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Abstract

Non-negative Matrix Factorization (NMF) and its variants have been successfully

used for clustering text documents. However, NMF approaches like other models

do not explicitly account for the contextual dependencies between words. To

remedy this limitation, we draw inspiration from neural word embedding and

posit that words that frequently co-occur within the same context (e.g., sentence or

document) are likely related to each other in some semantic aspect. We then propose

to jointly factorize the document-word and word-word co-occurrence matrices.

The decomposition of the latter matrix encourages frequently co-occurring words

to have similar latent representations and thereby reflecting the relationships among

them. Empirical results, on several real-world datasets, provide strong support for

the benefits of our approach. Our main finding is that we can drastically improve

the clustering performance of NMF by leveraging the contextual relationships

among words explicitly.

1. Introduction

Since the work of Lee and Seung [29, 30], Non-negative Matrix Factorization

(NMF) has been receiving more and more attention as a fundamental tool for



analyzing positive data arising in various areas, such as computer vision and text

analysis.

Compared to other matrix factorization techniques such as Singular Value

Decomposition (SVD), NMF is attractive due to the non-negativity constraints,

making it possible to produce latent representations which are highly interpretable

and well-suited for some tasks such as clustering, for which we focus on.

Although clustering is not the primary purpose of Non-negative Matrix Fac-

torization (NMF) [29, 30], the latter has received a lot of interest in the clustering

community resulting in a new class of clustering algorithms—based on NMF.

Furthermore, a series of works [16, 35, 18] established theoretical connections

between NMF and k-means, spectral clustering, providing strong support and theo-

retical foundations for NMF-based clustering. More precisely, NMF is equivalent

to a relaxed k-means clustering yielding a soft partitioning.

In this paper, we deal with NMF from a clustering perspective, and we particu-

larly focus on the task of text document clustering, which constitutes one of the

most popular and prominent applications of NMF. Clustering text documents is of

great interest for several practical reasons such as: automatic summarization and

organization of documents, efficient browsing and navigation of huge text corpora,

visualization, speed up search engines, etc. In this context, NMF-based algorithms

decompose the document-word matrix into a document and word factor matrices

containing, respectively, the low dimensional representations—embeddings—of

each document and word [55]. It turns out that, the document factor matrix en-

codes some latent patterns of the original matrix that are well suited to cluster text

documents.

Despite all the notable efforts which highlighted the potential of NMF for
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clustering text documents [34], this approach still exhibits some limitations, namely

it does not explicitly account for the semantic relationships between words. Hence,

words having a common meaning—synonyms—or more generally words that are

about the same topic are not guaranteed to be mapped in the same direction in

the latent space. This is simply due to the fact that words with similar meanings

are not necessarily used exactly in the same documents. Consequently, similar

embeddings are not guaranteed even for closely related documents using words

with similar meanings. Hence, our intuition is that, if we are successful in capturing

the semantic relationships among words in an NMF model we can expect document

factors which are even better for clustering.

The research question is how to capture and leverage the relationships among

words in an NMF model? In this paper, we draw inspiration from neural word

embedding and rely on the distributional hypothesis [21], which states that words

in similar contexts have similar meanings. The context is a modeling choice that

could be data- or problem-specific. For instance, a document or a sentence is a

context in which words co-occur. Note that other definitions of "contexts" are

possible [32]. An early application of that hypothesis in Matrix Factorization

is the Hyperspace Analogue to Language (HAL) [36] framework. It employs a

word-word co-occurrence matrix whose entries encode the number of times each

pair of words has occurred in the same context. Thus, following the distributional

hypothesis, we assume that words which frequently co-occur in the same context

are likely related to each other in some semantic aspect. We then, propose a new

NMF model which jointly decomposes the document-word and word-word co-

occurrence matrices into two separate products that share one factor. The intuition

behind the decomposition of the latter matrix is to make the representations of
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frequent co-occurring words closer to each other in the latent space so as to reflect

the relationships among them. We further consider a non-linear transformation of

the word co-occurrences, based on the Pointwise Mutual Information (PMI), for

effectiveness and efficiency purposes.

In order to infer the factor matrices, we propose a scalable alternating optimiza-

tion procedure based on a set of multiplicative update rules, similar to original

NMF, which guarantees to decrease monotonically our objective function at each

iteration, until convergence. We conduct extensive experiments to illustrate the

benefits of our model and better characterize the circumstances in which it offers

the most significant improvements. Our main finding is that, we can drastically

improve the clustering performance of NMF by leveraging explicitly the contextual

relationships among words1.

The outline of the paper is as follows. Section 2 is devoted to present related

work. In Section 3, we briefly review the original NMF model and some recent

results concerning the skip-gram model with negative sampling—word2vec—

that we exploit in our work. In section 4, we present our model and derive a scalable

iterative algorithm for inference. Section 5 is devoted to numerical experiments.

Subsequently, we discuss some possible extensions of our model that we have

already investigated (section 6). Finally, we conclude and suggest paths for future

research in section 7.

1In this paper we use “ contextual relationships” and “semantic relationships” interchangeably.
The former relationships underlie the latter ones, and our objective is to rely on the words’ context
to capture the semantic relationships among them
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2. Related Works

Our contribution is mainly related to the works on non-negative matrix factor-

ization for clustering. The literature on NMF is very large; for instance the reader

can refer to [54]. Below we try to provide a brief review of works that are most

closely related to our contribution.

There has been a lot of research on developing new variants of NMF in the

direction of clustering. For instance, Ding et al. [17], Yoo and Choi [58] proposed

orthogonal NMF, which constrains the document factor matrix to be orthogonal,

and highlighted the importance of such constraint for clustering. Ding et al. [18]

introduced Semi-NMF and Convex-NMF, enforcing the non-negativity constraint

on the document factor matrix, but allowing the original data to have mixed signs

[2]. Although both variants have been found to perform somewhat less well than

NMF for clustering positive data, they expand the applicable range of NMF models,

to data having mixed sings, as well as strengthen their relation to clustering. In

[60, 57] the authors proposed Projective NMF (PNMF) with a single latent factor

matrix only. PNMF is equivalent to soft k-means clustering and performs better

than NMF for text document clustering.

