉 if Λ ≥ 0 ,

0 otherwise.

Next

g∗(Λ) = sup
T∈E

(〈Λ, T 〉 − g(T ))

= sup
T∈E

T (x,ξ)=T (x,ξ)∗=a(x,ξ)IH+B

(

〈Λ, T 〉 −
∫

R2d

a(x, ξ)p(x, ξ)dxdξ − traceH(BS)

)

.

If there exists a ≡ a(x, ξ) ∈ Cb(R
2d,R) and B = B∗ ∈ L(H) such that either

〈Λ, aIH +B〉 >
∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(BS)

or

〈Λ, aIH +B〉 <
∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(BS) ,

one has either

g(Λ) ≥ sup
n≥1

(

〈Λ, n(aIH +B)〉 − n

∫

R2d

a(x, ξ)p(x, ξ)dxdξ − n traceH(BS)

)

= +∞ ,

or

g(Λ) ≥ sup
n≥1

(

〈Λ, n(−aIH −B)〉+ n

∫

R2d

a(x, ξ)p(x, ξ)dxdξ + n traceH(BS)

)

= +∞ .
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Hence

g∗(Λ) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0
if 〈Λ, aIH +B〉 =

∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(BS)

for each a ≡ a(x, ξ) ∈ Cb(R
2d,R) and B = B∗ ∈ L(H) ,

+∞ otherwise.

Notice that the prescription

〈Λ, aIH +B〉 =
∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(BS)

defines a unique linear functional on the set of T ∈ RanΓ such that T (x, ξ)∗ =
T (x, ξ) for each (x, ξ) ∈ R2d by the same argument as in Step 1.

Therefore, the Fenchel-Rockafellar duality theorem in this case results in the
equality

inf
T∈E

(f(T ) + g(T )) = inf
a∈Cb(R

2d,R), B=B∗
a(x,ξ)IH+B≥−c�(x,ξ)

(∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(SB)

)

= max
Λ∈E′

(f∗(−Λ) + g∗(Λ)) = max
0≤Λ∈E′, 〈Λ,aIH+B〉

=
∫

a(x,ξ)p(x,ξ)dxdξ+trace(SB)

−〈Λ, c�〉

or, equivalently

sup
a∈Cb(R

2d,R), B=B∗
a(x,ξ)IH+B≤c�(x,ξ)

(∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(SB)

)

= min
0≤Λ∈E′, 〈Λ,aIH+B〉

=
∫

a(x,ξ)p(x,ξ)dxdξ+trace(SB)

〈Λ, c�〉 .

Step 3: representing the optimal Λ. Let Λ ∈ E′ satisfy the constraints in the min
on the right hand side of the equality above.

Define a linear map FΛ : Cb(R
2d) → L1(H) by the formula

traceH(KFΛ(a)) = Λ(aK) , for each K ∈ K(H) .

The map FΛ is well defined sinceK �→ Λ(aK) is a linear functional on K(H) which is
continuous for the norm topology, and since K(H)′ = L1(H), this linear functional
is represented by a trace-class operator FΛ(a). Since Λ is linear, the map FΛ is
linear.

Since Λ ≥ 0, one has FΛ(a) = FΛ(a)
∗ ≥ 0 for each a ∈ Cb(R

d) such that
a(x, ξ) ≥ 0 for each (x, ξ) ∈ R2d. Indeed, for a ∈ Cb(R

2d;R), set

T1 := 1
2 (FΛ(a) + FΛ(a)

∗) , T2 := − 1
2 i(FΛ(a)− FΛ(a)

∗) .

Then, for each K = K∗ ∈ K(H), one has

Λ(aK) = traceH(T1K) + i traceH(T2K)

with

traceH(TjK) = traceH((TjK)∗) = traceH(K
∗T ∗

j ) = traceH(KTj) = traceH(TjK)

for j = 1, 2. Since a ∈ Cb(R
2d;R) and K = K∗ ∈ L(H), one has

−‖a‖L∞‖K‖IH ≤ aK ≤ ‖a‖L∞‖K‖IH
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so that

−‖a‖L∞‖K‖ ≤ Λ(aK) ≤ ‖a‖L∞‖K‖ since Λ(IH) =

∫

R2d

p(x, ξ)dxdξ = 1 .

In particular, Λ(aK) ∈ R, so that traceH(T2K) = 0 for eachK = K∗ ∈ K(H). Since
T2 = T ∗

2 ∈ L1(H), specializing this identity to the case where K is the orthogonal
projection on any eigenvector of T2 shows that T2 = 0. Thus

a ∈ Cb(R
2d;R) =⇒ FΛ(a) = FΛ(a)

∗ .

Moreover

a ∈ Cb(R
2d;R) and a ≥ 0 =⇒ traceH(FΛ(a)K) ≥ 0 for each K = K∗ ≥ 0 in K(H)

and specializing this last inequality to the case where K is the orthogonal projection
on any eigenvector of FΛ(a) = FΛ(a)

∗ ∈ L1(H) shows that all the eigenvalues of
FΛ(a) are nonnegative, so that FΛ(a) ≥ 0.