Cai et al. [9] developed Graph Regularized NMF (GNMF), which aims to pre-

serve the intrinsic geometry of the data distribution. In GNMF, the data (document)

manifold structure is modeled by a nearest neighbor graph, and it is incorporated

into original NMF as an additional regularization term in order to force the em-

beddings of documents, which are connected, to be close to each other. Shang et

al. [47] proposed graph dual regularized NMF, which extends GNMF to model

both the data manifold and feature manifold simultaneously. In order to reduce

the sensitivity of GNMF to the nearest neighbor graph’s parameters, the authors
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in [53] developed multiple graph regularized NMF where the the data manifold is

approximated by a linear combination of several nearest neighbor graphs having

different parameters. In the same vein, more robust extensions of NMF, which

can handle data points lying in complex manifolds, have been recently proposed

[22, 19]. Modeling document manifolds is an orthogonal direction to the present

work; here we focus on preserving the contextual relationships between words.

Extensions of NMF to co-clustering have been developed to cluster objects

(e.g. documents) and features (e.g. words), simultaneously. These approaches

[17, 59, 26, 12, 3], commonly referred to as Non Negative Matrix Tri-Factorization

(NMTF), seek a decomposition of the original data matrix into three non-negative

factor matrices. Some other works [15, 11, 10, 44] have focused on developing

algorithmic extensions of NMF to accommodate different cost functions and differ-

ent machine learning tasks, or to develop more effective and efficient algorithms to

solve the NMF problem [25, 20]. For more details on NMF and its extensions for

clustering, please refer to [34].

In order to leverage the relationships among words in NMF, we draw inspiration

from neural word embedding. These approaches, seek continuous representations

of words that reflect various linguistic regularities between them [4, 39, 37]. To

achieve their objective, most neural word embedding methods rely on the distri-

butional hypothesis of Harris [21]. For instance, the recently proposed skip-gram

model with negative sampling aims to maximize the dot-product between the

vectors of frequently occurring word-context pairs, and minimize it for random

word-context pairs. For more details please refer to [37]. What makes these models

particularly appealing is their ability to learn word vectors that are good at captur-

ing meaningful semantic and syntactic regularities between words [38]. Similar

6



to word embedding techniques, the model we propose relies on the distributional

hypothesis to capture the semantic relationships between words in NMF. Our pre-

liminary investigation of infusing NMF with contextual relationships among words

has appeared recently as a short paper [1]. In the present manuscript, we delve

in-depth into this idea and present several new theoretical and empirical results.

Notation. Matrices are denoted with boldface uppercase letters and vectors with

boldface lowercase letters. The Frobenius norm is denoted by ‖.‖F and the

Hadamard product by �. The document-word matrix is represented by a ma-

trix X = (xij) ∈ Rn×d
+ , its ith row represents the weighted term frequency vector

of document i ∈ I, i.e., xi = (xi1, . . . , xid)
> where > denotes the transpose.

The word co-occurrence matrix is represented by C = (cjj′) ∈ Rd×d′
+ , following

the nomenclature in neural word embedding, row j ∈ J corresponds to word

wj , column j′ ∈ J ′ denotes context word wj′ , and each entry cjj′ denotes the

number of times the word-context pair (wj ,wj′) occurred in the same context (e.g.,

a sentence or a document). The word and context word vocabularies, J and J ′

might be different.

3. Preliminaries

In the context of text data, NMF seeks a decomposition of a document-word

matrix X into two low dimensional factor matrices Z = (zik) ∈ Rn×g
+ and

W = (wjk) ∈ Rd×g
+ , such that X ≈ ZW>. To infer the latent factor matrices,

NMF attempts to solve the following optimization problem

arg min
Z,W

D(X,ZW>), s.t. Z, W ≥ 0. (1)

whereD is a cost function that allows us to quantify the quality of the approximation

of X by ZW>; D can be, for instance, the Frobenius norm or the I-divergence. As

7



NMF has an inherent clustering property, the document factor matrix Z is usually

considered as a soft cluster membership matrix, where zik denotes the degree to

which document i belongs to cluster k. A partition of the set of documents can

then be obtained by assigning each document to the most likely cluster. Notice

that, in order to make the solution of (1) unique, Z is usually normalized to have

unit-length column vectors.

The PMI is an information theoretic measure widely used to quantify the

association between pairs of outcomes coming from discrete random variables.

Formally, the PMI between word wj and its context word wj′ is given by

PMI(wj, wj′) = log
p(wj, wj′)

p(wj)p(wj′)
. (2)

Given the word co-occurrence matrix C defined above, the PMI between wj and

wj′ can be empirically estimated as follows

PMI(wj, wj′) = log
cjj′ × c..
cj. × c.j′

, (3)

where c.. =
∑d

j=1

∑d′

j′=1 cjj′ , cj. =
∑d′

j′=1 cjj′ and c.j′ =
∑d

j=1 cjj′ .

The expected value of the PMI across all the possible events is the Mutual

Information (MI) that is positive. A null PMI indicates that the events are inde-

pendent, negative values of PMI indicate that those events occur less frequently

than expected. Therefore a useful variation called Positive PMI (PPMI) is to set all

negative PMI values to zero. This transformation has been shown to produce good

semantic representations [7].

4. Method

4.1. Formulation

In this section, we describe our model, Semantic-NMF, which jointly performs

NMF on the document-word matrix and word-word PPMI matrix, with shared word
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factors, to better capture and leverage the semantic relationships among words.

Formally the objective function of Semantic-NMF, to be minimized, is given by

F(Z,W,Q) = D1(X,ZW>)︸ ︷︷ ︸
NMF

+λD2(M,WQ>)︸ ︷︷ ︸
word embedding

, (4)

where D1 and D2, are cost functions for measuring the divergence between non-

negative matrices, λ is a regularization parameter, and following the nomenclature

in neural word embedding, we refer to Q ∈ Rd′×g
+ as the context factor matrix.

The above objective function can be viewed as regularizing the word factors in

NMF beyond usual regularization schemes (e.g., L2 norm). Note that, both terms

in (4) infer low dimensional representations of words. In the NMF term, word

factors encode how words are used in documents, while in the word embedding

term, word representations encode word co-occurrence patterns. Semantic-NMF

seeks to leverage both of the above information, simultaneously. Additionally,

whilst d′ = d due to M defined as a word-word PPMI matrix, Semantic-NMF can

easily accommodate the definition of M as a word embedding matrix where d′ 6= d

(favorably d′ ≤ d). Figure 1 provides a graphical illustration of Semantic-NMF.

4.2. Inference

In this section, we shall investigate the case where both D1 and D2 are the

square of the Frobenius norm, and derive an iterative optimization procedure to
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infer the latent factor matrices. In this case, (4) takes the following form:

F(Z,W,Q) =
1

2
||X− ZW>||2F +

λ

2
||M−WQ>||2F

=
1

2
Tr
(
(X− ZW>)(X− ZW>)>

)
+
λ

2
Tr
(
(M−WQ>)(M−WQ>)>

)
=

1

2
Tr
(
XX> − 2XWZ> + ZW>WZ>

)
+
λ

2
Tr
(
MM> − 2MQW> + WQ>QW>). (5)

In the following, we derive a set of multiplicative update rules in order to minimize

F under the constraints of positivity of Z, W and Q. Let α ∈ Rn×g, β ∈ Rd×g,

γ ∈ Rd′×g be the Lagrange multipliers for the constraints, the Lagrange function

L(Z,W,Q,α,β,γ) = L is given by

L = F(Z,W,Q) + Tr (αZ>) + Tr (βW>) + Tr (γQ>).

The derivatives of L with respect to Z, W and Q are

∇ZL = −XW + ZW>W + α, (6a)

∇WL = −(X>Z + λMQ) + W(Z>Z + λQ>Q) + β, (6b)

∇QL = −λM>W + λQW>W + γ. (6c)

Setting these gradients to zero and making use of the Kuhn-Tucker conditions
α� Z = 0

β �W = 0

γ �Q = 0

we obtain the following stationary equations:

−(XW)� Z + (ZW>W)� Z = 0,
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Figure 1: Illustrative scheme of the proposed Semantic-NMF model. X ≈ ZW> and
M ≈WQ>

−(X>Z + λMQ)�W + W(Z>Z + λQ>Q)�W = 0,

−(M>W)�Q + (QW>W)�Q = 0.

Based on the above equations we derive the following multiplicative update rules

Z← Z� XW

ZW>W
, (7a)

W←W � (X>Z + λMQ)

W(Z>Z + λQ>Q)
, (7b)

Q← Q� M>W

QW>W
. (7c)

These update rules are analogous to those of NMF [30]. The difference is in

how we update the word factors in Semantic-NMF. In the latter, the update of W

depends on two sources of data (i) the document-word matrix and (ii) the PPMI

co-occurence matrix M.

Theorem 1. The objective function of Semantic-NMF is non-increasing under the

update formulas (7a), (7b) and (7c).
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Proof. Equations (7a) and (7c) are similar to those of NMF [30], therefore based

on the proof of [30] the objective function of Semantic-NMF is non-increasing

under these two equations. Hence, we only need to demonstrate that F is non-

increasing under the update rule (7b), given Z and Q. To this end, we follow a

similar approach to the one described in [30], which is inspired by the Expectation-

Maximization (EM) algorithm [13] and consists in using an auxiliary function.

Definition. G(w,w′) is an auxiliary function for F(w) if the following conditions

are satisfied G(w,w′) ≥ F(w) and G(w,w) = F(w).

A key point to the auxiliary function is described by the following lemma.

Lemma 1. If G is an auxiliary function for F , then F is non-increasing under the
update

w(t+1) = arg min
w

G(w,w(t)). (8)

Proof.

F(w(t+1)) ≤ G(w(t+1), w(t)) ≤ G(w(t), w(t)) = F(w(t)).�

Now we will make use of an appropriate auxiliary function to demonstrate that

our objective function F is non-increasing under the update rule (7b). Let wjk

denote any element in W, and let F̃(wjk) denote the part of F containing wjk. As

the update (7b) is element-wise, it is sufficient to show that F̃ is non-increasing

under the update of wjk based on equation (7b). The first and second partial

derivatives of F̃ noted F̃ ′, F̃ ′′ are respectively given by

F̃ ′(wjk) =
(
−X>Z− λMQ + W(Z>Z + λQ>Q)

)
jk
,

F̃ ′′(wjk) =
(
Z>Z + λQ>Q

)
kk
.
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The following lemma yields an auxiliary function for F̃ .

Lemma 2. The function G defined as follows

G(wjk, w
(t)
jk ) = F̃(w

(t)
jk ) + F̃ ′(w(t)

jk )(wjk − w(t)
jk )

+

(
W
(
Z>Z + λQ>Q

))
jk

2w
(t)
jk

(wjk − w(t)
jk )2 (9)

is an auxiliary function for F̃ .

Proof. Based on Lemma 2 it straightforward to verify that G(wjk, wjk) = F̃(wjk).