Next we deduce from the defining identity for FΛ, i.e.

Λ(aK) = traceH(FΛ(a)K) for each a ∈ Cb(R
2d;C) and K ∈ K(H) ,

that

‖FΛ(a)‖1 ≤ ‖Λ‖‖a‖L∞(R2d) .

Then we specialize this defining identity to the case where a ≥ 0 on R2d while
K = Πn is the orthogonal projection on span{e1, . . . , en}, with (e1, e2, . . .) a com-
plete orthonormal system in H. One has

Λ(aΠn) = traceH(FΛ(a)Πn) → traceH(FΛ(a)) = ‖FΛ(a)‖1 as n → ∞ ,

while

a(IH −Πn) ≥ 0 so that Λ(aΠn) ≤ Λ(aIH) =

∫

R2d

a(x, ξ)p(x, ξ)dxdξ .

Hence

a ∈ Cb(R
2d) and a ≥ 0 =⇒ ‖FΛ(a)‖1 ≤

∫

R2d

a(x, ξ)p(x, ξ)dxdξ .

More generally, for each a ∈ Cb(R
2d;R), one has −|a| ≤ a ≤ |a| so that

| traceH(FΛ(a)|ej〉〈ej |)| = |Λ(a|ej〉〈ej |)| ≤ Λ(|a||ej〉〈ej |)
for each j ≥ 1, where (e1, e2, . . . , ) is a complete orthonormal system of eigenvectors
of FΛ(a) = FΛ(a)

∗ ∈ L1(H). Hence

n∑

j=1

| traceH(FΛ(a)|ej〉〈ej |)| ≤ Λ

⎛

⎝|a|
n∑

j=1

|ej〉〈ej |

⎞

⎠ ≤ Λ(|a|IH) ,

and since
n∑

j=1

| traceH(FΛ(a)|ej〉〈ej |)| → ‖FΛ(a)‖1 as n → ∞ ,

we conclude that

‖FΛ(a)‖1 ≤ Λ(|a|IH) =
∫

R2d

|a(x, ξ)|p(x, ξ)dxdξ .

Since Cb(R
2d) is dense in L1(R2d, pdxdξ), this inequality, applied to the real and

the imaginary parts of a, shows that FΛ is a continuous linear operator from
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L1(R2d, pdxdξ) to L1(H). Since L1(H) is separable and is the dual of the Ba-
nach space K(H) (the norm closure in L(H) of the set of finite rank operators),
we conclude from the Dunford-Pettis theorem (Theorem 1 in §3 of chapter III in
[11]) that L1(H) has the Radon-Nikodym property. By Theorem 5 in §1 of chap-
ter III in [11], the operator FΛ is Riesz-representable: in other words, there exists
q ∈ L∞(R2d, pdxdξ;L1(H)) such that

FΛ(a) =

∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ , for all a ∈ L1(R2d, pdxdξ) .

Step 4: defining the optimal coupling. With Λ as in Step 3, we have seen that

a ∈ Cb(R
2d) and a ≥ 0 =⇒ FΛ(a) =

∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ ≥ 0 .

This implies that q(x, ξ) = q(x, ξ)∗ ≥ 0 for a.e. (x, ξ) ∈ R2d.
Next, one has

Λ(K) = traceH(FΛ(1)K) = traceH(KS) , K ∈ K(H) ,

so that

FΛ(1) =

∫

R2d

q(x, ξ)p(x, ξ)dxdξ = S ∈ L1(H)(= K(H)′) .

On the other hand, for each a ∈ Cb(R
2d) such that a ≥ 0, one has

traceH

(

Pn

∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ

)

= traceH(FΛ(a)Pn) = Λ(aPn)

≤ Λ(aIH) =

∫

R2d

a(x, ξ)p(x, ξ)dxdξ

where Pn is the orthogonal projection on span{e1, . . . , en}, with (e1, e2, . . .) being
a complete orthonormal system of eigenvectors of

∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ ∈ L1(H) .

Letting n → ∞, one has

traceH

(

Pn

∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ

)

→ traceH

(∫

R2d

a(x, ξ)q(x, ξ)p(x, ξ)dxdξ

)

,

so that
∫

R2d

a(x, ξ) traceH(q(x, ξ))p(x, ξ)dxdξ ≤
∫

R2d

a(x, ξ)p(x, ξ)dxdξ .

Since this holds for each a ∈ Cb(R
2d such that a ≥ 0, we conclude that

traceH(q(x, ξ)) ≤ 1 for p(x, ξ)dxdξ–a.e. (x, ξ) ∈ R2d .

Moreover
∫

R2d

(1− traceH(q(x, ξ)))p(x, ξ)dxdξ = 1− traceH(S) = 0 ,

so that

traceH(q(x, ξ)) = 1 for p(x, ξ)dxdξ–a.e. (x, ξ) ∈ R2d .
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In other words, we have proved that (x, ξ) �→ Q(x, ξ) = p(x, ξ)q(x, ξ) defines an
element of C(p, S).