We will now show that G(wjk, w
(t)
jk ) ≥ F̃(wjk), by making use of the second order

Taylor expansion of F̃ about w(t)
jk given by

F̃(wjk) = F̃(w
(t)
jk ) + F̃ ′(w(t)

jk )(wjk − w(t)
jk )

+

(
Z>Z + λQ>Q

)
kk

2
(wjk − w(t)

jk )2. (10)

Since (
WZ>Z

)
jk

=

g∑
k′=1

w
(t)
jk′

(
Z>Z

)
k′k
≥ w

(t)
jk

(
Z>Z

)
kk

and similarly (
WQ>Q

)
jk
≥ w

(t)
jk

(
Q>Q

)
kk
,

we have
(W(Z>Z+λQ>Q))

jk

w
(t)
jk

≥
(
Z>Z + λQ>Q

)
kk

. Thereby, from (9) and (10),

G(wjk, w
(t)
jk ) ≥ F̃(wjk) holds. �

Thus, to prove Theorem 1 it is sufficient to show that equation (7b) for wjk

satisfies Lemma 1 where the auxiliary function G is given by Lemma 2. Substituting

equation (9) to G(wjk, w
(t)
jk ) in Lemma 1 leads to solve

∂G(wjk,w
(t)
jk )

∂wjk
= 0 or,

F̃ ′(w(t)
jk ) +

(
W(Z>Z + λQ>Q)

)
jk

2w
(t)
jk

(2wjk − 2w
(t)
jk ) = 0.
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Then w(t+1)
jk = arg minw G(wjk, w

(t)
jk ) leads to

w
(t+1)
jk = −w(t)

jk

F̃ ′(w(t)
jk )

(W (Z>Z + λQ>Q))jk
+ w

(t)
jk

= w
(t)
jk

(X>Z + λMQ)jk
(W(Z>Z + λQ>Q))jk

.

It follows from the latter result and Lemma 1 that F̃ is non-increasing under the

update of wjk in equation (7b), ∀j, k. Given that (7b) is element-wise, the objective

function of Semantic-NMF is non-increasing under the update rule (7b). �

Thereby, based on Theorem 1, the fact that (7a), (7b) and (7c) satisfy the KKT

conditions at convergence andF is bounded from below by 0, iteratively alternating

the application of (7a), (7b) and (7c) will monotonically decrease criterion (5) and

converge to a locally optimal solution. Our optimization procedure is depicted in

Algorithm 1.

Algorithm 1 Semantic-NMF (SNMF).
Input: X, M, λ and g the dimension of the latent factors.
Output: Z, W and Q.
1. Initialization: Z← Z(0); W←W(0) and Q← Q(0);
repeat

2. Z← Z� XW
ZW>W

;
3. W←W � (X>Z+λMQ)

W(Z>Z+λQ>Q)
;

4. Q← Q� M>W
QW>W

;
until convergence
5. Normalize Z so as it has unit-length column vectors.

4.3. Computational Complexity Analysis

The following Proposition shows that the computational complexity of the

SNMF algorithm scales linearly with the number of non-zero entries in the document-
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word and PPMI matrices. In practice X and M are very sparse, i.e., nzX � n× d

and nzM � d × d. Furthermore, multiplicative update rules (7a), (7a) and (7c)

are parallelizable across documents and words, thereby Semantic-NMF can easily

scale to large datasets.

Proposition 1. Let nzX and nzM denote respectively the number of non-zero

entries in X and M, and let it be the number of iterations. The computational

complexity of Semantic-NMF is given in O(it · g · (nzX +nzM) + it · g2 · (n+ d)) .

Proof. The computational bottleneck of SNMF is with the multiplicative update

formulas (7a), (7b) and (7c). Equations (7a) and (7c) are similar to those of NMF,

and their respective complexities areO(nzX ·g+(n+d)·g2) andO(nzM ·g+d·g2).

The number of operation in (7b), including multiplications, additions and divisions,

is g(2nzX + 3nzM + 3d+ g(4d+ 2n+ 1)), where we used d′ = d. The complexity

of (7b) is thereby given in O(g · (nzX + nzM) + (n+ d) · g2). Therefore, the total

computational complexity of Semantic-NMF is

O(it · g · (nzX + nzM) + it · g2 · (n+ d)).�

5. Experimental study

Our objective is to investigate the effect of the contextual relationships between

words on NMF models. To this end, we conduct extensive experiments in which

we benchmark our model, Semantic-NMF (SNMF), against several state-of-the-art

algorithms (including NMF models and clustering algorithms) on several real-

world datasets. Furthermore, we also challenge the choice of the PPMI for M

by considering another transformation arising from the word-word co-occurrence
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matrix, namely the Global Vectors for Word Representation (GloVe) [43]. Note

that, the Hellinger PCA (HPCA) [27] was also tested but did not demonstrated

good enough performances to be considered in our proposal.

5.1. Datasets

We use six popular benchmark datasets, described in Table 1, namely CSTR

[33], CLASSIC42, RCV1 containing the four largest classes of the Reuters cor-

pus3, the SPORTS dataset (from the CLUTO toolkit [24]) containing documents

relating to seven different sports, the 20-newsgroups dataset NG203, and the NG5

dataset consisting of five classes4 of NG20. These datasets are carefully selected

so as to represent various particular challenging situations: different numbers of

clusters, different sizes, different degrees of cluster overlap and different degrees of

cluster balance (the Balance coefficient being the ratio of the minimum cluster size

to the maximum cluster size). For each dataset, we apply the TF-IDF weighting

scheme and normalize each document to unit L2 norm so as to remove the biases

induced by the length of documents.

Table 1: Description of Datasets, # denotes the cardinality.

Datasets Characteristics
#Documents #Words #Clusters nzX (%) Balance

CSTR 475 1000 4 3.40 0.399
CLASSIC4 7095 5896 4 0.59 0.323
RCV1 6387 16921 4 0.25 0.080
NG5 4905 10167 5 0.92 0.943
SPORTS 8580 14870 7 0.86 0.0358
NG20 18846 14390 20 0.59 0.628

2http://www.dataminingresearch.com/
3http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
4rec.sport.baseball, soc.religion.christian, talk.politics.mideast, sci.electronics and sci.med
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5.2. Competing methods

Without the word embedding term in (5), when λ = 0, the proposed SNMF

degenerates to the original NMF (NMF) [55]. Hence, we can achieve our objective

of studying the effects of the word relationships on NMF, most effectively by

comparing SNMF to NMF. Moreover, in order to show that leveraging the contextual

relationships among words in NMF is effective for text document clustering, we

also consider three strong NMF variants, namely orthogonal NMF (ONMF) [58],

Projective NMF (PNMF) [60] and graph regularized NMF (GNMF) [9]. All the

above models have been found to perform very well and better than several other

approaches in terms of text document clustering. A Deep-Learning algorithm,

namely Deep Clustering Network (DCN) [56] is also considered in our comparison;

it outperforms several clustering (k-means, Spectral Clustering), NMF based

method such as (LCCF) [8] and Deep Learning algorithms (e.g. SAE [52]). The

Spherical k-means algorithm Skmeans [14], which to this day, remains popular

for the task document clustering is also included rather than k-means that is not

suitable for sparse data.

5.3. Evaluation metrics

We retain two widely used measures to assess the quality of clustering, namely

the Normalized Mutual Information (NMI) [50] and the Adjusted Rand Index (ARI)

[23]. Intuitively, NMI quantifies how much the estimated clustering is informative

about the true clustering, while the ARI measures the degree of agreement between

an estimated clustering and a reference clustering; both NMI and ARI are equal to

1 if the resulting clustering is identical to the true one.
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5.4. Settings

For each dataset, g is the true number of clusters. To produce a fair comparison,

the same initialization (namely Skmeans) was used across the NMF-like algorithms.

Similar settings to the ones used to in [43] are employed for producing the GloVe

embeddings; note that any other type of word-embedding can be used for the matrix

M. Therefore, the GloVe embeddings dimension (in our case d′) was set to 100,

xmax to 100, α to 3/4. A stochastic gradient descent algorithm with a learning rate

of 0.15 was used to train the model. Subsequently, all negative entries in the GloVe

embeddings are set to zero. In the following, this transformation is referred to as

PGLOVE. The setting of the regularization parameter λ is achieved empirically

and established w.r.t. the PPMI and PGLOVE matrices.

5.5. Empirical results

Below we comment on the results of our experiments and answer several

questions related to our proposal.

What is the impact of the regularization parameter on the performances of

SNMF?

Figure 2 and 3 display the behaviors of SNMF w.r.t. the PGLOVE and PPMI

matrices respectively. The results are shown in terms of NMI and ARI scores for

several values of λ going from 0 to 103. In the case PGLOVE (see Figure 2), the

variations of the NMI and ARI scores are unfortunately inconsistent across the

range of λ values (see CSTR, RCV1, NG5, SPORTS) making the setting of λ quite

difficult and unreliable. However, a good trade off would be λ = 0.1. On the other

hand, using the PPMI (see Figure 2), the variations of the NMI and ARI scores are

consistent and linear once a jump is observed. In this case, setting λ is much trivial

and reliable and we recommend to set λ to 0.1 since we observe good performance
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scores even for higher values of λ on all the datasets. For these reasons, using the

PPMI appears as safer alternative.

(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) SPORTS (f) NG20

Figure 2: Impact of the regularization parameter λ (PGLOVE).

Table 2, summarizes the results of the different methods in terms of NMI and

ARI, over all datasets. All the scores are averages considering the 10 best solutions

(in terms of criterion) among a set of fifty different trials. As this table clearly

shows, both versions of our model SNMF outperform the other competing methods

by an important margin, in most cases. Recalling that SNMF corresponds to NMF

with an extra term encoding word co-occurrences. We can therefore attribute the

improvement of SNMF upon the performance of NMF to the additional factorization

of the PGLOVE or PPMI matrix. In addition, between our two versions (PGLOVE,

PPMI), using the PPMI appears to offer better performance overall and will be the

version considered in the rest of the paper.
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(a) CSTR (b) CLASSIC4 (c) RCV1

(d) NG5 (e) SPORTS (f) NG20

Figure 3: Impact of the regularization parameter λ (PPMI).

Table 2: Mean ± SD of NMI and ARI over different datasets.

Datasets Metrics Skmeans NMF ONMF PNMF GNMF DCN SNMF (PGLOVE) SNMF (PPMI)

CSTR NMI 0.76±0.00 0.73±0.04 0.65±0.00 0.72±0.04 0.69±0.00 0.63±0.024 0.76±0.00 0.76±0.01
ARI 0.80±0.00 0.75±0.10 0.60±0.03 0.73±0.09 0.75±0.02 0.53±0.03 0.80±0.00 0.80±0.01

CLASSIC4 NMI 0.60±0.00 0.59±0.00 0.49±0.02 0.51±0.00 0.62±0.00 0.57±0.01 0.61±0.02 0.61±0.03
ARI 0.47±0.00 0.47±0.00 0.41±0.01 0.42±0.00 0.45±0.00 0.42±0.01 0.47±0.00 0.47±0.00

RCV1 NMI 0.38±0.00 0.38±0.00 0.35±0.00 0.36± 0.00 0.34±0.00 0.34±0.00 0.51±0.08 0.56±0.00
ARI 0.18±0.00 0.18±0.00 0.14±0.00 0.16±0.00 0.12±0.00 0.12±0.00 0.39±0.15 0.45±0.00

NG5 NMI 0.72±0.02 0.72±0.02 0.52±0.01 0.69± 0.00 0.58±0.04 0.62±0.02 0.79±0.00 0.78±0.00
ARI 0.60±0.01 0.60±0.01 0.29±0.00 0.54±0.00 0.50±0.07 0.47±0.02 0.76±0.00 0.75±0.01

SPORTS NMI 0.62±0.02 0.61±0.03 0.55±0.02 0.56±0.00 0.55±0.00 0.59±0.01 0.62±0.05 0.63±0.04
ARI 0.40±0.04 0.41±0.04 0.28±0.01 0.28±0.00 0.28±0.00 0.37±0.03 0.46±0.07 0.48±0.05

NG20 NMI 0.49±0.02 0.49±0.02 0.38±0.01 0.43±0.03 0.00±0.00 0.43±0.01 0.49±0.02 0.49±0.02
ARI 0.30±0.02 0.30±0.02 0.20±0.00 0.22±0.02 0.00±0.00 0.17±0.01 0.29±0.01 0.33±0.03

To gain further insights into the performances of SNMF and characterize the cir-

cumstances in which it provides the most significant improvements, we investigate

several research questions below.