Step 5: extending the representation formula for Λ. Let Λ be as in Step 3, and let
Q be the coupling of p and S obtained at the end of Step 4. For each B ∈ E, we
define

〈L,B〉 := 〈Λ, B〉 −
∫

R2d

traceH(B(x, ξ)Q(x, ξ))dxdξ .

Let us prove that

B ∈ E and B(x, ξ) = B(x, ξ)∗ ≥ 0 for all (x, ξ) ∈ R2d =⇒ 〈L,B〉 ≥ 0 .

Pick ε > 0, and let Qε be a simple L1(H)-valued function on R2d such that

∫

R2d

‖Q(x, ξ)−Qε(x, ξ)‖1dxdξ < ε .

Write

Qε(x, ξ) =
N∑

j=1

1Ωj (x, ξ)Qj , 0 ≤ Qj = Q∗
j ∈ L1(H) for each j = 0, . . . , N ,

where Ωj are bounded, pairwise disjoint measurable sets in R2d for j = 1, . . . , N .
For each j = 1, . . . , N , let (ej,1, ej,2, . . .) designate a complete orthonormal system of
eigenvectors of Qj , and let Pj,n be the orthogonal projection on span{ej,1, . . . , ej,n}.
Define

Πn(x, ξ) =
N∑

j=1

1Ωj (x, ξ)Pj,n .

One easily checks that Πn(x, ξ) = Πn(x, ξ)
∗ = Πn(x, ξ)

2 for each (x, ξ) ∈ R2d.
Then, for each B ∈ E such that B(x, ξ) = B(x, ξ)∗ ≥ 0 for all (x, ξ) ∈ R2d, one has

0 ≤〈Λ, (IH −Πn)B(IH −Πn)〉 = 〈Λ, B〉 − 〈Λ,ΠnB +BΠn −ΠnBΠn〉

=〈Λ, B〉 −
∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)Q)(x, ξ)dxdξ

=〈Λ, B〉 −
∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)Qε)(x, ξ)dxdξ

+

∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)(Qε −Q))(x, ξ)dxdξ .

By construction, keeping ε > 0 fixed, [Πn(x, ξ), Qε(x, ξ)] = 0, so that, by cyclicity
of the trace, one has

∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)Qε)(x, ξ)dxdξ

=

∫

R2d

traceH(BΠnQεΠn)(x, ξ)dxdξ →
∫

R2d

traceH(BQε)(x, ξ)dxdξ
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as n → ∞, so that

0 ≤ lim
n→∞

〈Λ, (IH −Πn)B(IH −Πn)〉 = 〈Λ, B〉 −
∫

R2d

traceH(BQ)(x, ξ)dxdξ

+ lim
n→∞

∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)(Qε −Q))(x, ξ)dxdξ

+

∫

R2d

traceH(B(Q−Qε))(x, ξ)dxdξ .

On the other hand
∣
∣
∣
∣

∫

R2d

traceH((ΠnB +BΠn −ΠnBΠn)(Qε −Q))(x, ξ)dxdξ

∣
∣
∣
∣

≤
∫

R2d

| traceH((ΠnB +BΠn −ΠnBΠn)(Qε −Q))(x, ξ)|dxdξ

≤
∫

R2d

‖(ΠnB +BΠn −ΠnBΠn)(x, ξ)‖‖(Qε −Q)(x, ξ)‖1dxdξ

≤ 3 sup
(x,ξ)∈R2d

‖B(x, ξ)‖
∫

R2d

‖(Qε −Q)(x, ξ)‖1dxdξ

≤ 3ε sup
(x,ξ)∈R2d

‖B(x, ξ)‖

while, by the same token,
∣
∣
∣
∣

∫

R2d

traceH(B(Q−Qε))(x, ξ)dxdξ

∣
∣
∣
∣ ≤ ε sup

(x,ξ)∈R2d

‖B(x, ξ)‖ .

Finally

〈Λ, B〉 −
∫

R2d

traceH(BQ)(x, ξ)dxdξ ≥ −4ε sup
(x,ξ)∈R2d

‖B(x, ξ)‖

and since this holds for each ε > 0, we conclude that the linear functional L defined
at the beginning of Step 5 satisfies

B ∈ E and B(x, ξ) = B(x, ξ)∗ ≥ 0 for all (x, ξ) ∈ R2d =⇒ 〈L,B〉 ≥ 0 .

By a classical argument, this implies that ‖L‖ = 〈L, IH〉.
On the other hand

〈L, IH〉 = 〈L, IH〉 −
∫

R2d

traceH(q(x, ξ))p(x, ξ)dxdξ

= traceH(S)−
∫

R2d

p(x, ξ)dxdξ = 0

so that L = 0. In other words, the representation formula

〈Λ, B〉 =
∫

R2d

traceH(B(x, ξ)Q(x, ξ))dxdξ

holds for each B ∈ E, and not only for B ∈ Cb(R
2d;K(H)).