What happens with document embeddings? Figure 4 shows the distribution of
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(a) CSTR (b) CLASSIC4 (c) RCV1

(e) NG5 (f) SPORTS (f) NG20

Figure 4: Distribution of cosine similarities between pairs of documents belonging to the
same class, computed using the documents’ embeddings obtained by NMF and SNMF. The
documents of the same class tend to have more similar embeddings under SNMF than NMF.

the cosine similarities between pairs of documents belonging to the same “true”

class, computed using the document embeddings produced by NMF (grey boxplots)

and SNMF (green boxplots). We observe that documents from the same class

(topic) tend to have more similar embeddings under SNMF than NMF. This provides

empirical evidence that accounting for the semantic relationships among words

yields document factors that encode the clustering structure even better.

Is SNMF actually capturing the semantic relationships between words? Based

on the document-word matrix, we select the top thirty words of each true class.

In Figure 5, we report the distribution of the cosine similarities between pairs of

top words of the same class, computed using the word vectors inferred by NMF

(grey boxplots) and SNMF (blue boxplots). Because the cosine similarity is likely
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(a) CSTR (b) CLASSIC4 (c) RCV1

(e) NG5 (f) SPORTS (f) NG20

Figure 5: Distribution of cosine similarities between the top 30 words characterizing each
document class, computed using the words’ embeddings obtained by NMF and SNMF. The
top words of the same class tend to have more similar embeddings under SNMF than NMF.

to be high between low dimensional vectors (e.g. g = 4), we vary g from the real

number of clusters to 400 for each dataset. As this figure shows clearly, the top

words of each class have more similar embeddings under SNMF than NMF. This

confirms that SNMF does a better job than NMF in capturing semantics, by making

the representations of words which are about the same topic (class) closer to each

other in the latent space.

We also investigate the effect of the contextual relationships between words by

comparing SNMF with NMF in terms of cluster interpretability. To human subjects,

interpretability is closely related to coherence [42], i.e., how much the top words

of each cluster are “associated” with each other. For each cluster k, we select its

top 30 words based on the kth column of W. We use the PMI, which is highly

correlated with human judgments [41, 45], to measure the degree of association
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Figure 6: Cluster interpretability: Average PMI score. Semantic-NMF leads more inter-
pretable document clusters than NMF.

between top word pairs. For each cluster we average the PMI’s among its top words,

and for a model we average PMI across clusters. Because SNMF already exploits

the PMI estimated from word co-occurrences in each dataset, we propose to use an

external corpus to estimate the PMI in this experiment. Following Newman et al.

[41], we use the whole English WIKIPEDIA corpus, that consists of approximately

4 millions of documents and 2 billions of words. Hence, p(wj) is the probability

that word wj occurs in WIKIPEDIA, and p(wj, wj′) is the probability that words wj

and wj′ co-occur in a 5-word window in any WIKIPEDIA document.

Figure 6 shows the average PMI obtained by SNMF and NMF, over the different

datasets; it is clear that SNMF successes in capturing more semantics and inferring

more interpretable clusters than NMF.

5.6. Cluster Ensembles

Throughout our experiments, Skmeans has proved to be a good initialization

for gaining better NMF solutions with text data. However, we noticed that random

starting values could sometimes lead to better solutions. Table 3 reports results
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of SNMF initialized with Skmeans and randomly. We can see that with RCV1,

SNMF (Random) provides better partitions than SNMF (Skmeans). While

this improvement only appears with one dataset (other encountering losses, see

CLASSIC4 and NG5), we tried to benefit from that infrequent/inconsistent be-

havior by using the SNMF (Random) solutions along side those obtained with a

Skmeans initialization. Furthermore, in unsupervised learning, selecting an unique

partition among the set of trials has also been a reluctant problem which to this

day remains unclearly addressed. In the case of NMF, the objective function is not

defined as a clustering problem, therefore, it often happens that the selection of

the best run (criterion-wise) among several does not account for getting the best

clustering. However the best clustering could be among a set of lead solutions (for

instance the 10 first ones). In other words, a consensus approach will also help us

to overcome this issue.

In machine learning, the idea of utilizing multiple sources of data partitions

firstly occurred with multi-learner systems where the output of several classifier

algorithms where used together in order to improve the accuracy and robustness of

a classification or regression, for which strong performances were acknowledged

[50, 48, 49]. At this stage, very few approaches have worked toward applying a

similar concept to unsupervised learning algorithms. In this sense, we denote the

work of [6] who tried to combine several clustering partitions according to the

combination of the cluster centers. In the early 2000, [50] were the first to consider

an idea of combining several data partitions however, without accessing any original

sources of information (features) or led computed centers. This approach is referred

to as cluster ensembles . At the time, their idea was motivated by the possibility

of taking advantage of existing information such as a prior clustering partitions or
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an expert categorization (all regrouped under the terms Knowledge Reuse), which

may still be relevant or substantial for a user to consider in a new analysis on the

same objects, whether or not the data associated with these objects may also be

different than the ones used to define the prior partitions. Another motivation was

Distributed computing , referring to analyzing different sources of data (which

might be complicated to merge together for instance for privacy reasons) stored in

different locations. In our concept, we will use cluster ensembles to improve the

quality of the final partition (as opposed to selecting a unique one) and therefore

extract all the possibilities offered by the miscellaneous best solutions created by

NMF.

In [50], the authors introduced three consensus methods that can produce a

partition. All of them consider the consensus problem on a hypergraph representa-

tion H of the set of partitions Hr. More specifically, each partition Hr equals a

binary classification matrix (with objects in rows and clusters in columns) where

the concatenation of all the set defines the hypergraph H.

• The first one is called Cluster-based Similarity Partitioning Algorithm (CSPA)

and consists in performing a clustering on the hypergraph according to a

similarity measure.