Step 6: computing 〈Λ, c�〉. As explained in Step 2

〈Λ, c�〉 = sup
T∈E

T (x,ξ)=T (x,ξ)∗≤c�(x,ξ)

〈Λ, T 〉 .
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For each n ≥ 1, set

cn(x, ξ) := (IH + 1
nc�(x, ξ))

−1c�(x, ξ) ∈ L(H) ,

so that

0 ≤ c1(x, ξ) = c1(x, ξ)
∗ ≤ . . . ≤ cn(x, ξ) = cn(x, ξ)

∗ ≤ . . . ≤ c�(x, ξ) = c�(x, ξ)
∗ .

Thus, by the conclusion of Step 5,

〈Λ, cn〉 =
∫

R2d

traceH(Q(x, ξ)cn(x, ξ))dxdξ ≤ 〈Λ, c�〉

for each n ≥ 1, so that, using Proposition A.3 in [15] as in the proof of Lemma 2.1,
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

= lim
n→∞

∫

R2d

traceH(Q(x, ξ)cn(x, ξ))dxdξ

≤ 〈Λ, c�〉 .

On the other hand, let (e1(x, ξ), e2(x, ξ), . . . , ) designate a complete orthonormal
system in H of eigenfunctions of c�(x, ξ), with c�(x, ξ)ej(x, ξ) = λjej(x, ξ) for j ≥ 1.
Since c�(x, ξ) is twice the harmonic oscillator H := − 1

2�
2Δx + 1

2 |x|
2 unitarily

translated in phase space by (x, ξ), the eigenvalues λj are independent of (x, ξ).
Set

tkl(x, ξ) := 〈ek(x, ξ)|Q(x, ξ)1/2|el(x, ξ)〉 , k, l ≥ 1 .

Since (x, ξ) �→ Q(x, ξ)1/2 ∈ L2(R2d;L2(H)), one has

vk(x, ξ) :=
∑

l≥1

tkl(x, ξ)el(x, ξ) ∈ Form-Dom(c�(x, ξ)) for a.e. (x, ξ) ∈ R2d ,

and

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2) =
∑

k,l≥1

λl|tkl(x, ξ)|2

=
∑

k≥1

〈vk(x, ξ)|c�(x, ξ)|vk(x, ξ)〉 < ∞

for a.e. (x, ξ) ∈ R2d, since
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ < ∞ .

Taking this last inequality for granted, we conclude as follows.
Let a ≡ a(x, ξ) ∈ Cb(R

2d) and B = B∗ ∈ L(H) satisfy the constraint

a(x, ξ)IH +B ≤ c�(x, ξ) , (x, ξ) ∈ R2d

in the sense that

a(x, ξ)‖φ‖2H + 〈φ|B|φ〉 ≤ 〈φ|c�(x, ξ)|φ〉 for each φ ∈ Form-Dom(c�(x, ξ)) .
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Since vk(x, ξ) ∈ Form-Dom(c�(x, ξ)) for a.e. (x, ξ) ∈ R2d and each k ≥ 1

a(x, ξ)p(x, ξ) + traceH(Q(x, ξ)B)

= a(x, ξ) traceH(Q(x, ξ)) + traceH(Q(x, ξ)1/2BQ(x, ξ)1/2)

= a(x, ξ)
∑

k≥1

〈vk(x, ξ)|vk(x, ξ)〉+
∑

k≥1

〈vk(x, ξ)|B|vk(x, ξ)〉

≤
∑

k≥1

〈vk(x, ξ)|c�(x, ξ)|vk(x, ξ)〉 = traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2) .

Integrating in (x, ξ) shows that
∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(SB)

≤
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

since, by construction,
∫

R2d

Q(x, ξ)dxdξ = S .

Thus

〈Λ, c�〉 = sup
a∈Cb(R

2d), B=B∗∈L(H)

a(x,ξ)IH+B≤c�(x,ξ)

(∫

R2d

a(x, ξ)p(x, ξ)dxdξ + traceH(SB)

)

≤
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ ≤ 〈Λ, c�〉 ,

where the first equality follows from convex duality as explained in Step 2, while the
last inequality has been obtained above at the beginning of Step 6. This completes
the proof.

It remains to prove that
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ < ∞ .

Since

c�(x, ξ) ≤ (|x|2 + |ξ|2)IH + 4H

with H = − 1
2�

2Δy +
1
2 |y|

2, one has

vk(x, ξ) ∈ Form-Dom(H) =⇒ vk(x, ξ) ∈ Form-Dom(c�(x, ξ)) ,

and

〈vk(x, ξ)|c�(x, ξ)|vk(x, ξ)〉 ≤ 2(|x|2 + |ξ|2)‖vk(x, ξ)‖2H + 4〈vk(x, ξ)|H|vk(x, ξ)〉 .

Let (h1, h2, . . .) be a complete orthonormal system of eigenvectors of H in H (the
Hermite functions), with eigenvalues μj . Since

∑

k≥1

tkm(x, ξ)tkn(x, ξ) = 〈em(x, ξ)|Q(x, ξ)|en(x, ξ)〉
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by definition of tkl(x, ξ), one has
∑

k≥1

|〈vk(x, ξ)|hj〉|2 =
∑

k≥1

∑

m,n≥1

tkm(x, ξ)tkn(x, ξ)〈em(x, ξ)|hj〉〈hj |en(x, ξ)〉

=
∑

m,n≥1

〈em(x, ξ)|Q(x, ξ)|en(x, ξ)〉〈em(x, ξ)|hj〉〈hj |en(x, ξ)〉 = 〈hj |Q(x, ξ)|hj〉 .

Hence
∫

R2d

∑

k≥1

〈vk(x, ξ)|H|vk(x, ξ)〉dxdξ =
∑

j≥1

μj

∫

R2d

〈hj |Q(x, ξ)|hj〉dxdξ

=
∑

j≥1

μj〈hj |S|hj〉 = traceH(S
1/2|H|S1/2) < ∞ ,

and since ∑

k≥1

‖vk(x, ξ)‖2H = traceH(Q(x, ξ)) = p(x, ξ) ,

one concludes that
∫

R2d

traceH(Q(x, ξ)1/2c�(x, ξ)Q(x, ξ)1/2)dxdξ

≤ 2

∫

R2d

(|x|2 + |ξ|2)p(x, ξ)dxdξ + 4 traceH(S
1/2HS1/2) < ∞ .

�

5. The “Approximate” Triangle Inequality

The main result in this section is the following “approximate” triangle inequality
for d on D2.

Theorem 5.1. For all ρ1, ρ2, ρ3 ∈ D2, one has

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) +
√
d� .

In particular, for all ρ1, ρ2, ρ3 ∈ D2, one has

d(ρ1, ρ3) < d(ρ1, ρ2) + d(ρ2, ρ3) +
1√
2
d(ρ2, ρ2) .

Indeed, Theorem 3.1 shows that the triangle inequality holds without the additional
term

√
d� if ρ2 ∈ Pac

2 (R2d); this extra term is needed only if ρ2 ∈ D2(H), in which
case √

2d� ≤ d(ρ2, ρ2) .

We first recall the definition of the Husimi function of a bounded operator on H.

Definition 5.2. For all q, p ∈ Rd, the Schrödinger coherent state |q, p〉 is the wave
function defined by the formula

|q, p〉(x) := (π�)−d/4e−|x−q|2/2�e−ip·x/� , x ∈ Rd .

The Husimi function of R ∈ L(H) is
H[R](q, p) := 1

(2π�)d
〈q, p|R|q, p〉 .

We shall also need the notion of Töplitz operator, whose definition is recalled
below.
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Definition 5.3. For each Borel measure μ on R2d such that

(9) 0 ≤ μ(dqdp) ≤ K(1 + |q|2 + |p|2)dqdp

for some K > 0, one defines the unbounded self-adjoint operator

T [μ] =

∫

R2d

|q, p〉〈q, p|μ(dqdp)

with domain

Dom(T ) := {ψ ∈ H s.t. H[|ψ〉〈ψ|] ∈ L2(R2d;μ)}
by the formula

〈φ|T [μ]|ψ〉 :=
∫

R2d

〈q, p|φ〉〈q, p|ψ〉μ(dqdp) , φ, ψ ∈ Dom(T ) .

The map T is extended by linearity to complex Borel measures on R2d (with finite
total variation: see Theorem 6.4 in [21]).

Formulas (47), (48) and (54) in [13] imply that H[R] ∈ Pac
2 (R2d) for all R ∈

D2(H), while formula (55) in [13] implies that

T [P2(R
2d)] ⊂ D2(H) .

We also recall formula (54) in [13] in the form

traceH(R
∗T [μ]) = (2π�)d

∫

R2d

H[R](q, p)μ(dqdp)

for each R ∈ D2(H) and each Radon measure μ satisfying (9).

The key to the approximate triangle inequality is the inequality below, of inde-
pendent interest, whose proof is based on the duality theorem (Theorem 4.1) in the
preceding section.

Theorem 5.4. For each R,S ∈ D2(H), one has

d(R,S)2 ≥ d(R,H[S])2 − d� .

Notice that this inequality, and the inequality in Theorem 2.4 (2) of [14], which
we recall in the form

d(R, f)2 ≥ d(H[R], f)2 − d�

for all R ∈ D2(H) and all f ∈ Pac
2 (R2d), specialized to f = H[S], imply that

d(R,S)2 ≥ d(H[R],H[S])2 − 2d� ,

which is the inequality in Theorem 2.3 (2) of [13].

Proof. Let a ≡ a(q, p) in Cb(R
2d;R) and B = B∗ ∈ L(H) satisfy

a(q, p)IH +B ≤ c�(q, p) for a.e. (q, p) ∈ R2d .