• The second is referred to as HyperGraph Partitioning Algorithm (HGPA)

and aims at optimizing a minimum cut objective.

• The third one is called Meta-CLustering Algorithm (MCLA) and looks

forward to identifying and constructing groups of clusters.

Furthermore, in [50] the authors proposed an objective function to characterize the

cluster ensembles problem and therefore allowing a selection of the best consensus
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algorithm among the three to deliver its ensemble partition. Let Λ = {λ(q)|q ∈

{1, . . . , r}} be a given set of r partitions λ(q) represented as labels vectors. The

ensemble criterion denoted as λ(k−opt) is called the optimal combine clustering and

aims at maximizing the Average Normalized Mutual Information (ANMI). It is

defined as follows:

λ(k−opt) = arg max
λ̃

r∑
q=1

NMI(λ̃, λ(q)). (11)

The ANMI is simply the average of the normalized mutual information of a labels

vector λ̃ with all labels vectors λ(q) in Λ:

ANMI(Λ, λ̃) =
1

r

r∑
q=1

NMI(λ̃, λ(q)). (12)

To cast with cases where the vector labels λ(q) have missing values, the authors

have proposed a generalized expression of (11) not substantially different that

viewers can refer to in the original paper [50].

Following the cluster-based consensus approach which implies a similarity-

based clustering algorithm, we decided to make use of a model-based cluster-

ing to go and try to obtain a better final partition than the one delivered by

cluster ensembles . In [51], the authors have used the Multinomial mixture ap-

proach to propose a consensus function. In model-based clustering, it is assumed

that the data are generated by a mixture of underlying probability distributions,

where each component k of the mixture represents a cluster.

Let Λ ∈ Nn×r
0 be the data matrix of labels vectors from the top r solutions. Our

data being categorical, we used a Multinomial Mixture Model (MMM) in order to

partition the elements λi. Categorical data being a generalization of binary data;

assuming a perfect scenario where there is no partition with an empty cluster, a
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disjunctive matrix M ∈ {0, 1}n×rg is usually used instead of Λ with value m(h)
iq

where h ∈ 1, . . . , g is a cluster label. Therefore, the data value m(h)
iq are assumed to

be generated from a Multinomial distribution of parameterM(m
(h)
iq ;α

(h)
kq ) where

α
(h)
kq is the probability that an element mi in the group k takes the category h for the

partition/variable λq. The density probability function of the model can be stated

as:

f(M; Θ) =
n∏
i=1

g∑
k=1

πk

r∏
q=1

g∏
h=1

(α
(h)
kq )m

(h)
iq , (13)

where Θ = (π,α) are the parameters of the model with π = (π1, . . . , πk) being

the proportions and α the vector of the components parameters.

The Rmixmod package 5 [5, 28] is used to achieve our analysis. We employ

the default settings to compute the clustering, allowing the selection between 10

parsimonious models according to the Bayesian information Criterion (BIC) [46].

5.6.1. Consensus results

Following the previous statements, we believe that using SNMF (Random)

solutions could potentially improve the quality of the final partition. While they

look unattractive compared to those of SNMF (Skmeans) due to their lower

performance (see Table 3 where overall, SNMF (Random) appears to be a bad

initialization strategy except for RCV1), these solutions still lead to minima which

in an unsupervised situation, could benefit to other groups of individuals. More

specifically, clusters could be different to the ones captured by SNMF (Skmeans)

and therefore might bring another source of information to get closer to the actual

partition. Our proposition referred to as SNMF (Skmeans & Random) consists in

retrieving the 5 top SNMF solutions given by each initialization strategy (Skmeans

5https://cran.r-project.org/web/packages/Rmixmod/Rmixmod.pdf
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and Random) and performing a consensus using the ensemble methods defined

earlier. For comparison, we also provide a consensus for SNMF (Skmeans) and

SNMF (Random) individually. Table 3 also reports the average performances of

the mix of solutions of SNMF (Skmeans & Random). Consensus results obtained

with CE and MMM for each strategy are also available.

Figure 7 displays the pairwise NMI and ARI between the top partitions of

each strategy: SNMF (Skmeans) denoted "SNMF Sk", SNMF (Random) denoted

"SNMF Ra" and SNMF (Skmeans& Random) denoted "SNMF Sk & Ra". This

allow us to assess how similar/related the respective partitions of each strategy

are among each other. For instance SNMF Sk & Ra will translate how different

SNMF (Random) solutions are from SNMF (Skmeans), while SNMF Sk relates

how different SNMF (Skmeans solutions) are between each other. The closer we

are to 1, the less diversity there is in the set of partitions.

Through our experiments, one can wonder what strategy should we use to

improve clustering performance ? As we are in an unsupervised context, this

question is difficult but through our obtained results we can nevertheless make

some useful recommendations for the user.

1. First, it is clear that the MMM approach is undoubtedly superior to the CE

approach [50] (see Table 3).

2. Between the two approaches Skmeans and Random, the former seems more

often better than the latter. This can be due to the diversity it offers; see for

example SPORTS and NG20.

3. In the absence of diversity, the MMM approach does not bring improvement

whatever the strategy used (Skmeans or Random). In this case combining
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them (Skmeans & Random) can even degrade the result as is the case with

RCV1. Otherwise, with a great diversity of the two strategies one can expect

an improvement; this is the case of NG20.

Figure 7: Pairwise NMI & ARI averages between the top 10 solutions.

Table 3: Mean ± SD of NMI and ARI & consensus over different datasets using CE and
the Multinomial Mixture Model (MMM).