Then

a(q, p)|q, p〉〈q, p| ⊗ IH + |q, p〉〈q, p| ⊗B ≤ |q, p〉〈q, p| ⊗ c�(q, p)

for all (q, p) ∈ R2d. Using formulas (46) and (48) in [13] shows that

T [1] = (2π�)dIH , T [q] = (2π�)dx , T [p] = −i�(2π�)d∇x ,

T [|q|2 + |p|2] =(2π�)d(|x|2 − �
2Δx + d�IH) .
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Hence

1
(2π�)d

T [a]⊗ IH + IH ⊗B ≤ 1
(2π�)d

∫

R2d

|q, p〉〈q, p| ⊗ c�(q, p)dqdp

=C� + d�IH⊗H .

Thus, for each T ∈ C(R,S), one has

traceH⊗H

(
T

1
2C�T

1
2

)
+ d� ≥ traceH⊗H

(
T

1
2

(
1

(2π�)d
T [a]⊗ IH + IH ⊗B

)
T

1
2

)

=traceH⊗H

((
1

(2π�)d
T [a]⊗ IH + IH ⊗B

)
T
)

=traceH

(
1

(2π�)d
T [a]R+BS

)

=

∫

R2d

a(q, p)H[R](q, p)dqdp+ traceH(BS) .

Minimizing the left hand side in T ∈ C(R,S) leads to the inequality

d(R,S)2 + d� ≥
∫

R2d

a(q, p)H[R](q, p)dqdp+ traceH(BS)

which holds for all a ∈ Cb(R
2d;R) and all B = B∗ ∈ L(H) such that

a(q, p)IH +B ≤ c�(q, p) , q, p ∈ Rd .

Maximizing the right hand side of the penultimate inequality and applying the
Kantorovich duality theorem implies that

d(R,S)2 ≥ distMK,2(H[R](q, p), S)2 − d�

which is the sought inequality. �

With these results as preliminaries, we can now prove the approximate triangle
inequality (Theorem 5.1).

Proof of Theorem 5.1. If ρ2 ∈ P2(R
2d), the triangle inequality holds for ρ1, ρ2, ρ3,

and there is nothing left to prove. If ρ2 ∈ D2(H), thenH[ρ2] ∈ Pac
2 (R2d). Therefore,

the restricted triangle inequality in Theorem 3.1 implies that

d(ρ1, ρ3) ≤ d(ρ1,H[ρ2]) + d(H[ρ2], ρ3) .

By Theorem 5.4, one has

d(ρ1,H[ρ2]) ≤
√

d(ρ1, ρ2)2 + d�

d(H[ρ2], ρ3) ≤
√

d(ρ2, ρ3)2 + d�

so that

d(ρ1, ρ3) ≤
√

d(ρ1, ρ2)2 + d�+
√
d(ρ2, ρ3)2 + d� .

Finally, we recall the elementary inequality

X ≥ Y > 0 =⇒
√
X2 + Y 2 ≤ X + 1

2Y .

Since ρ2 ∈ D2(H), one has

d(ρ1, ρ2) ≥
√
d� , d(ρ2, ρ3) ≥

√
d� ,
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so that one can take X = d(ρ1, ρ2) or X = d(ρ2, ρ3) and Y = d� in the elementary
inequality above, so that

d(ρ1, ρ3) ≤
√
d(ρ1, ρ2)2 + d�+

√
d(ρ2, ρ3)2 + d�

≤d(ρ1, ρ2) + d(ρ2, ρ3) + d� .

�

We shall conclude this section with a consequence of the restricted triangle in-
equalities obtained above.

Theorem 5.5. Let R�, S� ∈ D2(H) and μ, ν ∈ P2(R
2d) satisfy the condition

d(μ,R�) → 0 and d(ν, S�) → 0 as � → 0+ .

Then
d(R�, S�) → distMK,2(μ, ν) as � → 0+ .

Remark. In Theorem 2.3 (2) of [13], we have seen that, if H[R�] and H[S�]
converge weakly (in the sense of Radon measures with finite total variation) to
μ ∈ P(R2d) and ν ∈ P(R2d) respectively, then

distMK,2(μ, ν) ≤ lim
�→0+

d(R�, S�) .

(This is a straightforward consequence of the lower bound in Theorem 2.3 (2) of
[13], of Proposition 7.1.3 in chapter 7 of [1], and of Theorem 6.8 in chapter II of [19]
(the so-called Portmanteau theorem).) Theorem 5.5 strengthens this inequality
into an equality, under an assumption on R� and S� expressed in terms of the
“pseudometric” d itself.

Proof. By the (restricted) triangle inequality (Theorem 3.1)

d(R�, S�) ≤ d(R�, μ) + d(μ, ν) + d(ν, S�) .

Letting � → 0+ in both sides of this inequality implies that

lim
�→0+

d(R�, S�) ≤ d(μ, ν) .