Datasets Metrics SNMF (Skmeans) SNMF (Random) SNMF (Skmeans & Random)
Mean±SD CE MMM Mean±SD CE MMM Mean±SD CE MMM

CSTR NMI 0.76±0.01 (0.76) (0.76) 0.75±0.00 (0.75) (0.75) 0.75±0.00 (0.75) (0.77)
ARI 0.80±0.01 (0.80) (0.80) 0.80±0.00 (0.80) (0.80) 0.80±0.00 (0.80) (0.81)

CLASSIC4 NMI 0.61±0.03 (0.60) (0.60) 0.54±0.00 (0.49) (0.54) 0.58±0.05 (0.57) (0.65)
ARI 0.47±0.00 (0.47) (0.47) 0.38±0.00 (0.31) (0.38) 0.48±0.05 (0.40) (0.47)

RCV1 NMI 0.56±0.00 (0.56) (0.56) 0.61±0.00 (0.51) (0.61) 0.59±0.03 (0.51) (0.52)
ARI 0.45±0.00 (0.45) (0.45) 0.63±0.00 (0.38) (0.63) 0.54±0.04 (0.45) (0.45)

NG5 NMI 0.78±0.00 (0.78) (0.78) 0.67±0.00 (0.67) (0.67) 0.73±0.06 (0.67) (0.77)
ARI 0.75±0.01 (0.75) (0.74) 0.64±0.00 (0.64) (0.64) 0.69±0.06 (0.60) (0.79)

SPORTS NMI 0.63±0.04 (0.63) (0.66) 0.43±0.00 (0.43) (0.43) 0.54±0.12 (0.53) (0.57)
ARI 0.48±0.05 (0.48) (0.54) 0.32±0.00 (0.32) (0.32) 0.41±0.10 (0.40) (0.46)

NG20 NMI 0.49±0.02 (0.50) (0.50) 0.47±0.01 (0.47) (0.47) 0.48±0.02 (0.50) (0.52)
ARI 0.33±0.03 (0.33) (0.30) 0.32±0.02 (0.33) (0.33) 0.32±0.02 (0.34) (0.37)

6. Discussion

In this section, we discuss some directions that we have already investigated

since we developed Semantic-NMF. We also discuss some weaknesses and possible

improvements of Semantic-NMF.

6.1. The orthogonality constraint

The orthogonality constraint on Z is almost always adopted for the clustering

task [17, 58]. With this constraint NMF is equivalent to k-means clustering, and
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several work empirically demonstrated that such constrain improves the clustering

performance of NMF, in most situations. In our case, we found that the orthogonal-

ity constraint on Z has only a slight impact on the performances of Semantic-NMF.

Since this constraint adds a little computational overhead, we have chosen not

to consider it for efficiency purposes. Note that, introducing the orthogonality

constraint into Semantic-NMF is trivial as we only need to replace the update rule

of Z (7a) by the one of Orthogonal NMF [17, 58].

6.2. Regularizing document factors using document-document co-occurrences

A natural extension of Semantic-NMF is to regularize the document factors

using the document-document co-occurrence information. While such an extension

is expected to yield further improvements, our first results show that in some

cases adding this regularization declines the clustering performance of Semantic-

NMF. We believe that this is might be due to the fact that even the most closely

related documents do not necessarily use exactly the same words. We are currently

performing further investigations and try to figure out what is causing this issue.

6.3. Weaknesses and possible improvements

Although we have shown that Semantic-NMF improves the performances of

NMF models by a noticeable amount, Semantic-NMF has two potential weaknesses:

(i) as in most NMF models, the dimensionality, g, of the latent space is the same

for both documents and words. For the clustering task, g also denotes the number

of clusters. When the latter is small (< 10), this may not be enough to learn

high quality word representations that capture finer linguistic regularities and

patterns between words. A better alternative, is to make the dimensionality of

the word embeddings independent from the number of clusters. This is possible

using Non-Negative Matrix Tri-factorization [17]. (ii) In some situations, when
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the PPMI matrix, M, is defined deterministically from the local corpus of each

dataset—as this is the case in this paper—, Semantic-NMF does not have a clear

generative interpretation, which could limit the scope of its use. We can overcome

this weakness by using a huge external corpora such as WIKIPEDIA and GOOGLE to

build the PPMI matrix. In this case, not only Semantic-NMF has a clear generative

interpretation and can be embedded in a well defined probabilistic model [40],

but also the PPMI matrix encodes richer and more accurate semantic regularities

between words. Leveraging a huge external corpora, such as the aforementioned

ones, so as to preserve semantics in NMF, constitutes our main focus for a future

extension of Semantic-NMF.

7. Conclusion

We describe Semantic-NMF, a novel non-negative factorization model which

explicitly accounts for the semantic relationships among words. Similar to neural

word embedding techniques, our model follows the distributional hypothesis so

as to leverage the relationships between words. Formally, Semantic-NMF jointly

decomposes the document-word and PPMI word-context matrices, with shared

word factors. The intuition behind our approach, is to map words having common

meaning roughly to the same direction in the latent space. More interestingly,

by capturing more semantics, our model implicitly brings the embeddings of

documents which are about the same topic closer to each other, as illustrated in our

experiments. This results in document factors that are even better for clustering.

Moreover, we identify in which situations Semantic-NMF does provide the most

significant improvements, which allows us to gain further insights into the benefits

of leveraging the word relationships.
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Overall, our findings suggest that, leveraging the contextual relationships be-

tween words, explicitly, makes it possible to preserve more semantics and dras-

tically improve the clustering performance of NMF models. Interestingly, our

approach does not require an additional source of data.

Semantic-NMF is a flexible model that can be extended in several directions,

which open up good opportunities for future research. For instance, it could benefit

from the wide range of regularization schemes already applied to the original

NMF. As a concrete example, we believe that it would be very interesting to

combine Graph regularized NMF (GNMF), which relies on document manifold

regularization, with Semantic-NMF to lead to Semantic-GNMF. We expect such

combination to yield further improvements as manifold regularization has proven

to be useful for clustering [9, 47, 53, 31]. On the other hand, the idea of Semantic-

NMF could be extended to other variants of NMF. Furthermore, because theoretical

connections have been already established between NMF and k-means, spectral

clustering, our work could be the building block for Semantic Clustering Models,

i.e., clustering models which account for the semantic relationships between words.
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