On the other hand, Theorem 2.4 (2) of [14] implies that

d(R�, μ)
2 ≥ distMK,2(H[R�], μ)

2 − d� ,

d(ν, S�)
2 ≥ distMK,2(ν,H[S�])

2 − d� ,

so that our assumption on R� and S� implies that

distMK,2(H[R�], μ) → 0 and distMK,2(ν,H[S�]) → 0 as � → 0+ .

With the inequality in Theorem 2.3 (2) of [13], i.e.

d(R�, S�)
2 ≥ distMK,2(H[R�],H[S�])

2 − 2d� ,

we conclude that

lim
�→0+

d(R�, S�)
2 ≥ lim

�→0+
distMK,2(H[R�],H[S�])

2 = distMK,2(μ, ν)
2 .

Therefore

distMK,2(μ, ν) ≤ lim
�→0+

d(R�, S�) ≤ lim
�→0+

d(R�, S�) ≤ distMK,2(μ, ν) ,

and this implies Theorem 5.5. �
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In other words, the set P2(R
2d) of Borel probability measures with finite second

order moment on phase space is the set of limits points of D2(H) (the set of finite
energy density operators on H) for the “pseudometric” d in the semiclassical limit,
i.e. as � → 0, since Töplitz operators satisfy the assumptions of Theorem 5.5 by
Theorem 2.4 (1) in [14]. Moreover, the pseudometric d “converges” to the Monge-
Kantorovich-(Wasserstein) distance distMK,2 in that limit.

In that sense, the construction of the pseudometric d essentially fulfills the ob-
jectives presented in the introduction.

6. Classical/quantum optimal transport and semiquantum Legendre

transform

6.1. A classical/quantum optimal transport. Let r ∈ P2(R
2d) be a probabil-

ity density on R2d and S ∈ D2(R
d) a density operator on L2(Rd).

We suppose that an optimal operator B̃ and an optimal function ã exists for the
Kantorovich duality formulation of d(r, S), as in Theorem 4.1, and that ã ∈ Cb(R

2d)

and B̃ ∈ L(H). That is to say that

ã(x, ξ) + B̃ ≤ (Z − z)2 and d(r, S)2 =

∫

R2d

ã(z)r(z)dz + traceL2(Rd) B̃S.

Here we have used the notation z = (x, ξ), dz = dxdξ, and Z = (y,−i�∇y) acting
on L2(Rd, dy).

Let us denote by Π(z) an optimal coupling of r, S and let us define

a(z) := 1
2 (|z|

2 − ã(z))

B := 1
2 (|Z|2 − B̃).

One has

(a(z) +B − z · Z) ≥ 0 and traceL2(Rd)

∫

R2d

Π(z)
1
2 (a(z) +B − z · Z)Π(z)

1
2 dz = 0.

Therefore, since Π(z)
1
2 (a(z) +B − z · Z)Π(z)

1
2 ≥ 0, the preceding equality implies

that

Π(z)
1
2 (a(z) +B − z · Z)Π(z)

1
2 = 0 for a.e. z ∈ R2d.

In other words,

Π(z)
1
2 (a(z) +B − z · Z)

1
2

(
Π(z)

1
2 (a(z) +B − z · Z)

1
2

)∗
= 0

which implies that

(a(z) +B − z · Z)
1
2Π(z)

1
2 = 0

and

(10) (a(z) +B − z · Z)Π(z) = 0.

Hence, the range of Π consists in functions R2d � z �→ ψz ∈ L2(Rd) such that

(11) (a(z) +B − z · Z)ψz = 0 :

the vectors ψz belong to the kernel of B + a(z)− z · Z for a.e. z ∈ R2d .

Moreover Π(z) ≥ 0 for every z ∈ R2d and traceL2(Rd) Π(z) = r(z). Hence

r(z) > 0 ⇒ ImΠ(z) �= {0}
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so that there exists an eigenvector ψz of B − z · Z of eigenvalue −a(z) for r− a.e.
z ∈ R2d.

But B + a(z)− z · Z ≥ 0. Therefore, for r− a.e. z ∈ R2d,

−a(z) is the lowest eigenvalue of B − z · Z.

Theorem 6.1. Let ã and B̃ be two bounded optimal Kantorovich potentials for
d(r, S).

Then, for r-almost every (x, ξ) ∈ R2d,

ã(x, ξ) is the highest eigenvalue of c�(x, ξ)− B̃.

If the fundamental of B−z ·Z is non degenerate in the sense that the eigenspace
corresponding to the lowest eigenvalue of B − z · Z has dimension 1, then Π(z) is
proportional to |ψz〉〈ψz| and therefore, since Π(z) is a coupling between r and S,

Π(z) = r(z)|ψz〉〈ψz|
and

S =

∫

R2d

r(z)|ψz〉〈ψz|dz.

We just proved the following result.

Theorem 6.2. Let ã and B̃ be two bounded optimal Kantorovich potentials for
d(r, S).

Let us suppose moreover that, for each z ∈ R2d, the lowest eigenspace of B̃−c�(z)
is nondegenerate and let ψz be its ground state.

Then S admits the following representation

S =

∫

R2d

r(z)|ψz〉〈ψz|dz.

Theorem 6.2 suggests to associate to any probability density μ the following
operator

(12) μ −→ OPr,S
�

[μ] :=

∫

R2d

|ψz〉〈ψz|μ(dz).

The arrow in (12) can be seen as the “optimal transport”, from classical proba-
bility densities to quantum density matrices, transporting r to S.

Note that, for any density μ,

traceOPr,S
�

[μ] =

∫

R2d

μ(dz).

Finally, using (10), we easily show, by analogy with the proof of [6, Theorem
2.6 (1) (a)], that, when a ∈ C1(R2d), (∇a)r ∈ Cb(R

2d) and ψz ∈ Dom( 1
i� [Z,B])

for all z ∈ supp(r),

0 = Π(z) 1
i� [JZ, (a(z) +B − z · Z)Π(z)] = Πz

1
i� [JZ, a(z) +B − z · Z]Π(z)

= Π(z)( 1
i� [JZ,B]− z)Π(z)

and

0 = Π(z){Jz, (a(z) +B − z · Z)Π(z)} = Π(z){Jz, a(z) +B − z · Z}Π(z)
= Π(z)(∇a(z)− Z)Π(z).
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Here J the symplectic matrix defined by {f, g} = ∇f · J∇g i.e. J =

(
0 I
−I 0

)

.

Therefore the (classical and quantum) “gradient” aspect appears in the following
expressions

(13)

{
〈ψz|Z|ψz〉 = ∇a(z)

z = 〈ψz|Z|∇QBψz〉

where, as introduced and motivated in [6, Section 1 formula (11)], ∇Q := 1
i� [JZ, ·].

Let us finish this section by an example. Suppose that S is the Töplitz operator
of symbol r, as defined in Definition 5.3:

S = T (r).

In this case, one knows, [14, Theorem 2.4 (1)] (note a difference of normalization:
in [14], E2

�
= 1

2d
2),

d(r, S)2 = d� =

∫

R2d

ã(z)r(z)dz + trace(B̃S) with ã = 0, B̃ = d�IH.

Since (x − y)2 + (ξ + i�∇y)
2 ≥ d�IH = ãIH + B̃, ã and B̃ are optimal and the

“renormalized” potentials a and B are just:

a(z) = 1
2 |z|

2 and B = 1
2 (|Z|2 − d�IH).

Hence

a(z) +B − z · Z = 1
2 (−∇y + y − (x+ iξ))(∇y + y − (x− iξ))

so that the solution of (11) is in this case

ψz(y) = (π�)−d/4e−
(y−x)2

2� ei
ξ·y
�

and Theorem 6.2 expresses back that S = T (r):

OP
μ,T (μ)
�

= T
for any probability density μ.

6.2. A semiquantum Legendre transform. As we have seen, for r-a.e. z ∈ R2d,
−a(z) is the fundamental of the operator B − z · Z. Therefore, by the variational
characterization of the lowest eigenvalue,

−a(z) = inf
φ∈Dom(B−z·Z)

‖φ‖H=1

(〈φ|B|φ〉 − z · 〈φ|Z|φ〉),

since, for each z ∈ R2d, R − z · Z is a bounded perturbation of |Z − z|2, the
harmonic oscillator H shifted by z, so that its spectrum is pure point, and −a(z)
is its lowest eigenvalue.

In other words,

(14) a(z) = sup
φ∈Dom(B−z·Z)

‖φ‖H=1

(z · 〈φ|Z|φ〉 − 〈φ|B|φ〉) for r− a.e. z ∈ R2d

To be faced to the classical definition of the Legendre transform

a(z) = sup
z′

(z · z′ − b(z′)).



40 F. GOLSE AND T. PAUL

Definition 6.3. For B such that −�
2Δx + |x|2 −B ∈ L(L2(Rd)), let us define the

semiquantum Legendre dual of B as the function on L2(R2d) defined by

B∗(z) := sup
φ∈Dom(B)
‖φ‖H=1

(z · 〈φ|Z|φ〉 − 〈φ|B|φ〉).

Note that, sinceB is a bounded perturbation of the harmonic oscillator−�
2Δy+ |y|2,

Dom(B) = Dom(B − z · Z) = Dom(−�
2Δy + |y|2).

Definition 6.3 together with (14) leads to our final result.

Theorem 6.4. Let a(z) = 1
2 (|z|

2 − ã(z)) and B = 1
2 (|Z|2 − B̃) where ã(z) and B̃

are bounded optimal Kantorovich potentials for d(r, S). Then,

a = B∗ r − almost everywhere in R2d..
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[23] K. Życzkowski, W. S�lomczyński: Monge Distance between Quantum States. J. Phys. A 31

(1998), 9095–9104
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